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ABSTRACT: This chapter presents a review on
the biomaterials currently used in the creation
of three-dimensional culture media for the study
of cancerous tumors. Three-dimensional tumor
models are essential for in vitro research results
to be faithful to in vivo reality, for the study and
evolution oftreatments and overall comprehension
of cancer. Due to their high versatility, natural and
synthetic polymers dominate this application.
The main materials used, their applications,
available commercial products, their advantages
and disadvantages are presented. Some of
the most cutting-edge research in this field and
perspectives for the future of tumor models are
discussed.

KEYWORDS: tridimensional tumor
polymers, hydrogels, cell culture media.
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11 INTRODUCTION

Cancer is the second deadliest disease
in the world. According to estimates by the
World Health Organization (WHO) [1], cancer
is the first or second leading cause of death
before the age of 70 in 112 of 183 countries
(Fig. 1). The same survey estimates 19 million
new cases worldwide and 10 million deaths in
2020 [2], causing an economic impact of more
than 1 trillion dollars every year [4]. The growing
prominence of cancer as a leading cause of
death reflects, in part, marked declines in
cardiovascular diseases mortality rates in many
countries [1,3].

Figure 1 — Cancer’s position in the mortality ranking of
each country in 2019. Reproduced from [1].

Although the fatality rate has been falling
by an average of 1.4% per year [2], this decline
is very small compared to other diseases. This
is explained by the little evolution of treatments
over the years, despite the many researches
and knowledge generated about cancer [4]. One
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of the main reasons for this low evolution of treatments is the use of two-dimensional cell
culture techniques to study tumors, which are three-dimensional tissues. This reduction in
dimensional complexity ignores the effects of the microenvironment on tumor development,
generating in vitro results that do not correspond to in vivo reality [5]. The recent development
of biomaterials with controllable properties and new advanced manufacturing techniques
allow the creation of three-dimensional cell culture media and the modeling of tumors more
faithful to reality [4].

21 TUMOR MODELS

Reliable tumor models are essential for performing detailed analyses, target
identification, drug studies and personalized treatment planning [6]. Several types of models
have already been developed, from creating cell lines in vitro to in vivo animal models. Cell
culture models provide convenience and controllability, but often misrepresent the complex
tumor microenvironment. Animal models, on the other hand, mimic better certain aspects
of the microenvironment, but are inherently complex and the interpretation of their study
results is not an easy task [6].

Currently, 3D models include spheroids, organoids, matrix scaffolds, tumor-on-
chips and printed tissue constructions. This generation of models attempts to address the
limitations of current 2D models while providing mimicry of in vivo tumors. Spheroids and
organoids are being adopted due to the simplicity and convenience of copying densely
packed cells in the three-dimensional context [7]. Scaffolds (Fig. 2) allow the systematic
study of microenvironments, including cell-cell and cell-matrix interactions via culture of
various cell types [8,9]. Microfluidic models are able to control and impose various chemical
and physical conditions on the tumor microenvironment [10].

Gears of the future Capitulo 6



Figure 2 — Creation of a 3D tumor model using a scaffold. Adapted from [9].

31 BIOMATERIALS CURRENTLY USED

Materials used as culture medium should mimic the tumor-specific extracellular
matrix and composition, as well as aspects of cancer-related changes in tissue mechanics,
structure, and interstitial pressure [8].

Although ideal for replicating the cell-matrix interactions of the native tumor
microenvironment, scaffolds of natural materials suffer from batch-to-batch variability and
can only be manufactured within limited ranges of mechanical stiffness, degradation rate,
porosity, and number of sites for cell adhesion. [9].

To overcome the limitations of natural materials, research has been done on
developing synthetic materials with a superior capacity for structural complexity and
adjustable physical properties over a wider range. They provide the possibility to project
the extracellular matrix characteristics specifically for the type of cell or tumor, allowing the
study of microenvironmental signals in a highly controlled manner. However, the factors
that still limit its use are the manufacturing processes that can be cytotoxic and the limited
bioactivity of most synthetic materials [9].

Among the materials already applied, there is a predominance of natural and
synthetic polymers. Table 1 presents some of the most used, their origin and available
commercial products:

Gears of the future Capitulo 6



Naturals

. . Comercial
Materials Origin products Ref.

Polysaccharide composed of repeating

Hyaluronic acid units of d-glucuronic acid and n-acetyl-d- - [12,13]
glucosamine.
Polysaccharide composed of d-galactose

Agarose and 3,6-anhydro-alpha-I-galactopyranose - [14-17]
isolated from red algae.

. Block copolymer derived from brown algae  AlgiMatrix™, .
Alginate composed of guluronate and manuronate. BioVision® [18-20]
Type | collagen Isolated from bovine or porcine skin and Chondrex® [21-23]

tendons.
Mixture of basement membrane proteins .
2?;5;“%‘ membrane isolated from Engel-breth-Holm-Swarm m:{g;l%’ [24—-26]
mouse sarcoma [EHS).
Cell-derived arrays Matrix deposited by cells seeded in vitro. - [27,28]
Cells removed from an entire tissue or [29-31]
Decellularized Tissues organ, keeping the matrix structure and -
composition intact.
Synthetics
- - Produtos
Material Origem comerciais Ref.
. Bis-acrylamide cross-linked acrylamide -
Poly[acrylamide) [PA) monomers. Acrigel® [32,33]
Poly[lactic-co-glycolic Linear copolymer of lactic acid (LA) and } [8,34,35]
acid) (PLGA) glycolic acid (GA). h
Poly(lactic acid) (PLA) Polymer made up of lactic acid molecules. - [8,36]
Poly(glycolic acid) Highly crystalline, straight-chain glycolic B [8,36]
(PGA) acid polymer. ’
Poly(ethylene glycol) . .
Ethylene glycol repeating units - [37]

(PEG)

Table 1 - Biomaterials for three-dimensional culture medium

3.1 Hyaluronic acid (HA)

A natural polysaccharide consisting of d-glucuronic acid and n-acetyl-d-glucosamine

units, forming a linear copolymer [37]. As the main component of the extracellular matrix,

HA is expressed in several organs, mainly in the skin [38]. The CD44 differentiation

cluster protein is considered to be the main HA receptor, and the CD44-HA interaction is

activated in many signaling pathways and involved in many biological processes, such as

inflammation, wound healing, morphogenesis and cancer development [39,40]. As a 3D

culture medium, it requires chemical modification for cell attachment via integrins and its

mechanical adjustability is limited if not modified [18-20].

Gears of the future
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3.2 Agarose

Polysaccharide isolated from red algae, composed of d-galactose and 3,6-anhydro-
alpha-1-galactopyranose. Due to its structure similarity with the extracellular matrix,
this natural polymer supports cell adhesion with chemical modifications, while providing
adequate permeation of oxygen and nutrients for cell growth [41]. Cell adhesion on agarose
substrates can be improved by modifying the surface stiffness, using the fabrication of nano/
microstructures and by blending with other polymers. It can be tuned to emulate brain and
corneal tissues [42,43], where mechanobiology plays an important role in adjusting the
behavior of cell signaling. It has a high water absorption capacity, which is useful for cell
growth, differentiation and proliferation. The thermal gelling properties of its hydrogels allow
its properties to be customized when blending with synthetic biomaterials, such as to form
interpenetrating networks and copolymers [41].

3.3 Alginate

As one of the naturally occurring anionic polysaccharides, alginate gels have been
used to encapsulate a wide variety of cells. They are generated after gelation with some
divalent cations with controllable stiffness and flexibility [45]. The addition of calcium or
other divalent cations is not harmful to cells at low concentrations, which avoids the toxicity
of some catalysts or solvents during gelation [46]. Furthermore, alginate scaffolds are
structurally similar to the extracellular matrix, with controllable diameters, porosity, and
stiffness [47]. They can be processed under mild conditions and the culture system is easy
to reproduce, convenient to handle and suitable for large-scale cultivation [48].

3.4 Type |l Collagen

The presence of collagen throughout the connective tissue makes it one of the most
studied biomolecules in the extracellular matrix. This species of fibrous protein is the main
component of skin and bone and represents around 25% of the total dry weight of mammals
[49]. The use of collagen-based biomaterials in the field of tumor engineering has grown
intensely in recent decades. Several crosslinking methods were investigated and different
combinations with other biopolymers were explored in order to improve tissue function.
Collagen has a great advantage for being biodegradable, biocompatible, easily available
and highly versatile [50].

3.5 Poly(lactic-co-glycolic acid) (PLGA)

Linear synthetic polymer composed of lactic acid and glycolic acid. PLGA scaffolds
can be porous or fibrous and allow for precise control of biodegradability by adjusting the
components ratio [8]. However, they have low mechanical properties adjustability and their
biodegradation decreases the pH around cultured cells [8,34].
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3.6 Poly(ethylene glycol) (PEG)

Non-toxic, flexible, water-soluble polymer synthesized by ring-opening polymerization
of ethylene oxide (C,H,0) to produce a wide distribution of molecular weights. PEG-based
hydrogels are inert in terms of triggering cell signaling pathways, but can be equipped
with biochemicals such as proteolytic degradation sites and biological functionalities in a
controlled manner. The rigidity of such hydrogels can be precisely adjusted independently
of their proteolytic sensitivity and cell-ligand density [36].

3.7 Basement membrane matrix

Extracellular matrix secreted by the Engelbreth—Holm—Swarm mouse sarcoma cell
line. It contains components of the human cell matrix, such as collagens, laminin, fibronectin,
tenascin, elastin and a series of proteoglycans and glycosaminoglycans, similar to the
basement membrane [52]. It allows the reproduction of cooperative interactions between
epithelia and mesenchyme that occur during the development and culture of organotypic
skin cells. This material creates a three-dimensional environment that enhances cell
proliferation, promoting the growth and migration of many types of cells, including human
embryonic stem cells, neural stem cells, neurons, glia, astrocytes, fibroblasts, hepatocytes,
and keratinocytes [53].

3.8 Cell-derived matrices

Matrices deposited by cells seeded in vitro, such as fibroblasts [54] and stem cells
derived from human adipose tissue [55]. They provide a convenient and highly physiological
assay system for measuring and correlating cell morphology, proliferation, apoptosis
tendency, and drug response in high-throughput formats [54]. Preserve the original
composition and microstructure of the original cell type [11].

3.9 Decellularized Tissues

Decellularization is a technique in which an organ or tissue is chemically stripped of
its cells, leaving behind an intricately structured extracellular matrix [56]. This type of scaffold
retains tissue-specific matrix components and signaling molecules, in addition to allowing
the spontaneous formation of three-dimensional colonies that histologically, molecularly and
phenotypically resemble in vivo metastases [56]. Figure 3 illustrates the various existing

decellularization processes:
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Figure 3 — Chemical, physical and biological methods of decellularization. Reproduced from [57].

41 APPLICATIONS

4.1 Analysis of tissue dimensional effects

The exposure of cancer cells to 3D tissues significantly alters their signaling and
gene expression due to a variety of mechanisms, including differential integrin engagement,
cell-cell contact and tumor responses to the microenvironment. To directly identify the
molecular mechanisms by which changes in cell-cell contact can influence cell behavior, it is
possible to covalently couple adhesion molecules normally expressed in the cell membrane
to hydrogels. Individual cells seeded in micropores (Fig. 4) interact with these proteins as if
they were expressed by other cells. Such a system allows for the isolation and direct study
of cell-cell contacts via the interaction of specific protein binding pairs [58].

Gears of the future Capitulo 6



Figure 4 — Microporous plate for studies of disturbances in the hematopoietic stem cell
microenvironment. a) Reaction of thioland vinylsulfone end groups on PEG precursors to form hydrogel
matrices. b) plate manufacturing process. ¢) Matrix with 96 pores and tracking of cell behavior by time-

lapse videomicroscopy. Reproduced from [59].

4.2 Study of cell-matrix interactions

Interactions with the extracellular matrix regulate gene signaling and expressions
that underlie cellular processes during development, homeostasis, wound healing, and
cancer invasion [60]. These interactions are particularly difficult to study due to their
complex synergistic and antagonistic interactions in vivo. Experiments targeting integrins,
a central family of cell surface receptors, have shown that integrin-matrix interactions are
important regulators of cancer progression [61]. Thus, techniques that allow for specific
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impartial interrogation of cell-matrix adhesion are needed to directly query the diversity of
potential interactions [60].

To study the adhesion characteristics of the extracellular matrix of any cells of interest,
Reticker-Flynn et al. [62] developed plates (Fig. 5) for deposition of array combinations
by a DNA microarray identifier. Prior to deposition of molecules, slides are coated with
a polyacrylamide hydrogel that can dry after immersion to remove any unpolymerized
monomer. The dehydrated hydrogel works by binding molecules without requiring their
chemical modification (Fig. 5a). To quantify cells attached to each dot, nuclei are stained
according to standard fluorescence staining protocols and slides are imaged using an

automated inverted epifluorescent microscope [61].

Figure 5 - (a) Extracellular matrix microarrays generated by locating nearly 800 unique combinations
of molecules on polyacrylamide-coated glass sheets, followed by cell seeding. (b) Polyacrylamide
works by trapping molecules of a wide range of molecular weights. (c) Presentation of all molecules by
immunostaining (colored dots) or NHS-fluorescein markings (grayscale dots). [d) Representative images
of cells adhered to the extracellular matrix. Reproduced from [62].
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4.3 Tumor-stroma interaction modeling

The epithelial-mesenchymal transition is considered a crucial mechanism for the
acquisition of malignant phenotypes by epithelial tumor cells. The reverse phenomenon, the
mesenchymal-epithelial transition is also important as a process of reversion of cells to a
differentiated state, when cancer cells colonize and grow at secondary sites. In addition to
its role in cancer progression, the epithelial-mesenchymal transition can cause therapeutic
failure, generating subpopulations of cells that show drug resistance or stem cell-like traits,
i.e., tumor-initiating cells [63,64].

Cancer cell cultures in conjunction with cancer-associated fibroblast conditioned
media isolated from tumor samples are commonly used models to study these transitions
in vitro. Other models use cancer cells grown on extracellular matrix proteins or co-cultured
with stromal cells directly. Data obtained using these in vifro models may explain the
interaction between cancer cells and the extracellular matrix or between cancer cells and
the stroma in inducing the transition [65,66].

Kim et al. (2015) [67] created a 3D co-culture model using colorectal tumor spheroids
and colon fibroblasts cultured in collagen gel, representing the invasive margin of human
tumors where the epithelial-mesenchymal transition actively occurs. In this model, cell-
cell and cell-matrix interactions, proximity co-culture with fibroblasts and migration to the
collagen matrix were implemented. It was found that normal fibroblasts are activated when
co-cultured with 3D spheroids, but not with conventional two-dimensional culture. Co-culture
allowed the visualization of an expression pattern of several genes related to epithelial-
mesenchymal transition similar to that observed in tumors in vivo [67].

4.4 Microfluidic phenomena

During angiogenesis, blood vessel endothelial cells rapidly infiltrate avascular regions
through vascular budding. Vascular endothelial cell growth factors can promote vessel
dilation and angiogenic budding, but given the complex nature of vascular morphogenesis,
additional signals are needed to determine, for example, which vessel segments sprout,
which dilate and which remain quiescent. This process is critical to many normal and
pathological processes, such as wound healing and tumor growth, but its initiation and
control are still poorly understood [68].

Several approaches have been developed to mimic blood vessels by integrating
microfluidic channels into polymeric materials, such as laser ablation [69], two-photon
photolithography [70] and needle insertion [71]. Using microfluidic tissue, Song and Munn
[68] found that blood flow shear stress attenuates endothelial cell germination in a nitric oxide-
dependent manner and that interstitial flow, like that produced by extravasating plasma,
directs endothelial morphogenesis. Furthermore, positive gradients of vascular endothelial
cell growth factors initiate germination, but negative gradients inhibit it, promoting leaf-like
migration instead, analogous to vessel dilation [68].
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51 RESEARCH OPPORTUNITIES

The number of publications about tumor models is increasing rapidly (Fig. 7).
However, numerous challenges must be met to open up opportunities for the next generation
of models. Although many reconstitute the main components of tumor tissues, they are still
significantly limited in mimicking the full spectrum of microenvironmental pathophysiologies.
Next-generation tumor models should provide recapitulation of molecular signaling pathways
in tumorigenesis and drug resistance, which is essential for identifying molecular targets
and testing innovative compounds capable of effectively inhibiting these targets [6].
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0 _|\ I\
2000 2005 2010 2015 2020

Year

Figure 7 — Scientific publications on tumor models from the year 2000 to 2020. Source: Search in the
Pubmed database for publications with the keywords “tumor model”.

5.1 Immune Cells and Specific Subpopulation Models

A major challenge is associated with the recreation of immunosuppressive and
inflammatory aspects of the microenvironment. With the advent of immunotherapies,
reliable tests to postulate and test new hypotheses to improve anti-tumor immunity in the
microenvironment are highly demanded. However, recapitulating the immunosuppression
of the microenvironment is extremely difficult. Several attempts to incorporate immune
cells have been reported, but it is still in an early stage for wider use. However, given
the clear contribution of the immune system to tumor progression and the emphasis on
the development of therapies aimed at the immune system, incorporating immunological
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components into 3D tumor models is a research area with great potential for development
[10,72,73].

5.2 Pancreatic tumors: mimicry of pathophysiology

Pancreatic cancer has the highest mortality rate of all major cancers. For all stages
combined, the relative 5-year survival rate is only 10% [74]. The complexity of recapitulating
the entire tumor spectrum in a 3D model system is further complicated by the number
of biological systems that are activated in the pancreatic tumor microenvironment. For
example, recent studies have shown a reciprocal relationship in which the local action of
the coagulation and fibrinolytic systems is a significant feature of the pathophysiology of
this type of cancer, which has consequences on the disease progression and severity [75].
Systematic studies in different cell lines or patients with distinct oncogenic alternations are
necessary to understand the relations between mutations and gene expressions and their
contributions to disease prognosis [6].

61 CONCLUSION

Three-dimensional cell culture media allow the creation of tumor models that are
much more reliable, controllable and faithful to reality. This fidelity is extremely important for
the results of in vitro research to bring innovations to in vivo treatments. Many biomaterials
are already being used for this purpose, but few commercial products are available on the
market. Although polymers dominate this type of application, the great advances in the
development of ceramic scaffolds for bone tissue engineering indicate that this class of
materials also has great potential for application in tumor engineering. There is a consensus
that microfluidic models will be the most researched model in the coming years, given their
wide range of applications and versatility.
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