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ABSTRACT: This chapter presents a review on 
the biomaterials currently used in the creation 
of three-dimensional culture media for the study 
of cancerous tumors. Three-dimensional tumor 
models are essential for in vitro research results 
to be faithful to in vivo reality, for the study and 
evolution of treatments and overall comprehension 
of cancer. Due to their high versatility, natural and 
synthetic polymers dominate this application. 
The main materials used, their applications, 
available commercial products, their advantages 
and disadvantages are presented. Some of 
the most cutting-edge research in this field and 
perspectives for the future of tumor models are 
discussed.
KEYWORDS: tridimensional tumor models, 
polymers, hydrogels, cell culture media.

1 | 	INTRODUCTION
Cancer is the second deadliest disease 

in the world. According to estimates by the 
World Health Organization (WHO) [1], cancer 
is the first or second leading cause of death 
before the age of 70 in 112 of 183 countries 
(Fig. 1). The same survey estimates 19 million 
new cases worldwide and 10 million deaths in 
2020 [2], causing an economic impact of more 
than 1 trillion dollars every year [4]. The growing 
prominence of cancer as a leading cause of 
death reflects, in part, marked declines in 
cardiovascular diseases mortality rates in many 
countries [1,3].

Figure 1 – Cancer’s position in the mortality ranking of 
each country in 2019. Reproduced from [1].

Although the fatality rate has been falling 
by an average of 1.4% per year [2], this decline 
is very small compared to other diseases. This 
is explained by the little evolution of treatments 
over the years, despite the many researches 
and knowledge generated about cancer [4]. One 

http://lattes.cnpq.br/5593477121814609
http://lattes.cnpq.br/7998391975397420
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of the main reasons for this low evolution of treatments is the use of two-dimensional cell 
culture techniques to study tumors, which are three-dimensional tissues. This reduction in 
dimensional complexity ignores the effects of the microenvironment on tumor development, 
generating in vitro results that do not correspond to in vivo reality [5]. The recent development 
of biomaterials with controllable properties and new advanced manufacturing techniques 
allow the creation of three-dimensional cell culture media and the modeling of tumors more 
faithful to reality [4].

2 | 	TUMOR MODELS
Reliable tumor models are essential for performing detailed analyses, target 

identification, drug studies and personalized treatment planning [6]. Several types of models 
have already been developed, from creating cell lines in vitro to in vivo animal models. Cell 
culture models provide convenience and controllability, but often misrepresent the complex 
tumor microenvironment. Animal models, on the other hand, mimic better certain aspects 
of the microenvironment, but are inherently complex and the interpretation of their study 
results is not an easy task [6].

Currently, 3D models include spheroids, organoids, matrix scaffolds, tumor-on-
chips and printed tissue constructions. This generation of models attempts to address the 
limitations of current 2D models while providing mimicry of in vivo tumors. Spheroids and 
organoids are being adopted due to the simplicity and convenience of copying densely 
packed cells in the three-dimensional context [7]. Scaffolds (Fig. 2) allow the systematic 
study of microenvironments, including cell-cell and cell-matrix interactions via culture of 
various cell types [8,9]. Microfluidic models are able to control and impose various chemical 
and physical conditions on the tumor microenvironment [10].
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Figure 2 – Creation of a 3D tumor model using a scaffold. Adapted from [9].

3 | 	BIOMATERIALS CURRENTLY USED
Materials used as culture medium should mimic the tumor-specific extracellular 

matrix and composition, as well as aspects of cancer-related changes in tissue mechanics, 
structure, and interstitial pressure [8].

Although ideal for replicating the cell-matrix interactions of the native tumor 
microenvironment, scaffolds of natural materials suffer from batch-to-batch variability and 
can only be manufactured within limited ranges of mechanical stiffness, degradation rate, 
porosity, and number of sites for cell adhesion. [9].

To overcome the limitations of natural materials, research has been done on 
developing synthetic materials with a superior capacity for structural complexity and 
adjustable physical properties over a wider range. They provide the possibility to project 
the extracellular matrix characteristics specifically for the type of cell or tumor, allowing the 
study of microenvironmental signals in a highly controlled manner. However, the factors 
that still limit its use are the manufacturing processes that can be cytotoxic and the limited 
bioactivity of most synthetic materials [9].

Among the materials already applied, there is a predominance of natural and 
synthetic polymers. Table 1 presents some of the most used, their origin and available 
commercial products:
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Naturals

Materials Origin Comercial 
products Ref.

Hyaluronic acid
Polysaccharide composed of repeating 
units of d-glucuronic acid and n-acetyl-d-
glucosamine.

- [12,13]

Agarose
Polysaccharide composed of d-galactose 
and 3,6-anhydro-alpha-l-galactopyranose 
isolated from red algae.

- [14–17]

Alginate Block copolymer derived from brown algae 
composed of guluronate and manuronate.

AlgiMatrix™, 
BioVision® [18–20]

Type I collagen Isolated from bovine or porcine skin and 
tendons. Chondrex® [21–23]

Basement membrane 
matrix

Mixture of basement membrane proteins 
isolated from Engel-breth-Holm-Swarm 
mouse sarcoma [EHS).

Matrigel®, 
MaxGel™ [24–26]

Cell-derived arrays Matrix deposited by cells seeded in vitro. - [27,28]

Decellularized Tissues 
Cells removed from an entire tissue or 
organ, keeping the matrix structure and 
composition intact. 

- [29–31]

Synthetics

Material Origem Produtos 
comerciais Ref.

Poly[acrylamide) [PA) Bis-acrylamide cross-linked acrylamide 
monomers. Acrigel® [32,33]

Poly[lactic-co-glycolic 
acid) (PLGA)

Linear copolymer of lactic acid (LA) and 
glycolic acid (GA). - [8,34,35]

Poly(lactic acid) (PLA) Polymer made up of lactic acid molecules. - [8,36]
Poly(glycolic acid) 
(PGA)

Highly crystalline, straight-chain glycolic 
acid polymer. - [8,36]

Poly(ethylene glycol) 
(PEG) Ethylene glycol repeating units - [37]

Table 1 - Biomaterials for three-dimensional culture medium

3.1	 Hyaluronic acid (HA)
A natural polysaccharide consisting of d-glucuronic acid and n-acetyl-d-glucosamine 

units, forming a linear copolymer [37]. As the main component of the extracellular matrix, 
HA is expressed in several organs, mainly in the skin [38]. The CD44 differentiation 
cluster protein is considered to be the main HA receptor, and the CD44-HA interaction is 
activated in many signaling pathways and involved in many biological processes, such as 
inflammation, wound healing, morphogenesis and cancer development [39,40]. As a 3D 
culture medium, it requires chemical modification for cell attachment via integrins and its 
mechanical adjustability is limited if not modified [18–20].
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3.2	 Agarose
Polysaccharide isolated from red algae, composed of d-galactose and 3,6-anhydro-

alpha-1-galactopyranose. Due to its structure similarity with the extracellular matrix, 
this natural polymer supports cell adhesion with chemical modifications, while providing 
adequate permeation of oxygen and nutrients for cell growth [41]. Cell adhesion on agarose 
substrates can be improved by modifying the surface stiffness, using the fabrication of nano/
microstructures and by blending with other polymers. It can be tuned to emulate brain and 
corneal tissues [42,43], where mechanobiology plays an important role in adjusting the 
behavior of cell signaling. It has a high water absorption capacity, which is useful for cell 
growth, differentiation and proliferation. The thermal gelling properties of its hydrogels allow 
its properties to be customized when blending with synthetic biomaterials, such as to form 
interpenetrating networks and copolymers [41].

3.3	 Alginate
As one of the naturally occurring anionic polysaccharides, alginate gels have been 

used to encapsulate a wide variety of cells. They are generated after gelation with some 
divalent cations with controllable stiffness and flexibility [45]. The addition of calcium or 
other divalent cations is not harmful to cells at low concentrations, which avoids the toxicity 
of some catalysts or solvents during gelation [46]. Furthermore, alginate scaffolds are 
structurally similar to the extracellular matrix, with controllable diameters, porosity, and 
stiffness [47]. They can be processed under mild conditions and the culture system is easy 
to reproduce, convenient to handle and suitable for large-scale cultivation [48].

3.4	 Type I Collagen
The presence of collagen throughout the connective tissue makes it one of the most 

studied biomolecules in the extracellular matrix. This species of fibrous protein is the main 
component of skin and bone and represents around 25% of the total dry weight of mammals 
[49]. The use of collagen-based biomaterials in the field of tumor engineering has grown 
intensely in recent decades. Several crosslinking methods were investigated and different 
combinations with other biopolymers were explored in order to improve tissue function. 
Collagen has a great advantage for being biodegradable, biocompatible, easily available 
and highly versatile [50].

3.5	 Poly(lactic-co-glycolic acid) (PLGA)
Linear synthetic polymer composed of lactic acid and glycolic acid. PLGA scaffolds 

can be porous or fibrous and allow for precise control of biodegradability by adjusting the 
components ratio [8]. However, they have low mechanical properties adjustability and their 
biodegradation decreases the pH around cultured cells [8,34].
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3.6	 Poly(ethylene glycol) (PEG)
Non-toxic, flexible, water-soluble polymer synthesized by ring-opening polymerization 

of ethylene oxide (C2H4O) to produce a wide distribution of molecular weights. PEG-based 
hydrogels are inert in terms of triggering cell signaling pathways, but can be equipped 
with biochemicals such as proteolytic degradation sites and biological functionalities in a 
controlled manner. The rigidity of such hydrogels can be precisely adjusted independently 
of their proteolytic sensitivity and cell-ligand density [36].

3.7	 Basement membrane matrix
Extracellular matrix secreted by the Engelbreth–Holm–Swarm mouse sarcoma cell 

line. It contains components of the human cell matrix, such as collagens, laminin, fibronectin, 
tenascin, elastin and a series of proteoglycans and glycosaminoglycans, similar to the 
basement membrane [52]. It allows the reproduction of cooperative interactions between 
epithelia and mesenchyme that occur during the development and culture of organotypic 
skin cells. This material creates a three-dimensional environment that enhances cell 
proliferation, promoting the growth and migration of many types of cells, including human 
embryonic stem cells, neural stem cells, neurons, glia, astrocytes, fibroblasts, hepatocytes, 
and keratinocytes [53].

3.8	 Cell-derived matrices
Matrices deposited by cells seeded in vitro, such as fibroblasts [54] and stem cells 

derived from human adipose tissue [55]. They provide a convenient and highly physiological 
assay system for measuring and correlating cell morphology, proliferation, apoptosis 
tendency, and drug response in high-throughput formats [54]. Preserve the original 
composition and microstructure of the original cell type [11].

3.9	 Decellularized Tissues
Decellularization is a technique in which an organ or tissue is chemically stripped of 

its cells, leaving behind an intricately structured extracellular matrix [56]. This type of scaffold 
retains tissue-specific matrix components and signaling molecules, in addition to allowing 
the spontaneous formation of three-dimensional colonies that histologically, molecularly and 
phenotypically resemble in vivo metastases [56]. Figure 3 illustrates the various existing 
decellularization processes:
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Figure 3 – Chemical, physical and biological methods of decellularization. Reproduced from [57].

4 | 	APPLICATIONS

4.1	 Analysis of tissue dimensional effects 
The exposure of cancer cells to 3D tissues significantly alters their signaling and 

gene expression due to a variety of mechanisms, including differential integrin engagement, 
cell-cell contact and tumor responses to the microenvironment. To directly identify the 
molecular mechanisms by which changes in cell-cell contact can influence cell behavior, it is 
possible to covalently couple adhesion molecules normally expressed in the cell membrane 
to hydrogels. Individual cells seeded in micropores (Fig. 4) interact with these proteins as if 
they were expressed by other cells. Such a system allows for the isolation and direct study 
of cell-cell contacts via the interaction of specific protein binding pairs [58].
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Figure 4 – Microporous plate for studies of disturbances in the hematopoietic stem cell 
microenvironment. a) Reaction of thioland vinylsulfone end groups on PEG precursors to form hydrogel 
matrices. b) plate manufacturing process. c) Matrix with 96 pores and tracking of cell behavior by time-

lapse videomicroscopy. Reproduced from [59].

4.2	 Study of cell-matrix interactions
Interactions with the extracellular matrix regulate gene signaling and expressions 

that underlie cellular processes during development, homeostasis, wound healing, and 
cancer invasion [60]. These interactions are particularly difficult to study due to their 
complex synergistic and antagonistic interactions in vivo. Experiments targeting integrins, 
a central family of cell surface receptors, have shown that integrin-matrix interactions are 
important regulators of cancer progression [61]. Thus, techniques that allow for specific 
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impartial interrogation of cell-matrix adhesion are needed to directly query the diversity of 
potential interactions [60].

To study the adhesion characteristics of the extracellular matrix of any cells of interest, 
Reticker-Flynn et al. [62] developed plates (Fig. 5) for deposition of array combinations 
by a DNA microarray identifier. Prior to deposition of molecules, slides are coated with 
a polyacrylamide hydrogel that can dry after immersion to remove any unpolymerized 
monomer. The dehydrated hydrogel works by binding molecules without requiring their 
chemical modification (Fig. 5a). To quantify cells attached to each dot, nuclei are stained 
according to standard fluorescence staining protocols and slides are imaged using an 
automated inverted epifluorescent microscope [61].

Figure 5 - (a) Extracellular matrix microarrays generated by locating nearly 800 unique combinations 
of molecules on polyacrylamide-coated glass sheets, followed by cell seeding. (b) Polyacrylamide 

works by trapping molecules of a wide range of molecular weights. (c) Presentation of all molecules by 
immunostaining (colored dots) or NHS-fluorescein markings (grayscale dots). [d) Representative images 

of cells adhered to the extracellular matrix. Reproduced from [62].
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4.3	 Tumor-stroma interaction modeling
The epithelial-mesenchymal transition is considered a crucial mechanism for the 

acquisition of malignant phenotypes by epithelial tumor cells. The reverse phenomenon, the 
mesenchymal-epithelial transition is also important as a process of reversion of cells to a 
differentiated state, when cancer cells colonize and grow at secondary sites. In addition to 
its role in cancer progression, the epithelial-mesenchymal transition can cause therapeutic 
failure, generating subpopulations of cells that show drug resistance or stem cell-like traits, 
i.e., tumor-initiating cells [63,64].

Cancer cell cultures in conjunction with cancer-associated fibroblast conditioned 
media isolated from tumor samples are commonly used models to study these transitions 
in vitro. Other models use cancer cells grown on extracellular matrix proteins or co-cultured 
with stromal cells directly. Data obtained using these in vitro models may explain the 
interaction between cancer cells and the extracellular matrix or between cancer cells and 
the stroma in inducing the transition [65,66].

Kim et al. (2015) [67] created a 3D co-culture model using colorectal tumor spheroids 
and colon fibroblasts cultured in collagen gel, representing the invasive margin of human 
tumors where the epithelial-mesenchymal transition actively occurs. In this model, cell-
cell and cell-matrix interactions, proximity co-culture with fibroblasts and migration to the 
collagen matrix were implemented. It was found that normal fibroblasts are activated when 
co-cultured with 3D spheroids, but not with conventional two-dimensional culture. Co-culture 
allowed the visualization of an expression pattern of several genes related to epithelial-
mesenchymal transition similar to that observed in tumors in vivo [67].

4.4	 Microfluidic phenomena
During angiogenesis, blood vessel endothelial cells rapidly infiltrate avascular regions 

through vascular budding. Vascular endothelial cell growth factors can promote vessel 
dilation and angiogenic budding, but given the complex nature of vascular morphogenesis, 
additional signals are needed to determine, for example, which vessel segments sprout, 
which dilate and which remain quiescent. This process is critical to many normal and 
pathological processes, such as wound healing and tumor growth, but its initiation and 
control are still poorly understood [68].

Several approaches have been developed to mimic blood vessels by integrating 
microfluidic channels into polymeric materials, such as laser ablation [69], two-photon 
photolithography [70] and needle insertion [71]. Using microfluidic tissue, Song and Munn 
[68] found that blood flow shear stress attenuates endothelial cell germination in a nitric oxide-
dependent manner and that interstitial flow, like that produced by extravasating plasma, 
directs endothelial morphogenesis. Furthermore, positive gradients of vascular endothelial 
cell growth factors initiate germination, but negative gradients inhibit it, promoting leaf-like 
migration instead, analogous to vessel dilation [68].
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5 | 	RESEARCH OPPORTUNITIES
The number of publications about tumor models is increasing rapidly (Fig. 7). 

However, numerous challenges must be met to open up opportunities for the next generation 
of models. Although many reconstitute the main components of tumor tissues, they are still 
significantly limited in mimicking the full spectrum of microenvironmental pathophysiologies. 
Next-generation tumor models should provide recapitulation of molecular signaling pathways 
in tumorigenesis and drug resistance, which is essential for identifying molecular targets 
and testing innovative compounds capable of effectively inhibiting these targets [6].

Figure 7 – Scientific publications on tumor models from the year 2000 to 2020. Source: Search in the 
Pubmed database for publications with the keywords “tumor model”.

5.1	 Immune Cells and Specific Subpopulation Models
A major challenge is associated with the recreation of immunosuppressive and 

inflammatory aspects of the microenvironment. With the advent of immunotherapies, 
reliable tests to postulate and test new hypotheses to improve anti-tumor immunity in the 
microenvironment are highly demanded. However, recapitulating the immunosuppression 
of the microenvironment is extremely difficult. Several attempts to incorporate immune 
cells have been reported, but it is still in an early stage for wider use. However, given 
the clear contribution of the immune system to tumor progression and the emphasis on 
the development of therapies aimed at the immune system, incorporating immunological 
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components into 3D tumor models is a research area with great potential for development 
[10,72,73].

5.2	 Pancreatic tumors: mimicry of pathophysiology
Pancreatic cancer has the highest mortality rate of all major cancers. For all stages 

combined, the relative 5-year survival rate is only 10% [74]. The complexity of recapitulating 
the entire tumor spectrum in a 3D model system is further complicated by the number 
of biological systems that are activated in the pancreatic tumor microenvironment. For 
example, recent studies have shown a reciprocal relationship in which the local action of 
the coagulation and fibrinolytic systems is a significant feature of the pathophysiology of 
this type of cancer, which has consequences on the disease progression and severity [75]. 
Systematic studies in different cell lines or patients with distinct oncogenic alternations are 
necessary to understand the relations between mutations and gene expressions and their 
contributions to disease prognosis [6].

6 | 	CONCLUSION
Three-dimensional cell culture media allow the creation of tumor models that are 

much more reliable, controllable and faithful to reality. This fidelity is extremely important for 
the results of in vitro research to bring innovations to in vivo treatments. Many biomaterials 
are already being used for this purpose, but few commercial products are available on the 
market. Although polymers dominate this type of application, the great advances in the 
development of ceramic scaffolds for bone tissue engineering indicate that this class of 
materials also has great potential for application in tumor engineering. There is a consensus 
that microfluidic models will be the most researched model in the coming years, given their 
wide range of applications and versatility.
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