

Gears of the future

Adriano Pereira da Silva
(Organizador)

Editora chefe	
Prof ^a Dr ^a Antonella Carvalho de Oliveira	
Editora executiva	
Natalia Oliveira	
Assistente editorial	
Flávia Roberta Barão	
Bibliotecária	
Janaina Ramos	
Projeto gráfico	
Camila Alves de Cremo	2022 by Atena Editora
Daphynny Pamplona	Copyright © Atena Editora
Gabriel Motomu Teshima	Copyright do texto © 2022 Os autores
Luiza Alves Batista	Copyright da edição © 2022 Atena Editora
Natália Sandrini de Azevedo	Direitos para esta edição cedidos à Atena
Imagens da capa	Editora pelos autores.
iStock	Open access publication by Atena Editora
Edição de arte	
Luiza Alves Batista	

Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0).

O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.

Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.

A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.

Conselho Editorial

Ciências Exatas e da Terra e Engenharias

Prof. Dr. Adélio Alcino Sampaio Castro Machado – Universidade do Porto

Prof^a Dr^a Alana Maria Cerqueira de Oliveira – Instituto Federal do Acre

Prof^a Dr^a Ana Grasielle Dionísio Corrêa – Universidade Presbiteriana Mackenzie

Prof^a Dr^a Ana Paula Florêncio Aires – Universidade de Trás-os-Montes e Alto Douro

Prof. Dr. Carlos Eduardo Sanches de Andrade – Universidade Federal de Goiás

Prof^a Dr^a Carmen Lúcia Voigt – Universidade Norte do Paraná

Prof. Dr. Cleiseano Emanuel da Silva Paniagua – Instituto Federal de Educação, Ciência e Tecnologia de Goiás
Prof. Dr. Douglas Gonçalves da Silva – Universidade Estadual do Sudoeste da Bahia
Prof. Dr. Eloi Rufato Junior – Universidade Tecnológica Federal do Paraná
Profº Drª Érica de Melo Azevedo – Instituto Federal do Rio de Janeiro
Prof. Dr. Fabrício Menezes Ramos – Instituto Federal do Pará
Profº Dra. Jéssica Verger Nardeli – Universidade Estadual Paulista Júlio de Mesquita Filho
Prof. Dr. Juliano Bitencourt Campos – Universidade do Extremo Sul Catarinense
Prof. Dr. Juliano Carlo Rufino de Freitas – Universidade Federal de Campina Grande
Profº Drª Luciana do Nascimento Mendes – Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte
Prof. Dr. Marcelo Marques – Universidade Estadual de Maringá
Prof. Dr. Marco Aurélio Kistemann Junior – Universidade Federal de Juiz de Fora
Prof. Dr. Miguel Adriano Inácio – Instituto Nacional de Pesquisas Espaciais
Profº Drª Neiva Maria de Almeida – Universidade Federal da Paraíba
Profº Drª Natiéli Piovesan – Instituto Federal do Rio Grande do Norte
Profº Drª Priscila Tessmer Scaglioni – Universidade Federal de Pelotas
Prof. Dr. Sidney Gonçalo de Lima – Universidade Federal do Piauí
Prof. Dr. Takeshy Tachizawa – Faculdade de Campo Limpo Paulista

Diagramação: Daphynny Pamplona
Correção: Yaiddy Paola Martinez
Indexação: Amanda Kelly da Costa Veiga
Revisão: Os autores
Organizador: Adriano Pereira da Silva

Dados Internacionais de Catalogação na Publicação (CIP)

G292 Gears of the future / Organizador Adriano Pereira da Silva. -
Ponta Grossa - PR: Atena, 2022.

Formato: PDF
Requisitos de sistema: Adobe Acrobat Reader
Modo de acesso: World Wide Web
Inclui bibliografia
ISBN 978-65-5983-868-4
DOI: <https://doi.org/10.22533/at.ed.684220402>

1. Gears of the future. I. Silva, Adriano Pereira da
(Organizador). II. Título.

CDD 303.49

Elaborado por Bibliotecária Janaina Ramos – CRB-8/9166

Atena Editora
Ponta Grossa – Paraná – Brasil
Telefone: +55 (42) 3323-5493
www.atenaeditora.com.br
contato@atenaeditora.com.br

Atena
Editora
Ano 2022

CAPÍTULO 6

BIOMATERIALS FOR THE STUDY OF CANCER

Data de aceite: 01/01/2022

Submission date: 02/12/2021

Nícolas Lara

São Carlos Institute of Physics – University of
São Paulo (IFSC-USP)
São Carlos – SP
<http://lattes.cnpq.br/5593477121814609>

Maria Inês Basso Bernardi

São Carlos Institute of Physics – University of
São Paulo (IFSC-USP)
São Carlos – SP
<http://lattes.cnpq.br/7998391975397420>

ABSTRACT: This chapter presents a review on the biomaterials currently used in the creation of three-dimensional culture media for the study of cancerous tumors. Three-dimensional tumor models are essential for *in vitro* research results to be faithful to *in vivo* reality, for the study and evolution of treatments and overall comprehension of cancer. Due to their high versatility, natural and synthetic polymers dominate this application. The main materials used, their applications, available commercial products, their advantages and disadvantages are presented. Some of the most cutting-edge research in this field and perspectives for the future of tumor models are discussed.

KEYWORDS: tridimensional tumor models, polymers, hydrogels, cell culture media.

1 | INTRODUCTION

Cancer is the second deadliest disease in the world. According to estimates by the World Health Organization (WHO) [1], cancer is the first or second leading cause of death before the age of 70 in 112 of 183 countries (Fig. 1). The same survey estimates 19 million new cases worldwide and 10 million deaths in 2020 [2], causing an economic impact of more than 1 trillion dollars every year [4]. The growing prominence of cancer as a leading cause of death reflects, in part, marked declines in cardiovascular diseases mortality rates in many countries [1,3].

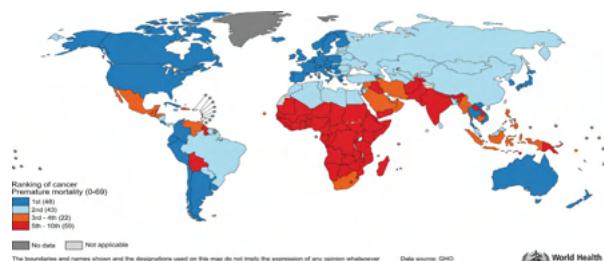


Figure 1 – Cancer's position in the mortality ranking of each country in 2019. Reproduced from [1].

Although the fatality rate has been falling by an average of 1.4% per year [2], this decline is very small compared to other diseases. This is explained by the little evolution of treatments over the years, despite the many researches and knowledge generated about cancer [4]. One

of the main reasons for this low evolution of treatments is the use of two-dimensional cell culture techniques to study tumors, which are three-dimensional tissues. This reduction in dimensional complexity ignores the effects of the microenvironment on tumor development, generating *in vitro* results that do not correspond to *in vivo* reality [5]. The recent development of biomaterials with controllable properties and new advanced manufacturing techniques allow the creation of three-dimensional cell culture media and the modeling of tumors more faithful to reality [4].

2 | TUMOR MODELS

Reliable tumor models are essential for performing detailed analyses, target identification, drug studies and personalized treatment planning [6]. Several types of models have already been developed, from creating cell lines *in vitro* to *in vivo* animal models. Cell culture models provide convenience and controllability, but often misrepresent the complex tumor microenvironment. Animal models, on the other hand, mimic better certain aspects of the microenvironment, but are inherently complex and the interpretation of their study results is not an easy task [6].

Currently, 3D models include spheroids, organoids, matrix scaffolds, tumor-on-chips and printed tissue constructions. This generation of models attempts to address the limitations of current 2D models while providing mimicry of *in vivo* tumors. Spheroids and organoids are being adopted due to the simplicity and convenience of copying densely packed cells in the three-dimensional context [7]. Scaffolds (Fig. 2) allow the systematic study of microenvironments, including cell-cell and cell-matrix interactions via culture of various cell types [8,9]. Microfluidic models are able to control and impose various chemical and physical conditions on the tumor microenvironment [10].

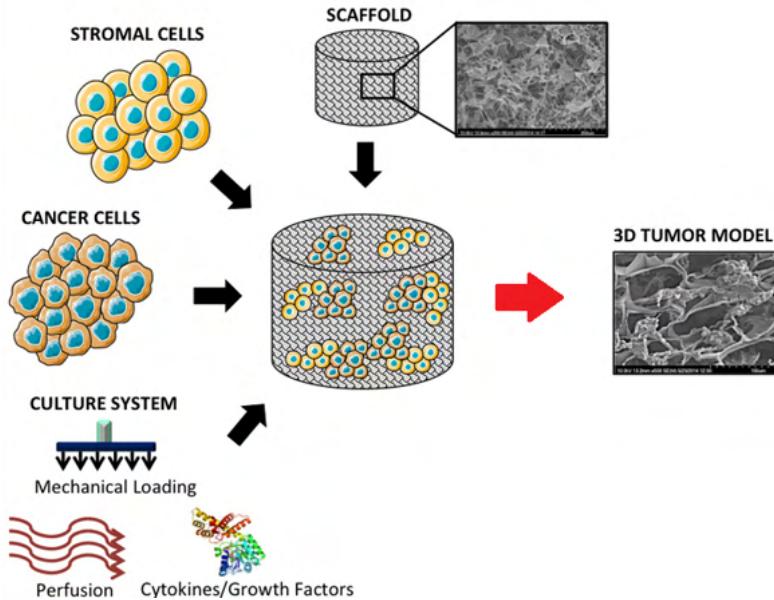


Figure 2 – Creation of a 3D tumor model using a scaffold. Adapted from [9].

3 I BIOMATERIALS CURRENTLY USED

Materials used as culture medium should mimic the tumor-specific extracellular matrix and composition, as well as aspects of cancer-related changes in tissue mechanics, structure, and interstitial pressure [8].

Although ideal for replicating the cell-matrix interactions of the native tumor microenvironment, scaffolds of natural materials suffer from batch-to-batch variability and can only be manufactured within limited ranges of mechanical stiffness, degradation rate, porosity, and number of sites for cell adhesion. [9].

To overcome the limitations of natural materials, research has been done on developing synthetic materials with a superior capacity for structural complexity and adjustable physical properties over a wider range. They provide the possibility to project the extracellular matrix characteristics specifically for the type of cell or tumor, allowing the study of microenvironmental signals in a highly controlled manner. However, the factors that still limit its use are the manufacturing processes that can be cytotoxic and the limited bioactivity of most synthetic materials [9].

Among the materials already applied, there is a predominance of natural and synthetic polymers. Table 1 presents some of the most used, their origin and available commercial products:

Naturals			
Materials	Origin	Commercial products	Ref.
Hyaluronic acid	Polysaccharide composed of repeating units of d-glucuronic acid and n-acetyl-d-glucosamine.	-	[12,13]
Agarose	Polysaccharide composed of d-galactose and 3,6-anhydro-alpha-l-galactopyranose isolated from red algae.	-	[14–17]
Alginate	Block copolymer derived from brown algae composed of guluronate and manuronate.	AlgiMatrix™, BioVision®	[18–20]
Type I collagen	Isolated from bovine or porcine skin and tendons.	Chondrex®	[21–23]
Basement membrane matrix	Mixture of basement membrane proteins isolated from Engel-breth-Holm-Swarm mouse sarcoma [EHS].	Matrigel®, MaxGel™	[24–26]
Cell-derived arrays	Matrix deposited by cells seeded in vitro.	-	[27,28]
Decellularized Tissues	Cells removed from an entire tissue or organ, keeping the matrix structure and composition intact.	-	[29–31]
Synthetics			
Material	Origem	Produtos comerciais	Ref.
Poly(acrylamide) [PA)	Bis-acrylamide cross-linked acrylamide monomers.	Acrigel®	[32,33]
Poly[lactic-co-glycolic acid] (PLGA)	Linear copolymer of lactic acid (LA) and glycolic acid (GA).	-	[8,34,35]
Poly(lactic acid) (PLA)	Polymer made up of lactic acid molecules.	-	[8,36]
Poly(glycolic acid) (PGA)	Highly crystalline, straight-chain glycolic acid polymer.	-	[8,36]
Poly(ethylene glycol) (PEG)	Ethylene glycol repeating units	-	[37]

Table 1 - Biomaterials for three-dimensional culture medium

3.1 Hyaluronic acid (HA)

A natural polysaccharide consisting of d-glucuronic acid and n-acetyl-d-glucosamine units, forming a linear copolymer [37]. As the main component of the extracellular matrix, HA is expressed in several organs, mainly in the skin [38]. The CD44 differentiation cluster protein is considered to be the main HA receptor, and the CD44-HA interaction is activated in many signaling pathways and involved in many biological processes, such as inflammation, wound healing, morphogenesis and cancer development [39,40]. As a 3D culture medium, it requires chemical modification for cell attachment via integrins and its mechanical adjustability is limited if not modified [18–20].

3.2 Agarose

Polysaccharide isolated from red algae, composed of d-galactose and 3,6-anhydro-alpha-1-galactopyranose. Due to its structure similarity with the extracellular matrix, this natural polymer supports cell adhesion with chemical modifications, while providing adequate permeation of oxygen and nutrients for cell growth [41]. Cell adhesion on agarose substrates can be improved by modifying the surface stiffness, using the fabrication of nano/microstructures and by blending with other polymers. It can be tuned to emulate brain and corneal tissues [42,43], where mechanobiology plays an important role in adjusting the behavior of cell signaling. It has a high water absorption capacity, which is useful for cell growth, differentiation and proliferation. The thermal gelling properties of its hydrogels allow its properties to be customized when blending with synthetic biomaterials, such as to form interpenetrating networks and copolymers [41].

3.3 Alginic

As one of the naturally occurring anionic polysaccharides, alginic gels have been used to encapsulate a wide variety of cells. They are generated after gelation with some divalent cations with controllable stiffness and flexibility [45]. The addition of calcium or other divalent cations is not harmful to cells at low concentrations, which avoids the toxicity of some catalysts or solvents during gelation [46]. Furthermore, alginic scaffolds are structurally similar to the extracellular matrix, with controllable diameters, porosity, and stiffness [47]. They can be processed under mild conditions and the culture system is easy to reproduce, convenient to handle and suitable for large-scale cultivation [48].

3.4 Type I Collagen

The presence of collagen throughout the connective tissue makes it one of the most studied biomolecules in the extracellular matrix. This species of fibrous protein is the main component of skin and bone and represents around 25% of the total dry weight of mammals [49]. The use of collagen-based biomaterials in the field of tumor engineering has grown intensely in recent decades. Several crosslinking methods were investigated and different combinations with other biopolymers were explored in order to improve tissue function. Collagen has a great advantage for being biodegradable, biocompatible, easily available and highly versatile [50].

3.5 Poly(lactic-co-glycolic acid) (PLGA)

Linear synthetic polymer composed of lactic acid and glycolic acid. PLGA scaffolds can be porous or fibrous and allow for precise control of biodegradability by adjusting the components ratio [8]. However, they have low mechanical properties adjustability and their biodegradation decreases the pH around cultured cells [8,34].

3.6 Poly(ethylene glycol) (PEG)

Non-toxic, flexible, water-soluble polymer synthesized by ring-opening polymerization of ethylene oxide (C_2H_4O) to produce a wide distribution of molecular weights. PEG-based hydrogels are inert in terms of triggering cell signaling pathways, but can be equipped with biochemicals such as proteolytic degradation sites and biological functionalities in a controlled manner. The rigidity of such hydrogels can be precisely adjusted independently of their proteolytic sensitivity and cell-ligand density [36].

3.7 Basement membrane matrix

Extracellular matrix secreted by the Engelbreth–Holm–Swarm mouse sarcoma cell line. It contains components of the human cell matrix, such as collagens, laminin, fibronectin, tenascin, elastin and a series of proteoglycans and glycosaminoglycans, similar to the basement membrane [52]. It allows the reproduction of cooperative interactions between epithelia and mesenchyme that occur during the development and culture of organotypic skin cells. This material creates a three-dimensional environment that enhances cell proliferation, promoting the growth and migration of many types of cells, including human embryonic stem cells, neural stem cells, neurons, glia, astrocytes, fibroblasts, hepatocytes, and keratinocytes [53].

3.8 Cell-derived matrices

Matrices deposited by cells seeded *in vitro*, such as fibroblasts [54] and stem cells derived from human adipose tissue [55]. They provide a convenient and highly physiological assay system for measuring and correlating cell morphology, proliferation, apoptosis tendency, and drug response in high-throughput formats [54]. Preserve the original composition and microstructure of the original cell type [11].

3.9 Decellularized Tissues

Decellularization is a technique in which an organ or tissue is chemically stripped of its cells, leaving behind an intricately structured extracellular matrix [56]. This type of scaffold retains tissue-specific matrix components and signaling molecules, in addition to allowing the spontaneous formation of three-dimensional colonies that histologically, molecularly and phenotypically resemble *in vivo* metastases [56]. Figure 3 illustrates the various existing decellularization processes:

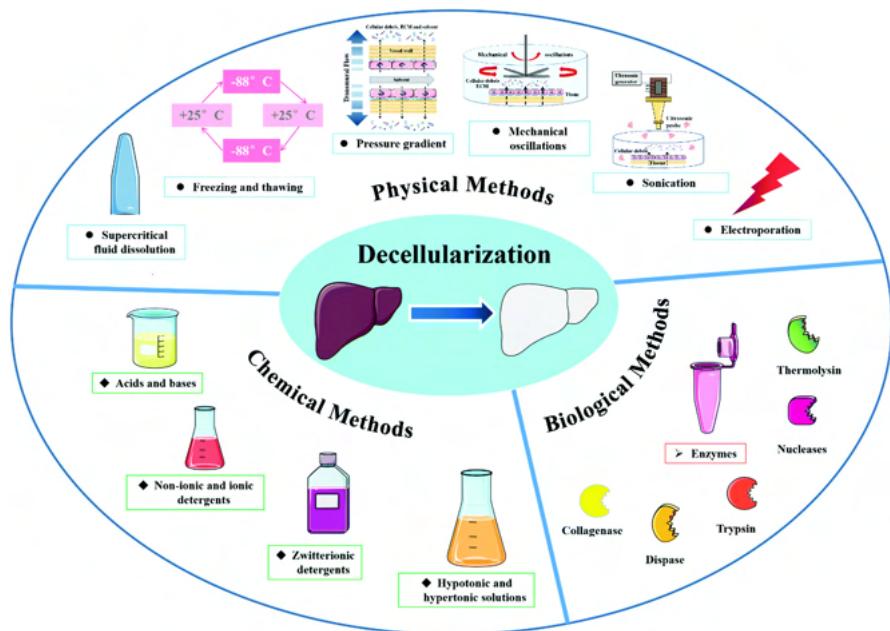


Figure 3 – Chemical, physical and biological methods of decellularization. Reproduced from [57].

4 | APPLICATIONS

4.1 Analysis of tissue dimensional effects

The exposure of cancer cells to 3D tissues significantly alters their signaling and gene expression due to a variety of mechanisms, including differential integrin engagement, cell-cell contact and tumor responses to the microenvironment. To directly identify the molecular mechanisms by which changes in cell-cell contact can influence cell behavior, it is possible to covalently couple adhesion molecules normally expressed in the cell membrane to hydrogels. Individual cells seeded in micropores (Fig. 4) interact with these proteins as if they were expressed by other cells. Such a system allows for the isolation and direct study of cell-cell contacts via the interaction of specific protein binding pairs [58].

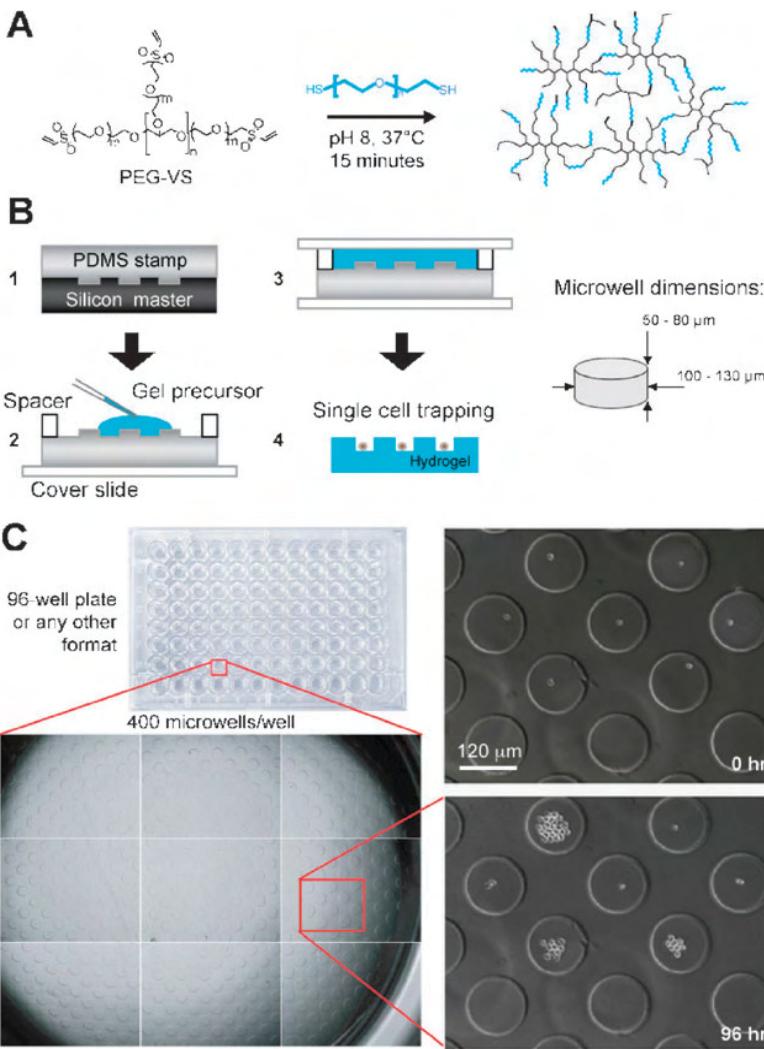


Figure 4 – Microporous plate for studies of disturbances in the hematopoietic stem cell microenvironment. a) Reaction of thiol and vinylsulfone end groups on PEG precursors to form hydrogel matrices. b) plate manufacturing process. c) Matrix with 96 pores and tracking of cell behavior by time-lapse videomicroscopy. Reproduced from [59].

4.2 Study of cell-matrix interactions

Interactions with the extracellular matrix regulate gene signaling and expressions that underlie cellular processes during development, homeostasis, wound healing, and cancer invasion [60]. These interactions are particularly difficult to study due to their complex synergistic and antagonistic interactions *in vivo*. Experiments targeting integrins, a central family of cell surface receptors, have shown that integrin-matrix interactions are important regulators of cancer progression [61]. Thus, techniques that allow for specific

impartial interrogation of cell-matrix adhesion are needed to directly query the diversity of potential interactions [60].

To study the adhesion characteristics of the extracellular matrix of any cells of interest, Reticker-Flynn et al. [62] developed plates (Fig. 5) for deposition of array combinations by a DNA microarray identifier. Prior to deposition of molecules, slides are coated with a polyacrylamide hydrogel that can dry after immersion to remove any unpolymerized monomer. The dehydrated hydrogel works by binding molecules without requiring their chemical modification (Fig. 5a). To quantify cells attached to each dot, nuclei are stained according to standard fluorescence staining protocols and slides are imaged using an automated inverted epifluorescent microscope [61].

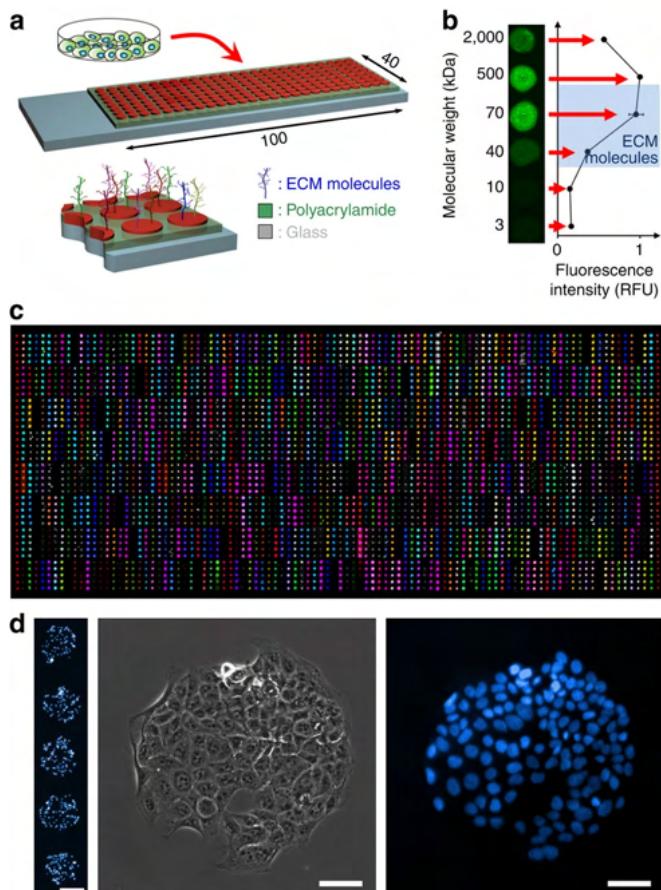


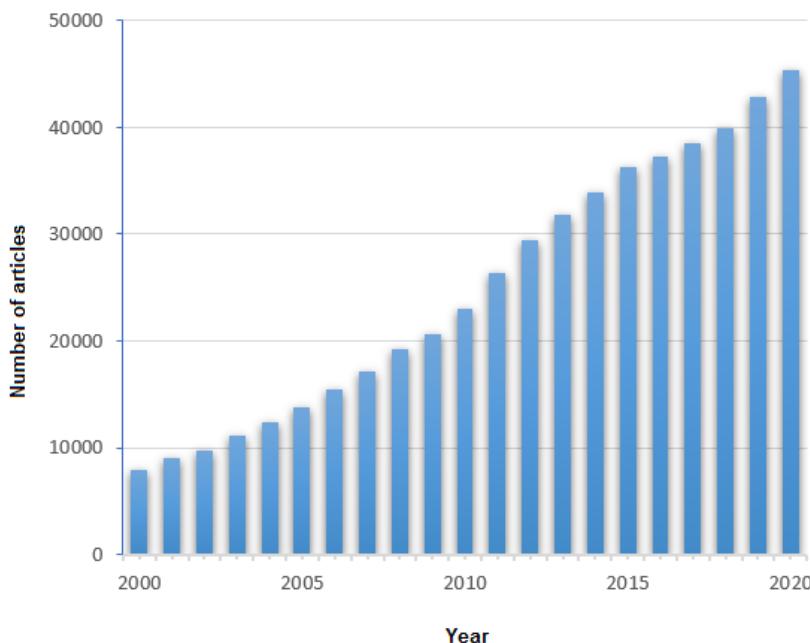
Figure 5 - (a) Extracellular matrix microarrays generated by locating nearly 800 unique combinations of molecules on polyacrylamide-coated glass sheets, followed by cell seeding. (b) Polyacrylamide works by trapping molecules of a wide range of molecular weights. (c) Presentation of all molecules by immunostaining (colored dots) or NHS-fluorescein markings (grayscale dots). [d] Representative images of cells adhered to the extracellular matrix. Reproduced from [62].

4.3 Tumor-stroma interaction modeling

The epithelial-mesenchymal transition is considered a crucial mechanism for the acquisition of malignant phenotypes by epithelial tumor cells. The reverse phenomenon, the mesenchymal-epithelial transition is also important as a process of reversion of cells to a differentiated state, when cancer cells colonize and grow at secondary sites. In addition to its role in cancer progression, the epithelial-mesenchymal transition can cause therapeutic failure, generating subpopulations of cells that show drug resistance or stem cell-like traits, i.e., tumor-initiating cells [63,64].

Cancer cell cultures in conjunction with cancer-associated fibroblast conditioned media isolated from tumor samples are commonly used models to study these transitions *in vitro*. Other models use cancer cells grown on extracellular matrix proteins or co-cultured with stromal cells directly. Data obtained using these *in vitro* models may explain the interaction between cancer cells and the extracellular matrix or between cancer cells and the stroma in inducing the transition [65,66].

Kim et al. (2015) [67] created a 3D co-culture model using colorectal tumor spheroids and colon fibroblasts cultured in collagen gel, representing the invasive margin of human tumors where the epithelial-mesenchymal transition actively occurs. In this model, cell-cell and cell-matrix interactions, proximity co-culture with fibroblasts and migration to the collagen matrix were implemented. It was found that normal fibroblasts are activated when co-cultured with 3D spheroids, but not with conventional two-dimensional culture. Co-culture allowed the visualization of an expression pattern of several genes related to epithelial-mesenchymal transition similar to that observed in tumors *in vivo* [67].


4.4 Microfluidic phenomena

During angiogenesis, blood vessel endothelial cells rapidly infiltrate avascular regions through vascular budding. Vascular endothelial cell growth factors can promote vessel dilation and angiogenic budding, but given the complex nature of vascular morphogenesis, additional signals are needed to determine, for example, which vessel segments sprout, which dilate and which remain quiescent. This process is critical to many normal and pathological processes, such as wound healing and tumor growth, but its initiation and control are still poorly understood [68].

Several approaches have been developed to mimic blood vessels by integrating microfluidic channels into polymeric materials, such as laser ablation [69], two-photon photolithography [70] and needle insertion [71]. Using microfluidic tissue, Song and Munn [68] found that blood flow shear stress attenuates endothelial cell germination in a nitric oxide-dependent manner and that interstitial flow, like that produced by extravasating plasma, directs endothelial morphogenesis. Furthermore, positive gradients of vascular endothelial cell growth factors initiate germination, but negative gradients inhibit it, promoting leaf-like migration instead, analogous to vessel dilation [68].

5 | RESEARCH OPPORTUNITIES

The number of publications about tumor models is increasing rapidly (Fig. 7). However, numerous challenges must be met to open up opportunities for the next generation of models. Although many reconstitute the main components of tumor tissues, they are still significantly limited in mimicking the full spectrum of microenvironmental pathophysiologies. Next-generation tumor models should provide recapitulation of molecular signaling pathways in tumorigenesis and drug resistance, which is essential for identifying molecular targets and testing innovative compounds capable of effectively inhibiting these targets [6].

Figure 7 – Scientific publications on tumor models from the year 2000 to 2020. Source: Search in the Pubmed database for publications with the keywords “tumor model”.

5.1 Immune Cells and Specific Subpopulation Models

A major challenge is associated with the recreation of immunosuppressive and inflammatory aspects of the microenvironment. With the advent of immunotherapies, reliable tests to postulate and test new hypotheses to improve anti-tumor immunity in the microenvironment are highly demanded. However, recapitulating the immunosuppression of the microenvironment is extremely difficult. Several attempts to incorporate immune cells have been reported, but it is still in an early stage for wider use. However, given the clear contribution of the immune system to tumor progression and the emphasis on the development of therapies aimed at the immune system, incorporating immunological

components into 3D tumor models is a research area with great potential for development [10,72,73].

5.2 Pancreatic tumors: mimicry of pathophysiology

Pancreatic cancer has the highest mortality rate of all major cancers. For all stages combined, the relative 5-year survival rate is only 10% [74]. The complexity of recapitulating the entire tumor spectrum in a 3D model system is further complicated by the number of biological systems that are activated in the pancreatic tumor microenvironment. For example, recent studies have shown a reciprocal relationship in which the local action of the coagulation and fibrinolytic systems is a significant feature of the pathophysiology of this type of cancer, which has consequences on the disease progression and severity [75]. Systematic studies in different cell lines or patients with distinct oncogenic alterations are necessary to understand the relations between mutations and gene expressions and their contributions to disease prognosis [6].

6 | CONCLUSION

Three-dimensional cell culture media allow the creation of tumor models that are much more reliable, controllable and faithful to reality. This fidelity is extremely important for the results of *in vitro* research to bring innovations to *in vivo* treatments. Many biomaterials are already being used for this purpose, but few commercial products are available on the market. Although polymers dominate this type of application, the great advances in the development of ceramic scaffolds for bone tissue engineering indicate that this class of materials also has great potential for application in tumor engineering. There is a consensus that microfluidic models will be the most researched model in the coming years, given their wide range of applications and versatility.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the Brazilian research funding agencies FAPESP (under grant number 2013/07296-2 and 2018/07517-2), CNPq (under grant number 405033/2018), PRONEX/FINEP and CAPES (under grant number 88887.607222/2021-00).

REFERENCES

1. **Global health estimates: Leading causes of death.** Disponível em: <<https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death>>. Acesso em: 3 out. 2021.
2. HENLEY, S. J. et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. **Cancer**, v. 126, n. 10, 15 maio 2020.
3. BRAY, F. et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide. **Cancer**, v. 127, n. 16, p. 3029–3030, 15 ago. 2021.
4. WAGNER, W. W. et al. **Biomaterials Science**. 4 ed. Elsevier, 2020.
5. WEIGELT, B.; GHAJAR, C. M.; BISSELL, M. J. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. **Advanced Drug Delivery Reviews**, v. 69–70, abr. 2014.
6. CHOI, S. R. et al. **Engineering of biomaterials for tumor modeling****Materials Today Advances**. Elsevier Ltd, 1 dez. 2020.
7. FAN, H.; DEMIRCI, U.; CHEN, P. Emerging organoid models: leaping forward in cancer research. **Journal of Hematology & Oncology**, v. 12, n. 1, 29 dez. 2019.
8. FISCHBACH, C. et al. Engineering tumors with 3D scaffolds. **Nature Methods**, v. 4, n. 10, p. 855–860, out. 2007.
9. LIU, Z.; VUNJAK-NOVAKOVIC, G. Modeling tumor microenvironments using custom-designed biomaterial scaffolds. **Current Opinion in Chemical Engineering**, v. 11, fev. 2016.
10. BOUSSOMMIER-CALLEJA, A. et al. Microfluidics: A New Tool for Modeling Cancer–Immune Interactions. **Trends in Cancer**, v. 2, n. 1, p. 6–19, 1 jan. 2016.
11. SCHUTRUM, B. E.; WHITMAN, M. A.; FISCHBACH, C. Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. **Biomaterials Science**, p. 1217–1236, 1 jan. 2020.
12. XIAO, W. et al. Brain-mimetic 3D culture platforms allow investigation of cooperative effects of extracellular matrix features on therapeutic resistance in glioblastoma. **Cancer Research**, v. 78, n. 5, p. 1358–1370, 1 mar. 2018.
13. GURSKI, L. A. et al. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. **Biomaterials**, v. 30, n. 30, out. 2009.
14. FRIEDRICH, J. et al. Spheroid-based drug screen: Considerations and practical approach. **Nature Protocols**, v. 4, n. 3, p. 309–324, 2009.
15. ATOUFI, Z. et al. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. **Journal of Biomaterials Science, Polymer Edition**, v. 28, n. 15, p. 1617–1638, 13 out. 2017.
16. VIDAVSKY, N. et al. Studying biomineralization pathways in a 3D culture model of breast cancer microcalcifications. **Biomaterials**, v. 179, out. 2018.
17. CHEN, Z. J. et al. A realistic brain tissue phantom for intraparenchymal infusion studies. **Journal of Neurosurgery**, v. 101, n. 2, p. 314–322, 2004.

18. LEE, G. Y. et al. Three-dimensional culture models of normal and malignant breast epithelial cells. **Nature Methods**, v. 4, n. 4, p. 359–365, abr. 2007.
19. DROST, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. **Nature Protocols**, v. 11, n. 2, p. 347–358, 1 fev. 2016. .
20. POINCLOUX, R. et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. **Proceedings of the National Academy of Sciences of the United States of America**, v. 108, n. 5, p. 1943–1948, 1 fev. 2011.
21. WOLF, K. et al. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. **Journal of Cell Biology**, v. 201, n. 7, p. 1069–1084, jun. 2013.
22. JEON, J. S. et al. In Vitro Model of Tumor Cell Extravasation. **PLoS ONE**, v. 8, n. 2, 20 fev. 2013.
23. POLACHECK, W. J.; CHAREST, J. L.; KAMM, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. **Proceedings of the National Academy of Sciences of the United States of America**, v. 108, n. 27, p. 11115–11120, 5 jul. 2011.
24. LEE, G. Y. et al. Three-dimensional culture models of normal and malignant breast epithelial cells. **Nature Methods**, v. 4, n. 4, p. 359–365, abr. 2007a.
25. DROST, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. **Nature Protocols**, v. 11, n. 2, p. 347–358, 1 fev. 2016.
26. POINCLOUX, R. et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. **Proceedings of the National Academy of Sciences of the United States of America**, v. 108, n. 5, p. 1943–1948, 1 fev. 2011b
27. SEO, B. R. et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. **Science Translational Medicine**, v. 7, n. 301, 19 ago. 2015.
28. SEREBRIISKII, I. et al. Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. **Matrix Biology**, v. 27, n. 6, jul. 2008a.
29. TIAN, X. et al. Organ-specific metastases obtained by culturing colorectal cancer cells on tissue-specific decellularized scaffolds. **Nature Biomedical Engineering**, v. 2, n. 6, p. 443–452, 1 jun. 2018.
30. MARTURANO-KRUIK, A. et al. Human bone perivascular niche-on-a-chip for studying metastatic colonization. **Proceedings of the National Academy of Sciences of the United States of America**, v. 115, n. 6, p. 1256–1261, 6 fev. 2018.
31. PICCOLI, M. et al. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. **Journal of Cellular Physiology**, v. 233, n. 8, p. 5937–5948, 1 ago. 2018.
32. LABERNADIE, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. **Nature Cell Biology**, v. 19, n. 3, p. 224–237, 1 mar. 2017.
33. PATHAK, A.; KUMAR, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. **Proceedings of the National Academy of Sciences of the United States of America**, v. 109, n. 26, p. 10334–10339, 26 jun. 2012.
34. PATHI, S. P. et al. A novel 3-D mineralized tumor model to study breast cancer bone metastasis. **PLoS ONE**, v. 5, n. 1, 22 jan. 2010.

35. KIM, S.-A.; LEE, E. K.; KUH, H.-J. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro. **Experimental Cell Research**, v. 335, n. 2, jul. 2015.

36. BROWN, T. D. et al. Design and Fabrication of Tubular Scaffolds via Direct Writing in a Melt Electrospinning Mode. **Biointerphases**, v. 7, n. 1, dez. 2012.

37. SIEH, S. et al. Phenotypic Characterization of Prostate Cancer LNCaP Cells Cultured within a Bioengineered Microenvironment. **PLoS ONE**, v. 7, n. 9, 5 set. 2012.

38. WICKENS, J. M. et al. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. **Drug Discovery Today**, v. 22, n. 4, p. 665–680, 1 abr. 2017.

39. SCHAEFER, L.; SCHAEFER, R. M. Proteoglycans: From structural compounds to signaling molecules. **Cell and Tissue Research**, v. 339, n. 1, p. 237–246, jan. 2010.

40. UNDERHILL, C. CD44: The hyaluronan receptor. **Journal of Cell Science**, v. 103, n. 2, p. 293–298, 1992.

41. SWIERCZEWSKA, M. et al. Polysaccharide-based nanoparticles for theranostic nanomedicine. **Advanced Drug Delivery Reviews**, v. 99, p. 70–84, 1 abr. 2016.

42. SÁNCHEZ-SALCEDO, S.; NIETO, A.; VALLET-REGÍ, M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. **Chemical Engineering Journal**, v. 137, n. 1, p. 62–71, 15 mar. 2008.

43. CHEN, Z. J. et al. A realistic brain tissue phantom for intraparenchymal infusion studies. **Journal of Neurosurgery**, v. 101, n. 2, p. 314–322, 2004.

44. CAMPOS, F. et al. *Ex vivo* characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications. **Biomedical Materials**, v. 11, n. 5, 29 set. 2016.

45. GÓMEZ-MASCARAQUE, L. G. et al. Oxidized dextrans as alternative crosslinking agents for polysaccharides: Application to hydrogels of agarose–chitosan. **Acta Biomaterialia**, v. 10, n. 2, p. 798–811, 1 fev. 2014.

46. KHALIL, M. et al. Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. **Journal of Hepatology**, v. 34, n. 1, p. 68–77, 2001.

47. WANG, Q. et al. Cytoskeletal reorganization and repolarization of hepatocarcinoma cells in APA microcapsule to mimic native tumor characteristics. **Hepatology Research**, v. 35, n. 2, p. 96–103, 1 jun. 2006.

48. LEAL-EGAÑA, A. et al. Tuning liver stiffness against tumours: An in vitro study using entrapped cells in tumour-like microcapsules. **Journal of the Mechanical Behavior of Biomedical Materials**, v. 9, p. 113–121, maio 2012.

49. DRURY, J. L.; MOONEY, D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. **Biomaterials**, v. 24, n. 24, p. 4337–4351, 2003.

50. CHAFFEY, N. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular biology of the cell. 4th edn. **Annals of Botany**, v. 91, n. 3, p. 401–401, 1 fev. 2003.

51. PARENTEAU-BAREIL, R.; GAUVIN, R.; BERTHOD, F. Collagen-Based Biomaterials for Tissue Engineering Applications. **Materials**, v. 3, n. 3, 16 mar. 2010.

52. LEE, G. Y. et al. Three-dimensional culture models of normal and malignant breast epithelial cells. **Nature Methods**, v. 4, n. 4, p. 359–365, abr. 2007.

53. DEBNATH, J.; BRUGGE, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. **Nature Reviews Cancer**, v. 5, n. 9, set. 2005.

54. SEREBRIISKII, I. et al. Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. **Matrix Biology**, v. 27, n. 6, jul. 2008.

55. SEO, B. R. et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. **Science Translational Medicine**, v. 7, n. 301, 19 ago. 2015.

56. TIAN, X. et al. Organ-specific metastases obtained by culturing colorectal cancer cells on tissue-specific decellularized scaffolds. **Nature Biomedical Engineering**, v. 2, n. 6, p. 443–452, 1 jun. 2018.

57. LIAO, J. et al. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. **Journal of Materials Chemistry B**, v. 8, n. 44, 2020.

58. ROSSI, G.; MANFRIN, A.; LUTOLF, M. P. Progress and potential in organoid research. **Nature Reviews Genetics**, v. 19, n. 11, p. 671–687, 1 nov. 2018.

59. LUTOLF, M. P. et al. Perturbation of single hematopoietic stem cell fates in artificial niches. **Integr. Biol.**, v. 1, n. 1, 2009.

60. LIU, A. P.; CHAUDHURI, O.; PAREKH, S. H. New advances in probing cell–extracellular matrix interactions. **Integrative Biology**, v. 9, n. 5, 2017

61. DESGROSELLIER, J. S.; CHERESH, D. A. Integrins in cancer: biological implications and therapeutic opportunities. **Nature Reviews Cancer**, v. 10, n. 1, jan. 2010.

62. RETICKER-FLYNN, N. E. et al. A combinatorial extracellular matrix platform identifies cell–extracellular matrix interactions that correlate with metastasis. **Nature Communications**, v. 3, n. 1, 9 jan. 2012.

63. THIERY, J. P. et al. Epithelial-Mesenchymal Transitions in Development and Disease. **Cell**, v. 139, n. 5, p. 871–890, 25 nov. 2009.

64. THIERY, J. P. Epithelial-mesenchymal transitions in tumor progression. **Nature Reviews Cancer**, v. 2, n. 6, p. 442–454, 2002.

65. YU, Y. et al. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF- β signalling. **British Journal of Cancer**, v. 110, n. 3, 12 fev. 2014.

66. GALLARDO-PÉREZ, J. C. et al. GPI/AMF inhibition blocks the development of the metastatic phenotype of mature multi-cellular tumor spheroids. **Biochimica et Biophysica Acta (BBA) - Molecular Cell Research**, v. 1843, n. 6, jun. 2014.

67. KIM, S.-A.; LEE, E. K.; KUH, H.-J. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro. **Experimental Cell Research**, v. 335, n. 2, jul. 2015.

68. SONG, J. W.; MUNN, L. L. Fluid forces control endothelial sprouting. **Proceedings of the National Academy of Sciences of the United States of America**, v. 108, n. 37, p. 15342–15347, 13 set. 2011.

69. HEINTZ, K. A. et al. Fabrication of 3D Biomimetic Microfluidic Networks in Hydrogels. **Advanced Healthcare Materials**, v. 5, n. 17, p. 2153–2160, 7 set. 2016.

70. CULVER, J. C. et al. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. **Advanced Materials**, v. 24, n. 17, p. 2344–2348, 2 maio 2012.

71. CHROBAK, K. M.; POTTER, D. R.; TIEN, J. Formation of perfused, functional microvascular tubes in vitro. **Microvascular Research**, v. 71, n. 3, maio 2006.

72. GUN, S. Y. et al. Targeting immune cells for cancer therapy. **Redox Biology**, v. 25, p. 101174, 1 jul. 2019.

73. CHANG, J. H.; JIANG, Y.; PILLARISETTY, V. G. Role of immune cells in pancreatic cancer from bench to clinical application. **Medicine**, v. 95, n. 49, dez. 2016.

74. SIEGEL, R. L. et al. Cancer Statistics, 2021. **CA: A Cancer Journal for Clinicians**, v. 71, n. 1, 12 jan. 2021.

75. LYMAN, G. H. Venous thromboembolism in the patient with cancer. **Cancer**, v. 117, n. 7, 1 abr. 2011.