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ON AUSLANDER-REITEN COMPONENTS FOR QUASITILTED
ALGEBRAS

FLAVIO U. COELHO AND ANDRZEJ SKOWRONSKI

ABSTRACT. An artin algebra A over a commutative artin ring R is called quasitilted
if gl.dimA < 2 and for each indecomposable finitely generated A-module M we
have pd M < 1oridM < 1. In [11] several characterizations of quasitilted algebras
were proven. We investigate the structure and homological properties of connected
components in the Auslander-Reiten quiver I'4 of a quasitilted algebra A.

Let A be an artin algebra over a commutative artin ring R, that is, A is an R-
algebra which is finitely generated as an R-module. Denote by ind A the category
of indecomposable finitely generated right A-modules, by I'y the Auslander-Reiten
quiver of A, and by 74 the Auslander-Reiten translation in I'y. Following [10], the
algebra A is called tilted if there exists a hereditary artin algebra H and a tilting
H-module T such that A = Endg(T'). Recall that a finitely generated H-module T
is called tilting if Ext},(T,T) = 0 and there is an exact sequence 0 — Hg — T —
Ty — 0 with Tj and 7 in the additive category add T, given by T'. The representation
theory of tilted algebras is rather well understood. In particular, we know the shape
of all connected components of the Auslander-Reiten quivers of tilted algebras (see
(8], [12], [13], [17], [18], [19], [20], [27]). It is known that a tilted algebra A is of
global dimension at most 2 and no module in ind A has both the projective and the
injective dimension equal to 2. However, these properties do not characterise the
tilted algebras. Happel, Reiten and Smalg have shown in [11] that they characterise
the class of artin algebras of the form A = End(T'), where T is a tilting object in
a hereditary abelian R-category H, called quasitilted algebras. Besides the tilted
algebras, important classes of quasitilted algebras are provided by tubular algebras
[19], canonical algebras [14], [19], [21], algebras with separating tubular families of
modules [15], [25], and semiregular branch enlargements of such algebras (see [7]).
Moreover, it is known that any representation-finite quasitilted algebra is tilted [11).
An important result proven in [11] is the following trisection of the category ind A
of a quasitilted algebra A. Namely, let A be a quasitilted algebra, C = C4 be the
full subcategory of ind A formed by the modules whose all successors in ind A have

1991 Mathematics Subject Classification. 16G10, 16G70, 18G20.
Key words and phrases. tilted algebras, complete slices, homological dimensious.

1



2 COELHO AND SKOWRONSKI

injective dimension at most one, and D = D, be the full subcategory of ind A formed
by the modules whose all predecessors in ind A have projective dimension at most
one. Then we have a trisection

indA = (D\C)V(PNC)V(C\D)
such that ‘
Homu(DNC,D\C) =0, Homu(C\D,DNC)=0, and Homy(C\D,D\(C)=0.

Moreover, D (respectively, C) contains all indecomposable projective (respectively,
injective) A-modules.

We investigate here the structure of connected components in the Auslander-Reiten
quiver of an arbitrary quasitilted algebra A. Good understanding of the Auslander-
Reiten components seems to be the main step in describing the ring structure and
representation theory of arbitrary quasitilted algebras (see [15], {24], [25], [26]). We
are mainly interested in quasitilted algebras which are not tilted.

In order to state our main results, recall that a (connected) component I' of I'4
is called regular if I contains neither a projective module nor an injective module.
Moreover, I is called semiregular if I' does not contain both a projective and an
injective module. We shall prove the following facts.

Theorem (A).Let A be a quasitilied artin algebra, and T be a component of T4
conlaining an oriented cycle. Then I' is a semiregular tube.

We note that a semiregular tube is either regular (that is, of the form ZA,/(7*),
for some s > 1) or is obtained from a regular tube by a sequence of ray (or coray)
insertions.

Theorem (B). Let A be a quasitilted algebra, and T" be a regular component of T 4.

(i) If TNC #80, then T' is contained in C.
(i) f TND#W, then T is contained in D.

Theorem (C). Let A be a quasitilied algebra and T' be a component of 'y with
infinitely many T4-orbils or containing an oriented cycle.

(i) If T contains a projective module, then I' is contained in D\ C.
(ii) If T' contains an injective module, then T is contained in C\ D.

Theorem (D). Let A be a quasitilted algebra which is not tilted, and T' be a compo-
nent of T'4.

(i) If T contains a projective module, then I’ is contained in D\ C.
(ii) If T contains an injective module, then T is contained in C \ D.
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We get also the following immediate consequences of the above theorems.

Corollary (E). Let A be a quasitilted algebra which is not tilted. Then every com-
ponent of I'y is semiregular.

Corollary (F). Let A be a quasitilted algebra which is not tilted. Then every com-
ponent ' of T's having a module from C N D is regular, and hence consists entirely
of modules from C N D.

Further consequences will be discussed in Section 6. This paper is organized as
follows. In Section 1 we prove preliminary results on the paths between indecompos-
able modules over artin algebras, playing a crucial role in our further investigations.
In Section 2 we recall some facts on tilted and quasitilted algebras applied in the
paper. Sections 3, 4 and 5 are devoted to study the structure of components with
oriented cycles, regular components, and nonregular components, respectively, in the
Auslander-Reiten quivers of quasitilted algebras. In Section 6 we present some con-
sequences of our main results.

1. PRELIMINARY RESULTS

1.1. Let A be an artin algebra over a commutative artin ring R, that is, A is an
R-algebra which is finitely generated as an R-module. Unless otherwise stated all al-
gebras are assumed to be basic and connected. By an A-module it is meant a finitely
generated right A-module. We shall denote by mod A the category of all (finitely
generated) A-modules, and by ind A the full subcategory of mod A with one repre-
sentative of each isomorphism class of indecomposable A-modules. Then rad(mod A)
denotes the Jacobson radical of mod A, that is, the ideal in mod A generated by all
noninvertible morphisms between indecomposable modules in mod A. The infinite
radical rad*(mod A) of mod A is the intersection of all powers rad’(mod A), i > 1,
of rad(mod A).

1.2. Weshall denote by "4 the Auslander-Reiten quiver of A, and by 7 = DTr and
7~ = Tr D the Auslander-Reiten translations in I'y. We shall now agree to identify
the vertices of I'y with the corresponding A-modules in ind A. By a component of
I'y we mean a connected component of I'y. We observe that a morphism between
indecomposable modules lying in different components of I' 4 belongs to rad®(mod A).

We shall use frequently the fact that, for an A-module X, pd X < 1 if and only if
Hom4(D(A), X) = 0 (respectively, idX < 1 if and only if Hom, (7~ X, A) = 0) (see
(19)(p. 74)).

Let I be a component of I'y. Then, I is said to be regular if I' contains neither
a projective module nor an injective module, and semiregular if I' does not contain
both a projective and an injective module. Also, ' is said to be postprojective
(respectively, preinjective) if ' contains no oriented cycles and each module in T
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belongs to the 7-orbit of a projective (respectively, an injective) module. We shall
denote by |I' the left stable part of T obtained from I' by deleting the 7-orbits of
projective modules, by ,I" the right stable part of I obtained from I' by deleting the
7-orbits of injective modules, and by ,I' the stable part of I' obtained from I' by
deleting the -orbits of both the projective and the injective modules.

A module M € ind A is called 7-periodic if there exists an m > 1 such that
™M ~ M. Given M € ind A, we denote by O(M) the r-orbit of M, that is,

OM)={r"M : mez}.

1.3. Let M,N € ind A. A path from M to N is given by a sequence of nonzero
morphisms
ME X 2ax—wi oy, =N

where, for each i, X; is an indecomposable module and f; is in rad(mod 4). We
denote a path from M to N by M ~ N. If we have in addition that the morphisms
f; are irreducible, then we shall say that it is a path of irreducible maps. Here,
an oriented cycle is a path of irreducible maps from a module to itself. A path of
irreducible maps Xo — X; — .-+ — X is called sectional if X; % 71X, for each
i=0,...,t—2.

Given a path M ~ IV, M is said to be a predecessor of N and N a successor
of M. It should be clear the terms predecessor and successor by irreducible maps.
Finally, given M, N € ind A, we denote by M—N when there is either an irreducible
map M — N or an irreducible map N — M. For more details on the Auslander-
Reiten theory we refer the reader to [3] and [19].

1.4. We will now prove two lemmas needed later on.

Lemma. Let A be an artin algebra,
(*) X=Xo—X;—-- - —X; =X

be an oriented cycle through indecomposable modules, and r > 1. If r*X; # 0 for
eachl < i <r and each j = 0,...,t, then there ezists a path of irreducible maps
from X to 77 X.

Proof. We know, by [4], that the oriented cycle (%) is not sectional. Therefore, there
exists an I, 2 < I < ¢, such that 7.X; ~ Xj_,;. By hypothesis, one can apply 7 to (*)
to get

(*+) X =7 Xo—1rX;— - —r X, =7X.

Observe that the module 7X; ~ X;_; appears in both (*) and (**), and hence there
exists a path from X to 7X, namely

X =Xo— X~ — X g 1 Xj—7X11y— - - —7 X = 7X.

By applying 7 and composing the paths, we get the desired result. [
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1.5. The next result extends [22](Lemma 4).

Lemma. Let A be an artin algebra and denote by n the rank of the Grothendieck
group Ko(A) of A. LetT be a connected component of T'y and I be a connected
component of ,I'. Assume that I has infinitely many t-orbits and no oriented cycles.
Let M be a module in I' such that the length of any walk in T from a nonstable
module to M is at least 2n.Then, for each r > 1, there ezists a path

M=X—Xs— - —X ="M
in mod A, with all X; in T,

Proof. 1t is enough to show that there exists a path in mod A from M to M, through
modules in ' and then proceed inductively. By [22](Lemma 4), there is a path

M=X—X|,— - —X/=M

in mod A, with X{,..., X] belonging to I'. Since I has no oriented cycles, then one
of the maps in the above path should be in rad*®(mod A). We can then infer that
there exists a path

(+) M=y oyt vt vy

where the morphisms f;,... , frin41 are irreducible maps (this is done by using the
lifting properties of almost split sequences). Consider now the path of irreducible
maps

r !' "
(%*) Y,V — o =Yg M.

If (#+) is nonsectional, then there exists an i,7 < { < r+n—1, such that Y; ~ rY;,,,
and then there exists a path of irreducible maps

Y— ... —Y;—rY 35— — M

(observe that the modules in (x%) are left stable modules, and hence one can apply
T to them). Therefore, there exists a path from M to T M, passing through modules
in I', namely

M=YZ—Y"— - —Y,~— - —Yi—r1Y 13— — 7M.

Suppose now (%) is sectional. Then, by {22](Lemma 2), there exist j and I, r <
7ol £r+n+1, and a nonzero map g € Homu(Y;, 7Y)) = rad* (Y], 7Y:). Hence, the
following path

M=Y—Y—--- -—-+YJ--ier,—»TY,+1—> —— .7 |

gives the required path from M to TM passing through modules in I'. Now, since
for each £ > 1, 7*M is in the conditions of the Lemma, we can iterate the above
procedure to get a path from M to each 7" M, r > 1, as required. OO
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1.6. Corollary. Let A be an artin algebra and T be a regular component of T'y
with infinitely many T-orbits. Then, for each M € T, and each r > 1, there ezists a
path in mod A from M to 7" M.

2. QUASITILTED ALGEBRAS

2.1. We shall collect in this section the results on quasitilted algebras needed along
the paper. We start recalling some facts on tilted algebras. For details on tilting
theory we refer the reader to [10] and [19]. Let H be a hereditary algebra and let T
be a tilting H-module, that is, a module such that Ext},(T,T) = 0 and there exists
a short exact sequence 0 —- H — Ty — Ty — 0, where To and T; are in addT. The
algebra B = Endy(T) is called a tilted algebra. An important fact on a tilted
algebra B is that I's contains a component, called connecting, which contains a
so-called complete slice £ which reproduces somehow the structure of the hereditary
algebra H. It is well-known that all successors of such ¥ have injective dimension at
most one, and all predecessors of £ have projective dimension at most one. Recall
that a subquiver ¥ in a component I of I'4 is called a complete slice if: (a) T is
sincere; (b) X is path closed in mod A, and (c) £ meets each 7-orbit of I’ exactly
once.

Let B = Endy(T), where T is a tilting module over a representation-infinite hered-
itary algebra H. If T is a postprojective H-module (equivalently, rad>(—,T) =
0), then the algebra B is called concealed. It is a well-established fact that the
Auslander-Reiten quiver of a tilted algebra B contains at most two connecting com-
ponents, and it has exactly two if and only if B is concealed. Also, T is a regular
H-module if and only if the connecting component of I'g is regular.

2.2. We shall now recall the definition of quasitilted algebras and some resuits on
them. We refer the reader to [11] for the proof of these results.

Definition. An algebra A is said to be quasitilted if gl.dimA < 2 and for each
X €ind A, eitherpd X < loridX <1.

Tilted algebras are clearly examples of quasitilted algebras. However, as mentioned
in the introduction the class of quasitilted algebras is much larger. It has been proven
in [11}(IL.3.6) that representation-finite quasitilted algebras are tilted.

2.3. We mention the next result for later reference.

Theorem. ([11)(II.1.14)) Let A be a quasitilted algebra. Then any path in ind A
starting in an injective module and ending in a projective module has a refinement of
irreducible maps and any such a path is sectional.
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2.4. Let A be a quasitilted algebra. An important result is the existence of the
following trisection of the category ind A. Let

C=Cs={X€indA : foreach Y with X - Y, idY < 1}

D=Dy={X€indA : foreachY with Y ~ X, pdY < 1}.
This induces a trisection

indA = (D\C)V(DNC)V (C\D)
such that
Homy(DNC,D\C) =0, Homu(C\D,PNC)=0 and Homu(C\D,D\C)=0.

Moreover, D contains all the indecomposable projective modules and it is closed
under predecessors, while C contains all the indecomposable injective modules and it
is closed under successors.

2.5. The next result gives a criterion for a quasitilted algebra to be tilted.

Theorem. ([11](11.3.4)) Let A be a quasitilted algebra. If C contains a projective
module, then A is tilted.

2.6. Let A be a tilted algebra. Then, clearly, any complete slice in mod A is con-
tained in C N D. In particular, for tilted algebras C N D is nonempty. For quasitilted
algebras which are not tilted, it is still an open question whether CND in nonempty.
We shall show (Corollary (F)) that, if C N D is nonempty for a quasitilted algebra
which is not tilted, then C N D is formed by modules lying in regular components.

3. COMPONENTS WITH ORIENTED CYCLES

3.1. Let A be a quasitilted algebra and I be a component of I'4 containing oriented
cycles. We shall show that I' is in fact a semiregular tube, generalising a result known
for tilted algebras (see (12], [13], [17]). The main point in the proof is to show that
such a I' is semiregular. Semiregular components with oriented cycles have been
described in [9], [16] and [28], and they are either of the form ZA,/(7™), for some
m 2 1 (if regular) or obtained from it by a sequence of ray (or coray) insertions.

Theorem (A). Let A be a quasitilted algebra, and T be a component of T' 4 containing
an oriented cycle. Then I' is a semiregular tube.

Proof. Let T' be a component of I'4 containing an oriented cycle. We first observe
that T is infinite. Indeed, if I" is finite, then A is representation-finite, and hence by
(2.2) it is tilted and I' (= ['4) is a connecting component. It is well-known that, in
this case, I' has no oriented cycles, a contradiction, and hence I is infinite.

If T is regular, then by [9] and [28], T is a stable tube. If I is semiregular but not
regular, it follows from [16] that I is a semiregular tube.
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Suppose then that I' is nonsemiregular. We first claim that I' has no 7-periodic
modules. Suppose I' has a 7-periodic module. Since I' is not regular, we infer, using
[2](6.2), that there exists an irreducible map X — Y, where X is a 7-periodic module,
and Y is neither left nor right stable, that is, there are m and m’ such that v™Y is
a projective module P and 7™'Y is an injective module I. Therefore, there exists a
nonsectional path from I to P, which contradicts our hypothesis that A is quasitilted
(2.3). This proves the claim.

Consider now the left and the right stable parts of I', respectively I and ,I'. Since
I is infinite, either ;I' or ,I" is nonempty. Suppose I’ # @ and let I be a connected
component of ;'. Clearly, I is infinite because otherwise it would contain a r-periodic
module, contradicting the above claim.

We shall show now that I'' contains no oriented cycles. Suppose it contains oriented
cycles. Observe that then, IV contains injective modules, because otherwise it would
be a stable tube by [9] and [28], in particular, with 7-periodic modules, a contradiction
to the claim. In resume, " is an infinite connected component of ;I with oriented
cycles and containing injective modules. Then, by [16](2.3), there exists an infinite
sectional path

B Xt X, — e P X X — X - — X

with ¢ > s such that {X;, ..., X,} is a complete set of representatives of r-orbits in I'.
Since I is a component of (" and T' is not left stable, there exists an irreducible map
X' — X" with X” in the 7-orbit of a projective module and X’ € I'. By applying
T as much as necessary, we have that there exists an irreducible map X — P with
X € I'" and P an indecomposable projective module. Since X € I, we infer that
™' X ~ r™X; for some 1 < j < s, and some m,m’ > 0.

It follows from the hypothesis on I that there exists an oriented cycle (*) in I
containing an injective module I. By (1.4), there are paths from I toeach 7", r > 1.
Observe that I is in the r-orbit of one of X,...,X,, say X;. Then, we get a path
from I to 7(+1¢X;. Therefore, there exists a path

I(-:»)I e T('"'H)‘X.' ~ Tm'X,' - X2 P

from an injective module to a projective module which is not sectional because (*)
is not sectional by [4]. A contradiction to the fact that A is quasitilted. Therefore,
none of the components of ;I contains an oriented cycle. Similarly, one can also show
that ,I' contains no oriented cycles.

However, by hypothesis, I' contains an oriented cycle

h—h—---—Y =Y.

By above remarks, such an oriented cycle should contain a module which is not left
stable and a module which is not right stable. By applying =1 we can assume that
Yo is an injective module. Let Y, and I > 0 be such that 7'Y, is a projective module,
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and assume that 7°'Y; # 0 for each j # v and i < l. By (1.4), there exists a path
from Y; to 7'Yp and then to r'Y,, which is projective, and this path can be choosen
to be nonsectional, which is a contradiction to the fact that A is quasitilted, and the
result is proven. [

4. REGULAR COMPONENTS

4.1. The main aim in this section is to prove Theorem (B) stated in the introduc-
tion, which concerns regular components of the Auslander-Reiten quiver of quasitilted
algebras. We shall need the following lemma.

Lemma. Let A be a quasitilted algebra and I be a component of T 4.

(a) If TNC # 0, then each T-orbit of T' contains a module from C.
(b) If TND # 0, then each T-orbit of T’ contains a module from D.

Proof. We shall prove only (a) because the proof of (b) is similar.

(a) Let T be a component of T'4 containing a module from C. Consider the right
stable part ,I' of . If ,I' = @, or equivalently, if each r-orbit of I' contains an
injective module, then there is nothing to prove because C contains all the injective
modules. Suppose ,I' # @ and let I be a connected component of ,I'. We first claim
that I’ has a module from C. If T has no injective modules then IV = ,I' = I, and
the claim is clear. Suppose that I’ contains an injective module. Then there exists an
irreducible map I — X’, where I is an injective module and X’ € IV. The claim now
follows from the fact that X’ € C, because I € C, and C is closed under successors.

Let X € I"NC and let Y € IV. We shall show that O(Y)NC # @. Since I' is
connected, there exists a walk in I

X = Xo—X]—" '—-X, = Y.

Observe that the modules X;, i = 1,... , s, are right stable and so one can apply 7~
as much as necessary to them to get a path from X to some ~™Y, m > 0. Since C
is closed under successors we get that 7=™Y € C, and hence each 7-orbit of ,I" has a
module from C. The result now follows from the fact that the r-orbits which are not
in ,I' contain an injective module, and hence a module from C. 0O

4.2. We can now prove Theorem (B) from the introduction.

Theorem (B). Let A be a quasitilted algebra and T’ be a regular component of 4.

(3) If TNC # 0, then T is contained in C.
(b) If TND#0, then T is contained in D.

Proof. We shall only prove (a) because the proof of (b) is similar.

(a) Let T be a regular component containing a module M from C. If I has oriented
cycles, then by [9], it is a stable tube and then clearly every module in I' is a successor
of M, therefore belonging to C (2.4).
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Suppose from now on that I' has no oriented cycles and let N € I'. We shall show
that N € C. Suppose I' has infinitely many 7-orbits. By (4.1) there exists an m € Z
such that 7™/ € C. By (1.6), there exists a path from r™N to N, and hence N is
also in C. It remains the case when I has only finitely many 7-orbits. If NV ¢ C, then
there exists a path

N=X,2x—.. I, = x

where idX > 1. It is well-known that then Hom, (7~ X, A) # 0 (see (1.2)). Therefore
there exists a path

NS Ealo X s - - 23K X X 28 x B3P

where P is an indecomposable projective module, and the morphisms f; and f; are
irreducible.

Since I' is regular, we have that P ¢ T and then at least one of the maps
Sos fiye -+ s ft—1, fi+2 18 in rad*®(mod A). Observe now that if g: Y — Y’ is a map in
rad*(mod A), then for each r > 1, there exist a chain of irreducible maps

il =) A LIS R L

and a morphism A, : ¥, — Y’ such that the composition A,g, - - - g, is nonzero.

Suppose now that one of fy, ..., fi-1 is in rad®(mod A). By the above and (4.1},
we infer that there exists a path from some module in I' which belongs to C to X,
and so idX = 1, a contradiction. If none of fg, ... , fi—1 belong to rad®*(mod A), then
fi42 € rad®(mod A). By similar arguments there exists a module Z € I' such that
77 is in C and Homy(Z, P) # 0, or equivalently, idrZ > 1, a contradiction. [

5. NONREGULAR COMPONENTS

5.1. Let A be a quasitilted algebra. We shall now concentrate in the study of
nonregular components of T'4. In this section we shall prove Theorems (C) and (D)
and establish some immediate consequences of them.

Theorem (C). Let A be a quasitilted algebra and T' be a component of Ty with
infinitely many T-orbits or containing an oriented cycle.

(a) If T contains a projective module, then T is contained in D\ C.
(b) If T contains an iujective module, then I' is contained in C \ D.

Proof. We shall only prove (a) because the proof of (b) is similar.

(a) Let T' be a component of I'4 containing a projective module. Suppose first
that T has oriented cycles. Then, by (3.1), I' is a ray tube. Suppose furthermore
that there exists a module M € T NC. Since I is a ray tube, any module in I' which
belongs to a cycle is a successor of M, and hence belongs to C by (2.4). On the other
hand, there exists a module X which is a nonprojective summand of the radical of
some projective module which belongs to an oriented cycle. By (1.2), we infer that
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idTX > 1, a contradiction to the fact that 7 X should be in C because it is a successor
of M. Therefore, I' N C = @, and since ind A = CU D, we get that T € D\ C.

Suppose now I has infinitely many 7-orbits but no oriented cycles, and that ’'NC #
@. Therefore, there exists a connected component I of ,I' with infinitely many r-
orbits. It follows now from (4.1) that there exists a module M € T'NC such that the
length of any walk from a nonstable module to M is at least 2n, where n is the rank
of Ko(A). Let

M =X—X\—--—X,=P

be a walk in I of minimal length from a module M’ in the 7-orbit O(M) of M to
a projective module P. Because of the minimality, all the modules Xy, ... ,X;_; are
left stable and then, by applying T conveniently, there exist an m > 0 and a path of
irreducible maps

™M=Yy—Y—.--—Y, =P

Since the modules Yy, ... , Y;-1 are left stable, we get a path of irreducible maps from
7™+ M to 7Y;—;. On the other hand, by (1.5), there exists a path from M to 7™+ M,
and then 7Y;_, is a successor of M, which implies that 7Y;_; € C (2.4). This, however,
is a contradiction to the fact that idrY;_;, > 1, because Hom,(Y:-y, A} # 0. Therefore
I'NC = 0 and because ind A = C U D, we have that I' C D\ C as required. O

5.2. For quasitilted algebras which are not tilted, the above result can be deepened
as follows.

Theorem (D). Let A be a quasitilied algebra which is not tilted, and T' be a compo-
nent of T'4.

(a) If T contains a projective module, then T' is contained in D\ C.

(b) If T contains an injective module, then I' is contained in C\ D.

Proof. We shall prove only (a) because the proof of (b) is similar.

(a) Let T be a component containing a projective module. If ' has oriented cycles
or infinitely many 7-orbits, then the result follows from (5.1). Suppose then that I’
has no oriented cycles and only finitely many 7-orbits. Therefore, there exists an
indecomposable projective module P in I' such that P has no proper successors in
I" which are also projective modules. Since A is not tilted, P ¢ C (2.5). Therefore,
there exists a path

P=XoLaxy— - Ix, =X

where idX > 1, or equivalently, Homu (7~ X, A) # 0 (1.2). Hence, there exists a path
P = KB Ky LK, = X, (B Rlipe

where P’ is an indecomposable projective module, and f; and fi4, are irreducible
maps. By our hypothesis on P, at least one of the maps fo,...,fi-1, fe42 is in
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rad*°(mod A). Suppose one of fo,... , fi-1 is in rad*(mod A). Following the consid-
erations made in the proof of Theorem (B) we infer that there exists a path from
some module in [ NC to X, a contradiction because idX > 1.

If now fo,..., fi-1 & rad®(mod A), then fi42 € rad*®(mod A). Also, by similar
considerations of those made in the proof of Theorem (B), we get that there exists a
module Z € T such that 7Z € € and Hom4(Z, P') # 0, or equivalently, idrZ > 1, a
contradiction, and this finishes the proof. O

5.3. We have the following direct consequences of (5.2).

Corollary. Let A be a quasitilted algebra, and T' be @ component of 'y, If T is
nonsemiregular, then A is tilted and T is the (unique) connecting component of T'4.

Note that the above corollary generalises [11](I1.3.6) which says that any represen-
tation-finite quasitilted algebra is tilted, because clearly the Auslander-Reiten quiver
of any representation-finite algebra is nonsemiregular.

5.4 Corollary (E). Let A be a quasitilted algebra which is not tilted. Then any

component of 'y is semiregular.

5.5 Corollary (F). Let A be a quasitilted algebra which is not tilted. Then, every
component I' of T4 having a module from C N D is regular, and hence consists of
modules from CND.

6. SOME CONSEQUENCES

8.1. We say that a property holds for almost all modules if it holds for all but
finitely many of them. In [1], I. Assem and the first named author have characterized
the finite dimensional algebras over algebraically closed fields which satisfy the prop-
erty that almost all of their indecomposable modules have injective (or projective)
dimension at most one. These algebras are called left (respectively, right) glueings of
tilted algebras (see [1] for details).

For an artin algebra A such that idX < 1 for almost all X € ind A, it follows
from [5], [6] and [23], that T'4 contains a component I' containing all the projective
modules and such that: (i) almost all of its modules lie in the 7-orbits of projective
modules; and (ii) there are at most finitely many modules in I" belonging to oriented
cycles.

6.2. We shall use the above fact to show the following result.

Proposition Let A be a quasitilted algebra.
(a) The following are equivalent:
(i) #dX <1 for almost all X € ind A.
(ii) A is tilted and T4 has a postprojective component with a complete slice.
(iii) C is cofinite in ind A.
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(b) The following are equivalent:

(i) pd X <1 for almost all X € ind A.
(ii) A is tilted and T4 has a preinjective component with a complete slice.
(i) D is cofinite in ind A.

Proof. We shall prove only (a) because the proof of (b) is similar.

(a) (i)=>(ii) Suppose idX <1 for almost all X € ind A. By the above remarks, I'y
has a component containing all the projective modules and such that almost all of its
modules belong to the r-orbits of projective modules and there are at most finitely
many modules in I’ belonging to oriented cycles. Suppose I' contains an injective
module. Then I' is a nonsemiregular component, and hence, by (5.3), A is tilted and
T is a connecting component. Clearly, then I is postprojective.

If T contains no injective modules, then I' is in fact a postprojective component (see
[5](6.7) or [16](2.1)). Clearly, a postprojective component containing all projective
modules and no injective modules is indeed connecting and (ii) follows.

(ii)=>(iii) By (2.6), all modules which are successors of complete slice belong to C.
Now, if T'4 has a postprojective component I' with a complete slice, then almost all
modules in ind A are successors of a complete slice in I'. This proves (iii).

(iii)=(i) Clear. O

6.3. Corollary. Let A be a quasitilted algebra which is not tilted. Then, there
are infinitely many indecomposable modules X with pd X = 2 and infinitely many
indecomposable modules Y with pdY = 2.

8.4. It has been shown independently in [1] and [23] that a representation-infinite
algebra is concealed if and only if pd X <1 and idX <1 for almost all X € ind A.
The next result is also a direct consequence of (6.2).

Corollary. The following are equivalent for a representation-infinite artin algebra
A:

(a) pdX <1 end idX <1 for almost all X € indA.

(b) A is concealed.

(c) A is quasitilied and C N D is cofinite in ind A.

6.5. We shall also mention the next two results that are direct consequences of the
previous sections.

Proposition. Let A be a quasitilted algebra, and T’ be a component of T'4.

(a) If T contains a projective module, then T C D\ C if and only if I has no
complete slice.

(b) If T contains an injective module, then ' C C\ D if and only if ' has ne
complete slice.
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Proof. We shall only prove (a) because the proof of (b) is similar.

(a) Let I' be a component containing a projective module. If I' C D \ C then,
clearly, I' contains no complete slice (2.6).

Suppose now that I' has no complete slice. If A is not tilted, then by (5.2),
I' ¢ D\ C. Moreover, if I' contains oriented cycles or has infinitely many 7-orbits,
then by (5.1), I C D\ C. It remains to show the result when A is tilted, and T is
a component without oriented cycles and with only finitely many 7-orbits. Since by
hypothesis, I is not a connecting component, we infer that I' is postprojective and
it does not contain injective module. Clearly, I' C D. Suppose now that 'NC has a
module X.

Observe that I’ does not contain all the projective modules and in fact, since A is
connected, there exist indecomposable projective modules P € T’ and P’ ¢ T with
Homy(P, P') # 0. Since Homy(P, P') = rad®(P, P’), we infer that for each t > 1,
there exist a path of irreducible maps

P =Yy—Yi—s .- —Y,

and a nonzero map f; € Hom(Y;, P’). Note that all the successors of X are in C and
hence there are only finitely many modules in I' which are not in C. Therefore, there

exists ¢ such that 7Y; € C and Homy(Y;, P') # 0, or equivalently id7Y; > 1 (by (1.2)),
a contradiction. Therefore, I' NC = @ as required. O

6.8. Proposition. The following are equivalent for a quasitilted algebra A:

(a) Each nonregular component is either contained in D\C or contained in C\D.
(b) A is either not tilted or a tilted of the form A = Endy(T), where T is a regular
tilting module over a hereditary algebra H.

Proof. (a)=>(b) Suppose A is tilted. Then I'4 contains a connecting component I'. If
I is nonregular, then by (a), it is contained either in D\C or in C\ D, a contradiction
to the fact that I' contains a complete slice lying in CN D (2.6). Then T is a regular
and, by (2.1), A = Endy(T) where T is a regular tilting module over a hereditary
algebra H.

(b)=(a) Let T be a nonregular component of I'4. If A is not tilted, then by (5.2),
T is either contained in D \ C or contained in C \ D. If now A = Endg(T), where
T is a regular tilting module over a hereditary algebra H, then I' should not be the
connecting component ot I'4 (2.1), and hence it does not contain complete slice. By
[20], T is semiregular and by (5.1) T is contained in D \ C in case it has projective
modules, or in C \ D in case it has injective modules. This proves the result. O
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