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ON AUSLANDER-REITEN COMPONENTS FOR QUASITILTED 
ALGEBRAS 

FLAVIO U. COELHO AND ANDRZEJ SKOWRONSKI 

ABSTRACT. An artin algebra A over a commutative artin ring R is called quasitilted 
if gl.dimA S 2 and for each indecomposable finitely generated A-module M we 
have pd M S 1 or idM S 1. In [11) several characterizations of quasitilted algebr11S 
were proven. We investigate the structure and homological properties of connected 
components in the Auslander-Reiten quiver r A of a quasitilted algebra A. 

Let A be an artin algebra over a commutative artin ring R, that is, A is an R­
algebra which is finitely generated as an R-module. Denote by ind A the category 
of indecomposable finitely generated right A-modules, by r A the Auslander-Reiten 
quiver of A, and by T,4 the Auslander-Reiten translation in r ,4. Following (10], the 
algebra A is called tilted if there exists a hereditary artin algebra H and a tilting 
H-module T such that A = EndH(T). Recall that a finitely generated H-module T 
is called tilting if Exth(T, T) = 0 and there is an exact sequence 0 - H8 - To -
T1 - 0 with To and T1 in the additive category add T, given by T. The representation 
theory of tilted algebras is rather well understood. In particular, we know the shape 
of all connected components of the Auslander-Reiten quivers of tilted algebras (see 
[8), [12], [13), (17), [18], [19), [20), [271). It is known that a tilted algebra A is of 
global dimension at most 2 and no module in ind A has both the projective and the 
injective dimension equal to 2. However, these properties do not characterise the 
tilted algebras. Happel, Reiten and Smal~ have shown in (11] that they characterise 
the class of artin algebras of the form A = End(T), where T is a tilting object in 
a hereditary abelian R-category 1{., called quasitilted algebras. Besides the tilted 
algebras, important classes of quasitilted algebras are provided by tubular algebras 
[19), canonical algebras (14), [19], [21], algebras with separating tubular families of 
modules [15), [25), and semiregular branch enlargements of such algebras (see [71). 
Moreover, it is known that any representation-finite quasitilted algebra is tilted [11]. 
An important result proven in [11] is the following trisection of the category ind A 
of a quasitilted algebra A. Namely, let A be a quasitilted algebra, C = C,4 be the 
full subcategory of ind A formed by the modules whose all successors in ind A have 

1991 Mathematica S"'1ject Clll66ijication. 16GI0, 16G70, 18G20. 
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injective dimension at most one, and V = VA be the full subcategory of ind A formed 
by the modules whose all predecessors in ind A have projective dimension at most 
one. Then we have a trisection 

ind A= (V \ C) V (V n C) V (C \ V) 

such that 

HomA(VnC, V\C) = O, HomA(C\ V, VnC) = 0, and HomA(C\ V, V\C) = 0. 

Moreover, V (respectively, C) contains all indecomposable projective (respectively, 
injective) A-modules. 

We investigate here the structure of connected components in the Auslander-Reiten 
quiver of an arbitrary quasitilted algebra A. Good understanding of the Auslander­
Reiten components seems to he the main step in describing the ring structure and 
representation theory of arbitrary quasitilted algebras (see (15], {24], (25], (261). We 
are mainly interested in quasitilted algebras which are not tilted. 

In order to state our main results, recall that a (connected) component r of r A 

is called regular if r contains neither a projective module nor an injective module. 
Moreover, r is called semiregular if r does not contain both a projective and an 
injective module. We shall prove the following facts. 

Theorem (A).Let A be a quasitilted artin algebm, and r be a component of r A 

containing an oriented cycle. Then r is a semiregular tube. 

We note that a semiregular tube is either regular (that is, of the form ZAoo/(r•), 
for some s ~ 1) or is obtained from a regular tube by a sequence of ray ( or coray) 
insertions. 

Theorem (B). Let A be a quasitilted algebra, and r be a regular component of r A· 

(i) If r n C 'F 0, then r is contained in C. 
(ii) If r n V "F 0, then r is contained in V. 

Theorem (C). Let A be a quasitilted algebra and r be a component of r A with 
infinitely many TA -orbit..~ or containing an oriented cycle. 

(i) If r contains a projective module, then r is contained in V \ C. 
(ii) If r contains an injective module, then r is contained in C \ 1'. 

Theorem (D). Let A be a quasitilted algebm which is not tilted, and r be a compo­
nent off A• 

(i) If r contains a projective module, then r is contained in V \ C. 
(ii) If r contains an injective module, then r is contained in C \ 1'. 
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We get also the following immediate consequences of the above theorems. 

Corollary (E). Let A be a quasitilted algebm which is not tilted. Then every com­
ponent of f A is semiregular. 

Corollary (F). Let A be a quasitilted algebra which is not tilted. Then every com­
ponent r of r A having a module from C n 'D is regular, and hence consists entirely 
of modules from C n 'D. 

Further consequences will be discussed in Section 6. This paper is organized as 
follows. In Section 1 we prove preliminary results on the paths between indecompos­
able modules over artin algebras, playing a crucial role in our further investigations. 
In Section 2 we recall some facts on tilted and quasitilted algebras applied in the 
paper. Sections 3, 4 and 5 are devoted to study the structure of components with 
oriented cycles, regular components, and nonregular components, respectively, in the 
Auslander-Reiten quivers of quasitilted algebras. In Section 6 we present some con­
sequences of our main results. 

1. PRELIMINARY RESULTS 

1.1. Let A be an artin algebra over a commutative artin ring R, that is, A is an 
R-algebra which is finitely generated as an R-module. Unless otherwise stated all al­
gebras are assumed to be basic and connected. By an A-module it is meant a. finitely 
generated right A-module. We shall denote by mod A the category of all (finitely 
generated) A-modules, and by ind A the full subcategory of mod A with one repre­
sentative of each isomorphism class of indecomposable A-modules. Then rad(mod A) 
denotes the Jacobson radical of mod A, that is, the ideal in mod A generated by all 
noninvertible morphisms between indecomposable modules in mod A. The infinite 
radical rad00(modA) of mod A is the intersection of all powers radi(modA), i ~ 1, 
of rad(modA). 

1.2. We shall denote by r ,1 the Auslander-Reiten quiver of A, and by T = DTr and 
T- = Tr D the Auslander-Reiten translations in r ,1. We shall now agree to identify 
the vertices of r ,1 with the corresponding A-modules in ind A. By a component of 
r ,1 we mean a connected component of r ,1. We observe that a morphism between 
indecomposable modules lying in different components of r A belongs to rad00

( mod A). 
We shall use frequently the fact that, for an A-module X, pdX :5 1 if and only if 

Hom,1(D(A), TX)= 0 (respectively, idX :5 I if and only if Hom,1(T- X, A)= 0) (see 
(191(p. 74)). 

Let r be a component of r A• Theo, r is said to be regular if r contains neither 
a projective module nor an injective module, and semiregular if r does not contain 
both a projective and an injective module. Also, r is said to be postprojective 
(respectively, preinjective) if r contains no oriented cycles and each module in r 
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belongs to the T-orbit of a projective {respectively, an injective) module. We shall 
denote by ,r the left stable part of r obtained from r by deleting the T-orbits of 
projective modules, by rf the right stable part of r obtained from r by deleting the 
T-orbits of injective modules, and by .r the stable pa.rt of r obtained from r by 
deleting the T-orbits of both the projective a.nd the injective modules. 

A module M E ind A is called T-periodic if there exists a.n m ~ 1 such that 
TmM ~ M. Given ME ind A, we denote by O(M) the T-orbit of M, that is, 

O(M) = {TmM : m E Z}. 

1.3. Let M,N E ind A. A path from M to N is given by a. sequence of nonzero 
morphisms 

M = Xo~X1--+ · · · .l!...x, = N 

where, for ea.ch i, Xi is an indecomposable module and /; is in rad(modA). We 
denote a path from M to N by M _.. N. If we have in addition that the morphisms 
/; are irreducible, then we shall say that it is a. path of irreducible maps. Here, 
an oriented cycle is a path of irreducible maps from a module to itself. A pa.th of 
irreducible maps X 0 - X1 -+ · · · - X, is called sectional if X; '/1. T Xi+2 for each 
i = 0, ... ,t - 2. 

Given a path M _.. N, M is said to be a predecessor of N and N a auccessor 

o( M. It should be clear the terms predecessor and successor by irreducible maps. 
Finally, given M, N E ind A, we denote by M - N when there is either an irreducible 
map M - Nor an irreducible map N - M. For more details on the Auslander­
Reiten theory we refer the reader to [3] and (19]. 

1.4. We will now prove two lemmas needed later on. 

Lemma. Let A be an artin algebra, 

be an oriented cycle through indecomposable modules, and r ~ I. If T; X; =/:- 0 for 
each 1 ~ i :5 r and each j = 0, ... , t, then there exists a path of irreducible maps 
from X to Tr X. 

Proof. We know, by [4], that the oriented cycle(*) is not sectional. Therefore, there 
exists an 1, 2 ~I~ t, such that TX1 ~ X,_2 • By hypothesis, one can apply T to(•) 
to get 

Observe that the module TX1 ~ X,_2 appears in both(•) and(**), and hence there 
exists a path from X to TX, namely 

X = Xo--+Xi - • • • --x,_2 ~ 'r X1--+T X1+1--+ • • • --T X1 = TX. 

By applying T and composing the paths, we get the desired result. O 
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1.5. The next result extends [22](Lemma 4). 

Lemma. Let A be an artin algebm and denote by n the rank of the Grothendieck 
group Ko(A) of A. Let r be a connected component of r A and f' be a connected 
component of .r. Assume that r• has infinitely many T-orbits and no oriented cycles. 
Let M be a module in f' such that the length of any walk in r from a nonstable 
module to M is at least 2n.Then, for each r ~ 1, there exists a path 

M = Xo--+X1--+ ···--+Xi = Tr M 

in modA, with all X; in r. 
Proof. It is enough to show that there exists a path in mod A from M to TM, through 
modules in rand then proceed inductively. By [22](Lemma 4), there is a path 

M = x~-x;, - ... -x: = M 

in mod A, with X~, . .. , x: belonging to r. Since r has no oriented cycles, then one 
of the maps in the above path should be in rad00 (mod A). We can then infer tha.t 
there exists a path 

) M Y, Jo Y, Ji Y, fr Y. fr+nY, fr+n+iM ( * = o--+ 1---+ .• ' --+ r---+ • · • --+ r+n--+ r+n+l --+ 

where the morphisms fr, . .. , /r+n+i are irreducible maps ( this is done by using the 
lifting properties of almost split sequences). Consider now the path of irreducible 
maps 

If ( **) is nonsectional, then there exists an i, r ~ i ~ r + n - 1, such that Y; ~ TY;+:J, 
and then there exists a path of irreducible maps 

Y,.--+ · · · --+Y;--+TY;+a--+ ···--+TM 

( observe that the modules in ( ••) are left stable modules, and hence one can apply 
T to them). Therefore, there exists a path from M to TM, passing through modules 
in r, namely 

M = Yo--+Yi--+ · · · --+Y,.--+ · · · --+Y;--+rY;+a--+ · · · --+rM. 

Suppose now (**) is sectional. Then, by (22J(Lemma 2), there exist j and I, r ~ 
j, l ~ r + n + l, and a nonzero map g E Hom..t(Y;, rYi) = rad00(Y;, TYi). Hence, the 
following path 

M = Yo--+ Yi---+ · · · --+ Y; 2-+r Yi--+r Yi+i--+ · · · --+TM 

gives the required path from M to rM passing through modules in r. Now, since 
for each i ~ 1, riM is in the conditions of the Lemma, we can iterate the above 
procedure to get a path from M to each r• M, r ~ l, as required. □ 
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1.6. Corollary. Let A be an artin algebra and r be a regular component of r _. 
with infinitely many T-orbits. Then, for each M E r, and each r :::: 1, there exists a 
path in modA from M to ,,.r M. 

2. QUASITJLTED ALGEBRAS 

2.1. We shall collect in this section the results on quasitilted algebras needed along 
the paper. We start recalling some facts on tilted algebras. For details on tilting 
theory we refer the reader to [10] and [19]. Let H be a hereditary algebra and let T 
be a tilting H-module, that is, a module such that Ext},(T, T) = 0 and there exists 
a short exact sequence O -+ H -+ To -+ T1 -+ 0, where T0 and T1 are in add T. The 
algebra B = EndH(T) is called a tilted algebra. An important fact on a tilted 
algebra B is that r B contains a component, called connecting, which contains a 
so-called complete slice E which reproduces somehow the structure of the hereditary 
algebra H. It is well-known that all successors of such E have injective dimension at 
most one, and all predecessors of E have projective dimension at most one. Recall 
that a subquiver E in a. component r of r ,._ is called a. complete slice if: (a) E is 
sincere; (b) Eis path closed in modA, and (c) E meets each T-orbit of r exactly 
once. 

Let B = EndH(T), where T is a tilting module over a representation-infinite hered­
itary algebra H. If T is a postprojective H-module (equivalently, rad""(-, T) = 
0), then the algebra B is called concealed. It is a well-established fact that the 
Alllllander-Reiten quiver of a tilted algebra B contains at most two connecting com­
ponents, and it has exactly two if and only if B is concealed. Also, T is a regular 
H-module if and only if the connecting component of f 8 is regular. 

2.2. We shall now recall the definition of quasitilted algebras and some results on 
them. We refer the reader to [11] for the proof of these results. 

Definition. An algebra A is said to be quasitilted if gl.dimA $ 2 and for each 
XE ind A, either pdX $ 1 or idX $ 1. 

Tilted algebras are clearly examples of quasitilted algebras. However, as mentioned 
in the introduction the class of quasitilted algebras is much larger. It has been proven 
in [11)(11.3.6) that representation-finite quasitilted algebras are tilted. 

2.3. We mention the next result for later reference. 

Theorem. ([11](11.1.14)) Let A be a quasitilted algebro. Then any path in indA 
starting in an injective module and ending in a projective module has a refinement of 
irreducible maps and any such a path is sectional. 
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2.4. Let A be a quasitilted algebra. An important result is the existence of the 
following trisection of the category ind A. Let 

C = C..t ={XE ind A : for each Y with X .... Y, idY ~ 1} 

1J = 1J,. ={XE ind A: for each Y with Y ..... X, pdY ~ 1}. 

This induces a trisection 

ind A = (1J \ C) V (1J n C) V (C \ 1J) 

such tha.t 

Hom,t(1J n C, 'D \ C) = 0, Hom,.(C \ 'D, 'D n C) = 0 and Hom..t(C \ 'D, 'D \ C) = O. 

Moreover, 'D contains all the indecomposable projective modules and it is closed 
under predecessors, while C contains all the indecomposable injective modules and it 
is closed under successors. 

2.5. The next result gives a criterion for a quasitilted algebra to be tilted. 

Theorem. ([11](11.3.4)) Let A be a quasitilted algebra. If C contains a projective 
module, then A is tilted. 

2.6. Let A be a tilted algebra. Then, clearly, any complete slice in mod A is con­
tained in C n 'D. In particular, for tilted algebras C n 'Dis nonempty. For quasitilted 
algebras which are not tilted, it is still an open question whether C n 1J in nonempty. 
We shall show (Corollary (F)) that, if C n 1J is nonempty for a quasitilted algebra 
which is not tilted, then C n 'D is formed by modules lying in regular components. 

3. COMPONENTS WITH ORIENTED CYCLES 

3.1. Let A be a quasi tilted algebra and r be a component of r A containing oriented 
cycles. We shall show that r is in fact a serniregular tube, generalising a result known 
for tilted algebras (see (12], (13], [17]). The main point in the proof is to show that 
such a r is serniregular. Serniregular components with oriented cycles have been 
described in [9], (16] and [28), and they are either of the form ZAoo/(rm), for some 
m ~ 1 (if regular) or obtained from it by a sequence of ray (or coray) insertions. 

Theorem (A). Let A be a quasitilted algebra, and r be a component of r ..t containing 
an oriented cycle. Then r is a semiregular tube. 

Proof Let r be a component of r .A containing an oriented cycle. We first observe 
that r is infinite. Indeed, if r is finite, then A is representation-finite, and hence by 
(2.2) it is tilted and r (= r .,4) is a connecting component. It is well-known that, in 
this case, f bas no oriented cycles, a contra.diction, and hence r is infinite. 

If r is regular, then by (9) and [28], r is a stable tube. If r is serniregular but not 
regular, it follows from [16] that r is a serniregular tube. 
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Suppose then that r is nonsemiregular. We first claim that r has no r-periodic 
modules. Supposer has a r-periodic module. Since r is not regular, we infer, using 
[2](6.2), that there exists an irreducible map X -+ Y, where Xis a r-periodic module, 
and Y is neither left nor right stable, that is, there are m and m' such that Tmy is 
a projective module P and rm'y is an injective module/. Therefore, there exists a 
nonsectional path from I to P, which contradicts our hypothesis that A is quasitilted 
(2.3). This proves the claim. 

Consider now the left and the right stable parts of r, respectively ,rand rr. Since 
r is infinite, either ,r or rf is nonempty. Suppose ,r I 0 and let f' be a connected 
component of ,r. Clearly, f' is infinite because otherwise it would contain a r-periodic 
module, contradicting the above claim. 

We shall show now that f' contains no oriented cycles. Suppose it contains oriented 
cycles. Observe that then, f' contains injective modules, because otherwise it would 
be a stable tube by [9) and (28), in particular, with r-periodic modules, a. contradiction 
to the claim. In resume, I" is an infinite connected component of ,r with oriented 
cycles and containing injective modules. Then, by [16)(2.3), there exists an infinite 
sectional path 

... r 2
' X1 --+r'X,-• · · · --+T' X:;i--+T' Xi --+X,---+ ···--+Xi 

with t > s such that {X1, ••• , X,} is a complete set of representatives of T-orbits in r'. 
Since f' is a component of ,r and r is not left stable, there exists an irreducible map 
X'-+ X" with X" in the r-orbit of a projective module and X' E I". By applying 
T as much as necessary, we have that there exists an irreducible map X -+ P with 
X E f' and Pan indecomposable projective module. Since X E r', we infer that 
Tm' X :::: Tm1 X; for some 1 $ j $ s, and some m, m' 2: 0. 

It follows from the hypothesis on r' that there exists an oriented cycle ( *) in f' 
containing an injective module/. By (1.4), there are paths from I to each Tr I, r ~ 1. 
Observe that J is in the T-orbit of one of X1 , ••• ,X., say X;. Then, we get a path 
from I to T(m+1)1X;. Therefore, there exists a path 

Jl.:}J-. T(m+l)IX; .... Tm1X; - X-+ P 

from an injective module to a projective module which is not sectional because ( *) 
is not sectional by [4). A contradiction to the fact that A is quasitilted. Therefore, 
none of the components of ,r contains an oriented cycle. Similarly, one can also show 
that rf contains no oriented cycles. 

However, by hypothesis, f contains an oriented cycle 

Yo--+Yi--+··· ---+Y,. = Yo. 

By above remarks, such an oriented cycle should contain a module which is not left 
stable and a module which is not right stable. By applying .,.-t we can assume that 
Yo is an injective module. Let Y,, and l 2: 0 be such that r'Y~ is a. projective module, 
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and assume that TiY; :/: 0 for each j :/: v and i ::; l. By (1.4), there exists a path 
• from Yo to T1Yo and then to T1Y.,, which is projective, and this path can be choosen 

to be nonsectional, which is a contradiction to the fact that A is quasitilted, and the 
result is proven. O 

4. REGULAR COMPONENTS 

4.1. The main aim in this section is to prove Theorem (B) stated in the introduc­
tion, which concerns regular components of the Auslander-Reiten quiver of quasitilted 
algebras. We shall need the following lemma. 

Lemma. Let A be a quasitilted algebm and r be a component of r A.. 

(a) If r n C ~ 0, then each T-orbit of r contains a module from C. 
(b) If r n 'D ~ 0, then each T-orbit of r contains a module from 'D. 

Proof. We shall prove only (a) because the proof of (b) is similar. 
(a) Let r be a component of r A. containing a module from C. Consider the right 

stable part .r of r. If .r = 0, or equivalently, if each T-orbit of r contains an 
injective module, then there is nothing to prove because C contains all the injective 
modules. Suppose ,r ~ 0 and let f' be a connected component of ,r. We first claim 
that f' has a module from C. If r has no injective modules then f' = ,r = r, and 
the claim is clear. Suppose that r contains an injective module. Then there exists an 
irreducible map I -+ X', where I is an injective module and X' E f'. The claim now 
follows from the fact that X' E C, because I E C, and C is closed under successors. 

Let X E f' n C and let Y E f'. We shall show that O(Y) n C 'F 0. Since f' is 
connected, there exists a walk in f' 

X = Xo-X1-· • • -X. = Y. 

Observe that the modules X;, i = 1, ... , s, are right stable and so one can apply T­

as much as necessary to them to get a path from X to some T-my, m ~ 0. Since C 
is closed under successors we get that T-my EC, and hence each T-orbit of ,r has a 
module from C. The result now follows from the fact that the T-orbits which are not 
in .r contain an injective module, and hence a module from C. □ 

4.2. We can now prove Theorem (B) from the introduction. 

Theorem (B). Let A be a quasitilted algebm and r be a regular component off A.• 

(a) If f n C ~ 0, then r is contained in C. 
(b) If r n 'D ~ 0, then r is contained in 'D. 

Proof. We shall only prove (a) because the proof of (b) is similar. 
( a) Let r be a regular component containing a module M from C. If r has oriented 

cycles, then by (9], it is a stable tube and then clearly every module in f is a successor 
of M, therefore belonging to C (2.4). 
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Suppose from now on that r has no oriented cycles and let NE r. We shall show 
that NEC. Supposer has infinitely many r-orbits. By (4.1) there exists an m E Z 
such that rmN EC. By (1.6), there exists a path from rmN to N, and hence N is 
also in C. It remains the case when r has only finit!:llY many r-orbits. UN ¢ C, then 
there exists a path 

N = Xo.l!.+X1-+ · · · ~X, = X 
where idX > 1. It is well-known that then Hom.A( r-X, A) "F O (see (1.2)). Therefore 
there exists a path 

N X lo X !,-ix X I, X l1+1 -x/,+2p = o-+ 1-+ · · ·-+ c = -+ c+1-+T -'-+ 

where P is an indecomposable projective module, and the morphisms /, and fc+t are 
irreducible. 

Since r is regular, we have that P (/. r and then at least one of the maps 
/ 0 ,/1 , ••• ,ft-1,fwi is in rad00(modA). Observe now that if g: Y - Y' is a map in 
rad00(mod A), then for each r ~ 1, there exist a chain of irreducible maps 

Y = Yo..!!...+Y1-+ · · · ...!!.+Y,. 

and a morphism hr : Y,. - Y' such that the composition hr9r · · • 91 is nonzero. 
Suppose now that one of Jo, ... , J,_1 is in rad00(mod A). By the above and (4.1), 

we infer that there exists a path from some module in r which belongs to C to X, 
and so idX = 1, a contradiction. If none of Jo, ... , fc-i belong to rad00(mod A), then 
fwi E rad00 (mod A). By similar arguments there exists a module Z E r such that 
r Z is in C and Hom,4 ( Z, P) -::/- 0, or equivalently, idr Z > I, a contradiction. O 

5. NONREGULAR COMPONENTS 

S.l. Let A be a quasitilted algebra.. We shall now concentrate in the study of 
nonregula.r components of r A• In this section we shall prove Theorems (C) and (D) 
and establish some immediate consequences of them. 

Theorem (C). Let A be a quasitilted algebra and r be a component of r A with 
infinitely many r-orbits or containing an oriented cycle. 

(a.) If r contains a projective module, then r is contained in 1) \ C. 
(b) If r contain., an iujective module, then r is contained in C \ V. 

Proof. We shall only prove (a) because the proof of (b) is similar. 
(a) Let r be a component of r .A containing a projective module. Suppose first 

that r has oriented cycles. Then, by (3.1), r is a ray tube. Suppose furthermore 
that there exists a module M E r n C. Since r is a ray tube, any module in r which 
belongs to a cycle is a successor of M, and hence belongs to C by (2.4 ). On the other 
hand, there exists a module X which is a nonprojective summand of the radical of 
some projective module which belongs to an oriented cycle. By (1.2), we infer that 
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idT X > 1, a contradiction to the fact that TX should be in C because it is a successor 
of M. Therefore, r n C = 0, and since ind A = CU Z>, we get that r C 1' \ C. 

Suppose now r has infinitely many T-orbits but no oriented cycles, and that rnc t= 
0. Therefore, there exists a connected component f' of rf with infinitely many T­

orbits. It follows now from (4.1) that there exists a module ME r' nC such that the 
length of any walk from a nonstable module to Mis at least 2n, where n is the rank 
of Ko(A). Let 

M' = Xo-X1-···-Xc = P 

be a walk in r' of minimal length from a module M' in the T-orbit O(M) of M to 
a projective module P. Because of the minimality, all the modules X0 , ••• ,X,_1 are 
left stable and then, by applying T conveniently, there exist an m ~ 0 and a path of 
irreducible maps 

TmM =Yo--+½--+··· --+Yi= P. 

Since the modules Yo, .. . , Yi-1 a.re left stable, we get a path of irreducible maps from 
Tm+l M to TYj_1• On the other hand, by (1.5), there exists a path from M to rm+l M, 
and then T Yc-i is a successor of M, which implies that T Yc-1 E C (2.4 ). This, however, 
is a contradiction to the fact that idrY,_1 > 1, because Hom,.(Yc-1 , A) t= 0. Therefore 
r n C = 0 and because ind A = CU V, we have that r C V \ C as required. □ 

5.2. For quasitilted algebras which are not tilted, the above result can be deepened 
as follows. 

Theorem (D). Let A be a quasitilted algebra which is not tilted, and r be a compo­
nent of f A• 

(a) If r contains a projective module, then r is contained in V \ C. 
(b) If r contains an injective module, then r is contained in C \ Z>. 

Proof. We shall prove only (a) because the proof of (b) is similar. 
(a) Let r be a component containing a projective module. If r has oriented cycles 

or infinitely many T-orbits, then the result follows from (5.1). Suppose then that r 
has no oriented cycles and only finitely many r-orbits. Therefore, there exists an 
indecomposable projective module P in r such that P has no proper successors in 
r which are also projective modules. Since A is not tilted, P (/. C (2.5). Therefore, 
there exists a path 

P = Xo~Xi--+ · · · ~X, = X 

where idX > 1, or equivalently, Hom,t(T-X,A) t= 0 (1.2). Hence, there exists a path 

P X lo X /1-1 X X !1 X /1+1 -1x/1+2 P' = o--+ t--+"""--+ t = --+ 1+1----+T ----t 

where P' is an indecomposable projective module, and J, and /c+1 are irreducible 
maps. By our hypothesis on P, at least one of the maps Jo, ... .J,-1, /c+2 is in 



12 COELHO AND SKOWRONSKI 

rad00(mod A). Suppose one of /o, ... , /c-1 is in rad00(mod A). Following the consid­
erations made in the proof of Theorem (B) we infer that there exists a path from 
some module in r n C to X, a contradiction because idX > 1. 

H now / 0, ••• , /c-t ¢ rad00(mod A), then /c+2 E rad00(mod A). Also, by similar 
considerations of those made in the proof of Theorem (B), we get that there exists a 
module Z E r such that T Z E C and Hom,. ( Z, P') ::/: 0, or equivalently, idT Z > 1, a 
contradiction, and this finishes the proof. D 

5.3. We have the following direct consequences of (5.2). 

Corollary. Let A be a quasitilted algebra, and r be a component of r A• If r is 
nonsemiregular, then A is tilted and r is the (unique) connecting component of r A• 

Note that the above corollary generalises [11)(11.3.6) which says that any represen­
tation-finite quasitilted algebra is tilted, because clearly the Auslander-Reiten quiver 
of any representation-finite algebra is nonsemiregular. 

5.4 Corollary (E). Let A be a quasitilted algebra which is not tilted. Then any 
component of r A is aerniregular. 

5.5 Corollary (F). Let A be a quasitilted algebra which is not tilted. Then, every 
component r of r A having a module from C n V is regular, and hence consist& of 
modulea from C n 'D. 

6. SOME CONSEQUENCES 

6.1. We say that a property holds for almost all modules if it holds for all but 
finitely many of them. In (1), I. Assem and the first named author have characterized 
the finite dimensional algebras over algebraically closed fields which satisfy the prop­
erty that almost all of their intfecomposable modules have injective (or projective) 
dimension at most one. These algebras are called left (respectively, right) glueings of 
tilted algebras (see [1) for details). 

For an artin algebra A such that idX $ 1 for almost all X E ind A, it follows 
from (5), (6) and (23), that r A contains a component f containing all the projective 
modules and such that: (i) almost all of its modules lie in the T-orbits of projective 
modules; and (ii) there are at most finitely many modules inf belonging to oriented 
cycles. 

6.2. We shall use the above fact to show the following result. 

Proposition Let A be a quasitilted algebra. 
(a) The following are equivalent: 

(i) idX :5 1 for almost all X E indA. 
(ii) A is tilted and r A haa a postprojective component with a complete slice. 
(iii) C is cofinite in ind A. 
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(b) The fallowing are equivalent: 

(i) pdX $ 1 /or almost all X E indA. 
(ii) A is tilted and r A has a preinjective component with a complete slice. 
(iii) 1) is cofinite in indA. 

Proof We shall prove only (a) because the proof of (b) is similar. 
(a) (i)=>(ii) Suppose idX $ 1 for almost all X E ind A. By the above remarks, r A 

has a component containing all the projective modules and such that almost all of its 
modules belong to the T-orbits of projective modules and there are at most finitely 
many modules in r belonging to oriented cycles. Suppose r contains an injective 
module. Then r is a nonsemiregular component, and hence, by (5.3), A is tilted and 
r is a connecting component. Clearly, then r is postprojective. 

If r contains no injective modules, then r is in fact a postprojective component (see 
(51(6.7) or (16](2.l)). Clearly, a postprojective component containing all projective 
modules and no injective modules is indeed connecting and (ii) follows. 

(ii)=>(iii) By (2.6), all modules which are successors of complete slice belong to C. 
Now, if r A has a postprojective component r with a complete slice, then almost all 
modules in ind A are successors of a complete slice in r. This proves (iii). 

(iii)=>(i) Clear. D 

6.3. Corollary. Let A be a quasitilted algebru which is not tilted. Then, there 
are infinitely many indecomposable modules X with pdX = 2 and infinitely many 
indeconaposable modules Y with pdY = 2. 

6.4. It has been shown independently in (1) and [23] that a representation-infinite 
algebra is concealed if and only if pd X :::; 1 and idX $ 1 for almost all X E ind A. 
The next result is also a direct consequence of (6.2). 

Corollary. The following are equivalent for a representation-infinite artin algebru 
A: 

(a) pdX $ 1 and idX $ 1 /or almost all XE indA. 
(b) A is concealed. 
(c) A is quasitilted and C n 1) is cofinite in ind A. 

6.5. We shall also mention the next two results that are direct consequences of the 
previous sections. 

Proposition. Let A be a quasitilted algebra, and r be a component of r A. 

(a) If r contains a projective module, then r C 'D \ C if and only if r has no 
complete slice. 

(b) If r contains an injective module, then r C C \ 'D if and only if r has no 
complete slice. 
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Proof. We shall only prove (a.) because the proof of (b) is similar. 
(a.) Let r be a component containing a projective module. If r C 1) \ C then, 

clearly, r contains no complete slice (2.6). 
Suppose now that r has no complete slice. If A is not tilted, then by (5.2), 

r c 1) \ C. Moreover, if f contains oriented cycles or has infinitely many -r-orbits, 
then by (5.1), r C 1) \ C. It remains to show the result when A is tilted, and r is 
a component without oriented cycles and with only finitely many r-orbits. Since by 
hypothesis, r is not a connecting component, we infer that f is postprojective and 
it does not contain injective module. Clearly, r c 'D. Suppose now that r n C has a 
moduleX. 

Observe that r does not contain all the projective modules and in fact, since A is 
connected, there exist indecomposable projective modules P E r and P' ¢ r with 
HomA(P,P')-::/; 0. Since Hom..t(P,P') = rad00(P,P'), we infer that for each t ~ I, 
there exist a path of irreducible maps 

p = Yo-Yi-···-Yt 
and a nonzero map / 1 E Hom(Yt, P'). Note that all the successors of X are in C and 
hence there are only finitely many modules in r which are not in C. Therefore, there 
exists t such that -rlt EC and Hom..t(Yt, P') :/: 0, or equivalently id-rY, > 1 (by (1.2)), 
a contradiction. Therefore, r n C = 0 as required. D 

6.6. Proposition. The following are equivalent for a quasitilted algebm A: 

(a) Each non regular component is either contained in 'D \ C or contained in C \ 1). 

(b) A is either not tilted or a tilted of the form A= Enda(T), where Tis a regular 
tilting module over a hereditary algebra H. 

Proof. (a)::}(b) Suppose A is tilted. Then r A contains a connecting component r. If 
r is nonregular, then by (a), it is contained eitherin 'D\C or in C\ 1), a contradiction 
to the fact that r contains a complete slice lying in C n 'D (2.6). Then r is a regular 
and, by (2.1), A = Enda(T) where Tis a regular tilting module over a hereditary 
algebra H. 

(b)::}(a) Let r be a nonregular component of r A· If A is not tilted, then by (5.2), 
r is either contained in 'D \ C or contained in C \ V . If now A = Enda(T), where 
T is a regular tilting module over a hereditary algebra H, then r should not be the 
connecting component of r A (2.1), and hence it does not contain complete slice. By 
(20), r is semiregular and by (5.1) r is contained in 'D \ C in case it has projective 
modules, or in C \ 1) in case it has injective modules. This proves the result. D 
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