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Abstract

With the knowledge and statistical precision derived from two decades of measurement, the Pierre Auger
Observatory has significantly deepened our understanding of ultra-high-energy cosmic rays while
unearthing an increasingly complex astrophysical landscape and exposing tensions with hadronic
interaction models.
The field now demands the mass of individual cosmic-ray primaries as an observable with an exposure
that only the 3000-square-kilometer surface array of the Observatory can provide.
Access to the primary mass hinges on the disentanglement of the electromagnetic and muonic
components of extensive air showers.
To achieve this, scintillator and radio detectors have been installed atop each existing water-Cherenkov
detector of the surface array, whose dynamic range has also been enhanced through the installation of
small-area PMTs.
Additionally, the timing and signal resolution of all detector stations have been improved through
upgraded station electronics, and underground muon counters have been installed in a region of the
array with denser spacing.
As the commissioning of the final components of AugerPrime reaches its conclusion and the enhanced
array comes fully online, we present the realization of its design, its performance, and the first results
from this now multi-hybrid observatory.
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With the knowledge and statistical precision derived from two decades of measurement, the Pierre
Auger Observatory has significantly deepened our understanding of ultra-high-energy cosmic
rays while unearthing an increasingly complex astrophysical landscape and exposing tensions
with hadronic interaction models. The field now demands the mass of individual cosmic-ray
primaries as an observable with an exposure that only the 3000-square-kilometer surface array of
the Observatory can provide. Access to the primary mass hinges on the disentanglement of the
electromagnetic and muonic components of extensive air showers. To achieve this, scintillator
and radio detectors have been installed atop each existing water-Cherenkov detector of the surface
array, whose dynamic range has also been enhanced through the installation of small-area PMTs.
Additionally, the timing and signal resolution of all detector stations have been improved through
upgraded station electronics, and underground muon counters have been installed in a region of
the array with denser spacing. As the commissioning of the final components of AugerPrime
reaches its conclusion and the enhanced array comes fully online, we present the realization of its
design, its performance, and the first results from this now multi-hybrid observatory.
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1. Introduction

Using the reconstructed energies and arrival directions of cosmic rays, the 3000 km2 surface
detector array of the Pierre Auger Observatory – with its exposure now exceeding 100 000 km2 sr yr
– has enabled the establishment of anisotropy in the arrival directions of ultra-high-energy cosmic
rays (UHECRs) with a significance exceeding 5 for the first time ever [1, 2]. Notably, this result
was obtained without any information about the masses of the primary cosmic rays. In parallel,
measurements of the depth of shower maximum max by the fluorescence detector of the Pierre
Auger Observatory have transformed understanding of UHECR composition [3, 4]. Contrary to
earlier assumptions that the flux at the highest energies was dominated by protons, current evidence
indicates a trend toward increasingly heavier nuclei with rising energy. To probe more deeply
into the astrophysical origins of the established and increasingly significant anisotropies in arrival
directions, it is clear that studies with enhanced mass sensitivity are essential. It is also clear that
the exposure required for such studies at these energies exceeds that of the fluorescence detector of
the Observatory and must come from its surface detector.

The application of machine learning techniques shows promise to be a revolution in the re-
construction of the properties of primary cosmic rays from surface detector measurements. The
efficacy of these techniques for reconstructing max in individual surface detector events has been
demonstrated [5] revealing previously unobserved breaks in the evolution of max with energy [6] –
features that could not be significantly resolved using the fluorescence detectors alone due to their
limited exposure. Despite their potential, the ability to confidently employ machine learning algo-
rithms is currently limited to predicting a small subset of observables, however, as the simulations of
air showers upon which deep neural networks (DNNs) are trained have known differences with real
air showers. These differences result in biases visible when comparing with direct measurements of
the predicted quantities. In the case of max, the observed bias in DNN predictions is approximately
30 g/cm2, which has been dealt with by calibrating with fluorescence detector measurements. To
fully harness the power of neural networks in combination with the extensive exposure of the sur-
face detector of Auger, it is essential that the observables predicted by these networks are either
calibrated using a reliable set of direct measurements or that the hadronic interaction models used
to generate the simulated air showers upon which networks are trained are improved to more closely
reproduce observational data. Each of these points requires measurement of the individual com-
ponents of extensive air showers. Understanding the mismatch between simulated air showers and
measurements also exists as a scientific objective of high interest in its own right.

The AugerPrime upgrade to the Pierre Auger Observatory will deliver a data set of UHECR
measurements with mass as an observable for primary cosmic rays incident on the array with
nearly all inclinations. Known as Phase II, the 3000 km2 surface detector of the observatory will
be operated in the AugerPrime configuration for a minimum of 10 years (i.e., until at least 2035).
In addition to delivering a prime data set for mass enhanced studies of anisotropy in the arrival
directions of UHECR, Phase II will include detailed measurements of the different components of
extensive air showers on a shower-by-shower basis up to the highest energies, which will serve to
inform hadronic interaction models and define the mass scale of the observatory’s measurements
with increased confidence. It will also allow for the re-analysis and calibration of observables
predicted with advanced methods, such as neutral networks, for measurements with the enormous
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Figure 1: Left: A fully deployed AugerPrime (Phase II) surface detector station. Right: A counter of the
Underground Muon Detector during deployment.

exposure of Phase I of the observatory – where only the water-Cherenkov detectors were deployed
for the surface detector array – as well as directly improve the precision and accuracy of the
predictions of such algorithms by meaningfully contributing to the alignment of the simulations
they are trained upon with the properties of real air showers.

2. Basic design

The objective of the AugerPrime upgrade is to enhance the mass sensitivity of the surface
detector array by adding detectors with complementary responses to the different components of
extensive air showers, while maximizing the sky coverage over which this sensitivity is achieved.
This is achieved by installing planar scintillation-based detectors – referred to as Scintillator Surface
Detectors (SSDs) – along with radio antennas – collectively referred to as the Radio Detector (RD)
– on top of the existing water-Cherenkov detectors (WCDs) that form the 1500m-spaced isometric
triangular grid of the 3000 km2 surface detector array. An image of an upgraded surface detector
station is shown in Fig. 1-left.

The addition of the SSD provides mass sensitivity in that its response to the electromagnetic
and muonic shower components differs from that of the WCD. This allows for a deconvolution
to obtain the magnitudes of the contribution of each component to the total detector signals, or
alternatively, the inclusion of the time-dependent signals of each detector into the global likelihoods
of more complex reconstruction algorithms. For more inclined air showers, i.e., those with a zenith
angle  ≳ 60◦, the scintillator measurements are less effective due to the extensive attenuation of
the electromagnetic shower component and the detectors’ decreased projected area in the shower
plane. At these higher inclinations, however, the radio footprint of air showers is sufficiently large
at the ground such that the energy of showers can be effectively estimated from its sampling. With
the energy of the shower in hand, the WCDs provide the mass-sensitivity for these inclined showers.

3
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In this way, mass sensitivity is achieved for effectively the full sky observed with Auger – by the
addition of scintillators for less inclined showers and by the addition of radio antennas for more
inclined showers.

A 20 km2 sector of the surface array with 750m spacing, including a 2 km2 sub-sector with
433m spacing, is being instrumented with additional scintillation-based detectors buried at each
position – collectively referred to as the Underground Muon Detector (UMD). These shielded
scintillators allow for the direct measurement of the muon component of extensive air showers
for inclinations up to approximately 60◦ in zenith angle. In addition to delivering a data set with
high-precision muon measurements for air showers from cosmic rays with energies between the
second knee and the ankle of the cosmic ray energy spectrum, the direct muon measurements will
also serve to calibrate algorithms used to estimate muon content with measurements of the upgraded
stations of the 3000 km2 array.

3. Realization

3.1 Scintillator Surface Detector

An SSD module has an active detection area of 3.84m2, which is comprised of 48 extruded
polystyrene scintillator bars each measuring 1.6m in length and 5 cm in width with a thickness
of 1 cm. The bars are distributed between two planes with an aluminum tube housing a 1.5-inch
diameter Hamamatsu R9420 PMT set between them. Light produced in the bars is routed to the
PMT through wavelength-shifting fibers passing through two holes in each scintillator bar. The
active components of the SSDs are housed inside an aluminum enclosure. The design of the
mechanical structure of the SSD ensures that it is light-tight, sufficiently rigid for transportation,
and sufficiently robust to withstand more than 10 years of operation in the field. Additionally, the
modules feature a sunroof made of corrugated aluminum to mitigate temperature variations. More
details on the detector design can be found in [7]. The SSDmodules were assembled and underwent
extensive quality controls at six sites in different Auger institutions [8]. Two additional institutions
were dedicated to testing and preparing the PMTs.

A single minimum ionizing particle (MIP) in the SSDs produces around 30 photoelectrons, and
the dynamic range of the SSD PMT and electronics allows measurement up to and exceeding 20 000
(MIPs) with no more than 5% deviation from a linear response. The SSDs are calibrated using
the continuous background of atmospheric particles by fitting the “muon hump” in the distribution
of charge they produce and making use of the experimentally validated relationship of this hump
position with the charge of a vertical MIP. Details on this process and on the performance of the
SSDs may be found in [9, 10].

3.2 Radio Detector

The dual-polarized short aperiodic loaded loop antennas of the RD consist of two aluminum
rings with diameters of 122 cm. The rings are oriented perpendicular to one another and are
respectively aligned parallel and perpendicular to the Earth’s magnetic field. The antennas are fixed
to a mast attached to an aluminum frame mounted directly on the WCDs with guy-wires providing
additional support and mitigation of vibrations induced by strong winds.
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Figure 2: Fraction of events with energies greater than 1018.5 eV containing measurements with the different
components of the AugerPrime upgrade during the transition period.

The sensitivity of the antennas lies in the frequency range of 30 to 80MHz in which its response
is virtually uniform with low dispersion. The 12-bit, 250MHz electronics have an amplification of
a total of 36 dB and include a band-pass filter in the 30 to 80 MHz range. An FPGA coordinates
data exchange with the station electronics discussed below.

Calibration of the radio antennas has its basis in a thorough understanding of the full signal
chain through laboratory measurements and simulations. The directional response of the full chain
is validated through measurements with a radio calibration source mounted on a drone, and the
radio emission from the Milky Way serves as an absolute calibration source which has thus far been
used to validate the absolute gain of the signal chain. Additional information on the calibration and
performance of the RD can be found in [10, 11].

3.3 Electronics upgrade and extension of dynamic range

To match the dynamic range of the SSD, a 1-inch diameter Hamamatsu R8619 PMT – referred
to as the small PMT (SPMT) – is installed in each WCD. Whereas the WCD PMTs saturated at
approximately 1000 vertical equivalent muons (VEMs) during Phase I of observatory operation,
the dynamic range of the detectors is extended to approximately 20 000VEM with the SPMT.

Individual muons are indistinguishable in the SPMT as they produce only about one photo-
electron per muon. Local, low energy showers are used for calibration with the rate of calibration
events at approximately 200 per hour. The differences between the signal spectra measured by the
large and SPMTs in the WCDs is minimized for these showers to obtain a calibration for the SPMT.
Details on this procedure and performance of the SPMTs may be found in [10, 12, 13].

To accommodate the additional channels of the upgraded surface detectors and provide signal
traces with enhanced temporal and signal resolution, the Unified Board (UB) electronics of Phase
I were replaced with Upgraded Unified Board (UUB) electronics. For the UUB, the anode channel
inputs for each of the the largeWCD PMTs are split and amplified such that the gain of the high-gain
channel is 32 times the low-gain channel. The anode channel of the SSD is also split with a ratio
of 128 between the two gains. The signals are filtered and digitized with a sampling frequency
of 120MHz, which is three times that of the UB electronics. The resolution on the magnitude
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Figure 3: Lateral distributions of signals from theWater-CherenkovDetectors, Scintillator SurfaceDetectors,
and Underground Muon Detector for a sample Phase II event.

of signals is also improved with the 12-bit UUB electronics, which improve upon the 10-bit UB.
The updated GPS receivers also boast an improved timing resolution of 5 ns. To accommodate the
increased power consumption particularly due to the RD, new solar panels are also installed at each
surface detector station. An extensive description of the UUB electronics and their performance is
given in [13, 14].

3.4 Underground Muon Detector

A single position of the UMD consists of three scintillator modules each with an active area
of 10.24m2 resulting in a total active area of 30.72m2. A single module consists of 64 extruded
polystyrene scintillator bars each measuring 4m in length and 4 cm in width with a thickness of
1 cm. Wavelength-shifting fibers are embedded in each bar and route photons to a central array of
64 silicon photomultipliers. The internal components of each module are enclosed in a water-tight,
polyvinyl chloride casing and buried at a depth of 2.3m with a narrow access shaft for access to the
electronics. The overburden corresponds to 540 g/cm2 resulting in an energy threshold for muons
at the ground to reach the buried detectors of approximately 1GeV. The output of the SiPMs is
processed with two read-out schemas. An acquisition mode aimed at low muon densities applies a
threshold to SiPM signals and generates 64 independent binary traces, i.e., one for each of the 64
scintillator bars. The interpretation of these binary traces results in a muon count. Details on the
calibration of this acquisition mode using dark counts are given in [15]. For higher muon densities,
an additional acquisition mode sums the 64 traces and acts as a measurement of integrated charge
[16]. More detailed information on the status and performance of the UMD is given in [10, 17].

4. Coming online

The large scale deployment of the SSDmodules began at the end of 2018 and was completed at
the end of 2021. The PMTs for the SSDs and the SPMTs were deployed thereafter together with the
UUB electronics, the large scale deployment of which started with a pre-production batch in 2020

6
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Figure 4: Topology (left) and lateral distribution (right) of energy fluence for a sample inclined event
measured with the Radio Detector of Phase II.

and was completed at the end of June 2023. Each station in the surface detector array remained
in acquisition until the moment its UB electronics were replaced with UUB electronics. Upon
the upgrade to its electronics, each station was then immediately put back into acquisition, now
additionally providing SSD and SPMT measurements. The transition of the surface detector from
a WCD-only Phase I configuration to the upgraded Phase II configuration was therefore gradual,
and the array operated in a mixed configuration during a period of slightly more than three years, as
illustrated in Fig. 2. Currently, the UUBs operate in compatibility mode, in which the WCD signal
traces are filtered and downsampled to emulate those of the original UB system for the purposes of
triggering, allowing the application of Phase I trigger algorithms at the event level. The native, full
bandwidth traces of the UUBs are, however, used for the event reconstruction, and efforts towards
the development of new, full bandwidth triggers aimed at the detection of neutral particles and
making use of the new detectors of AugerPrime are on-going. More details on the performance of
the acquisition systems of the upgraded array are given in [18]. Exposure for the surface detector
of Phase II is already approaching approximately 10% of Phase I at the time of this proceeding. An
exemplary event including WCD, SSD, and UMD measurements is shown in Fig. 3.

RD deployment began in August of 2023 with the procurement of some components delayed
through complications relating to the COVID-19 pandemic. RD deployment was completed at the
end of 2024. Each RD antenna was put into acquisition upon its deployment. An exemplary event
measured during the RD deployment is shown in Fig. 4.

UMD mass production and deployment began in 2019. At the time of this proceeding, 48
of 61 positions for the 20 km2 sector of the array with 750m spacing between stations have been
deployed with deployment expected to be completed by the end of 2025. The even denser sector of
the array with 433m spacing between detectors has already been completed.

5. Outlook

As the number of Phase II events for multi-hybrid analysis steadily increases, the Auger
collaboration is completing commissioning of the pipelines for physics analysis. These efforts
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relate to calibration and monitoring of the upgrade detectors as well as interpreting the initial Phase
II measurements, as discussed in [9–11, 16] in these proceedings. Refinement of the reconstruction
algorithms to be applied to Phase II measurements also continues, as presented in [11, 19–21].

With AugerPrime now fully operational and the final steps of commissioning the physics
data sets underway, a new era of analysis is beginning. This includes mass-sensitive studies of
anisotropies in arrival directions, improved precision in testing and constraining hadronic inter-
action models, and a deeper understanding of the mass composition of UHECRs – extending to
energies beyond the observed suppression in the spectrum. In parallel, either measurements or
significantly improved limits on neutral particles are anticipated, along with enhanced investiga-
tions into physics beyond the Standard Model. In addition to the rich Phase II data set, insights
gained from AugerPrime will also enable a re-analysis of Phase I data, leveraging its extensive
exposure with greater confidence in the mass scale and a more refined understanding of the different
components of extensive air showers. New areas of study enabled by the upgraded detectors are
also already beginning to emerge. For example, ongoing efforts to quantify the lateral distribution
and energy spectrum of neutrons in extensive air showers – made possible for the first time by the
addition of scintillators to the surface detector array – may offer a novel window into hadronic
interactions, as presented in [22] in these proceedings.
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