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Abstract

Tremendous advances have been made in our understanding of the properties and evolution of
complex networks. These advances were initially driven by information-poor empirical networks and
theoretical analysis of unweighted and undirected graphs. Recently, information-rich empirical data
complex networks supported the development of more sophisticated models that include edge
directionality and weight properties, and multiple layers. Many studies still focus on unweighted
undirected description of networks, prompting an essential question: how to identify when a model is
simpler than it must be? Here, we argue that the presence of centrality anomalies in complex networks
is a result of model over-simplification. Specifically, we investigate the well-known anomaly in
betweenness centrality for transportation networks, according to which highly connected nodes are
not necessarily the most central. Using a broad class of network models with weights and spatial
constraints and four large data sets of transportation networks, we show that the unweighted
projection of the structure of these networks can exhibit a significant fraction of anomalous nodes
compared to a random null model. However, the weighted projection of these networks, compared
with an appropriated null model, significantly reduces the fraction of anomalies observed, suggesting
that centrality anomalies are a symptom of model over-simplification. Because lack of information-
rich data is a common challenge when dealing with complex networks and can cause anomalies that
misestimate the role of nodes in the system, we argue that sufficiently sophisticated models be used
when anomalies are detected.

Introduction

The study of complex networks produced fruitful results in many areas of knowledge, from systems biology

[1, 2] and social systems [3, 4] to epidemiology [5-7] and statistical physics [8, 9]. The initial focus of complex
networks and graph theory was on undirected, unweighted topologies [9, 10]. Using unweighted network
projections, many properties were proved to be effective in describing complex systems [ 11—-14]. More recently,
weighted, directed, multiplexed networks have been the focus of much research attention. In many cases, these
more sophisticated representations of the system are most appropriate to describe real-world networks [15-18].
Despite it, researchers still fall back on representing a system’s network of interactions as if it was undirected and
unweighted, many times because of the lack of information-rich data sets.
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This is the case of gene regulatory networks, where usually direction, strengths, and signs of the links are
overlooked because of the lack of complete data [19]. Another case where empirical studies have overlooked the
details of the system is the case of multipartite networks [20]. This class of systems comprises networks with
multiple groups that can only interact through nodes of different types. However, because of the lack of
information-rich data sets, these systems are usually studied after projection onto networks of one single type of
node. Thus, the question is how to determine when such a model is good enough to represent the system,
especially in the absence of data for testing simulation predictions.

Here, we focus on the case of weighted networks projected onto unweighted networks. We propose that the
presence of anomalies in the structure of the undirected and unweighted projection of the network can be a
result of a situation where a model is simpler than it must be. Our starting observation is the report of
betweenness centrality anomalies in transportation networks [21]. This simple measure can capture the
importance of a node to connect different parts of the network [9] by the means of how often it stands between
other nodes. Guimera et al reported that nodes with a large degree in air transportation networks do not
necessarily have the highest betweenness centrality, whereas some low degree nodes can have large betweenness
centralities. The emergence of these anomalies has been attributed to the multi-community structure of the
network and spatial constraints such as geopolitical boundaries [21-23]. Nevertheless, the general mechanisms
governing the emergence of such anomalies remain unknown.

In order to tackle these questions, we investigate a broad class of network models with weights and spatial
constraints and the structure of four transportation networks. Our analysis reveals that, like for the class of
model networks, unweighted transportation networks exhibit centrality anomalies for a significant fraction of
the nodes compared with an appropriate null model with the same degree distribution. However, these
anomalies disappear when we consider weighted representations of the network. Our findings support the
hypothesis that such centrality anomalies are a symptom of a model that is simpler than it must be.

Because model over-simplification might lead to anomalies that would misestimate the role of nodes in the
system, our findings have direct implications for the modeling of dynamical processes on complex networks
where betweenness centrality is used to measure the influence of nodes, such as in the modeling of human
dynamics [24], the spread of diseases [25, 26], crime spreading [27], and spatial networks [22, 23]. Moreover,
they also hint at the significant challenges when modeling biological [19], economic, or social phenomena
because data incompleteness is so pervasive.

Results

Centrality anomalies

We collected extensive data for four large scale transportation networks: Brazil, Great Britain, and Spain bus
transportation networks, and the worldwide air transportation network. We define an inter-city bus
transportation network by assigning a node to each of the N municipalities (with at least one bus station) and
assigning an undirected edge between two nodes if the two stops i and j are connected by at least one bus route.
Throughout the period observed for each data set, the same route can be offered by more than one company and
multiple times by a single company (see methods for details). This fact enables us to define the weight of the edge,
w;j, as the total number of buses offered by all companies over the observation period (figure 1).

In the worldwide air transportation network, each node represents a city. As a consequence, if there are
multiple airports serving the same city, we assign the relevant airports to a single node. For example, JFK, La
Guardia, and Newark airports are all assigned to the New York City node. We assigned undirected edges between
two nodes i and j if the two cities were connected by at least one air route. Because not all air routes have daily or
greater frequency, and in order not to drop less-traveled cities, we collected information on flights occurring
during the week of 17 May, 2018-22 May, 2018. As for the bus transportation networks, the same route can be
offered by more than one company and multiple times a day by the same company. Thus, we defined the weight
ofan edge, w;;, as the total number of flights offered by different companies flying the route during the
observation period (figure 1).

Several studies have reported that spatial networks, such as the ones we study here, can exhibit centrality
anomalies [21, 22, 28, 29]—that is, the betweenness centrality of a node is not necessarily proportional to its
degree squared. First, we investigate to what extent these centrality anomalies are due to the over-simplification
of the networks. Specifically, we first calculate the betweenness centrality b and degree k of the nodes for an
unweighted projection of the network. The betweenness centrality of node i counts the fraction of shortest paths
connecting all pairs of nodes that pass through node i but do not include node i [30]. Figure 2 shows the
betweenness centrality versus degree for the networks studied here.

In order to make sense of the observed values of the betweenness and their relationship with the degree, we
compare the measurements for the four transportation networks to the expected values for ensembles of
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Figure 1. [llustration of the transportation network data sets. We collected four large data sets of transportation networks that include
information about the number of buses or airplanes on each route. The data consist of the inter-city bus transportation networks of
three countries (Brazil, Great Britain, and Spain), and worldwide air transportation network. In the plots, the node area is proportional
to the degree of the node.

randomized networks with the same degree distributions. In order to provide consistency with later analyses, we
do not use the typical Markov chain Monte Carlo edge switching approach, in which the structural constraints
are satisfied exactly (i.e. microcanonical ensemble), and instead implement the undirected binary configuration
model (UBCM) [31], where the constraints are met on average over the ensemble (i.e. canonical ensemble)
[32—-34]. In the UBCM, edges are placed at random following a distribution that preserves, on average, the
original degree distribution observed in the data (see methods).

Ashasbeen reported earlier [21, 28], the betweennesses obtained for the randomized networks do not
recapitulate those observed for the empirical networks. That is, whereas there is an approximate scaling of the
betweenness with the degree squared for the randomized networks, for the empirical networks one finds many
nodes with large deviations from that scaling relationship.

Model networks

It has been proposed that the existence of these centrality anomalies is due to the presence of spatial constraints
and the special role, due to economic or political considerations, that some cities might have [22, 23, 28].
However, the precise factors driving the emergence of such anomalies remain unknown.

To investigate the generality of our findings, we next study a class of spatial weighted networks generated
using the strength driven preferential attachment with spatial selection (SDPASS) model, which has been reported
to produce centrality anomalies [22]. In this model, N initial nodes are randomly located on a two-dimensional
disc of radius L according to a uniform distribution and they are connected by links with weights wq. At each
time-step, a new node i is placed randomly on the disc, following a uniform distribution. The new node is
connected to m previously existent nodes that are preferentially near and have the largest strength, according to

5j e il

B N

where r.is a desired spatial scale, s;is the strength of the node (i.e. s; = i w;i), and dj; is the Euclidean distance
between nodes I and i. The new edge (i, j) has a fixed weight wy and the creation of this edge perturbs the existing
links attached to node j. To add this local perturbation to the model, the weights between j and its neighbors

I € V(j) are modified following the rule:
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Figure 2. Investigation of centrality anomalies for the unweighted transportation networks. The panels show the comparison of real
data (pink circles) with an ensemble of 10 000 networks (green circles) generated using the UBCM method [31]. As expected, for the
randomized networks the betweenness centrality scales approximately with the degree squared. In contrast, for the empirical
networks, the relationship between degree and betweenness is much less straightforward as there are some nodes for which the
betweenness dramatically deviates from the scaling relationship.

wji
wi — Wi + 57, (2)
J

where 6 characterizes the susceptibility of the network to new links and s; = >, wy is the strength of node . If

6 < wo, the new link has a small influence on the network. If § ~ w,, the newly created traffic on the new edge is
transferred to existing connections. If § > wy, the traffic in the new edge generates a multiplicative effect on the
traffic of the neighbors. This process is repeated until the network reaches the desired size. It is worth to note that
this process generates a symmetric adjacency matrix, i.e. w;; = w;;, a necessary condition for the null models

we use.

We explore the SDPASS model for networks with Ny = 5 initial nodes, m = 4, and size N = 100. We
simulate all relevant limiting cases to explore how § and the ratio = r./L affects the scaling of the betweenness
centrality. For convenience, we fixed L = 1 to explicitly explore the dependence of the model on r.. For each set
of parameters, we generated a network using the SDPASS model, and, subsequently, we used the appropriated
null models to generate an ensemble of networks to calculate the fraction of anomalous nodes in these networks.

To make the identification of centrality anomalies rigorous, we compare the observed values of the pair
(k;, b;) of node i to the distribution of expected values for the randomized ensemble. We find that the distribution
of expected values is reasonably approximated by a multivariate Gaussian, N(x|p;, 3;), where p, represents the
average values of k; and b, for the random ensemble and 3, represents the covariance matrix. We fita
multivariate Gaussian to the random ensemble data for each node and use it to compute the line enclosing 95%
of the probability mass (see methods for details).

Consideringn > 1 the effects of distance are negligible [22] and we recover the non-spatial weighted
network model of Barrat et al [35], which showed no anomalies in our simulations compared with an ensemble
of networks generated by the UBCM model. As § — 0, the weight effects are no longer significant and we
recover the preferential attachment model [36]. The preferential attachment model does not show any
anomalies in the betweenness centrality, and an ensemble of random networks generated by the UBCM model is
able to predict the betweenness centrality of the nodes. For instance, using 6 = 0.01 andn = 10 and comparing
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Figure 3. [llustration of centrality anomalies identification in complex networks. The red dot indicates the observed centrality and
degree empirical network and the orange (blue) dots are the corresponding betweenness centrality versus degree for the 10 000
networks from the ensemble sampled using the UBCM (UECM) method. The solid black line encloses 95% of the probability mas for
amultivariate Gaussian fit to the data. In the unweighted network, the observed values of betweenness centrality and degree lie outside
the 95% bounds of the multivariate Gaussian adjusted to the data predicted by the synthetically generated networks. In contrast, in the
weighted network, an anomaly is no longer observed.

this network with an ensemble of networks generated by the UBCM model we found that only 1% of the nodes
have centrality anomalies.

Another possible scenariois 6 < 1and7n < 1.Inthis case, the effect of the link’s weights is negligible and
we essentially have a spatial unweighted network topology. In this case, the centrality anomalies are also not
present, and our random network model (UBCM) is able to predict the betweenness centrality of the nodes.
Using § = 0.01 and 7 = 0.01 to generate our network and comparing it with an ensemble of networks that
preserves the degree distribution (UBCM), we found that only 1% of the nodes are anomalous.

Finally, we investigate the interplay between weights dynamics, i.e. § > 1, and spatial constraints, 7 < 1.1In
these limits, the model generates spatial weighted networks that have centrality anomalies similar to the ones
observed for transportation networks. For instance, using 6 = 10and n = 0.01, we found a significant fraction
of nodes (~269%) that show anomalies in the unweighted projection of the network when compared to the
ensemble of networks produced by the UBCM model.

Next, we compare the measurements for the model network to the expected values for an ensemble of
randomized networks with the same degree and strength distributions. To this end, we use the undirected
enhanced configuration model (UECM) [31, 37], which, consistently with the UBCM, preserves the constraints
on average over the ensemble (i.e. canonical ensemble) [32—34]. In the UECM, edges and their weights are placed
atrandom following distributions that, on average, preserve both the degree and the strength of the nodes; see
methods. Note that the weights w;;in our empirical networks represent the number of buses or airplanes
available for the route connecting i and j. While higher values of w do reflect stronger ties, a physically
appropriate calculation of the path length requires that one quantifies the length of an edge as the inverse of its
weight [38]. Consistently with the transportation networks, we next consider the inverse of the weights to
compute betweenness centrality of our model network. In figure 3 we show for illustration purposes the
betweenness centrality data for both the unweighted and weighted randomizations. It is visually apparent that
there is a centrality anomaly for one case but not the other.

Using the weighted projection of our model network and comparing it with an ensemble of networks
generated by the UECM model, the fraction of centrality anomalies decrease to 18% of the nodes, a much
smaller fraction than the 69% detected for the unweighted projection. Note that, because our null model does
not include spatial information, our results suggest that a more sophisticated model would be a better choice for
representing this network. The results of our model networks are summarized in table 1.

Weighted transportation networks

To investigate the relevance of the results for networks in the real world systems, we next explore whether
centrality anomalies are also present when considering the weighted representation of the transportation
networks. As before, we compare the relationship between observed betweennesses and degrees to the
relationship obtained for an ensemble of 10 000 randomized networks generated using the UECM (figure 4). By
doing so, we observe two results. First, even for the randomized networks, there no longer exists a simple scaling
relationship between betweenness and degree. Second, we no longer find systematic centrality anomalies in the




10P Publishing

NewJ. Phys. 22 (2020) 013043 LGA Alvesetal

@

< Bus, Brazil 0.6 Bus, Great Britain

- 0.6 :

0

(5

c

c

v

(<

=

s}

%
m

T
240

S

s

0

=

c 0.2+

v

2

“ i i -

@ & o

M

T T T T 0 : O Bk T T — T T
0 200 400 600 0 80 160 240
Degree, k Degree, k

Figure 4. Investigation of centrality anomalies for the weighted transportation networks. The panels shows the comparison of real
data (pink circles) with an ensemble of 10 000 networks (green circles) generated using the UECM method [31]. Notice that there no
longer exists a simple scaling relationship between betweenness and degree.

Table 1. Anomalies in the SDPASS model. The first two columns show
the parameters used on a simulation of networks considering Ny = 5
initial nodes, m = 4,and size N = 100. The third column (unweighted
network) and fourth column (weighted network) show the percentage of
anomalous nodes in these networks when compared with an ensemble of
networks generated by the UBCM and UECM models, respectively. The
last column indicates the topology characteristics of the networks given
the parameters § and 7.

) n UBCM UECM Topology

0.01 10 1% 1% Non-spatial unweighted
10 10 1% 1% Non-spatial weighted
0.01 0.01 1% 1% Spatial unweighted
10 0.01 69% 18% Spatial weighted

data. Remarkably, only a handful of cities—Brasilia, Madrid, and Barcelona—appear to have a centrality
anomaly and none of the nodes with low degree appears to have such anomalies. On the other hand, by plotting
betweenness versus strength (figure 5), we uncover a simpler relationship, indicating that the strength would be a
more informative measure of the nodes.

We now calculate the fraction of nodes for which we can reject the null hypothesis of no centrality anomaly
(figure 6). The expectation here is that we will observe a false discovery rate of 5%. For 3 of the 4 unweighted
transportation networks, we find an excess of nodes with centrality anomalies, whereas for none of the weighted
networks we find such an excess. These results suggest that the existence of centrality anomalies when
considering unweighted networks is a result of the neglected (but functionally crucial) role of edge weight on the

evolution and performance of these networks.
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Conclusions

The findings reported here suggest that centrality anomalies present in the unweighted representation of
transportation networks are masking the fact that some edges carry much larger weights than the typical edge in
the network. Because of the role of spatial, temporal, and capacity constraints in real transportation networks, it
is natural to expect that the degree of individual nodes cannot grow unbound, and that edge weight is a way to
account for large demand. Indeed, we find that for random networks with the same degree and strength
distributions the centrality structure of the network becomes indistinguishable from the observed structure.

We further extend our results to a broader class of model networks using the SDPASS model. Specifically, we
show that when weights and spatial constraints are relevant, the centrality anomalies arise in the unweighted
network projection and they cannot be predicted using a simple model that takes into account only the degree
sequence as a constraint. On the other hand, when degree and strength sequences are used as a constraint for the
null model, the ensemble can reproduce the betweenness centrality observed in the data, suggesting that, in the
case of spatial weighted networks, more sophisticated network models are better choices for representing the
system.

Our findings demonstrate that the desire to use the simplest network representations of a system carries
important risks. Typically, researchers fall back on models that ignore connection directionality and weight.
While this choice may be good enough in many cases, in others it could be masking important characteristics of
the system. Our study shows that the presence of centrality anomalies can be an indicator that important aspects
of the system are being lost in its network representation. We believe that complex systems that have nodes and
edges embedded in a physical space such as spatial networks (e.g. road networks, power grids, and neural
networks), might show centralities anomalies when projected onto unweighted networks. Further investigation
of these systems could extend the generality of our findings to other real-world systems.

Methods

Data. We obtained data from the Brazilian inter-city bus routes for the period between January 2005 and
December 2014 at a monthly time-resolution. These data are maintained and distributed by the Brazilian
National Land Transportation Agency [39]. The data contains more than 19 thousand unique routes connecting
1786 cities. We gathered the geographical location of all relevant cities from the Brazilian Institute of Geography
and Statistics (IBGE) [40].

We obtained data from the British inter-city bus routes for the period between 4 October, 2010 and 10
October, 2010, at an hourly resolution. These data are maintained by the National Public Transport Data
Repository and distributed by the Department of Transport and licensed under the Open Government Licence.
This data set was complemented with the National Coach Services Data distributed also by the Department of
Transport and licensed under the Open Government Licence [41]. The total number of nodes after the
aggregation into municipalities is 279 comprising almost 4 thousand unique routes.

We obtained data from the Spanish inter-city bus routes for the period between 1 January, 2017 and 31
December, 2017, at an hourly resolution. These data are maintained and distributed by the Spain Ministry of
Development [42]. The data is provided as the set of routes connecting each pair of municipalities in Spain
except for the province of Girona. The total number of nodes is 1435 with over 20 thousand unique routes.

The data of the worldwide air transportation network were collected in the period between 17 May, 2018 and
22 May, 2018, at an hourly resolution. These data are maintained by the website Flight Aware [43]. The data
contain all flights in 2734 airports around the world, with more than 16 thousand unique routes. The
geographical location of the airports was obtained from the Open Flights website [44].

Sampling of networks. To investigate the statistical properties of transportation networks we have generated
10 000 networks sampled from the ensembles for each data set and topology (non-weighted or weighted). We
followed the approach proposed by Squartini et al [31, 33] of unbiased sampling based on maximum-entropy
distributions. In this approach, the probability distributions composing the ensemble are obtained by
maximizing, in sequence, the Shannon’s entropy and the likelihood function subject to the desired constraints.
In particular, for the non-weighted networks case we used the ‘UBCM’, where the constraint is the degree
sequence {k; }fi 1- Notice that the constraints in the canonical ensemble are met on average over the network
samples, differently from the microcanonical ensemble, i.e. Markov Chain Monte Carlo edge switching approach,
where the constraints are satisfied exactly [32—34]. With the UBCM model the probability of having a link
between nodes i and j, p;;is given by
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o XiXj (3)
pij 1 + Xix; ’
where the vector x of N unknown parameters can be determined by either maximizing the log-likelihood
function
Ax) =D ki(A)nx; — > > In(l + xix)), (4)
i i<
where A refers to the adjacency matrix of the observed graph, or by solving the system of N equations:
(k) =Y —" = k(A) Vi, )
i 1+ x;x j

where k;(A) is the observed degree of node i and (k;) is the ensemble average. Once the values of the p;; have been
determined, we can extract a sample graph from the ensemble by running a Bernoulli trial for each pair of
vertices to connect i and j with probability p;; (a;; = 1) and not connect with probability 1—p;; (a;; = 0).
Repeating this last step, we can generate any desired number of networks that, on average, have the same degree
sequence as the observed one. Figure 7 shows a good agreement between the average degree versus the
empirical ones.

Similarly, for the weighted network we have considered the ‘UECM’, where the constraints are the degree
and strength sequences. Again, the constraints are met on average over the network samples (i.e. canonical
ensemble). In this case, the probability p;;is given by

xixjyiyj

= (6)
L= yy; + xixjyy;

P
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Figure 8. Samples of networks using undirected enhanced configuration model (UECM) given their degree and strength sequences. In
each plot, the green dots show the measured degree k; in each sample versus the degree k; in the observed network. The pink squared-
dots represents the average degree (k;) over the 10 000 networks of the ensemble versus the empirical degree k;. The dashed line is a
straight line with slope 1. (a) Brazilian buses transportation network, (b) British buses transportation network, (c) Spanish buses
transportation network, and (d) worldwide air transportation network.

and the x and y vectors can be computed, again, by either maximizing the log-likelihood

1_)’;‘}’]‘

A, y) = > [ki(W)lnx; + si(W)lny] + > > In , (7)
i e L=y xixiyy;
where W represents in this case the adjacency matrix of the weighted graph, or by solving the 2N equations
(ki) =Y p; = k(W) Vi, ®)
=i
b; .
(si) =D, ——— =si(W) Vi, ©)
j=i 1 - y1y]

where k(W) and s,(W) are, respectively, the observed degree and strength of node i and (k;) and (s;) are the
ensemble averages.
Thus, solving the above equations, the probabilities of generating a link of weight w between any pair of

nodes i and j is given by
B 1-— Py ifw =0,
q; = (10)

PG (1 = iy, ifw > 0.

Figures 8 and 9 show, respectively, the average degree and strength over the ensemble generated by the
UBCM method compared to the empirical observations.

Detecting anomalies. To detect the anomaly in betweenness centrality versus degree, we have calculated
these quantities for each node over a 10 000 ensemble of synthetic networks considering the appropriate null
models. For every node, we approximated the distribution of k and b by a multivariate Gaussian distribution and
computed the fraction of nodes that lie outside the 95% confidence interval for the null model.
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Figure 9. Samples of networks using undirected enhanced configuration model (UECM) given their degree and strength sequences. In
each plot, the green dots show the measured strength §; in each sample versus the strength s; in the observed network. The pink
squared-dots represents the average strength (s;) over the 10 000 networks of the ensemble versus the empirical strength s;. The dashed
line is a straight line with slope 1. (a) Brazilian buses transportation network, (b) British buses transportation network, (c) Spanish
buses transportation network, and (d) worldwide air transportation network.

Multivariate Gaussian fitting. For each node, we approximated the joint distribution of betweenness
centrality and degree (or strength) by a multivariate Gaussian, that is

exp(—3(x — W'Ex — p)

N, {p, B}) = e > (11)
wherex = (k, b)7,
Mk
o= ( ub), (12)
is the mean, and
Okk  Okb
%= p(Ukh th)’ (13)

is the covariance matrix, where p is the correlation between k and b. Thus, the line enclosing 95% of the
probability mass for the null model is a ellipsoid (under a rotated coordinate system) with radii given by the
eigenvalues \/Tl and \//\72 of the scaled covariance matrix s, where s = —2 log(1 — p) and p s the confidence
probability that the null hypothesis is true.
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