
Physics Letters A 489 (2023) 129148

Contents lists available at ScienceDirect

Physics Letters A

journal homepage: www.elsevier.com/locate/pla

Letter

Numerical exploration of the aging effects in spin systems

Roberto da Silva a,b,∗, Tânia Tomé c, Mário J. de Oliveira c

a Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
b Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
c Instituto de Física, Universidade de São Paulo, São Paulo, São Paulo, Brazil

A R T I C L E I N F O A B S T R A C T

Communicated by L. Ghivelder

Keywords:

Aging phenomena

Time scaling

Time-dependent Monte Carlo simulations

Random matrices

An interesting concept that has been underexplored in the context of time-dependent simulations is the 
correlation of total magnetization, 𝐶(𝑡). One of its main advantages over directly studying magnetization is 
that we do not need to meticulously prepare initial magnetizations. This is because the evolutions are computed 
from initial states with spins that are independent and completely random. In this paper, we take an important 
step in demonstrating that even for time evolutions from other initial conditions, 𝐶(𝑡0 , 𝑡), a suitable scaling can 
be performed to obtain universal power laws at 𝑇 = 𝑇𝑐 . We specifically consider the significant role played by the 
second moment of magnetization. Additionally, we complement the study by conducting a recent investigation 
of random matrices, which are applied to determine the critical properties of the system. Our results show that 
the aging in the time series of magnetization influences the spectral properties of matrices and their ability to 
determine the critical temperature of systems.
1. Introduction

Which temporal phase of the spin system evolution contains infor-

mation regarding the criticality of a physical system? Furthermore, is it 
feasible to retrieve certain initial behaviors of such a system following 
a period of aging?

Particularly, in the context of time-dependent Monte Carlo (MC) 
simulations, we are asking whether it is possible to observe the power 
law-behavior of non-equilibrium critical dynamics [1], even for short-

ranged initial correlations 
⟨
𝜎𝑖𝜎𝑗

⟩ ≠ 0.

Let us consider the question from an even more specific point of 
view. Let us suppose the Ising model on a 𝑑-dimensional lattice under 
an initial condition where the spins are randomly and equiprobabilisti-

cally distributed, such that 
⟨
𝜎𝑖𝜎𝑗

⟩
= 0 and ⟨𝜎𝑖⟩ = 0. After a certain time 

𝑡0, we observe that 
⟨
𝜎𝑖𝜎𝑗

⟩ ≠ 0, but ⟨𝜎𝑖⟩ = 0 still holds true. Therefore, if 
we initiate the simulations with this new initial condition, can we ob-

tain the same temporal power laws with the same exponents? In other 
words, is aging an important factor?

An interesting measure in the context of nonequilibrium time-

dependent Monte Carlo simulations (TDMCS) is the autocorrelation 
(spin-spin) [2]. Let us consider the calculation for an arbitrary 𝑡0:

* Corresponding author.

𝐴(𝑡, 𝑡0) =
1
𝑁

⟨
𝑁∑
𝑖=1

𝜎𝑖(𝑡)𝜎𝑖(𝑡0)

⟩
, (1)

with average taken different time evolutions from different random ini-

tial configurations.

In a highly informative and comprehensive reference by Henkel and 
Pleimling [3], it has been demonstrated that when a system is prepared 
at a high-temperature and suddenly quenched to a critical temperature, 
the evolution of 𝐴(𝑡, 𝑡0) in different spin systems suggests the presence 
of a dynamical scaling behavior underlying the aging process. The same 
thing can be observed in [4] and recently aging phenomena in a com-

plex version of the two-dimensional Ginzburg-Landau equation have 
been observed using the difference finite method [5].

This behavior can be described by the following equation:

𝐴(𝑡, 𝑡0) = 𝑡−𝑏
0 𝑓 ( 𝑡

𝑡0
) (2)

Here, the parameter 𝑏 is defined as 𝑏 = (𝑑 − 2 + 𝜂)∕𝑧, where d repre-

sents the dimensionality of the system and 𝜂 is a critical exponent where 
𝑧 is the dynamic exponent, and the function 𝑓 (𝑥) exhibits the property 
𝑓 (𝑥) ∼ 𝑥−𝜆𝐶∕𝑧 as 𝑥 approaches infinity. In this context, 𝜆𝐶 denotes the 
autocorrelation exponent.
Available online 5 October 2023
0375-9601/© 2023 Elsevier B.V. All rights reserved.

E-mail addresses: rdasilva@if.ufrgs.br, rdasilvafismatico@gmail.com (R. da Silva)

https://doi.org/10.1016/j.physleta.2023.129148

Received 24 July 2023; Received in revised form 28 September 2023; Accepted 29 S
.

eptember 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:rdasilva@if.ufrgs.br
mailto:rdasilvafismatico@gmail.com
https://doi.org/10.1016/j.physleta.2023.129148
https://doi.org/10.1016/j.physleta.2023.129148
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2023.129148&domain=pdf


R. da Silva, T. Tomé and M.J. de Oliveira

An alternative approach to investigate the early stages of time evo-

lution in spin systems is to examine the correlation of the total magne-

tization. This correlation is defined as:

𝐶(𝑡) = 1
𝑁2

⟨
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝜎𝑖(𝑡)𝜎𝑗 (0)

⟩
= ⟨𝑚(𝑡)𝑚(0)⟩ (3)

Here, 𝑁 represents the number of spins in the system, and 𝜎𝑖(𝑡) denotes 
the spin value of spin 𝑖 at time 𝑡. The angular brackets ⟨⋅⟩ denote the 
average over different time evolutions and initial configurations. This 
correlation provides insights into the relationship between the magne-

tization at time t and the initial magnetization at time 0.

Tome and Oliveira [6] proposed and demonstrated that the correla-

tion 𝐶(𝑡) follows a power-law behavior,

𝐶(𝑡) ∼ 𝑡𝜃 , (4)

when the initial magnetization ⟨𝑚0⟩ is zero and the spins at time 0
are equally likely to be +1 or −1 𝑝(𝜎𝑗 (0) = +1) = 𝑝(𝜎𝑗 (0) = −1) = 1

2 , 
for 𝑗 = 1, ..., 𝑁 . The exponent 𝜃 is the same as the magnetization ex-

ponent obtained in time-dependent simulations within the context of 
short-time dynamics [7,8]. However, in those simulations, the initial 
conditions require a fixed initial magnetization 𝑚0 ≪ 1, which necessi-

tates preparation and extrapolation as 𝑚0 approaches 0. This approach 
is computationally more demanding.

At this juncture, it becomes intriguing to investigate the behavior 
of spin systems when we examine the total correlation between time 𝑡0
and a subsequent time 𝑡, denoted as 𝐶(𝑡, 𝑡0) = ⟨𝑚(𝑡)𝑚(𝑡0)⟩. The correla-

tion depends on two key factors: the waiting time, denoted as 𝑡0, and 
the observation time, indicated by 𝑡. Furthermore, we can investigate 
how aging impacts the determination of criticality in the system. In this 
manuscript, we conveniently define the time difference between obser-

vation and waiting time as Δ𝑡 = 𝑡 − 𝑡0. Aging effects become prominent 
when both 𝑡0 ≫ 1 and Δ𝑡 ≫ 1.

For this analysis, we employ a recent technique that involves con-

structing Wishart-like matrices using the time evolutions of magnetiza-

tion. The spectral properties of these matrices are highly valuable in 
capturing the critical properties at the initial stages of the evolution, as 
demonstrated in our previous works. Therefore, we conducted compu-

tational experiments to investigate the behavior of this method when 
we vary 𝑡0 while keeping Δ𝑡 fixed.

In the following section, we provide comprehensive details regard-

ing our scaling approach for 𝐶(𝑡, 𝑡0), the fundamental properties of the 
Wishart-like spectra, as well as pedagogical studies to substantiate the 
forthcoming results in this work. Subsequently, we present our findings, 
followed by concluding remarks in the final section.

2. Methods and preparatory studies

The total correlation, as defined by Equation (3), assumes averages 
over random initial configurations of a system with spins 𝜎𝑗 (0), where 
𝑗 = 1, ..., 𝑁 , independently chosen according to: 𝑝(𝜎𝑗 (0) = +1) = 𝑝(𝜎𝑗 (0) =
−1) = 1

2 (high-temperature). In this case, if 𝑁+(𝑡) represents the number 
of spins up and 𝑁−(𝑡) represents the number of spins down, we can 
express it as follows:

𝑚(0) =𝑚0 =
1
𝑁

[
𝑁+(0) −𝑁−(0)

]
(5)

⟨𝑚0⟩ = 0. But, 
⟨[

𝑁+ −𝑁−
]2⟩ =

⟨
𝑁+

2⟩ +
⟨
𝑁−

2⟩ − 2 
⟨
𝑁+(𝑁 −𝑁+)

⟩
. If ⟨

𝑁+
2⟩ =

⟨
𝑁−

2⟩ = 𝑁

4 + 𝑁2

4 and 
⟨
𝑁+(𝑁 −𝑁+)

⟩
= 𝑁

⟨
𝑁+

⟩
−
⟨
𝑁2

+
⟩
=

𝑁2

4 − 𝑁

4 . Therefore, we have 
⟨
𝑚2
0
⟩
= 1

𝑁
, which implies a standard nor-

mal distribution for the initial magnetization when 𝑁 ≫ 1 given by:

𝑝(𝑚0) =
√

𝑁

2𝜋
𝑒
−𝑁

2 𝑚2
0 (6)

However, when we consider the time evolution of different time-
2

series starting from these prepared initial conditions, using, for exam-
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ple, the Metropolis dynamics as a prescription for these evolutions, the 
initial distribution of magnetization degrades.

This degradation can be described for arbitrary 𝑡 by distribution:

𝑃 (𝑚(𝑡)) = 1√
2𝜋𝐴𝑡𝜉

exp
[
−𝑚(𝑡)2

2𝐴𝑡𝜉

]
(7)

given that:⟨
𝑚(𝑡)2

⟩
− ⟨𝑚(𝑡)⟩2 ≈ ⟨

𝑚(𝑡)2
⟩

=𝐴 𝑡𝜉
(8)

This is expected since according to short-time theory, ⟨𝑚(𝑡)⟩ = 0, and 

for 𝑚0 ≈ 0, one would expect that 
⟨
𝑚2⟩ ∼ 𝑡𝜉 , where 𝜉 =

(𝑑− 2𝛽
𝜈
)

𝑧
= 2−𝜂

𝑧
. 

Janke et al. [9] showed that even for quenches below 𝑇𝐶 , the relation ⟨
𝑚2⟩ ∼ 𝑡𝑑∕𝑧 holds true. Remember, for quenches below 𝑇𝐶 the ratio 

of the critical exponents 𝛽∕𝜈 = 0, thus the 𝜉 = (𝑑 − 𝛽∕𝜈)∕𝑧 reduces to 
𝜉 = 𝑑∕𝑧. This holds true for both the nearest neighbor and long-range 
Ising model.

In Equation (8), the constant 𝐴 is adjustable through fitting. Fig. 1

pedagogically illustrates this aging phenomenon.

First, in Fig. 1 (a), we observe different evolutions of magnetiza-

tion in the two-dimensional Ising model for various values of 𝑡0, while 
keeping the observation time Δ𝑡 constant at 300.

We can observe histograms of magnetization for different values of 
𝑡0 in Fig. 1 (b), following a Gaussian distribution (Eq. (7)) with variance 
defined by Eq. (8).

The Gaussian behavior is disrupted at equilibrium (𝑡0 ∼ 4000). The 
inset plot in the same figure demonstrates that 

⟨
𝑚2⟩ − ⟨𝑚⟩2 and 

⟨
𝑚2⟩

exhibit the same power-law behavior, as ⟨𝑚⟩ ≈ 0. Fitting Eq. (8) yields 
the well-known result from the literature: 𝜉 = 0.801(1) for 

⟨
𝑚2⟩, which 

is in complete agreement with the expected value of 𝜉 = 𝑑

𝑧
−2 𝛽

𝜈𝑧
≈ 0.802, 

utilizing 𝑧 ≈ 2.165 from [10,11], and 𝛽

𝜈𝑧
= 0.0606 from [7]. This agree-

ment holds true even without starting from initial configurations with 
𝑚0 = 0, as is traditionally done in computer simulations within the con-

text of short-time dynamics. Additionally, we obtained 𝐴 = 0.00026(3).
From a simulation standpoint, the idea is to interrupt the simulation 

while preserving the configuration at time 𝑡0. This configuration is then 
used as the initial state to calculate the correlation 𝐶(𝑡, 𝑡0). The first 
crucial aspect is to determine if there is a finite time scaling for 𝐶(𝑡, 𝑡0)
as predicted by 𝐴(𝑡, 𝑡0).

In other words, for very large 𝑡0, 𝐶(𝑡, 𝑡0) does not depend on 𝑡0. 
However, according to scaling theory, for sufficiently large but not ex-

cessively large 𝑡0, 𝐶(𝑡, 𝑡0) still exhibits a dependence on 𝑡0.
In this paper, we aim to address this point and propose a conjecture 

regarding the aging time scaling law:

𝐶(𝑡, 𝑡0) = 𝑡
𝜉

0𝑔(
𝑡

𝑡0
), (9)

where 𝜉 = 2−𝜂

𝑧
, and 𝑔(𝑥) ∼ 𝑥𝜃 . Here, 𝜂 = 2𝛽

𝜈
, and based on short-time 

theory, the exponent 𝜉 is precisely expected in the second moment of 
magnetization 

⟨
𝑚2⟩ ∼ 𝑡𝜉 when starting from random initial conditions 

with 𝑚0 exactly equal to 0.

Building upon the methodology primarily developed by Henkel and 
Pleimling [3], and bolstered by valuable suggestions from anonymous 
referees of this work, we will demonstrate that this quantity serves as 
a correlator in momentum space and is expected to exhibit numerical 
scaling according to Eq. (9).

Utilizing the Ising model as a simplification, our objective is to nu-

merically verify such scaling. We will demonstrate that considering the 
magnetization distribution from Eq. (7) to select spins is sufficient to re-

produce 𝐶(𝑡, 𝑡0). However, we must also scale the time by 𝑡0 to account 
for the effects of non-zero spatial correlations 

⟨
𝜎𝑖𝜎𝑗

⟩
.

Another important aspect addressed in this paper is the determina-

tion of the critical properties of the system when it is out of equilibrium. 
Specifically, we investigate the role of 𝑡0 in determining the critical 

properties of the system.
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Fig. 1. (a) Aging in the time evolution of magnetization in the two-dimensional Ising model with Metropolis dynamics for 𝐿 = 100, with time intervals Δ𝑡 = 300, 
and initial times 𝑡0 = 0, 500, 2000 and 4000. (b) Histograms of magnetization for different values of 𝑡0 , following a Gaussian distribution with variance defined by 
Equation (8). The Gaussian behavior is disrupted in the equilibrium state (𝑡0 ∼ 4000) when we observed that the system undergoes a slight transition into the ordered 
phase due to finite size scaling. The inset plot demonstrates that the difference ⟨𝑚2⟩− ⟨𝑚⟩2 exhibits the same power-law behavior as ⟨𝑚2⟩ in the short time regime, 
as ⟨𝑚⟩ is approximately 0.
To examine this, we explore the effects of 𝑡0 on the short-time prop-

erties of the system using a recent method based on random matrices. 
We developed this method to determine criticality by analyzing spec-

tral quantities obtained from Wishart-like matrices constructed from the 
time evolutions of magnetization. In this current manuscript we will 
demonstrate that the spectra are significantly influenced when large 
values of 𝑡0 are used.

In the next subsection, we will provide a brief description of this 
method.

2.1. Criticality in nonequilibrium regime using Wishart-like matrices of 
magnetization

The signature of criticality out of equilibrium seems to be even more 
3

prominently manifested than what can be observed when uncorrelated 
systems (𝑇 →∞) are brought to finite temperatures, particularly around 
𝑇 ≈ 𝑇𝐶 .

In a recent study presented at [12], we examined the response of 
spectra in random matrices constructed from time evolutions of magne-

tization in earlier stages of a spin system. Our findings demonstrated the 
influence of criticality out of equilibrium on the spectral properties of 
statistical mechanics systems. We specifically utilized the short-range 
two-dimensional Ising model as a test model, as well as long-range 
mean-field systems [13].

To conduct such a test, we need to construct the magnetization ma-

trix element 𝑚𝑖𝑗 , which represents the magnetization of the 𝑗-th time 
series at the 𝑖-th Monte Carlo step of a system with 𝑁 spins. Here, 
i ranges from 1 to 𝑁𝑀𝐶 , and 𝑗 ranges from 1 to 𝑁𝑠𝑎𝑚𝑝𝑙𝑒. Therefore, 
the magnetization matrix 𝑀 has dimensions 𝑁𝑀𝐶 ×𝑁𝑠𝑎𝑚𝑝𝑙𝑒. To analyze 
spectral properties, an interesting alternative is to consider not 𝑀 , but 

the square matrix of size 𝑁𝑀𝐶 ×𝑁𝑠𝑎𝑚𝑝𝑙𝑒:
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𝐺 = 1
𝑁𝑀𝐶

𝑀𝑇𝑀 , (10)

where 𝐺𝑖𝑗 =
1

𝑁𝑀𝐶

∑𝑁𝑀𝐶

𝑘=1 𝑚𝑘𝑖𝑚𝑘𝑗 , which is known as the Wishart matrix 
(see for example [14–16]). At this stage, instead of working with 𝑚𝑖𝑗 , 
it is more convenient to utilize the matrix 𝑀∗, defining its elements 

with the standard variables: 𝑚∗
𝑖𝑗
= (𝑚𝑖𝑗 −

⟨
𝑚𝑗

⟩
)∕
√⟨

𝑚2
𝑗

⟩
−
⟨
𝑚𝑗

⟩2
, where ⟨

𝑚𝑘
𝑗

⟩
= 1

𝑁𝑀𝐶

∑𝑁𝑀𝐶

𝑖=1 𝑚𝑘
𝑖𝑗

.

Therefore, 𝐺∗
𝑖𝑗
=

⟨
𝑚𝑖𝑚𝑗

⟩
−⟨𝑚𝑖⟩⟨𝑚𝑗

⟩
𝜎𝑖𝜎𝑗

, where 
⟨
𝑚𝑖𝑚𝑗

⟩
= 1

𝑁𝑀𝐶

∑𝑁𝑀𝐶

𝑘=1 𝑚𝑘𝑖𝑚𝑘𝑗

and 𝜎𝑖 =
√⟨

𝑚2
𝑖

⟩
− ⟨𝑚𝑖⟩2. Analytically, if 𝑚∗

𝑖𝑗
are uncorrelated random 

variables, in this case, the density of eigenvalues 𝜎(𝜆) of the matrix 𝐺∗

follows the well-known Marcenko-Pastur distribution (see for example 
[17]), which is expressed as:

𝜎(𝜆) =
⎧⎪⎨⎪⎩

𝑁𝑀𝐶

2𝜋𝑁𝑠𝑎𝑚𝑝𝑙𝑒

√
(𝜆−𝜆−)(𝜆+−𝜆)

𝜆
if 𝜆− ≤ 𝜆 ≤ 𝜆+

0 otherwise

(11)

where 𝜆± = 1 + 𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑀𝐶
± 2

√
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑀𝐶
.

However, for 𝑇 ≠ 𝑇𝑐 , 𝜎(𝜆) does not follow the equation (11). The 
behavior of 𝜎(𝜆) obtained from MC time series simulated at different 
temperatures suggests a strong conjecture that the average eigenvalue ⟨𝜆⟩ = ∫ ∞

0 𝜆𝜎(𝜆)𝑑𝜆 reaches a minimum at the critical temperature, while 
the variance 𝑣𝑎𝑟(𝜆) =

⟨
𝜆2
⟩
−⟨𝜆⟩2 exhibits an inflection point at the same 

critical temperature, where 
⟨
𝜆2
⟩
= ∫ ∞

0 𝜆2𝜎(𝜆)𝑑𝜆. Alternatively, a more 
precise identification can be made using the negative of the derivative 
of the variance:

𝑐 = − 𝜕𝑣𝑎𝑟(𝜆)
𝜕𝑇

(12)

This behavior is also observed in the Potts model [18]. Therefore, 
the idea here is to observe if such fluctuations behave differently when 
we vary the starting index 𝑖 from 𝑡0 to 𝑡 = 𝑡0 + Δ𝑡, while keeping Δ𝑡 =
𝑁𝑀𝐶 fixed.

3. Results

Our results are structured into two distinct sections. In the first sec-

tion, we provide a comprehensive justification for the scaling of Eq. (9), 
employing a methodology rooted in Fourier space studies. This ap-

proach builds upon the foundational work of Henkel and Pleimling [3], 
which we have extended to accommodate Fourier space investigations. 
In the second section, we present the numerical evidence substantiating 
this scaling behavior as well as additional numerical studies pertaining 
to aging phenomena.

3.1. Correlator in Fourier space

The two-time correlation function can be formally defined as:

𝐶(𝑡, 𝑡0; 𝑟) =
⟨
𝑚(𝑡, 𝑟)𝑚(𝑡0, 0⃗)

⟩
−
⟨
𝑚(𝑡, 𝑟)

⟩⟨
𝑚(𝑡0, 0⃗)

⟩
(13)

where 𝑚(𝑡, ⃗𝑟) is the order-parameter at time 𝑡 and position 𝑟, and 
𝐶(𝑡, 𝑡0; ⃗𝑟) =

⟨
𝑚(𝑡, 𝑟)𝑚(𝑡0, 0⃗)

⟩
for fully disordered initial state 

⟨
𝑚(𝑡, 𝑟)

⟩
=⟨

𝑚(𝑡, 0⃗)
⟩
= 0.

Given the assumption of spatial translation invariance, it follows 
that the two-time temporal-spatial spin-spin correlator must adhere to 
the following equation:

𝐶(𝑡, 𝑡0; 𝑟) = 𝜅𝜙𝐶(𝜅𝑧𝑡, 𝜅𝑧𝑡0;𝜅𝑟), (14)

where 𝜅 is a rescaling factor, while 𝜙 is an exponent that can be deter-
1

4

mined by performing the scaling operation: 𝜅 =
𝑡
1∕𝑧
0

. In this instance:
Physics Letters A 489 (2023) 129148

𝐶(𝑡, 𝑡0; 𝑟) = 𝑡
−𝜙∕𝑧
0 𝐶( 𝑡

𝑡0
,1; 𝑟

𝑡
1∕𝑧
0

) (15)

Thus, we write:

𝐶( 𝑡

𝑡0
,1; 𝑟

𝑡
1∕𝑧
0

) = 𝐹𝐶 (
𝑡

𝑡0
; 𝑟

𝑡
1∕𝑧
0

) (16)

At criticality, in the equilibrium as t approaches infinity (𝑡 →∞), we 
know that 𝐶(𝑡, 𝑡; ⃗𝑟) must exhibit algebraic behavior as

𝐶(𝑡, 𝑡; 𝑟) ∼ 𝑟−(𝑑−2+𝜂) (17)

where ||𝑟|| represents the magnitude of 𝑟. By substituting 𝑡 = 𝑡0, we 
can observe that: 𝐹𝐶 (1; 

𝑟

𝑡1∕𝑧
) = 𝐹 ( 𝑟

𝑡1∕𝑧
). Using Eq. (15), we can express 

𝐶(𝑡, 𝑡; ⃗𝑟) as 𝑡−𝜙∕𝑧𝐹 ( 𝑟

𝑡1∕𝑧
). Comparing this with Eq. (17) yields: 𝐹 ( 𝑟

𝑡1∕𝑧
) ∼(

𝑟

𝑡
1
𝑧

)−𝜙

, where 𝜙 = 𝑑 − 2 + 𝜂. Returning to Eq. (15), we find:

𝐶(𝑡, 𝑡0; 𝑟) = 𝑡
−(𝑑−2+𝜂)∕𝑧
0 𝐹𝐶 (

𝑡

𝑡0
; 𝑟

𝑡
1∕𝑧
0

) (18)

Dynamical symmetry arguments, however, suggest that for 𝑡 ≫ 𝑡0:

𝐹𝐶 (
𝑡

𝑡0
; 𝑟

𝑡
1∕𝑧
0

) =
(

𝑡

𝑡0

)− 𝜆𝐶
𝑧

𝐹𝐶 (1;
𝑟

𝑡1∕𝑧
)

=
(

𝑡

𝑡0

)− 𝜆𝐶
𝑧

F ( 𝑟

𝑡1∕𝑧
)

=
(

𝑡

𝑡0

)− 𝜆𝐶
𝑧

F (
𝑡
1∕𝑧
0

𝑡1∕𝑧
𝑟

𝑡
1∕𝑧
0

)

(19)

where 𝜆𝐶 is an exponent similar to how 𝜙 was considered. Thus,

𝐶(𝑡, 𝑡0; 𝑟) = 𝑡
−(𝑑−2+𝜂)∕𝑧
0

(
𝑡

𝑡0

)− 𝜆𝐶
𝑧

F (
𝑡
1∕𝑧
0

𝑡1∕𝑧
𝑟

𝑡
1∕𝑧
0

) (20)

one has and when 𝑟 equals zero, one has

𝐴(𝑡, 𝑡0) = 𝐶(𝑡, 𝑡0; 0) = 𝑡
−(𝑑−2+𝜂)∕𝑧
0 F (0)

(
𝑡

𝑡0

)− 𝜆𝐶
𝑧

∼
(

𝑡

𝑡0

)− 𝜆𝐶
𝑧

, (21)

which leads to Eq. (2) in the limit of large times if 𝐹 (0) is a constant. 
It should also be noted that we introduced 𝜆𝐶 , the symbol for the auto-

correlation exponent, with a purpose, and its value is determined by

𝜆𝐶 = 𝑑 − 𝑧𝜃, (22)

according to results obtained by Jansen, Schaub, and Schmittmann [1], 
where 𝜃 = (𝑥0 −

𝛽

𝜈
)∕𝑧 represents the initial slip exponent. Here, 𝛽 and 𝜈

denote the static exponents, and 𝑥0 is known as the anomalous dimen-

sion of magnetization [7]. For an interesting method to determine 𝑥0, 
please refer to [19].

In addition, 𝜃 is precisely the same exponent as 𝐶(𝑡) in Eq. (4). It can 
take on positive values (see, for example, [6,8,7,20]), negative values 
as observed in two-dimensional tricritical points [20,21], or even very 
small values as seen in the 4-state Potts model due to the presence of a 
marginal operator [19].

By defining the spatial Fourier transform of 𝐶(𝑡, 𝑡0; ⃗𝑟) as:

𝐶(𝑡, 𝑡0;𝑝) = ∫
ℝ𝑑

𝑑𝑑𝑟 𝑒𝑖𝑝⋅𝑟𝐶(𝑡, 𝑡0; 𝑟) (23)
where 𝑑𝑑𝑟 = 𝑑𝑥1𝑑𝑥2...𝑑𝑥𝑑 , one has:



Physics Letters A 489 (2023) 129148R. da Silva, T. Tomé and M.J. de Oliveira

Fig. 2. (a) 𝐶(𝑡0, 𝑡) as a function of 𝑡 − 𝑡0 + 𝜏 for the case 𝑡0 = 100, with varying values of 𝜏. We can observe that the power law behavior occurs when 𝜏 ≈ 𝑡0 = 100. (b) 
Coefficient of determination for the fitting with different values of 𝜏. The maximum value occurs when 𝜏 ≈ 𝑡0 = 100. The values of 𝜃 are represented in different colors 
according to the legend’s gradient. The optimal situation (peak values) includes 𝜃 ≈ 0.19, as expected. (c) Optimal value of 𝜏 as a function of 𝑡0 . (d) Corresponding 
value of 𝜃 for the optimal 𝜏 at each 𝑡 .
0

𝐶(𝑡, 𝑡0; 0⃗) = ∫
ℝ𝑑

𝑑𝑑𝑟 𝐶(𝑡, 𝑡0; 𝑟)

= 𝑡
−(𝑑−2+𝜂)∕𝑧
0

(
𝑡

𝑡0

)− 𝜆𝐶
𝑧

∫
ℝ𝑑

F ( 𝑟

𝑡1∕𝑧
)𝑑𝑑𝑟

= 𝑡
−(𝑑−2+𝜂)∕𝑧
0

(
𝑡

𝑡0

)− 𝜆𝐶
𝑧

𝑡𝑑∕𝑧 ∫
ℝ𝑑

F (𝑢)𝑑𝑑𝑢 = 𝐶 𝑡
(2−𝜂)

𝑧

0

(
𝑡

𝑡0

)𝜃

(24)

where 𝐶 = ∫ℝ𝑑 𝐹 (𝑢)𝑑𝑑𝑢 is supposedly a constant. Thus, by utilizing the 
relation from Eq. (22) and denoting our original 𝐶(𝑡, 𝑡0) as 𝐶(𝑡, 𝑡0; ⃗0), one 
obtains:

𝐶(𝑡, 𝑡0) ∼ 𝑡
(2−𝜂)

𝑧

0

(
𝑡

𝑡0

)𝜃

, (25)

by confirming the behavior described in Eq. (9) for 𝑡 ≫ 𝑡0. Pleimling and 
Gambassi [22] as well as Henkel et al. [23] have investigated numerical 
results related to aging in the Fourier space of response functions, al-

though they did not focus on correlation as we do in this current study.

With these results in hand, we can now delve into numerical findings 
regarding this scaling and other aging effects

3.2. Numerical studies

We performed two-dimensional Monte Carlo (MC) simulations on 
the Ising model in two dimensions, precisely at the critical temperature 
denoted as 𝑇 = 𝑇𝐶 = 2

ln(1+
√
2)

, employing the Metropolis dynamics with 
single-flip spins.

We vary 𝑡0. In all numerical experiments of this study, we used 𝐿 =
5

128. By starting from random initial configurations with ⟨𝑚0⟩ = 0, we 
calculated 𝐶(𝑡, 𝑡0) considering averages over 𝑁𝑟𝑢𝑛 = 40000 different runs. 
We explored different values of 𝑡0. The initial question to address is 
determining the optimal value of 𝜏 for which the quantity 𝐶(𝑡, 𝑡0) × (𝑡 −
𝑡0 + 𝜏) follows a power law. Is 𝜏 approximately equal to 𝑡0?

Thus, in order to check if 𝜏 ≈ 𝑡0, for each 𝑡0, we vary 𝜏 and examine 
the behavior of 𝐶(𝑡, 𝑡0) as a function of 𝑡 − 𝑡0 + 𝜏 in a log-log scale for 
different values of 𝜏 . Fig. 2 (a) depicts the case where 𝑡0 = 100.

The power-law behavior becomes evident (qualitatively) when 𝜏 is 
approximately equal to 𝑡0, which in this case is 100. The 𝜃 values are 
visually represented using various colors to denote different gradients, 
as specified in the legend. These values are derived by conducting linear 
fits of ln𝐶(𝑡0, 𝑡) × ln(𝑡 − 𝑡0 + 𝜏) for each 𝜏 as depicted in Fig. 2 (b).

This observation is reinforced by the fact that the maximum coef-

ficient of determination, which approaches 1, is achieved when 𝜏 is 
approximately equal to 𝑡0 (100). This coefficient serves as a robust indi-

cator of the fitting quality, with values closer to 1 signifying a superior 
fit. Its utility in the field of Statistical Mechanics has been extensively 
explored for the determination of critical parameters (for further refer-

ence, please consult [24]).

The region of the optimal fit reveals a 𝜃 value close to the ex-

pected 0.19. In Fig. 2 (c), we depict the linear trend of the optimal 𝜏
value, which corresponds to the highest coefficient of determination, 
in relation to 𝑡0. The linear regression analysis produces 𝜏 = 𝑏 𝑡0, with 
𝑏 = 1.03 ± 0.02, providing additional evidence that 𝜏 remains approxi-

mately equal to 𝑡0 regardless of the specific 𝑡0 value. These error bars 
are calculated based on data from five different seed values.

Lastly, Fig. 2 (d) presents the corresponding 𝜃 values corresponding 
to the optimal 𝜏 values determined for various 𝑡0 values.

The green line corresponds to the value observed in short-time sim-

ulations from Ising-like models (in the same universality class) men-
tioned in various references (see, for example: [6–8,20]).
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Fig. 3. Plots of the correlation divided by the initial second moment are shown 
as functions of 𝑡 (a), 𝑡 − 𝑡0 (b), and 𝑡∕𝑡0 . An excellent scaling is observed in plot 
(c), as predicted by Eq: (9).

We now test the scaling relation given by Equation (9). To do so, we 
consider the correlation divided by the initial second moment:

𝐶∗(𝑡, 𝑡0) =
⟨𝑚(𝑡)𝑚(𝑡0)⟩⟨

𝑚(𝑡0)2
⟩ (26)

as function of 𝑡, 𝑡 − 𝑡0, and finally 𝑡∕𝑡0, presented in three different plots, 
all of them using log-log scale for the quantities, here indexed by (a), 
(b), and (c) respectively in Fig. 3. Fig. 3 (c) suggests that scaling de-

scribed by Eq: (9).

These plots nicely illustrate the three defining criteria of aging [3]: 
(a) slow dynamics, (b) breaking of time-translation invariance and (c) 
dynamical scaling with its characteristic data collapse.

This scaling is performed using the quantity 
⟨
𝑚(𝑡0)2

⟩
(or 

⟨
𝑚(𝑡0)2

⟩
−⟨𝑚(𝑡0)⟩2 since ⟨𝑚(𝑡0)⟩ = 0). Alternatively, we can perform the scaling ac-

cording to Eq. (9) by dividing 𝐶(𝑡, 𝑡0) by 𝑡𝑏0 while adjusting the value of 𝜉
to optimize the scaling. We also conducted a test to verify this, and the 
results are presented in Fig. 4. We found that 𝑏 = 0.806 is the optimal 
value that matches Eq. (9), which is very similar to 𝜉 = 0.8010(4), the 
expected exponent for the time evolution of 

⟨
𝑚2(𝑡)

⟩
, by demonstrating 

that the definition of 𝐶∗(𝑡, 𝑡0) as outlined in Eq. (26) aligns seamlessly 
with the concepts presented in the developments explored within sub-

section 3.1.

Since the magnetization distribution at an arbitrary time 𝑡0 follows 
Eq. (7), the question is whether considering an initial condition with 
magnetization distributed accordingly would yield the same correlation 
6

𝐶(𝑡, 𝑡0) as calculating it with the initial condition that the system ob-
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Fig. 4. Direct scaling by fitting 𝑏 that better corresponds to Eq. (9). We find 
𝑏 = 0.806, which is very similar to 𝜉 = 0.8010(4), expected to be the exponent of 
the time evolution of ⟨𝑚2(𝑡)

⟩
.

Fig. 5. Verification of 𝐶(𝑡, 𝑡0) for different values of 𝑡0 (points) versus correla-

tion by mimicking the initial distribution of spins (continuous curves). We have 
scaled the time for the simulations with mimicked initial condition by multiply-

ing 𝑡 by 𝑡0.

tained at that time. In other words, does the obtained 𝐶(𝑡, 𝑡0) remain 
the same?

To explore this, we prepared systems with the initial condition 
described by Eq. (7) using many different samples with different 𝑚0
values, but with the condition 

⟨
𝑚2
0
⟩
= 𝐴𝑡

𝜉

0. We chose 𝑡0 values of 

50, 100, 200, and 300, which resulted in 
√⟨

𝑚2
0
⟩
=𝐴1∕2𝑡

𝜉∕2
0 = 0.077, 0.102, 

0.135, and 0.158, respectively.

So, using these standard deviations, we generate 𝑚0 according to 
Eq. (7), and the spins are randomly chosen with the probability: 𝑝(𝜎𝑖) =
1+𝑚0𝜎𝑖

2 , where 𝜎𝑖 = 1, ..., 𝑁 . It is important to note that 𝑝− + 𝑝+ = 1. We 
then evolve the system and compare 𝐶(𝑡, 𝑡0) with the results obtained 
by preparing the initial condition according to a Gaussian distribution 
with the predicted variance previously established. Fig. 5 illustrates this 
comparison.

It is essential to mention that we had to scale the time by multiplying 
𝑡 by 𝑡0 in the case of evolutions with mimicked initial conditions. It 
is interesting because it suggests that the spatial correlation of spins 
has an important role, and its effects determine the time scaling of the 
system and not only the distribution of magnetization to be a Gaussian 
according to Eq. (7). However, we can observe that curve for 𝐶(𝑡, 𝑡0)

can be reproduced if we suitably scale the time.
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Fig. 6. (a) Eigenvalue average as a function of 𝑇 ∕𝑇𝐶 . A deviation from the minimum at 𝑇 = 𝑇𝑐 is found for 𝑡0 > 50, as can be observed. (b) The variance of eigenvalues 
for different temperatures and (c) The negative derivative of this same variance.
3.3. Aging and random matrices

Finally, we test the effects of aging on the spectral method sensitive 
to determine the critical properties of the system. So we build matrices 
for 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 100, considering Δ𝑡 = 𝑁𝑀𝐶 = 300, and considering differ-

ent values of 𝑡0. The result is interesting because for 𝑡0 = 50, for example, 
we observe a minimum of eigenvalue mean at 𝑇 = 𝑇𝐶 in previous works, 
however when the aging is more significant, we observe a visible devi-

ation of such minimum as suggested by Fig. 6 (a).

A deviation from the minimum at 𝑇 = 𝑇𝑐 is found for 𝑡0 > 50, as can 
be observed. Thus it is interesting the sensitivity of spectra considering 
time series with aging. The same can be observed on the other spectral 
parameters such as the variance of eigenvalues for different tempera-
7

tures Fig. 6 (b), and Fig. 6 (c), that shows the pronounced peak on the 
negative of the derivative of this same variance when no aging is con-

sidered. However, after the peak (𝑡0 = 1), we observe a double peak 
(𝑡0 = 500) and subsequent discontinuity in the vicinity of 𝑇 ∕𝑇𝐶 = 1, and 
there is no consensus regarding the localization of the critical parame-

ter. This lack of consensus is particularly pronounced for 𝑡0 > 50, where 
finite-size effects appear to be significant and influence the localization.

4. Conclusions

We conducted a study on aging phenomena by examining the scal-

ing behavior of the total correlation of magnetization. Such scaling is 
corroborated by an analysis of the correlator in Fourier space according 
to methodology developed by Henkel and Pleimling [3]. Our findings 

reveal an important deviation in the scaling of the second moment of 



Physics Letters A 489 (2023) 129148R. da Silva, T. Tomé and M.J. de Oliveira

magnetization. Moreover, we demonstrate that when considering the 
initial magnetization distributed according to the Gaussian distribution 
expected at the time we hypothetically started after interrupting the 
time-dependent simulations, we need to scale the time appropriately to 
capture the correlation obtained with this initial time.

Furthermore, we present an intriguing analysis of random matrices, 
which sheds light on the expected spectra of matrices constructed from 
the time evolutions of magnetization during aging. This method exhibits 
high sensitivity and demonstrates how aging can impact the determina-

tion of the critical temperature under the influence of finite size scaling 
effects.

Overall, our study provides valuable insights into the effects of aging 
on magnetization dynamics and highlights the importance of account-

ing for initial conditions and scaling considerations in such systems. 
It is important to stress, that Pleimling and Gambassi, and Henkel et 
al. much before had obtained other numerical examples for studies in 
Fourier space however by concerning response functions [22,23].

Lastly, it is crucial to note that the irrelevance of 𝑡0 in the context 
of renormalization-group was previously established at 𝑇 = 𝑇𝐶 by Cal-

abrese and Gambassi [25]. They conducted a meticulous comparison of 
correlators and responses in both direct and momentum space. Our re-

sults align with their findings, as our short-ranged initial correlation, in 
theory, should not alter the critical exponents.

It is also important to note that for temperatures below the critical 
point (𝑇 < 𝑇𝐶 ), Janke and colleagues [9], have established that scaling 
laws, which remain invariant regardless of the selection of 𝑡0, are likely 
associated with the behavior 

⟨
𝑚(𝑡)2

⟩
∼ 𝑡𝑑∕𝑧, even in the context of long-

range systems.
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