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Abstract

In this chapter, we present a brief description of existing viscoelastic models, starting with
the classical differential and integral models, and then focusing our attention on new
models that take advantage of the enhanced properties of the Mittag-Leffler function
(a generalization of the exponential function). The generalized models considered in this
work are the fractional Kaye-Bernstein, Kearsley, Zapas (K-BKZ) integral model and the
differential generalized exponential Phan-Thien and Tanner (PTT) model recently pro-
posed by our research group. The integral model makes use of the relaxation function
obtained from a step-strain applied to the fractional Maxwell model, and the differential
model generalizes the familiar exponential Phan-Thien and Tanner constitutive equation
by substituting the exponential function of the trace of the stress tensor by the Mittag-
Leffler function. Since the differential model is based on local operators, it reduces the
computational time needed to predict the flow behavior, and, it also allows a simpler
description of complex fluids. Therefore, we explore the rheometric properties of this
model and its ability (or limitations) in describing complex flows.

Keywords: Mittag-Leffler, viscoelastic, memory function, fractional calculus, rheology

1. Introduction

Since viscoelastic materials are abundant in nature and present in our daily lives (examples are
paints, blood, polymers, biomaterials, etc.), it is important to study and understand viscoelastic
behavior. Therefore, in this chapter, we further develop the modeling of viscoelasticity making
use of fractional calculus tools.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
InteChOpen Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.
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We start this section with some basic concepts that are needed to derive and understand classi-
cal and fractional viscoelastic models. These are trivial concepts such as force, stress, viscosity,
Hooke’s law of elasticity and also Newton’s law of viscosity. Later, we evolve to more complex
concepts of viscoelasticity that involve the knowledge of fractional calculus, integral and
differential models.

It is well known that a force is any interaction that when unopposed will change the motion of
an object/body. Stress is an internal resistance provided by the body itself whenever it is under
deformation. Stress is defined as the intensity of internal forces developed in the material. The
intensity of any quantity is defined as the ratio of the quantity to the area on which it is acting,
leading to: Average Stress = Force/Area. If we want to know the stress in one material point,
then we must take the limit of the area to zero. A good example on how stress works is given
by imagining a person lying on top of thin layer of ice. When the person is lying down on the
ice, the force (weight) divided by the area of the surface of the person in contact with the ice is
smaller, when compared to the case when someone is standing up (the weight is the same, but
the area in contact with the ice is smaller). Therefore, eventually, the ice will break due to the
high internal stresses when the person is standing. Finally, we refer to elasticity as the ability of
a body to resist a distorting influence and to return to its original size and shape when that
influence or force is removed. See for example Figure 1 where three springs are stretched. If we
remove the weights attached to the springs, the spring would ideally return to its initial/
natural position.

Figure 1(b) also shows an experiment where we observe that the force (mass times gravity)
applied to the spring (increasing weight) is proportional to the displacement. This is known as
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Figure 1. Schematic of an experiment to obtain the relationship between force and deformation: (a) Experimental setup
where three springs are stretched with the use of weights; (b) Graph showing the experimental results obtained from
stretching three springs (the force is proportional to the deformation).
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Hooke’s law (the force F needed to extend or compress a spring by some distance y, = (x — x)
is proportional to that distance, F = ky,). Note that if we continue to increase the weight,

eventually the spring will break. Therefore, Hooke’s law is a very good linear approximation
of what happens in the real world.

We will now explore the concept of viscosity in fluids. The viscosity of a fluid is a measure of
the internal resistance to the rate of deformation:

As an example, imagine that we have a thin film of fluid in between two parallel plates, as
shown in Figure 2. The fluid is at rest, and suddenly the upper plate starts moving with
constant velocity U. This velocity will be felt at the bottom layer due to diffusion of momen-
tum, and to keep the bottom wall fixed, we must exert a restraining force, that is measured
with a force gage or dynamometer attached to that wall. Note that if we take the view of this
portion of fluid as infinitesimally thin layers, we observe that each layer will drag the under-
lying layer due to the action of viscosity (internal resistance). The higher the viscosity, the more
force will be required to deform the fluid at a given speed U.

Since the velocity of the thin layer adjacent to the top wall is U and the velocity of the bottom
layer is 0, the velocity of each layer (for a Newtonian fluid) is given by u(y) = Uy/h, with y the
coordinate shown in Figure 2(a). Figure 2(b) shows the experimental forces measured for
different ratios of U/h. We observe that the force is proportional to U/h and U/h = du(y)/dy;
therefore, we conclude the following (Newton’s law of viscosity):

Force U _ du(y) _du(y)
Area 0 T dy — o= dy @

with o the unidirectional stress and 7 as the constant of proportionality, known as the Newto-
nian shear viscosity. Note that du/dy is known as the rate of shear deformation, usually
denoted by .

A good example of something we may see every day and something that verifies Newton’s law
of viscosity is a dashpot. It is used for example as a door closer to prevent it from slamming shut.

Small portion of liquid between two solid walls The top wall is pulled with velocity U
The liquid is at rest! Liquid viewed as infinitesimally thin layers
Bewel 2 U
Experimental Results
' FON) Uh@"
1 0.01
2 0.02
3 0.03
b " i 4 0.04
‘_/ bottom wall “——'—"/
Force meter (N) 1- Each layer is dragging the layer below due to viscosity;
Me:;ure! the tnn; on 2- The top and bottom layers are attached to the walls (no slip condition)

(@) (b) (©

Figure 2. Schematic of an experiment to verify Newton’s law of viscosity: (a) Liquid at rest between parallel plates; (b) The
top wall is pulled with velocity U and a force meter is used to measure the force exerted on the bottom wall; (c)
Experimental results.
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1.1. Viscoelastic models

The simplest model that considers both viscous and elastic behavior is the linear Maxwell
model [1] and can be obtained from a combination in series of a dashpot, 0 = ndyf(t) /dt, and
a spring, 0 = Gy,(t) (with the subscripts f and e standing for Newtonian fluid and Hookean
elastic solid, respectively), as shown in Figure 3.

The total deformation y is the sum of the deformation obtained from the spring y, and the
dashpot y, and the rate of deformation is given by:

dy(t) dyy(t) dy,(t)
dr — dt dt

dylt) o ldo
dt 1 Gdt )
do  dy(t) N
R T e
Maxwell Model

The three-dimensional version of this model can be easily obtained by considering appropriate
tensors instead of the scalar properties of stress and deformation, leading to the following
model:

do  dy(t)
o+ A FTmL T 3)
with o the stress tensor, y = (Vu + (Vu)T> the rate of deformation tensor, u the velocity

vector, A the relaxation time of the fluid and ) the zero shear rate viscosity. This model can be
equivalently written in integral form as

t
ot) = J Ge~ =1/ ZZ dr, 4)
0

where G = /A and it was assumed that the fluid is at rest for t < 0.

No Deformation = g =( A Deformation ) is Applied = o # 0
e Pl Th
Ve
» 4 » 4 = 4
,l
Dashipot Spring Newtonian Fluid Hookean elastic solid
dy (1
o o= Gr.()
dt

Figure 3. Maxwell model.
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The Maxwell model is not observer independent (frame invariant) and, therefore, the results
obtained with this model may not be correct if large deformations are considered (e.g., we
may obtain a viscosity that depends directly on the velocity rather than the velocity gradient,
which is not correct, and is unphysical). To solve this problem, new models were proposed in
the literature that can deal with this non-invariance problem.

Two well-known examples of frame invariant models are the upper-convected Maxwell
(UCM) model given by 0+ A6 =ny (with 6 =30/t +u-Vo — (Vu)' -0 —o-Vu the

upper-convected derivative) that can also be written in integral form as

t

o(t) = J%e‘“‘t')/}‘ (C,' —T)at ()
0

where C! is the Finger strain tensor (a frame-invariant measure of deformation) [1]. The term

m(t —t) =n/A%e~t=")/* is known as the memory function (the derivative of the relaxation
modulus G(t — t')). Note that the relaxation modulus can be easily obtained by imposing a step

strain (constant deformation), as shown in Figure 4, resulting in G(t) = /vy, = Ge ")/,

Other well-known example of a frame-invariant but now nonlinear viscoelastic model is the
variation of the K-BKZ [2] model proposed by Wagner, Raible and Meissner [3, 4],

o(t) = Jm(t — (I, 1) (C, ' = T)dt, (6)
0

where C7! is the Finger tensor [1], I1, I, are the traces of Cland C, respectively, and h(Iq,1>) is
termed the damping function [5] (note that it is again assumed that the fluid is at rest for ¢ < 0).
A large number of damping functions can be found in the literature (see [5]). The term m(t — t')
was proposed to be of the form:

a /
/ —(t=t")/A
m(t—t)zze( s (7)
VA . (oY
A constant deformation The stress relaxation
is applied to the material follows an exponential
Yo decay

0 l t 0 L 1

Figure 4. Step strain of a Maxwell model. The step strain is given by y =y H(t — fp) with H(t) the Heaviside function,
and the stress relaxation is the solution of ¢ + A do/dt = ndy H(t — ty)/dt with o(ty) = 0o, given by o = gge~ "0/
(00 = Gyy)-

11
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where a and A are model parameters. Note that the relaxation modulus is the response of the
stress to a step in deformation (see Figure 4). It should be remarked that when a = /A and
h(I1,1) = 1 we recover the integral version of the UCM model.

Different differential models were proposed in the literature along the years, with the aim of
improving the modeling of complex viscoelastic materials, and with the aim of achieving the
same modeling quality of integral models (by only using differential operators). Note that
integral models are non-local (in time) operators that take into account all the past deformation
of the fluid while differential models ones describe the material response in terms of the rate of
change of stress to the local deformation, thus influencing the fitting quality of the model and the
computational effort to numerically solve them (when performing numerical simulations).

More recently, new models have been proposed in the literature that basically take advantage
of the generalization of the exponential function appearing in Egs. (4), (5), and (7), thus
allowing a more broad and accurate description of the relaxation of complex fluids (while the
commonly used continuum approach describes the fluid as a whole, with only one relaxation,
unless a Prony series is considered, that is, considering a series of the form . a;e~(=*)/4)). This
generalized function is the Mittag-Leffler function that naturally arises when solving problems
involving fractional derivatives (more precisely, derivatives of non-integer order). This func-
tion will be introduced later in Section 3.

2. Fractional derivatives

To understand the need and the concept of a fractional derivative and its importance in the
context of modeling physical processes, let us start with a simple example (Figure 5).

Imagine a portion of material that is principally formed of two different regions. In these
regions, two similar physical processes ¢, and ¢, occur (for the time being it does not matter
what is the process under study), but, at different rates, d¢,/dt =0.1 for Region I and
dep,/dt =1 for Region I If we look at the portion of material as a whole, one would naturally
choose the rate of 1 as representative of the material’s behavior, because this region is bigger

Region I /gﬁf"/ % 7\
= X
X

Figure 5. Material formed by two regions where the same physical process occurs at different rates.

~

Region I1



Recent Advances in Complex Fluids Modeling
http://dx.doi.org/10.5772/intechopen.82689

(when compared to Region I). However, this clearly neglects entirely the local variation in the
deformation associated with the neighboring Region I. With the help of fractional calculus, we
may define derivatives/rates of non-integer order, and we may have (for example) a rate given
by d’p/dtf with g = 0.9 (possibly better representing the material behavior as a whole, by
providing intermediate rates).

Although we have not defined yet what a fractional derivative is, the fact of having the
possibility of non-integer derivatives seems quite attractive, allowing the creation of a contin-
uous path between integer-order derivatives that may lead to a better description of the
different rates of a certain physical process occurring in the same material. This means that
fractional derivatives can transport more and more precise local information from the micro-
scopic world to the continuum description.

2.1. Riemann-Liouville and Caputo fractional derivatives
Now, to understand a fractional derivative, we start by acknowledging that the n-fold integral
of a generic function f () is given by the formula

t

Jt Jt th(t)dtdt...dt = () = o _1 o J (t— ¢y (. .

adJa a

~~ a

n times

A generalization to non-integer values of n can be performed using the Euler Gamma function
I'(x), leading to the Riemann-Liouville fractional integral

Jif(t) = ﬁj (b= ) () d, ©)

where we have used «a to represent the generalization of n to non-integer values. A fractional
derivative of any order can then be obtained by manipulating the number of integrations and
differentiations of the function f(t). By performing the m — a-fold integration of the m" deriv-
ative of f(t), Ji'*D"f (t) with m = [a], we arrive at the generalized derivative formula (Caputo
fractional derivative [6]) of order m — 1 < a < m,

af, m—1<a<m, (10)

- v

EEO 1 [ et dF(E)
dt _F(m—a)J(t_t) 1

a

This last fractional derivative is the one chosen to deal with physical processes due to the ease
in handling initial and boundary conditions [7].

Next, we present two models that rely on the Mittag-Leffler function (a function closely related
to fractional calculus) to improve their modeling and fitting capabilities when describing the
behavior of viscoelastic materials. These are the fractional K-BKZ (integral) and the general-
ized Phan-Thien and Tanner (differential) models.

13
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3. Viscoelastic models based on the Mittag-Leffler function

3.1. The fractional K-BKZ model

We first note that the Maxwell-Debye relaxation of stress (exponential decay —see Egs. (4) and
(5)) is quite common, but there are many real materials showing different types of fading
memory, such as a power law decay G(f) ~ %, 0 <a <1 [8]. For example, the critical gel
model investigated by Winter and Chambon is written G(t) = St™*. If we assume the relaxa-
tion modulus for an arbitrary loading history in such materials is given by G(t—t) =
VIT(1—a)) ' (t—#)"™ (Vis known as a quasi-property [9] and is connected to the critical gel
strength by S = V/I'(1 — a)), then we have that:

_ 1 t n-ady
0

By recognizing that the Caputo fractional derivative of a general function y(t) (in our case y(t)
is the deformation) is defined as [10]:

t

ORI PP

ot viu ) KU T 12
0

we obtain a generalized viscoelastic model [10, 11], that can be written in the simple compact
form:

o:VddYtCEt), O<a<l, (13)

This model provides a generalized viscoelastic response, in the sense that when o =1 we
obtain a Newtonian fluid, and when a@ =0 we obtain a Hookean elastic solid. The
corresponding mechanical element is intermediate to the spring and dashpot shown in Figure 3
and is thus known as a spring-pot [11, 12]. Note that care must be taken when o — 1 because of
the singularity in I'(1 — «) [12].

We can define the fractional Maxwell model (FMM) as a combination of two linear fractional
elements (spring-pots) in series. In a series configuration, the stress felt by each spring-pot is
the same, that is, 0 = Vd%y, (t)/dt* = GdPvy,(t)/dt, 0 < &, p < 1, and the total deformation is
given by the sum of the deformation obtained for each spring-pot, y(t) = v, (t) + v, (t). The
FMM can then be written as

Va“Ffa(t) _ d*y(1)

o) + 5 = (14)

This model allows a much better fit of rheological data, as shown in [12] but it is not frame
invariant. However, following the same procedure employed with the Maxwell and K-BKZ
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model, that is, using the derivative of the relaxation function obtained for the Maxwell model
as the memory function of the K-BKZ model, one can also use the derivative of the relaxation
function of the FMM and insert it in the K-BKZ model, thus, obtaining a frame-invariant
constitutive model, that retains all the good fitting properties of the FMM.

The relaxation function of the FMM can be obtained by solving the fractional differential
Eq. (14) considering a constant deformation y = y,H(t) (H(t) is the Heaviside function)
together with o(ty) = 0o, leading to the relaxation modulus G(t) = o(t) /vy, given by:

G(t) = Gt PEy_p,15 (—gt‘”ﬁ) (15)

where E, ;(z) is the generalized Mittag-Leffler function [7],

oo

=D Tk 1o

and a characteristic measure of the relaxation spectrum described by the two spring-pots in
series is A = (V/G)1/<“_ﬁ>.

This leads to the fractional K-BKZ model proposed by Jaishankar and Mckinley [12, 13], with
m(t — t') the memory function [2] in Eq. (6) now given by.

Twﬁ¢q:%3%19:—@u—ﬂ>1%Mﬁ¢<—%a—ﬂfﬁ) (17)

Note that here the relaxation modulus G(f — t) is the one obtained for the FMM. Please see
[11-13] for more details. It should be remarked that the Mittag-Leffler function was used in the
past by Guy Berry to describe polymeric materials exhibiting Andrade creep [14].

The fractional K-BKZ model is therefore given by:

t
o(t) = -G J (t—t)"PEayp 4 <— g (t — t’)“‘ﬁ> h(I, ) (C,' —1)dt, (18)

and we need to ensure that the integral converges (see the Foundations of Linear Viscoelastic-
ity by Coleman and Noll [15]). The main problem seems to be the term (t—#) "7 that
diverges as t' — t, and fé (t—¢) " Par diverges. Also, the termE, g (...)h(I1,]2) is finite
Vt, t' <t. Therefore, we must have (C;' —I) = O((t —t)"),m>1 as # — t so that (t— )" °
(C,' —1) = O((t — #)"), n<1 and therefore the integral converges.

It can be easily shown [1] that a Taylor series expansion of C,' — I about #' = ¢ leads to.

oy (19)

k=1

15
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with Ai(t) the Rivlin-Ericksen tensors. Note that these tensors can be obtained directly from
the velocity field without having to find the strain tensor [16]. We may therefore conclude that
the integral is convergent, assuming a smooth velocity field is provided/obtained. Note that
this does not mean that convergence problems will not arise during numerical calculations.

In Refs. [11, 12, 17], the beneficial fitting qualities of this constitutive model framework are
discussed in detail. Here, we are interested in determining to what extent the properties of the
Mittag-Leffler function can be used to improve the fitting quality of differential models, and this
will be discussed in the next subsection.

3.2. Generalized Phan-Thien and Tanner model

The previous integral model given by Eq. (18) allows a good fit to experimental rheological
data, in flows with defined kinematics where C~! can be computed explicitly; but, it would be
desirable to obtain also an improved frame-invariant differential model, that is easier to handle
both mathematically and numerically, when compared to integral models, for solving complex
flow problems with spatially varying kinematics. The model to be presented was recently
proposed by our research group [18], and basically takes advantage of the flexible functional
form of the Mittag-Leffler function by inserting this function into the already well-known
Phan-Thien and Tanner (PTT) model, replacing the classical linear and exponential functions
of the trace of the stress tensor.

The original exponential PTT model [19, 20] is given by.

exp <% ()'kk> o+ A o= ny, (20)

with 8 — 36/dt+u-Vo—(Vu) -0 -0 -Vu+é(D-0—0-D) being the Gordon-Schowalter
derivative and oy the trace of the stress tensor. Here, the parameter £ accounts for slip between
the molecular network and points in the continuous medium. The model was derived from a
Lodge-Yamamoto type of network theory for polymeric fluids, in which the network junctions
are not assumed to move strictly as points of the continuum but instead they are allowed a
certain effective slip as well as a rate of destruction that depends on the state of stress in the
network. Phan-Thien proposed that an exponential function form would be quite adequate to
represent the rate of destruction of junctions and in [17] it was shown that the Mittag-Leffler
function could improve the quality of model fits to real data by allowing different forms for the
rates of destruction.

The model is then given by
eA O .
F(B)Eap| - on Jo+ A0 =1y, (21)

where the factor T'(B) is used to ensure that I'(8)E,,3(0) = 1.

This new model can further improve the accuracy of the description of real data obtained with
the original exponential function of the trace of the stress tensor, as shown in [18].
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4. Parametric study of the GPTT model

We will now present a detailed parametric study on the influence of the new parameters «, 8
(arising from the Mittag-Leffler function) on the rheological behavior of the generalized expo-
nential PTT model.

4.1. Steady-state shear flows

As shown in [18], the steady shear viscosity is given by n(y) = 0.,(y)/y with

) ny — oxWié
axy (V) = - , (22)
s (3 (52))
and o0, is given by the solution of
) eA (2 -2 2 [
0)Eun (5 (Gt o ) o = @ = PP [] - o], @3)

Here Wi = Ay is the dimensionless strength of the shear flow and 7, A, ¢, &, a, p are the consti-
tutive parameters of the generalized PTT (or GPTT) model.

Since we consider a simple plane shear flow aligned with the x-axis, we have that
oy (y) = 0x&/(2 = &) and 0,:()) = 0 (see [18] for more details).

Egs. (22) and (23) can readily be solved using the Newton-Raphson method (solving first
Eq. (23) and then substituting the numerical values obtained for o, into Eq. (22)).

Figure 6 shows the dimensionless steady shear viscosity obtained for the different parameters
of the Mittag-Leffler function, a, f. On the left, we show the influence of @ by keeping constant
all other parameters. On the right, we show the influence of g (it should be remarked that
when a, § = 1 the exponential PTT model is recovered). We observe that when compared to the

1 1
7 %
= a n 3 N
) p— e RN
-2 un -2 S
a1 L 1 =1000 Pas RHC
_____ N - A=0015s
e S ____05 E=0 ¥
i ] 0.1 £=025
0.1 . . 01 . i
0.01 01 Ay 1 10 0.01 01 Ay 1 10
(@) (b)

Figure 6. Dimensionless shear viscosity obtained for the different parameters of the Mittag-Leffler function; (a) varying a
holding the other five parameters constant and (b) varying f.
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Figure 7. Dimensionless shear viscosity obtained for the different parameters of the Mittag-Leffler function varying;:
(a) Constant ¢; (b) Varying e.

classical exponential PTT model, when a, § < 1, shear-thinning occurs for lower dimensionless
shear rates and when a, > 1 there is a delay in the shear-thinning effect. For a, § > 1 the shear
viscosity increases, especially for high shear rates. Also, when we increase a, the slope of the
shear viscosity curve for high dimensionless shear rates decreases (observed in Figure 6(a)),
while varying 8, the slope seems to be the same, but a higher viscosity is obtained (observed in
Figure 6(b)).

Figure 7(a) shows the dimensionless steady shear viscosity, now obtained for different values
of a, p and ¢. These plots allow one to see that the ¢ parameter may not be compared directly
to the value used in the classical models (featuring linear and exponential functions of the trace
of the stress tensor). For comparison purposes, we plot again the curve obtained for the
exponential PTT model with ¢ = 0.25 (@ = = 1) by the dash-dot lines.

Note that (see Figure 7(b)) small variations of the parameter ¢ allows one to control the rate of
transition to the shear-thinning at high Wi while maintaining a similar shear thinning set
point.

Figure 7 shows that by setting different combinations of «, § we may obtain different slopes at
higher dimensional shear rates. For low f and high @ we obtain a lower slope but a premature
shear viscosity thinning, while for high p and low a we obtain a higher slope but a delayed
shear-thinning.

4.2. Steady-state elongational flows

The steady unidirectional extensional viscosity is defined as 1, = (Gxx — ny) /¢, where ¢ is the
imposed elongation rate [18], and can be obtained by solving the system of equations (for a
simpler technique that does not involve an iterative procedure, please consult [18])

Oxx (F(ﬁ) Ea,ﬁ <% Gkk) - 2AC(1 - 5)) = 277@1 (24)
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Oxx <T(ﬁ)Ea,ﬁ <%Ukk> +Ac(1 - 5)) = —nc, (25)

with oy = 0y + 20,.

Figure 8 shows the dimensionless steady elongational viscosity obtained for different param-
eters of the Mittag-Leffler function. In Figure 8(a), we show the influence of a by keeping
constant all other parameters. In Figure 8(b), we show the influence of . Note that we have
used the same parameters as in the shear viscosity case.

Note that when we increase «, f, we observe an increase of the elongational viscosity, with the
maximum value being reached for higher dimensionless extensional rates. Again, we observe
different asymptotic slopes for high extension rates (when varying «). Note that there is no
overshoot for low values of g.

We may conclude that by varying «, f, we change both the shear and elongational viscosities,
and therefore the fit to experimental data should be performed with care, taking into account
this dependence.

Figure 9 shows the effect of the parameters used in Figure 7, for the case of elongational
viscosity. The results are qualitatively similar to the ones obtained in Figure 7, that is, in terms
of changes to the asymptotic slopes at high deformation rates and premature/delayed thin-
ning. It can be observed that the elongational viscosity is more sensitive to changes in the
parameters «,f and ¢. This result is to be expected since this is a strong flow, and, the
exponential PTT model was originally proposed to be able to describe the response of complex
fluids in strong flows. Figure 9(a) shows that the overshoot can be suppressed using a low f
and high a values. Note that the maximum extensional viscosity is obtained for the exponen-
tial PTT model, and that the values of a, p have a strong influence on the asymptotic slope of
the curve for high extensional rates. Figure 9(b) shows three different curves for different
combinations of a, f and ¢. Note that fora = 0.1, = 0.1 and ¢ = 10 we can also suppress the
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Figure 8. Dimensionless elongational viscosity obtained for different parameters of the Mittag-Leffler function: (a)
Varying a; (b) Varying [3.
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overshoot in the extensional viscosity, and for « = 2, = 0.1 and ¢ = 0.05 we can decrease the
curvature of the overshoot, and at the same time decrease the slope of curve.

4.3. Steady-state shear and elongational flows

Until now, we have explored generally the influence of the different model parameters on the
behavior of the GPTT model for steady flows, but, a more quantitative side-by-side comparison
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Figure 10. Comparison of the dimensionless elongational and shear viscosity obtained for different parameters of the
Mittag-Leffler function, varying ¢, and the classical exponential PTT model (a =1, 3 =0).
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between the shear and elongational flow curves was not performed, and the limited flexibility
of the classical exponential PTT model for fitting experimental data (when compared to the
GPTT) was not explored. In Figure 10, we try to illustrate the advantages of using the Mittag-
Leffler function instead of the classical exponential one. To this end, we present the viscometric
predictions obtained for both shear and elongational flows for both models (GPTT and expo-
nential PTT).

Figure 10 illustrates the additional flexibility of using the Mittag-Leffler function, by show-
ing that we can manipulate the magnitude of the increase in the elongational viscosity and
at the same time only slightly change the shear viscosity. This allows better fits to rheo-
logical data when using the Mittag-Leffler function [18]. Note that in the exponential
PTT model, when we increase the ¢ parameter, both the shear and elongational viscosities
increase concomitantly.

5. Conclusions

In this chapter, we have presented a brief introduction to the world of viscoelastic models
capable of describing the rheology of complex fluids, and we have summarized some of the
well-known classical differential and integral models.

With incorporation of ideas from fractional calculus, most of these models can be further
improved, either by changing classical local operators for improved (non-local) fractional
versions, or, either using new analytic functions that arise in the realm of fractional differential
equations, such as the Mittag-Leffler function.

As an example, we present the fractional K-BKZ model and the recently proposed gener-
alized PTT model. The fractional K-BKZ model allows a better description of fluid flow
behavior (when compared to the generalized PTT model), but, increases the need for high
computational power. Therefore, the novelty of the present work is our detailed study on
the influence of the Mittag-Leffler function in shear and elongational flows of a general-
ized PTT model.
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