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Abstract
Let K be a commutative integral domain of characteristic 2 and G a nonabelian 

locally finite 2-group. Consider V(KG), the group of units with augmentation 1 in 
the group algebra KG. An explicit list of groups is given, and it is proved that all 
involutions in V(KG) commute with each other if and only if G is isomorphic to one 
of the groups on this list. In particular, this property depends only on G and not at 
all on K.

1 Introduction
Let FG be the group algebra of a locally finite p-group G over a field F of characteristic p. 
Then the normalized unit group

Ure) = {<e-re| 5>» = i}
geG

is a locally finite p-group.
An interesting way to study V(FG) is to construct embeddings of important groups into 

it. In this paper we answer the question when dihedral groups can not be embedded into 
V(FG). Clearly, only the case p = 2 has to be considered. At the same time we obtain the 
list of the locally finite 2-goups such that V{FG) does not contain a subgroup isomorphic 
to a wreath product of two groups (for the case of odd p see [7]). Let C2", C200 and Qg be 
the cyclic group of order 2n, the quasicyclic group of type 2°° and the quaternion group of 
order 8, respectively. An involution is a group element of order 2. Our main result is the 
following:
Theorem Let K be a commutative integral domain of characteristic 2, and G a locally 
finite nonabelian 2-group. Then all involutions of V(KG) commute if and only if G is one 
of the following groups:

(i) Sntm = (a, b I a2" = ò2"* = 1, a6 = a1+2" l) with n,m> 2, or G — Qg;

(ii) G = Qg x Cy or G = Qg x Ci**;

(iii) the semidirect product of the cyclic group (d | d2" = 1) with a quaternion group (a, b | 
a4 = 1, a2 = ò2 = [a, ò]) such that [a, d] = d2"-1 and [6, d] = 1;

(iv) H32 = (x,y,u I xA — yA = 1, x2 = [y}®],y2 = u2 = [u,x]} x2y2 = [«,y]).
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The subscripts are the serial numbers of these groups in the CAYLEY library of groups 
of order dividing 128 described by M. F. Newman and E. A. O’Brien in [5]. It is a mere 
coincidence that i/32 has order 32.

For a 2-group G we denote by n(G) the subgroup generated by all elements of order 2 of 
G. We set Q(V) = fi(K(tfG)). Clearly, Í2(G) is a normal subgroup of G. As usual, denote 
exp(G), Cc«a,ò)) the exponent of a group G and the centralizer of the subgroup (a, 6) in 
G, respectively. For any a, ò € G we define [a, 6] = a~16”1a6, ab = b~lab. Let

C{KG) = (xy - yx | x, y G KG)

be the commutator submodule of KG.
For an element g of a finite order \g\ in a group G, let $ denote the sum (in KG) of the 

distinct powers of p:
IpI—1

5= £ s'-
i=0

For an arbitrary element x = y£,gzGa99 e KG denote x(^) — Hgçc^g e K.
Let KG be the group algebra of an abelian 2-group G over a commutative integral domain 

K of characteristic 2. If x € KG, then x2 = 0 if and only if re € 3(f2(G)), where J(Q(G)) is 
the ideal generated by all elements of form g — 1 with g € 0(G). Moreover,

Sl{V) = 1 4- 3(il(G))

It will be convenient to have a short temporary name for the locally finite 2-groups G 
such that all elements of order 2 of V(KG) form an abelian subgroup. Let us call the groups 
G with this property good.

(1)

2 Preliminary results

Lemma 1 Let G be a finite nonabelian good 2-group. Then all involutions of G are central, 
G' Ç il(G) and either G is the quaternion group of order 8 or Q(G) is a direct product of 
two cyclic groups.

Proof. Let G be a nonabelian good 2-group. Clearly ÍI(V) O G = Í1(G) is a normal 
abelian subgroup of G.

Suppose that |f2(C?)| = 2. Then by Theorem 12.5.2 in [8]

G = (a, b\ a2"1 = 1 ,b2 — a2"1 ’, a6 = a-1)

with m > 2 is a generalized quaternion 2-group. If |(7| > 8, then we choose c € (a) of order 
8. Then 1 + (1 +c2)(c + 6) and 1 4- (1 + c2)(c + c6) are noncommuting involutions of V(KG), 
which is impossible. Therefore G is the quaternion group of order 8.

Let |H(G)| > 2. The normal subgroup Q(G) contains a central element a in G and x =
l+(a+l)<7 is an involution for every g e G. If 6 e fi(G) then bx = xb and (a+l)(l-fi[6, pi) = 0. 
It implies that [p, 6) = 1 or [p, b] = a. Let [p, b] = a and |p| = 2*. Then z = 1 + (p 4- l)p2 is an
involution and zb = bz. From this we get that a € (p2) and since o 6 il(G) we conclude that
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g2l~'. Clearly, if t = 2, then (b,g) is the dihedral group of order 8, which is impossible. 
If t > 2, then x = 1 + <?(1 + 02<_1)( 1 4- 6) is an involution which docs not commute with b, 
which is a contradiction. Therefore, [5,6] = 1 and ft(G) is a central subgroup of G. Let a 
and b be arbitary elements of 0(G), g,h € G and [g, h] ^ 1. Then x = 1 + (a + 1)$ and 
y = 1 -f (b + l)/i are involutions and [x, y] = 1. From this we conclude that the commutator 
subgroup G' is a subgroup of (a, 6) in ft(G) and exp(G') = 2.

Now, let |ft(G)| > 8 and let a, 6, c be linearly independent elements of ft(G). Then by 
the above reasoning we have [5, h] € (a, 6)H (a, c) D (6, c) = 1, which is impossible. Therefore, 
|ft(G)| = 4 and G' Ç ft(G).
Lemma 2 A two-generator finite nonabelian 2-group is good if and only if it is either the 
quaternion group of order 8 or

a =

Sn,m = <M I a2" = 62m = 1, ab = a1+2n"') (2)

with n,m > 2.
Proof. Suppose that G is not the quaternion group of order 8. By Lemma 1 ft(G) is 

a direct product of two cyclic groups and G' Ç ft(G). Then the Frattini subgroup $(G) = 
{g2 | g € G} is central and by theorem 3.3.15 in [4], |G/$(G)| = 4. Since $(G) is a subgroup 
of the centre Ç(G) and the factor group G/C(G) can not be cyclic, this implies $(G) = C(£)- 

It is easy to verify that a two-generator good group G is metacyclic. Indeed, every 
maximal subgoup M of G is abelian and normal in G, because $(G) = £(C?) C M and 
IA//C(G)| = 2. Clearly, ft(M) Ç ft(G) and in case |ft(M)| = 2 the subgroup M is cyclic and 
we conclude that G is metacyclic.

Now let |ft(M)| = 4 for every maximal subgroup M of G. Then G and M are two- 
generator groups. It is easy to see that all such groups of order 16 are metacyclic. If 
|G| = 2n (n > 5) then G and all maximal subgroups of G are two generator groups and by 
theorem 3.11.13 in [4] G is metacyclic too. Since G‘ Ç ft(G) by Lemma 1, it follows from 
theorem 3.11.2 in [4], that G is defined by

G = (a, b I a2" = 1,62m = a2', ab

is central and
b)2m = a2„-«ò2m = x

Then G can be generated by a, a2"-,-mò and defined by (2). Suppose n = l + m and m = 1. 
Since G is not the quaternion group of order 8, n > 2. Then a-2" J6 is an involution and 
[a-2n_a6, a] ^ 1, which is a contradiction with Lemma 1. Further, in the last case when 
n = i + m and m > 1, we have (a6)2m = (a2ò2[a, ò])2m_1 = 1 and G can be generated by a, 
ab and defined by (2).
Lemma 3
such that $(H) and ft(H) are equal, central, and of order 4, are precisely the following: 
C4 x CA) C4xG4, C4x<28, Qs x Ci> Qs x Q8, the central product of the group S2,2 = (a,b |

i+2n-1 )= a
n—i—mwith n, m > 2. If l + m, then a2

n-l-m(a2

(E. A. O’Brien, see Lemma 4.1 in [10]) The groups H of order dividing 128
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o4 = b4 = 1, a2 = [6, a]) with a quaternion group of order 8, the nontrivial element common 
to the two central factors being a2tP,

#245 = (x,y,u,v I Xa = yA = [v,u] = 1,
x1 = v2 = [y,x] = [v, y], 
y2 = w2 = [ti,x], 
x2y2 = = [v,x]>

and the groups named in parts (iii), (iv) of Theorem.
The group #245) is one of the two Suzuki 2-groups (see Higraan [6]) of order 64.

2.1 Proof of the necessity of the theorem
Let G be a finite nonabelian good 2-group. Therefore fi(V) is abelian.

By Lemma 1 all involutions of G are central, G' Ç fi((7) and H(<?) is either a group of 
order 2 or a direct product of two cyclic groups. Clearly, $(G) Ç £(<?) and if |fi(G)| = 2 
then by Lemma 1, G is a quaternion group of order 8. Thus, we can suppose that |n((7)| = 4.

First let $(G) be cyclic. Since all involutions are central, by [11], Theorem 2, G is the 
direct product of a group of order 2 and the generalized quaternion group of order 2n+1. By 
Lemma 1, G is a Hamiltonian 2-group of order 16.

We may suppose that $(<7) is the direct product of two cyclic groups. Let the exponent 
of G be 4. Then $((?) = fi(G) and by a result of N. Blackburn ( [9], Theorem VIII.5.4), 
\G\ < |il(G)|3. Therefore the order of G divides 64. Then by O’Brien’s Lemma G is precisely 
of one of the following types: C4 x C4, Qs x C4, the groups named in parts (iii), (iv)
of Theorem and Q8 x Qg, #245, Qs Y 52,2-

Now we shall find noncommuting involutions Zi,z2 in V(KG) if G is one of the last three 
groups listed above.

Let G be the central product of the group

52,2 = (a, b I a4 = b4 = 1, a2 = [6, a])

with the quaternion group of order 8, the nontrivial element common to the two central 
factors being a2bi2. Then

G a (0,6,4/ I a4 = <? = 1,6* = a2 = [o,6],/2 = d2 = [d,/],
[a, d] = [6, d] = [6, /] = 1, [a, /] = a2)

and we put z\ = 1 4- (fa 4* b 4- a3d 4- bd 4* / 4* abf 4- df 4- abdf and Z2 = 1 4- 6(1 4- d2). If 
G — #246 then

#245 » (a, 6, d, / I a4 = 64 = 1,6* = d2 = a2, [a, 6] = 1,
[a, d\ = [6, /] = [d, /] = 62, [6, d] = a2, [a, /] = a262),

and put Zi = l4-a4-a6 4-d4- a2bd 4- / 4- bf 4- alfdf + a?b*df and Z2 = 1 4- (6 4- 6-1). Now 
let G be a direct product of two quaternion groups (a, b) and (c, d) of order 8. Then we set 
2l = l4-a4-6c24-c4- abc + a2d 4- abd 4- acd 4- bed and z2 = 1 4* 6(1 4- c2).
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It is easy to verify that in all three cases z\ = z\ = 1, z\Z* ^ z^zi.
Now, let the exponent of G be larger than 4. Using Lemma 2, we conclude that G 

contains a two-generator nonabelian subgroup H which is either Qg or 5„im.
We wish to prove that if exp(G) > 4 and G = H • Cg(H) for every two-generator 

nonabelian subgroup H, then

G = <2s x (d | d2" = l,n > 1).

First, let H = Qg = (a, b) be a quaternion subgroup of order 8 of G. Then G = Qg * Ca{Qz) 
and Cc(Qs) does not contain an element c of order 4 with the property c2 = a2, because 
ac would be a noncentral involution of G, which is impossible. If Cg(Qs) is abelian and 
|n(CG(Qa))| = 4 the11 Gg(Q&) is the direct product of (a2) and (d | d2" = l,n > 1), and 
G — Q$ x {d).

We can suppose that Cg{Qs) is nonabelian and does not contain an element u such that 
u2 = a2. Since exp(CG(Q8)) > 4, there always exists a subgroup

Sn,m = Ml c2" = dT = l,cd = c1+2n"’)

of Cg(Qs) which is of exponent larger than 4. Then C(5n,m) = (c2, d2) and as exp(5n,m) > 4, 
one of the generators c or d has order larger than 4. Therefore every u G fi(C(Sn,m)) is 
the square of one of the elements from 5n,m. Thus, since we assume that Cg(Qs) does not 
contain an element of order 4 whose square is a2, we get that Sn,m D Qg = 1 and 5n,m x Qg 
is a subgroup of G with the property |fi(Sn,m x Q8)| = 8, which is impossible.

Now let H = Sn,m = (a, 6 | a2” = b2™ = 1, a6 = a1+2n_’) with n,m> 2 be a subgroup 
of G. Then G = Sn,m • GG(Sn,m)- As |Q(G)| = 4 we can choose d G Gc(£n,m) such that 
d & 5n,m but d2 G S„,m. Then d2 = a2tb2j. If i or j is even then d-1a*^ G Í2(G) = f2(Sn,m) 
and d G Sn,m, which is impossible. If i and j are odd and n > 2 then d-1a,+2n-,67 G ft(G) = 

which is a contradiction. Therefore, n = 2 and (aLd-1^) is a quaternion subgroup 
and by assumption G — Qg- Co(Qg)- We obtained the previous case.

It is easy to check that if the commutator subgroup G' is of order 2, then G = H- Cc{H) 
for every two-generator nonabelian subgroup of G. Indeed, G' = H' = (c), this implies 
that H = (a, 6) is a normal subgroup of G and let [a,ò] = c, [0,5] = ck, [b,g] = c*, where 
0 < kyl < 1, g G G. Then at least one of the elements g, ag, Ò5, a6p belongs to Cg(íí) and 
g £ H • Cg(H). Therefore G = H ■ Cc{H).

It follows that we can suppose that exp(G) > 4, the commutator subgroup G' = ft(G) 
has order 4 and G contains a two-generator nonabelian subgroup L such that G ^ L-Cc(L).

Let L = (6, d I [6, d] ^ 1) and a G G \ (L • Cc(L)). Then [d,a] or [6, a] is not equal to 
[6, d]. Indeed, in the opposite case, from [a, 6] = [d, 6] and [a, d] = [6, d] we get bda G Cg(L) 
and a G L- Cg{L) which is impossible.

Now we want to prove that we can choose a G G\(L ■ Cc(L)) and ò, d G L such that 
(6, d) = L, [g, 6] = 1, and with the following property:

[o, d] ^ [6, d], [a, d] ^ 1, [6, d] ^ 1. (3)

If [a, d] = 1 then we can put o' = a, ht — d and d' = 6. 
We consider the following cases:
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Case 1. Let [ò, d] = [6, a] ^ [a, d). Then [6, ad] = 1 and we put a' = ad, bf = b and d! = d.
If [a', if] = 1 then ad G Cg{L) which implies that a G L • Cc(L), a contradiction.

Case 2. Let [6, d] = [a, d] ^ [a, 6]. Then [a6, d] = 1 and put a' = aby bf = d and d! = b. If
[a'jd'] = 1 then ab G Cc{L) which gives a contradiction again.

Case 3. Let [a, 6] ^ [a,d] ^ [6,d] ^ [a, 6]. Suppose that all these commutators are not 
trivial. Since |n(G)| = 4, one of these commutators equals to the product of two others and

[a6, bd\ = (a, 6] • [6, d] • [a, d] = 1.

Put a' = ab, bf = bd and d' — d.
In what follows we suppose that L = (6, d) and a G G\(L • Cq{L)) such that [a, 6] = 1 

and the condition (3) is satisfied.
It is easy to see that if (a, b) — {u) is cyclic then from [a, d] / 1 ^ [6, d] we have a = u2k+l 

and b = u2t+1 for some k,t G N, because the squares of all elements in G are central. Then 
ab G Cg{L) Ç L • Cg{L) and a G L • Cc(L), which is impossible. Therefore, (a, 6) is not 
cyclic.

Consider, W = (a, 6, d). Then the commutator subgroup of W has order 4 and

H = (aib) = (al)x(bl).

Clearly W = (ai,6i,d) and \W'\ = 4. It is easy to see that ai and &i can be chosen such 
that condition (3) is satisfied and (ai) fl (b\) = 1.

Let a, ò, d G G with the property (3), [a, 6] = 1 and (a) n (6) = 1. Put H = (a | a2" = 
1) x {b | 62"1 = 1) and W = (a, b} d). Then

G' = Q(G) = tt{H) = (a2" ') x (b2m~’)

and H is a normal subgroup of G.
First, we will prove that g2 G H for every g G G\H. There exists c = g 

c £ H and c2 G H. If k > 1, then c G $((?) C £((?) and we obtain that c2 G £((?) C H and 
c2 = a2*^. Thus, (c“1atí^)2 = 1 and c~la'iP G = Q(Ji). This implies that c G H, 
which is impossible. Therefore, k = 1 and g2 = a2,62j for some i and j, and we have shown 
that g2 G H for all g $ H.

We have [^aW] = a,2n-16r2m-1 for some r, s G {0,1}. It is easy to see that the case 
n > 2 and m > 2 is impossible. Indeed, if n > 2 and m > 2 then a,+,2"~2 • òí+r2m~a • g~1 G 
Q(G) = Q(H) and g G If, which is a contradiction.

Since exp(G) > 4 and for any g gG, g2 = a2’6y for some i}j it follows that exp(H) > 4. 
Thus we may suppose that n > 2 and 6 is an element of order 4.

Now we describe the group W = (a, 6, d) and we distinguish a number of cases according 
to the form of the element d2.

Case 1. Let d2 = a2‘. Since d$ H and a‘d_1 is not of order 2, we have that i = 2 A: +1 is 
odd. Then as (a,+2"_2d-1)2 ^1 we have

(a*+2"”a

2*-' such that

d 1)2 as [a*, d] - a2" ' = [a2k+1, d] • a2" ' = (a, d] • a2" ' / 1.

We conclude that [a, d] ^ a2"-1 and [a, d] = a'2n_162, s G {0,1}, and by property (3) 
[6, d] = a^1+^2n”'ò2 or [6, d] = a2"~'. If [6, d] = a2"”' then a‘+0+*)2"-2^-1 has order 2 and 
does not belong to and this case is impossible.
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Let [a, d\ = a42"“162 and [6,d] = a<1+')2B’'ò2. Then

W = (a, 6, d) = <a*'+2n~V\ ab)

and (a,+2n-ad-1,a(1+J)2n 3 6) is a quaternion subgroup of order 8. Moreover, ab has order 2n 
and [ai+2n~'d-\ab] = a2”-’ = {ab)
Observe that (o^1+^2" 2b, ab) = H.

Case 2. Let d2 — b2. As before,

2*»-i . This shows that W satisfies (iii) of the Theorem.

(a2"~a6d”1)2 = a2n-1[ô,d) # 1.

Therefore, [6,d] ^ a2"-’, and we obtain [6,d\ = a42"-’ • 62, and by property (3) [a,d] = 
a^l+4r)2n_1 •62rJ where r, s € {0,1}. It is easy to see that (bd~l, aa2"~2b) is a quaternion group 
of order 8 and W = (ôd"1, a42"-2ò, aór) is defined as in case 1 and satisfies condition (iii) of 
the Theorem. Moreover, (a42" 2b,abr) = H.

Case 3. Let d2 = a2tb2. Iff is even then a‘ 6 C(G) (da-*)2 = b2. Then W = {a, b, da“*) 
and if we replace d by d! = da~l we obtain d'2 = 62 which is case 2.

Now let d2 = o2,62 and assume i is odd. If [a, d] = a42"-1 • 62, then a,+42"~2 • d-1 6 Í2(if) 
and de d, which is impossible. Therefore, [a,d] = a2”"’ and (al+2"~2 ■ d-1)2 = 62.

If we replace d by d' = a,+2" ad_1, we obtain W = (a, ò, d') and (d')2 = ft2, which is case 
2 and we have that W satisfies (iii) of the Theorem.

This proves that the subgroup W has a system of generators u, v, w such that

W — (w, u,v \ in4 = \,w2 — v2yvw = v l7 u2" = 1, uw = u1+2"-', [w, u] = 1), 

with n > 2 and if = (u, u).
Suppose that there exists g G G\ W. Clearly, G' C W and W is normal in G. Above we 

proved that the squares of all elements of G outside W belong to H and they are central in 
W. Therefore, by the above argument we conclude that g2 = 
where t € {0,1}, s 6 N. It is easy to see that

u2sv2t for every g e G\W,

(g V)2 = [g,u*]g 2u2s - [^,u4]u“2t.

If (5_1w4)2 = 1 then g~lua G Í2(W) Ç W and g £ W, which is impossible. Clearly, 
the order of elements [g7us] and v~2t divide 2 and g~lu4 is an element of order 4. Then 
M = {g~lua,v,wiu2n~ ) is a subgroup of exponent 4 and fi(M) = 0(G). Clearly, M/0.{M) 
is an elementary 2-subgroup of order 16. Therefore, M is a group with four generators. 
By O’Brien’s Lemma, M is isomorphic either to Qg x Qs or to H245 or to 52,2 Y Q&. It is 
impossible, because the centres of these groups have exponent 2 but in M there exists a 
central element u2""3 of order 4. Thus the description of finite good 2-groups is completed.

Now we suppose that G is an infinite good group. We shall prove that G is the direct 
product of the quaternion group of order 8 and the quasicyclic 2-group.

It is easy to see that if G has exponent 4 then G is finite. Indeed, if G is abelian then its 
finiteness follows from the first Priifer’s Theorem ([3], p.173) and the condition |fi(G)| < 4. 
If G is non-abelian then take an ascending chain G\ C C?2 C • • • of finite subgroups of G. 
It follows from the description of finite good 2-groups given above that this chain is finite, 
that is Gn = Gn+i = • ■ • for some n € N. As G is a locally finite, G = Gn, a contradiction.
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Thus, we may suppose that exp(G) > 4. We show now that Ç(G) contains a divisible 
subgroup. Let T2(G) = (g G G \ g4 = 1) and Q2(G) = (g4 | g G G). Then (gh)A = g*h4 
for all g,he G and the map g —> g4 is a group homomorphism of G onto T2(G) with kernel 
U2(G). As ^(G) has exponent 4, by the above paragraph, H2(G) is finite. If C(G) does not 
contain a divisible group, £(G) is finite. Hence, T2(G) Ç £(G) i8 finite too which implies the 
finiteness of G, a contradiction.

We have that <(<?) = Rx P, where 1 ^ P is divisible and R does not contain a divisible 
subgroup. Observe now that Rj= 1 is cyclic, P is quasicyclic and for every non-central g G G 
there exists a non-central element gi € G such that

gi= g (mod P) and (gl) = R.

Indeed, we have that g2 = cd, where c G R,d G P. Taking gi = gd~l with d2 = d we 
get g2 = c, gi = g (mod P). As g\ is non-central, c 1. It follows that R ^ 1 and as 
|fi(G)| = 4, R is cyclic and P is a quasicyclic. Let R = (z | z2" = 1) with n > 1 and
P = (ci,C2,... | cf = l,cj+1 « c*) with k — 1, 2,__ If c = zl with even t, then
g\Z~'l2 is a noncentral element of order 2, which is impossible. Hence, t is odd and (g\) — R, 
as desired in (4).

Next we observe that R has order 2 (ji.e., n = 1). Let g and t be two non-commuting 
elements in G. We have that [#, i] = z2"~ *cj (i,j G {0,1}) and by (4) we can suppose that 
g2 = z*1, t2 = z'2 with i\ = i2 = l (mod 2). Choose mi and m2, such that timi = i2m2 = 1

(mod 2"). If n > 1, then x = pm'i-ma2’2n-a<4 has order 2 and \x,t\ # 1, a contradiction. 
Thus R has order 2 and g2 = t2 = z. If i = 0 then gt~l<i is a non-central element of order 
2, a contradiction. Therefore, [5, t] = z‘c{ and Q = (g(4, tc{) is isomorphic to the quaternion 
group of order 8.

Now we show that G = QxP and this will complete the proof of necessity of the Theorem. 
Fix a noncentral element x of G. There exists an element c G P such that (xc)2 = (<?<4)2. 
Indeed, if j = 0 this follows from (4). In case j = 1 by (4) take xd such that (xd)2 = z. 
Then (xdc2)2 = zci as we need.

It is enough to show that X\ = xc G W = Q x (C3). Suppose that x\ & W. Then 
W\ — (x\ yW) has order 128. As W\ contains an element of order 8, by the description of 
the finite good 2-groups given above, W\ is one of the finite groups listed in (ii) and (iii) of 
the Theorem.

If W\ = Qi x (d I d16 = 1), where Q1 is isomorphic to the quaternion group of order 
8, then W = Q\ x (d2) and as X\ W, x\ = vd for some u G W. Hence, xf = d8 ^ 1, 
contradicting the fact that xj = 1.

If Wi is given by (iii) of the Theorem, then W — (a, 6) x (d2) and Xi = vd for some 
v G W. Then we have again that x8 = d8 ^ 1 which is impossible.

Thus, xi G W and, consequently, G £ Q x C2°°.
We prove the sufficiency by verifying directly that all involutory units commute in KG 

where G is one of the groups listed in the theorem.

(4)
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