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Abstract: The development of nanomaterials has drawn considerable attention in nanomedicine to
advance cancer diagnosis and treatment over the last decades. Gold nanorods (GNRs) and magnetic
nanoparticles (MNPs) have been known as commonly used nanostructures in biomedical applications
due to their attractive optical properties and superparamagnetic (SP) behaviors, respectively. In
this study, we proposed a simple combination of plasmonic and SP properties into hybrid NPs of
citrate-coated manganese ferrite (Ci-MnFe2O4) and cetyltrimethylammonium-bromide-coated GNRs
(CTAB-GNRs). In this regard, two different samples were prepared: the first was composed of
Ci-MnFe2O4 (0.4 wt%), and the second contained hybrid NPs of Ci-MnFe2O4 (0.4 wt%) and CTAB-
GNRs (0.04 wt%). Characterization measurements such as UV-Visible spectroscopy and transmission
electron microscopy (TEM) revealed electrostatic interactions caused by the opposing surface charges
of hybrid NPs, which resulted in the formation of small nanoclusters. The performance of the
two samples was investigated using magneto-motive ultrasound imaging (MMUS). The sample
containing Ci-MnFe2O4_CTAB-GNRs demonstrated a displacement nearly two-fold greater than
just using Ci-MnFe2O4; therefore, enhancing MMUS image contrast. Furthermore, the preliminary
potential of these hybrid NPs was also examined in magnetic hyperthermia (MH) and photoacoustic
imaging (PAI) modalities. Lastly, these hybrid NPs demonstrated high stability and an absence of
aggregation in water and phosphate buffer solution (PBS) medium. Thus, Ci-MnFe2O4_CTAB-GNRs
hybrid NPs can be considered as a potential contrast agent in MMUS and PAI and a heat generator
in MH.

Keywords: Ci-MnFe2O4_CTAB-GNRs hybrid NPs; contrast agent; magneto-motive ultrasound
imaging; magnetic hyperthermia; photoacoustic imaging

1. Introduction

Nanomaterials have been widely exploited in biomedical applications over the past
few decades [1–3]. As an example, gold nanorods (GNRs) are known as promising can-
didates due to their biocompatibility [4], being well-defined in terms of size and having
tunable localized surface plasmon resonance [5]. As a result of these striking properties,
GNRs have attracted significant interest in optical imaging and therapeutic techniques such
as photoacoustic imaging (PAI) and photothermal therapy (PTT) [4,6–8].

In addition, magnetic nanoparticles (MNPs) have been extensively used in a variety
of applications such as biology and biomedicine, owing to their unique features [9–17].
Manganese ferrites (MnFe2O4) are interesting spinel ferrite NPs among the various mixed
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ferrites (Afe2O4) with other transition metal ions (e.g., A = Mn, Ni, Cu, and Zn) due to their
biocompatibility, saturation magnetization, and chemical stability [18–23]. Considering
the advantages of MnFe2O4, these NPs are promising candidates to develop theranostic
platforms, particularly in the field of personalized nanomedicine like magnetic resonance
imaging (MRI) [24,25] and magnetic hyperthermia (MH) [26–28].

Several studies have combined the benefits of iron oxide nanoparticles (IONPs) and
GNRs in magnetic and optical/thermal imaging modalities [29–32]. For example, in PAI,
endogenous chromophores in tissue such as melanin and hemoglobin can generate a no-
ticeable signal; therefore, reducing the sensitivity of PAI to identify the region marked with
the plasmonic NPs. The integration of PAI and MMUS have been proposed to overcome
this barrier by combining magneto-plasmonic NPs [29–33]. Qu et al. created liposomes en-
capsulating IONPs (Fe3O4) and GNRs as a dual-contrast agent for magneto-photoacoustic
imaging to improve contrast in both ex vivo and in vivo studies [29,31,33]. Furthermore,
the same research group [34] suggested using nanoclusters containing gold nanospheres
and IONPs in MMUS imaging to improve the accuracy of effective PTT. More specifically,
MMUS imaging can assess tissue elasticity, which has been identified as a critical parameter
in PTT efficiency evaluation [34]. Although several studies have been conducted using
such hybrid NPs as magneto-plasmonic NPs in biomedical applications, contrast enhance-
ment using citrate-coated manganese ferrite (Ci-MnFe2O4) and cetyltrimethylammonium
bromide-coated GNRs (CTAB-GNRs) in MMUS has not been previously reported.

In the current study, we suggest a hybrid NP, for theranostic purpose, made of Ci-
MnFe2O4 and CTAB-GNRs through a simple combination in which CTAB-GNRs and
Ci-MnFe2O4 were synthesized using a gold-seed-mediated method [35] and a coprecipita-
tion route [27], respectively. The interaction of these NPs was investigated using several
characterizations, including a magnetic separation system (SEPMAG), UV-Visible spec-
troscopy, transmission electron microscopy (TEM), and attenuated total reflection (ATR).
To highlight their stability in physiological media, the colloidal stability of hybrid NPs in
phosphate buffer solution (PBS) at pH 7.4 (physiological pH) was also studied. Moreover,
the performance of using only Ci-MnFe2O4 and its combination with CTAB-GNRs was
investigated in MMUS, as well as their preliminary potential in the PAI and MH.

2. Experimental Section
2.1. Materials

The chemical reagents used were: cetyltrimethylammonium bromide (CTAB), sodium
borohydride (NaBH4), tetrachloroauric acid (HauCl4·4H2O), silver nitrate (AgNO3), and
L-ascorbic acid (AA), which were purchased from Sigma Aldrich (Burlington, MA, USA),
Vetec (Rio de Janeiro, Brazil), Sigma Aldrich (Burlington, MA, USA), Cennabras (São Paulo,
Brazil) and Panreac (Barcelona, Spain), respectively. Milli-Q water was also used for the
preparation and washing solutions.

2.2. Methods
2.2.1. Preparation of Ci-MnFe2O4 NPs

Ci-MnFe2O4 NPs were synthesized via the coprecipitation route by Zufelato et al. [27].
The core, crystal, hydrodynamic sizes, and polydispersity index (PDI) of these MNPs were
16.7, 14, 38 nm, and 0.32, respectively. In addition, Ci-MnFe2O4 had a saturation magnetiza-
tion of 52.54 emu/g (in powder). For further information about MNPs synthesis and char-
acterization, the reader is referred to the Supplementary Material (Figures S1a–c and S2).

2.2.2. Preparation of CTAB-GNRs

GNRs coated by CTAB were manufactured in two steps according to the study of
Morasso et al. [35]: Preparation of gold seed NPs and growth solution.
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Gold Seed NPs

Gold seeds were synthesized according to the study by Morasso et al. [35] with only
one modification by replacing hydroquinone (acting as a reducing agent) with AA. First,
a 5 mL of HAuCl4 solution of 0.5 mM was added to the CTAB solution (200 mM) at
40 ◦C. Next, 0.6 mL of 10 mM fresh ice-cold NaBH4 was added under vigorous stirring.
The mixture’s color changed rapidly to light brown, confirming the formation of small gold
NPs [5,35]. The stirring was continued for 20 more minutes. A schematic illustration of the
gold seed preparation is shown in Figure S3a.

Preparation of Growth Solution

In the next step (the growth solution), we added 55 µL of AA, 200 µL of AgNO3
solution (4 mM), and 5 mL of HauCl4 solution (1 mM), respectively, to 80 mM of CTAB
under vigorous stirring. Thereafter, 12 µL seed suspension was added to the growth
solution [35], as shown in Figure S3b. The mixture was then stirred for 60 min. The color of
the solutions changed to light ruby after 20 min, indicating the formation of GNRs.

Purification of CTAB-GNRs

As mentioned earlier, the GNRs were stabilized by CTAB; therefore, the suspension
containing CTAB-GNRs was centrifuged to remove any excess of CTAB due to its cytotoxi-
city. The GNRs were precipitated at the bottom of the solvent after 8 min of centrifugation
at 7000 rpm (Eppendorf 5415D Microcentrifuge with Rotor F45-24-11). The GNRs were
then resuspended in Milli-Q water, depending on the amount of residue. Finally, the GNR
suspension was kept at room temperature.

2.2.3. Preparation of Ci-MnFe2O4_CTAB-GNRs Hybrid NPs

The concentrations of the stock dispersion of CTAB-GNRs and Ci-MnFe2O4 were
0.35 wt% and 3 wt%, respectively. A hybrid NP dispersion with lower concentration was
papered for both MMUS and MH experiments, such that it consisted of 0.04 wt% CTAB-
GNRs and 0.4% Ci-MnFe2O4 NPs. The MMUS experiments were conducted using samples
of 900 µL volume; that is, 103 µL of CTAB-GNRs and 120 µL of Ci-MnFe2O4 were taken
from their corresponding stock and dispersed in solution of 6 wt% gelatin to reach the final
volume of 900 µL. For MH experiments, the samples were prepared by dispersing 66 µL
Ci-MnFe2O4 and 57 µL CTAB-GNRs of the stocks in water to reach the final volume of
500 µL (the same concentration as in MMUS samples). Prior to the experiments, these
hybrid NPs were mixed using a 3D rotation mixer for 24 h to allow their interactions
to occur.

2.3. Characterization of NPs

Various techniques were used to characterize NPs. Spectrophotometric analysis,
in the visible and near-infrared regions, was used to determine the optical properties
that provide information about the size of the gold seeds and GNRs via the plasmonic
band and to investigate the interaction of Ci-MnFe2O4_CTAB-GNRs. The experiments
were conducted using a UV spectrometer (Ultrospec 2100 pro, Amersham Pharmacia
Biotech, Amersham, UK) with a resolution of 0.5 nm operating in the wavelength range
of 200–900 nm. Furthermore, TEM measurements were performed on a JEOL-JEM-100
CXII (Peabody, MA, USA) to verify the structure and size of CTAB-GNRs and Ci-MnFe2O4,
as well as to confirm the electrostatic interaction of hybrid NPs made of Ci-MnFe2O4
and CTAB-GNRs. A droplet of the desired suspension was dried on the copper grid at
room temperature for TEM samples. The ImageJ software was used to calculate the mean
diameters from TEM images (more than 200 particles per sample were counted). The
Origin® software 2019b (OriginLab, Northampton, MA, USA) was then used to plot the
histograms of NPs dimensions obtained from the TEM images.
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XRD (D5005 Diffractometer, Bruker-AXS, São Paulo, Brazil) analysis was used to de-
termine the crystalline properties and phase identification, with X-ray beam nickel-filtered
copper K radiation (=1.5406) in the range 10◦ < 2θ◦ < 70◦. Next, the hydrodynamic di-
ameter, PDI, and Zeta potential of NPs were determined by dynamic light scattering
(DLS) and using a Zetasizer Nano ZS (Malvern Instrument, Malvern, UK). The data
were measured at a fixed angle (173◦) and an Nd: YAG laser (532 nm). Following that,
an attenuated total reflectance (ATR) accessory coupled to a Fourier-transform infrared
spectrophotometer (FTIR) was used to investigate CTAB molecule binding on the sur-
face of GNRs, the functionalization surface of MnFe2O4 coated with sodium citrate, and
particle interaction.

Next, the magnetic properties of Ci-MnFe2O4 and its combination with CTAB-GNRs
were investigated by a vibrating sample magnetometer (VSM, EG&G Princeton Applied
Research Magnetometer, São Paulo, Brazil) at room temperature using powder samples.
Then, a magnetic separation system (SEPMAG, Barcelona, Spain) was used to verify
the interactions between Ci-MnFe2O4 and CTAB-GNRs. More details about magnetic
separation measurement are described in the following section.

2.3.1. Magnetic Separation

A magnetic separation system was used to measure the separation time of the afore-
mentioned NPs, which highly depends on particle size distribution [10,36]. In this study,
we used a magnetic separation system to examine the interaction between Ci-MnFe2O4 and
CTAB-GNRs by measuring the separation time of Ci-MnFe2O4 and Ci-MnFe2O4_CTAB-
GNRs samples separately.

This system is based on the movement of MNPs under the influence of magnetic
field gradients. This phenomenon is known as magnetophoresis, which is defined by the
magnetophoretic velocities of the MNPs as a result of the separation time parameter [37,38].
The equipment contains two small cylindrical cavities with a volume of 2 mL and a
third with a larger volume (15 mL). In this device, a homogeneous magnetic gradient of
15 T/m was applied by permanent magnets to create uniform magnetophoretic conditions
for the three cavities. The magnetic force acting on magnetic particles can be defined as
follows [39,40]:

F = mµ0
∂H
∂r

(1)

in which µ0 is the vacuum magnetic permeability constant, ∂H
∂r is the radial component of

the magnetic gradient, and m is the magnetic moment of the particle, which is expressed
as follows:

m = Msρρ
4
3

πR3 (2)

MS, ρρ, and R are the saturation magnetization per unit mass of the colloid, the particle
density, and the particle hydrodynamic radius, respectively. There is also the drag force
opposing the magnetic field motion, which is given by [39]:

Fd = 6πηRv (3)

in which η is the viscosity of the fluid and v is the velocity of the particles. Therefore,
the particles move toward the walls with a magnetophoretic velocity determined by the
balance of the forces in Equations (1) and (3) [41,42]:

ν =
2MsρρR2

9η
(4)

It should be noted that this system includes an optical sensor for measuring the
transmitted light, which is produced by an LED array. The opacity of the sample changes
over time during the process [36]. To be more precise, the maximum opacity is observed
at the beginning of the process (t0) due to the solution’s homogeneity. Half separation
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time (t50), which is the time when the opacity decreases by 50%, is employed to examine
the magnetophoretic behavior of the samples. A schematic illustration of the magnetic
separation process is shown in Figure 1.
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Figure 1. A schematic top view of the magnetic separation setup, which has three cavities with a
volume of 2 mL for two tubes and 15 mL for the third tube. The red arrows indicate the movement of
MNPs under the influence of magnetic field gradients.

2.4. Gelatin Tissue-Mimicking Phantom

Gelatin/agar tissue-mimicking phantoms were prepared to perform the MMUS and
PAI experiments. This preparation consisted of two steps. First, the inclusion was prepared
using a hemispherical mold (1 cm in diameter). To do so, 6 wt% gelatin (GELITA, São
Paulo, Brazil) was dissolved in deionized water at 25 ◦C and heated to 70 ◦C to obtain
a homogeneous solution. When the temperature reached 70 ◦C, the solution was kept
at room temperature and slowly mixed to cool down to 40 ◦C; formaldehyde was then
added considering 5 wt% of the gelatin’s mass [43]. Finally, the phantom was placed in the
refrigerator for 24 h [3]. Three different inclusions were manufactured as follows: the first
inclusion was made of only 0.40 wt% Ci-MnFe2O4, the second was prepared using hybrid
NPs of 0.40 wt% Ci-MnFe2O4_0.04 wt% CTAB-GNRs, and the last sample was also made of
hybrid NPs with the concentration of GNRs increased to 0.07 wt%. Since this study mainly
focused on magnetic applications, low concentrations of CTAB-GNRs (0.04 and 0.07 wt%)
were utilized to investigate their impact after mixing with 0.40 wt% Ci-MnFe2O4 on the
MMUS contrast.

The next step was to assemble the background of the phantoms with a cylindrical
mold (7 cm in diameter and 2.5 cm in height). This part of phantom was made using the
same procedures as previously described for inclusion preparation [10], but with a single
modification of mixing 6 wt% gelatin with 3 wt% agar (HIMEDIA supplied Bacteriologic
CAT. RM026, Thane, India). In this case, the solution was heated to 90 ◦C to achieve
a uniform mixture. Three samples of each phantom type were created for a total of
six phantoms.

2.5. MMUS Experimental Setup

The MMUS experimental setup consisted of a coil with 130 turns, an inner diameter
of 22 mm, 114.2 µH of inductance, and 217.9 mΩ of DC resistance. A steel core of 20 mm
diameter with a coercivity of 20 A/m was inserted in the center of the coil to enhance
and focus the magnetic field. The tip of the steel core was positioned 2 mm away from
the phantom’s central region. The system also included a half-drive inverter to charge
the capacitor bank once it reached the desired voltage. After charging the capacitor, an
electronic switching device and the coil generated the magnetic field pulse. For further
information about the MMUS setup, please refer to Mazon et al. [44]. A multichannel
ultrasound pulse/echo system (Sonix RP + Sonix DAQ, Ultrasonix) was then used to track
the induced displacement of the internal structure (in the order of micrometers) by a cross-
correlation method [45]. It should be mentioned that the US acquisition was synchronized
with the magnetic excitation through a computer using a LabVIEW interface. This system
operated with a frame rate of 4 kHz, and the magnetic pulse duration varied from 4 to
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8 ms [44]. The maximum magnetic field applied 2 mm from the tip of the core was 740 mT.
A schematic of the pulsed MMUS setup is shown in Figure S4.

2.6. PAI Setup

The PAI measurements were carried out using an Nd: YAG laser (Brilliant B, Quantel,
Les Ulis, France) coupled to an optical parametric oscillator (MagicPRISM, Opotek, Carls-
bad, CA, USA). The optical beam was delivered to the phantom via a trifurcated optical
fiber bundle (Oriel Instrument, Newport, RI, USA) attached to a linear L14-5/38 ultrasound
transducer (Ultrasonix Medical Corp., Richmond, BC, Canada). A parallel acquisition
module (SonixDAQ, Ultrasonix, Richmond, BC, Canada) was used to collect PA data [46].
GNRs are commonly used as photo-absorbers in PAI due to their excellent optical absorp-
tion property; the first phantom was made using only a low concentration of CTAB-GNRs
(0.04 wt%). The second and third phantoms contained 0.4 wt% Ci-MnFe2O4 and hybrid
NPs of 0.4 wt% Ci-MnFe2O4 0.04 wt% CTAB-GNRs, respectively, similar to those used
for MMUS. Thus, the potential of hybrid NPs for PAI was examined. For each phantom,
49 frames were acquired and averaged to obtain the PA images using the optical wavelength
of 750 nm, corresponding to the longitudinal absorption peak of the CTAB-GNRs. The laser
energy level was recorded to compensate for pulse-to-pulse variation, and the beam mean
energy at the phantom surface was 10.30 ± 0.37 mJ, 10.23 ± 0.38 mJ, and 9.71 ± 0.39 mJ,
for phantoms 1, 2, and 3, respectively.

2.7. MH Experiments

This experiment was conducted using a homemade MH system [47]. The applied
magnetic field had a sinusoidal and continuous profile with amplitude of 10 mT at
132 kHz. Three samples containing Ci-MnFe2O4 (0.4 wt%) and the hybrid NPs of Ci-
MnFe2O4 (0.4 wt%)_CTAB-GNRs (0.04 wt% and 0.07 wt%) were dispersed in Milli-Q water
and positioned on a holder inside a solenoid. The diameter and height of this solenoid are
14 and 87 mm, respectively, and it can generate a homogeneous magnetic field across the
entire sample volume. A fiber optic thermometer system (Qualitrol NOMAD-Touch Fiber
Optic Monitor, QC, Canada) was used to record the temperature of the samples [48–50].
Moreover, the power dissipated and converted into heat by both samples was calculated
using the specific loss power (SLP) expression as shown below [48]:

SLP =
Cwmw

mnp

∆T
∆t

(5)

The Box–Lucas equation was used to fit the results of temperature versus time, accord-
ing to the reference [49,51] in which: Cnp is the volume-specific heat capacity of the sample,
mnp is the MNPs’ mass, mw is the mass of the dispersion (which is water), and Cw is the
specific heat capacity of water. In addition, the intrinsic loss power (ILP) was also calculated
to provide a better comparison with the SLP values reported in other studies [49].

3. Results and Discussion

UV-Vis/near-infrared measurements of gold seeds were conducted to confirm the
formation of gold seeds (Figure S5a). Their size should be small (around 5 nm) to ensure
that gold seed NPs could be used in the following procedure (growth solution). As a result,
no plasmonic peak was expected to be observed in the range of 500 to 520 nm (Figure S5a).
In addition, the TEM image showed the generation of gold seeds with spherical morphology
and a size of about 5 ± 1 nm (see Figure S5b), which agrees with the literature [5,35].

Furthermore, the UV-Visible spectra of CTAB-GNRs revealed transverse and longi-
tudinal plasmon bands at 515 and 744 nm, respectively, providing information about the
size and shape of GNRs (Figure S6a). The TEM image of GNRs depicted that they are
rod-shaped and uniform in size, as shown in Figure 2. The average length and width of
CTAB-GNRs were 42.3 ± 4.1 nm and 15.31 ± 1.5 nm, respectively, with an aspect ratio of
2.76 (Figure S6b,c).
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Figure 2. TEM images of CTAB-GNRs in the scale bar of 100 nm.

In this study, hybrid NPs containing 0.4 wt% Ci-MnFe2O4 and 0.04 wt% CTAB-GNRs
were thoroughly investigated. However, as another example, partial results of 0.4 wt%
Ci-MnFe2O4 and 0.07 wt% CTAB-GNRs are presented here, such as hydrodynamic size,
Zeta potential, MMUS, and MH.

The UV-Visible measurement was then carried out to confirm the interactions be-
tween CTAB-GNRs and Ci-MnFe2O4. The normalized optical absorbance spectra of the
suspensions containing CTAB-GNRs, Ci-MnFe2O4, and hybrid NPs are shown in Figure 3.
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(red), and Ci-MnFe2O4_CTAB-GNRs hybrid NPs (blue).

The longitudinal peak of CTAB-GNRs can be seen at 744 nm, while the plasmonic band
of CTAB-GNRs showed a redshift to 764 nm after mixing with Ci-MnFe2O4. The band at
764 nm is related to the CTAB-GNRs, revealing a redshift of the plasmonic band, which has
a broader peak upon interaction with the Ci-MnFe2O4. Other studies have reported similar
results [29,31]. Furthermore, a small absorption peak at around 650 nm was observed
for hybrid NPs (blue curve), which could be due to the formation of clusters, which
decreases the extinction coefficient because of the presence of larger particles. As a result,
the plasmonic intensity of the dipole mode decreases, making the plasmonic band of the
GNRs with smaller aspect ratios more noticeable, which was previously embedded/hidden
by the high-intensity longer wavelength dipolar plasmon band [52–54].

Figure 4a,b show TEM images of the interaction between Ci-MnFe2O4_CTAB-GNRs
hybrid NPs (red circles). Since the GNRs coated with CTAB had a positive surface charge,
and the manganese ferrite stabilized by a capping agent of citrate had a negative surface
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charge, it was expected to generate an electrostatic attraction between these NPs (red circles).
These results agree with the study by Truby [55], which showed excellent decoration of
TREG SPIONs (positive charge) around the surface of the GNRs (negative charge) owing
to charge affinity. In addition, small nanoclusters of Ci-MnFe2O4 were formed (yellow
rectangular) after adding CTAB-GNRs to Ci-MnFe2O4 due to a charge imbalance in the
medium. As expected, only a few CTAB-GNRs are observed compared to Ci-MnFe2O4
in the TEM images of hybrid NPs (Figure 4a,b). The reason could be the low amount of
CTAB-GNRs used (0.04 wt%), while the concentration of Ci-MnFe2O4 used was much
higher (nearly ten times greater (0.4 wt%) than CTAB-GNRs) in this study. Thus, more
Ci-MnFe2O4 compared to CTAB-GNRs was expected to be observed in TEM images. The
average particle size of nanoclusters was estimated to be around 48 ± 12 nm, as shown
in Figure 4c.
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Figure 4. (a,b) TEM images and (c) histogram of nanoclusters of Ci-MnFe2O4 (yellow rectangular)
and 0.4 wt% Ci-MnFe2O4_0.04 wt% CTAB-GNRs hybrid NPs (red circles). The scale bar corresponds
to 200 nm.

Zeta potential was used to analyze the stability of the employed NPs (Table 1). GNRs
coated with CTAB and MnFe2O4 capped with sodium citrate demonstrated a Zeta po-
tential of +41 mV and −43.5 mV, respectively, indicating that the NPs surfaces were
adequately coated and produced stable colloids, as shown in Table 1. After combining dif-
ferent concentrations of CTAB-GNRs with Ci-MnFe2O4, they maintained good stability at
−30.4 mV and −31.1 mV. Following the classical colloidal theory, suspension stability can
be interpreted as the balance between repulsive forces (with electrostatic origin) and attrac-
tive forces (generally associated with van der Waals interactions) [56]. The Zeta potential
values found for individual NPs (i.e., +41 mV and −43.5, respectively, CTAB-GNRs and
Ci-MnFe2O4) correlate with a sufficient repulsive force to attain better physical colloidal sta-
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bility. When these two particles interact, the net charge of the hybrid NPs decreases, and the
electrostatic repulsion weakens [57]. This condition favors attractive forces to dominate the
interaction between individual NPs of the hybrid NPs, reducing the electrostatic stability
(Zeta potential = −30.4 mV and −31.1 mV for 0.4 wt% CiMnFe2O4_0.04 wt% CTAB-GNRs
and 0.4 wt% CiMnFe2O4_0.07 wt% CTAB-GNRs, respectively). Furthermore, the stability
of hybrid NPs of 0.4 wt% Ci-MnFe2O4_0.04 wt% CTAB-GNRs was repeated after 6 months,
and it maintained its stability (−31.6 mV) with no sedimentation. The colloidal stability of
both hybrid NPs dispersed in PBS at pH 7.4 (physiological pH) was also investigated [58].
Surprisingly, in PBS buffer with pH 7.4, these hybrid NPs showed high stability (Table 1),
and after immersion in PBS medium, their average hydrodynamic sizes did not change. It
should be noted that the minor difference in hydrodynamic size and PDI of hybrid NPs
dispersed in water or buffer is most likely due to a difference in the concentration used, as
DLS analysis is highly concentration dependent. In addition, slightly higher PDI values
after immersion in PBS could be attributed to the lack of ultrasonication for NPs prior to
DLS measurements. As a result, these hybrid NPs could maintain their dispersion stability
and absence of aggregation in physiological conditions.

Table 1. Zeta potential, hydrodynamic size, and PDI of CTAB-GNRs, Ci-MnFe2O4, and hybrid NPs
in water. Hybrid NPs were also examined in a PBS medium.

Samples Solution Zeta Potential
(mV)

Hydrodynamic Size
(nm) PDI

CTAB-GNRs Water 41 - -
Ci-MnFe2O4 Water −43.5 38 0.32

0.4 wt% Ci-MnFe2O4_0.04
wt% CTAB-GNRs Water −30.4 43 0.34

0.4 wt% Ci-MnFe2O4_0.07
wt% CTAB-GNRs Water −31.1 37.5 0.33

0.4 wt% Ci-MnFe2O4_0.04
wt% CTAB-GNRs PBS −37.3 38 0.4

0.4 wt% Ci-MnFe2O4_0.07
wt% CTAB-GNRs PBS −33.8 44 0.4

Some studies have suggested that the GNRs can be coated with polyethylene glycol
(PEG), polystyrene sulfonate (PSS), and polyallylamine hydrochloride (PAH) to improve
the stability and overcome cytotoxicity of CTAB [8,55,59]. Meanwhile, other factors such as
size and concentration influence on the toxicity of GNRs and should be considered [8]. Our
results reinforce the relevance of physical characterizations using physical phantoms for
this kind of NP prior to addressing safety and reliability issues before in vivo assays.

The ATR-FTIR spectra of CTAB-GNRs (blue line) confirmed the adsorption of the
surfactant at the surface of the NP (Figure 5) due to the presence of bands at 2848 and
2916 cm−1 assigned to the C–H symmetric and antisymmetric stretching. The less intense
band at 1480 cm−1 is related to the amine group of the quaternarium ammonium salt.
Moreover, the region of 961 and 910 cm−1 can be related to the presence of N(CH3)2 group.
The FTIR spectrum of Ci-MnFe2O4 (red line) exhibits the presence of bands at 1388 cm−1

and 1586 cm−1, which are assigned to the symmetric and antisymmetric stretchings of C-O,
respectively. The broad band related to the vibration of -OH at 3390 cm−1 also confirmed
the existence of adsorbed citrate molecules on the MnFe2O4 surface. The displacement of
the OH- and C-O-related bands in the FTIR spectrum of Ci-MnFe2O4_CTAB-GNRs (black
line) to a lower/higher wavenumber suggests the interaction between the two NPs by
hydrogen bonding [60], assisted by the presence of CTAB and citrate on the surfaces.

Furthermore, the magnetophoretic behavior of both samples was studied. Based on the
obtained results, the separation time of Ci-MnFe2O4 (422.12 s) considering an intermediate
stage (t50) was significantly longer than that of Ci-MnFe2O4_CTAB-GNRs hybrid NPs
(50.52 s), as shown in Figure 6, indicating the presence of larger NPs or clustering in the
environment. According to Equation (1), the attractive magnetic force rises as the size of the
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hybrid NPs increases due to the presence of nanoclusters compared to Ci-MnFe2O4. Thus,
hybrid NPs in the solution moved faster toward the tube wall (Equation (4)), resulting in a
shorter separation time. These results can confirm the interactions between Ci-MnFe2O4
and CTAB-GNRs and the presence of larger hydrodynamic particle sizes. Our results
agree with the study of Leonie Wittmann et al. [61], who investigated the effect of MNP
movement along a magnetic field gradient on hydrodynamic particle size and found that
larger NPs had a quicker separation time.
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Figure 6. The magnetophoretic curve of Ci-MnFe2O4 and its combination with CTAB-GNRs.

Figure 7 shows the M-H curves of Ci-MnFe2O4 and its combination with CTAB-GNRs
in the applied field of −10 to +10 kOe at room temperature, considering the total mass.
The magnetization of both samples exhibits superparamagnetic behavior. The saturation
magnetization for both samples (MnFe2O4 with and without CTAB-GNRs) was almost the
same at 52.54 emu/g and 52.8 emu/g, respectively. Since the CTAB-GNRs concentration
was too low (0.04 wt.% for the hybrid NPs), there was no effect on the magnetization results,
and both samples reported similar magnetization saturation in a high field (10 kOe).
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Figure 7. Magnetization curves of Ci-MnFe2O4 and its combination with CTAB-GNRs were recorded
by a VSM, considering the total mass of each sample.

The next step was to perform the MMUS measurements using the gelatin–agar phan-
toms containing inclusions labeled with Ci-MnFe2O4 (0.4 wt%) and hybrid NPs of Ci-
MnFe2O4 (0.4 wt%)_CTAB-GNRs (0.04 wt% and 0.07 wt%). For example, a B-mode and
an MMUS image of a phantom containing hybrid NPs of 0.4 wt% Ci-MnFe2O4_0.07 wt%
CTAB-GNRs are illustrated in Figure 8a,b, respectively. Figure 8b depicts the induced
displacement of approximately 30 µm, displaying the inclusion region (where the NPs
are located). Figure 8c shows the induced displacements for three phantoms using three
different magnetic pulse widths with the same magnetic field amplitude. The induced
displacement of a phantom labeled with 0.4 wt% Ci-MnFe2O4_0.07 wt% CTAB-GNRs
hybrid NPs was significantly greater at around 30.6 ± 4.16 µm than that of 0.4 wt% Ci-
MnFe2O4_0.04 wt% CTAB-GNRs (19.42 ± 2.9 µm) and the sample labeled with 0.4 wt%
Ci-MnFe2O4 (8 ± 1 µm). Mehrmohammadi and Yoon et al. [62,63] also found that us-
ing small nanoclusters of MNPs with a size of 55 nm resulted in higher displacements
for pulsed MMUS than using individual MNPs. Hence, a similar outcome was ob-
served in our work by generating nanoclusters, which agrees with Mehrmohammadi and
Yoon et al. [62,63].

Furthermore, since GNRs have remarkable optical properties, these hybrid NPs were
also preliminarily examined as PAI contrast agents. Figure 9a represents the PA image
for the tissue-mimicking phantom only containing CTAB-GNRs (as an inclusion), and
Figure 9b,c show the images of the phantoms containing Ci-MnFe2O4 and hybrid NPs
(Ci-MnFe2O4_CTAB-GNRs), respectively. Based on the results, although GNRs have been
considered one of the most common metal NPs in PAI, the concentration used herein
was very low (0.04 wt%); therefore, the obtained PA signal was not strong. The optical
absorption for the next sample (only labeled with a high concentration of Ci-MnFe2O4)
was boosted, which improved the image contrast, as shown in Figure 9b. The last sample
(Figure 9c) containing the hybrid NPs also demonstrated a strong PA signal (like Figure 9b)
since the number of particles increased by mixing Ci-MnFe2O4 and CTAB-GNRs. The
signal-to-noise ratio (SNR) of the samples was also depicted in Figure 9d, and based on
the results, the sample containing hybrid NPs reported a larger SNR (152.7) than that of
Ci-MnFe2O4 (142.6) and GNRs (90.03). Therefore, these hybrid NPs may be applied as a
plausible contrast agent for PAI.
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Figure 8. (a) The B-mode, (b) MMUS image of the phantom containing hybrid NPs of 0.4 wt%
Ci-MnFe2O4_0.07 wt% CTAB-GNRs, and (c) the induced displacements for phantoms containing
Ci-MnFe2O4 and Ci-MnFe2O4_CTAB-GNRs hybrid NPs.

Nanomaterials 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

 

 
Figure 9. (a) PA images of the phantoms containing 0.04 wt% CTAB-GNRs, (b) 0.4 wt% Ci-MnFe2O4, 
and (c) 0.4 wt% Ci-MnFe2O4_ 0.04 wt% CTAB-GNRs. The images cover a 25 mm by 40 mm area. (d) 
The SNR of PAI using different phantoms. 

Additionally, the potential of both hybrid NPs of Ci-MnFe2O4_CTAB-GNRs was also 
initially verified in MH as another application using the magnetic field with characteristics 
described in Section 2.7. Figure 10 shows the temperature variation as a function of time 
for all samples (0.4 wt% Ci-MnFe2O4 (sample 1), 0.4 wt% Ci-MnFe2O4_0.04 wt% CTAB-
GNRs (sample 2), 0.4 wt% Ci-MnFe2O4_0.07 wt% CTAB-GNRs (sample 3)) and water (as 
a reference). SLP and ILP values of samples 1, 2, and 3 were 25.5 W/g, 3.02 nHm2kg−1, 24.6 
W/g, 2.9 nHm2kg−1, and 23.8 W/g, 2.73 nHm2kg−1, respectively. Due to the low 
concentration of IONPs used, the samples’ heating efficiency is less than 30 W/g. Although 
the SLP values, which are based on the initial slope of the heating curve, were almost 
similar for the three samples, the equilibrium temperature was higher for samples 2 and 
3 (red and blue curves). One possible explanation is a better arrangement of magnetic 
anisotropy axes in the hybrid nanoclusters, possibly during AC field excitation. Brownian 
rotation helps orient the magnetic anisotropy axes of the MNPs, slightly enhancing the 
hyperthermia. Note that there is no contribution from the GNRs since the eddy’s current 
loss at this size is negligible. Further studies may help to evaluate if the GNRs are 
influencing the Néel collective relaxation of the aggregates of manganese ferrite NPs 
coupled to the GNRs [27]. Nevertheless, these hybrid NPs may be used similarly to Ci-
MnFe2O4 as a feasible heat generator for MH. 

Figure 9. (a) PA images of the phantoms containing 0.04 wt% CTAB-GNRs, (b) 0.4 wt% Ci-MnFe2O4,
and (c) 0.4 wt% Ci-MnFe2O4_ 0.04 wt% CTAB-GNRs. The images cover a 25 mm by 40 mm area.
(d) The SNR of PAI using different phantoms.

Additionally, the potential of both hybrid NPs of Ci-MnFe2O4_CTAB-GNRs was also
initially verified in MH as another application using the magnetic field with characteristics
described in Section 2.6. Figure 10 shows the temperature variation as a function of time
for all samples (0.4 wt% Ci-MnFe2O4 (sample 1), 0.4 wt% Ci-MnFe2O4_0.04 wt% CTAB-
GNRs (sample 2), 0.4 wt% Ci-MnFe2O4_0.07 wt% CTAB-GNRs (sample 3)) and water (as
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a reference). SLP and ILP values of samples 1, 2, and 3 were 25.5 W/g, 3.02 nHm2 kg−1,
24.6 W/g, 2.9 nHm2 kg−1, and 23.8 W/g, 2.73 nHm2 kg−1, respectively. Due to the low
concentration of IONPs used, the samples’ heating efficiency is less than 30 W/g. Although
the SLP values, which are based on the initial slope of the heating curve, were almost similar
for the three samples, the equilibrium temperature was higher for samples 2 and 3 (red and
blue curves). One possible explanation is a better arrangement of magnetic anisotropy axes
in the hybrid nanoclusters, possibly during AC field excitation. Brownian rotation helps
orient the magnetic anisotropy axes of the MNPs, slightly enhancing the hyperthermia.
Note that there is no contribution from the GNRs since the eddy’s current loss at this
size is negligible. Further studies may help to evaluate if the GNRs are influencing the
Néel collective relaxation of the aggregates of MnFe2O4 NPs coupled to the GNRs [27].
Nevertheless, these hybrid NPs may be used similarly to Ci-MnFe2O4 as a feasible heat
generator for MH.
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