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Introduction

In [5], M Freedman and R. Scora have constructed exotic examples of co-compact topologicil group
actions on the 3-dimensional sphere $3 with’wild Cantor sets as their limit sets.

Their groups have interesting features: each element of a group is individually conjugate to a
conformal (hyperbolic) transformation of $3, but the whole group is not topologically conjugate to
a conformal group; so the wildness of the limit set arises from the interplay .of the generators and
not from the dynamics of any element alone.
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They conjectured in [6] that if a group acts conformally on §3 with limit set homeomorphic to a
Cantor set and with compact quotient of the domain of discontinuity, then that Cantor set is tame.

The purpose of this paper is to exhibit explicit examples of conformal groups - Kleinian groups -
acting on S3, whose limit sets are wild Cantor sets. As opposed to the Freedman-Scora examples,
the groups we constructed have non-compact quotients, they contain lots of parabolic elements. We
will call those groups Fake Schottky type groups (or FST-groups).

We will present three different constructions of FST-groups. It is interesting to note that we
obtain in this way examples of non-equivalent wild Cantor sets in 53,

In the first example we use Klein’s Combination Theorem to build FST-groups from Schottky
type groups. The key point in this part is in constructing the Schottky type group (acting on 5%)
with non-standard isometric fundamental domain.

It should be noted here that the first attempt to construct FST-groups was made by M. Bestvina
and D. Cooper [1], but unfortunately their paper contains a gap (see comments below). Nevertheless
their idea is beautiful and fruitful. Our second example is in fact a realization of their idea.

The third construction is a generalisation of the first one. Using this construction we obtain the
following result. For any positive integer N there are at least ¥ free FST-groups acting on §° with
the same rank k(N) which uniformize N non-homeomorphic manifolds. Moreover, the limit sets of
these groups are non-equivalent wild Cantor sets.

The organization of the paper runs as follows. In section 1 we review Kleinian groups and discuss
some examples including M. Bestvina and D. Cooper’s one. The first and the second constructions
are given in sections 2 and 3 respectively. Section 4 contains the topological part of the proofs.
In section 5 we present the third construction. In section 6 we prove that the extensions of the
FST-groups we constructed to the action on 4-dimensional sphere are Schottky type groups.

1 Preliminaries

1.1 We denote the Euclidean n-space by E*. We will write a point 2 € E™ as z = (z1,...,24)-
The unit sphere in E® is S = {z € E" : |z]| = 1}, the open unit ball is B = {z € E* : |z] < 1}, and
the upper half space i—s H" = {z = (£1,....,2a) € E® : z, > 0}. The one point compactification
of E™ is denoted by E™ or S". The natural inclusion of E*~! into E™ is given by E*-! = {z =
(z1,.--,2s) € E* : 2, = 0} and extends to the one point compactifications, so that we have
Er-! = gH".

1.1.1 The differential metric on H" is given by ds? = (dz} + ...+ dz2)/x2. With this metric H"
is a model of hyperbolic space.

1.1.2 Let M(n) be the group of all orientation preserving Mdbius transformations of E", that js,
each element of M(n) is a composition of a finite (even) number of inversions in spheres in E*. This
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group is isomorphic to the connected component of the unity of the Lorentz group SO(n +1,1). In
dimension n = 2 there is also a canonical identification of M(2) with PSL(2,C).

1.1.3 It is well known that there is a natural embedding of M(n) into M(n + 1), that is, for cach
g € M(n) there is a g® € M(n + 1) such that ¢°|g, = g and g=(H**+!) = H™,

We remark also that M(n) is both the full group of orientation-preserving isometries of H*+!
and also the full group of orientation-preserving conformal mappings of E™.

1.2 Classification of the elements of M(n)

1.2.1 Every element g € M(n) has at least one fixed point in the closure of H**!, If g has a fixed
point in H™tY, then it is elliptic if g is not elliptic, and has exactly one fixed point on §H™*}, then
it is parabolic; otherwise, it is Joxodromic. A loxodromic transformation which is conjugate to a
dilation z — Az, 00 — 00, A > 0 A # 1, is called hyperbolic.

1.2.2 In dimension n = 2 we may identify M(2) with PSL(2,C).

Proposition 1.1 Let g € PSL{2, C), and lct Tr?(g) denote the square of the trace of a matriz in
SL(2,C) representing g. Then:

1. Tr?(g) is real with 0 < Tr?(g) < 4 if and only if g is elliptic;
2. Tr*(g) = 4 if and only if g is either parabolic or the identity;
3. Tr¥(g) is real with Tr%(g) > 4 if and only if g is hyperbolic;

4. Tr*(g) is not in the interval [0, 00) if and only if g is lorodromic, but not hyperbolic.

1.3 Isometric spheres

For a transformation g € M(n) with g(0o) # oo, the isometric sphere ( isometric circle in dimension
2) I(g) of g is defined by I(g) = {xr € E* : ||D.g|| = 1}.

Proposition 1.2 A transformation ¢ € M(n) such that g(c0) # oo can be written in the form
g = O o g op, where p is the inversion in I(g); q is the reflection in the bisector of the centers of
I(g) and I(g~*) if I(g) # 1{9~"), or the reflection in an arbitrary hyperplane in E" passing through
the center of I(g) if I(g) = I{(g~'); and O is a rotation around the center of I(g™").

In particular, for dimension 2 we have:



Proposition 1.3 The transformation g € M(2) with g(00) # oo has the following Jorm
r2eil#+22)
9(z)=f - ——,

zZ—-0

where a € C is the center of I(g), T is its radius, B is the center of I(g~'), A is the angle which
the bisector of a and f (if distinct) makes with the imaginary azis (or the angle of a line passing
through a if a = ), and 8 is the angle of rotation around 3.

1.4 Kleinian groups

Let T be tsubgn;up of M(n). We say that the acticlm of T at a point z € E" is discontinuous if
1. The stabilizer I'; = {g € I' : gz = z} is finite;
2. There is a neighborhood U of z such that g(U)NU = @forallge I'\T,.

The set of points at which the action of T is discontinuous is called the regular set, and is denoted
by R(T). Its complement L([') = E"\ R(T') is called the limit set of I'. A group I is called Kleinian
if R(T) # @. An elementary group is a Kleinian group whose limit set has a finite number of points.

1.5 Fundamental domains

A fundamental domain D for the Kleinian group I is an open subset of R(T') such that:
1. ¢(D)N D =@, for all g € T\ {id};
2. Forevery r € R(I') there is a g € T, with g(r) € D (D is the closure of D).

A fundamental domain D for I is said to be isometricif D bounded by isometric spheres (isometric
circles in dimension 2) of generators of I'. !

A Kleinian group T is geometrically finite if it has a finite sided fundamental hyperbolic polyhe-
dron for its action on hyperbolic space H™+!,

1.6 Klein’s combination theorem

Let I'y and ' be Kleinian groups. Suppose that there are f[undamental domains D, of I, (§ = 1,2),
such that D; UD; = E” and D = D;N Dy # @. Then I' = (I'y, I'3) is a Kleinian group, and D is a
fundamental domain for I and T = I’y » T'; (the free product of I'; and ['3).



1.7 Poincaré’s polyhedron theorem

This section is devoted to the exposition of a fundamental theorem of Poincaré. It will be given in
the form we need for our purpose. A general treatment can be found in |9].

Let {(T;,T!)}: 1 € i < m} be a family of closed metric balls in E". Assume that any pair of them
either intersect in a point or are disjoint. A point of intersection of two balls will be called a point
of contact. Let C be the set of all points of contact of those balls. Let §; = 87, \ {points of contact}
and S! = 9T!\ {points of contact}. Then either §; = 8T;, (5] = 8T}), or S,, (respectively S!) is a
punctured (n — 1)-sphere. Let § = {5;,5!}. The complement of the union of all T,, T! we denote
by P. An element of § will be called a side of P.

Suppose that for each i there isa g, € M(n)such that g(S,) = S/, ¢7'(5!) = S, and g,( P)NP = @.
Let F = {g;,07'} = {fi...-. fam}. An element of F is called a side pairing transformation. A side
pairing transformation, say f;, sends a point of contact e € T; to a point of contact ¢’ € T/. We
say that ¢ and ¢ are related. This relation gives an equivalence relation in ', partitioning C into
equivalence classes, called cycles of points of contact.

Each c&cle ¢ can be cyclically ordered as ¢ = {e;,...,e5_1,€x = €g}, in such a way that for each
i,1 < i<k, thereisa f; € F such that fi(e,-1) = ¢, Let fo = fro...0f;. The element f, is called
the cyclic transformation related to the cycle ¢. Clearly f.(eo) = eg, that is, eg is a fixed point of f..

Theorem 1.1 Let P be a spherical polyhedron constructed above. Let F = {g,,g!:1 < i < m} be
a set of side pairing transformations related to P. Suppose that for each cycle of points of contact
¢ we have that g. is parabolic. Then I' generated by F is a-Kleinian subgroup of M(n), and P is a
fundamental domain for I'. .

.This theorem is a particular case of general Poincaré’s Polyhedron Theorem proved by Maskit
in [9].
We will also need the following corollary of the proof of Poincaré’s Polyhedron Theorem.

Theorem 1.2 LetT be a Kleinian group as above. Then each parabolic element from T is conjugated
in T to the element of the form g*, where g. is a cyclic transformation and k € Z.

1.8 Schottky type groups .

1.8.1 We say that a Kleinian group I' € M(n) is an ST-group of type (r,5) {Schottky Type group) -
if T has generators gy,...,8x, M1,...,h, and a fundamental domain D bounded Jordan surfaces (or
curves in dimension 2) §,,8% ..., 5., 5, T, T},.-.,T,, T}, and they satisfy the.following conditions:

1. The surfaces (or curves) are disjoint, except that T; and T, have a common point z,;

2. gi(8.) = S, h(T;) =T};



3. h; is parabolic with fixed point z;.

The elements g;, k; are called standard generators of I', and D is called a standard fundamental

domain for I'.

If s = 0 then U is called a Schottky group.

Figure 1.

One can see that every ST-group of type (r,5) is constructed from r cyclic loxodromic groups
and s cyclic parabolic groups by Klein's Combination Theorem.

1.8.2 It is easy to verify that an ST-group I' has the following properties:

1. T has a free product decomposition I' = Fys...« F,s Hys., s H,, where F; is cyclic loxodromic
and /1, is cyclic parabolic;

2. The limit set L(I')is totally disconnected;

3. In dimension 2 the regular set R(T') is connected, and in dimension n > 2 R(T) is simply

connected.

1.9 Wild Cantor sets in E" and Fake Schottky type groups

1.8.1 Cantor sets imbedded in E” are of two types. A Cantor set k' C E™ is called tame if there is
a homeomorphism h: E" — E" such that A( k') lies on a smoothly embedded arc. Otherwise, K is
called wild.

Two Cantor sets iy, 'y C E" are equivalent is there is a homeomorphism &: E" — E™ such
that A(K;) = K. Itis well known that any two Cantor sets in E? are equivalent, and any two tame

Cantor sets in E™ are equivalent.

1.9.2 It is not difficult to show that the limit set of an ST-group is either finite or a tame Cantor
set, and up to topological conjugation two ST-groups of the same type are equivalent.

1.10 in [4] Freedman has considered a topological generalization of the ST-groups. He defines a
group T of homeomorphisms of E" to be admissible if:

1. The limit set L(T')is a Cantor set;

2. I’ acts discontinuously on R(I');

3. The quotient R(I')/1 i» compact.

I' is called weakly admissible if the condition (3) above is dropped.
Schottky groups provide examples of admissible actions. and Schottky type groups provide ex-

amples of weakly admissible actions.



1.11 We say that a Kleinian group I' C M(n) is an FST-group of type (r,s) (Fake Schottky Type
group) if: "

1. T has a free product decomposition ' = Fys...s F,s Hys...« H, where F, is cyclic loxodromic
and H; is cyclic parabolic;

2. The limit set L(T') is a Cantor set;
3. T is not an ST-group.

Remark 1. We will show that in dimension 3, conditions (1), (2), (3) above imply that L(I'} is
wild. The same is true in dimension greater than 4, but we do not know about it in dimension 4.

Remark 2. It is well-known (see, for instance, Chuckrow [3]) that when u=2 conditions 1 and
2 imply that I' is an ST-group. Thus, there are no FST-groups in dimension 2.

1.12 Examples related to Poincaré’s Polyhedron Theorem

In this section we present two examples which show that one should be careful in applying spherical
polyhedra to construct fundamental domains for Kleinian groups. We also recall Bestvina- Cooper’s
example.

1.12.1 Consider the domain D C E3 bounded by the spheres Ty, T}, T2, T4, where 1y, 17
are spheres centered at the origin and with radii 1 and 3 respectively, and T3, T} are spheres of radii
1 and centered at @ = (0, —2,0) and b = (0. 2,0) respectively. (See figure 2.)

Figure 2.

1.12.2 Example 1

Let g;(z) = 3z, g2 = jot, where 1 is the inversion in 72, and ) is the reflection in the (z,,z3)-plane.
We see that there are four points of contact py, p2, p3, pa. Let St = i \ {p2.ps}. 5§ = T{\ {1, pa},
S = Ta\ {p1,p2}, and S5 = T3\ {p3. p«}. Then we have that g(5) = 5}, g2(52) = 5. In addition,
g(D)ND=8,i=1,2.

Let T = {g1,92). In order to prove that D is a fundamental domain for I', we need 10 verify
whether all the cyclic transformations are parabolic.

It is easy to verify that we have only one cycle of points of contact ¢ = {pas m = 9itp),
pa = g20aq1(p2), P3 = 97" 0 920 q1(p2)}. The cyclic element corresponding to this cycle of points of
contact is g. = 97" ogl'l oga0@.

Observe that T leaves invariant the (z;,z2)-plane which we identify with the complex plane C,
and put z = z; +iz. Then the action of the elements g;, gz on this C-plane is given by g1(z) = 3z,
and g(2) = (22 + 3)/(z + 2) (see proposition 1.3).



We obtain that the action of g. on the C-plane is given by g.(z) = (-5z - 4)/(4z + 3). It
is obvious that g, is parabolic if and only if the restriction of g, to the C-plane is parabalic if we
consider it as an element of PSL(2, C). Since Tr3(g.) = 4, we obtain that g, is parabolic. Therefore,
by Poincaré’s Polyhedron Theorem, D is a fundamental domain for .

Notice that the restriction of I' to the C-plane is a Fuchsian group of the first kind. In particular,
the limit set L(T') is the real axis completed by oc.

1.12.3 Example 2

Let now gy(z) = 3z, §2 = pojo1, where 1 is the inversion in T3, 1 is the reflection in the (z,, z3)-plane,
and pis the rotation of x around theline L = {z; = 2, z; = 0}. We have again that §(S;) = S/, and
§(D)N D = @, i=.1,2. The cycle of points of contact is ¢ = {p2, ps = §2(p2). Pz = 57 'G2(P2)s 1 =
537 d2(p2)}. The cyclic element is g = §; 573752

Let I = (§1,§2). Then I leaves invariant the (z;,z3)-plane. which we again identify with the
C-plane.

The action of the elements §; on this plane are given by: §,(z) = 3z, and gz(2) = (224 5)/(2+2).
The action of . is given by
(11/3)z + (20/3)

-4z -7
with Tr?(g.) = 100/9 # 4. We see that g, is loxodromic, and therefore the conditions of Poincaré's
Polyhedron Theorem are not satisfied.

It follows from Maskit's result [10} that D is not a fundamental domain for T'.

It is interesting to note that the limit set L(T') is a Cantor set lying on the z;-axis completed
by oo and ' does not contain parabolic elements. This also follows from Maskit [10}. In fact, [ is a
Schottky group.

§e(2) =

1.13 Bestvina-Coopers’ example

In this section we outline Bestvina - Cooper's example [1].

Let K be the graph consisting of two disjoint simple closed curves &', and A’; joined by an arc
L. and embedded in E3 as in Figure 3. The arc L will be called a bridge of K.

Figure 3.

Consider a collection S = {T1,T3....} of closed round balls placed along A so that adjacent
balls touch in one point (see Figure 4.)

Figure 4.

Let ¢: 5 — § be a fixed point-free involution such that:

e HT) =Tz



o along each circular part Ay, K’z of i there are at least two balls T’, 7" such that ¢{T"} and
&(T") lie along L.

For each T € S, choose a Mdbius transformation h7: E* — E3 so that:
o hr(T) = E*\in((T))

e ke maps the peoints of contact of 7" to the points of contact of H(T');
* hoiry = hi'.

Let G be the group generated by {hr: T € §}.
Then in {1] it has been concluded without proof that:

1. G is a free group of finite rank;
2. G acts freely and discontinuously in the complement of its hmit sev L{(/),
3. D = S\ (UresT) is a fundamental domain for G}
4. L(G) =%y Sn, where So = §, and Snyy = Upes hr(5u),
But we have seen in section 1.12 that conclusions (3) and (1) are not truce in general. Examples

1 and 2 show that it depends on the particular choice of a set {AT : T € S} of side pairing

transformations.
Observe that if T is the collection of the closed balls corresponding 1o the splieres in section

1.12.1 then in the first example L(T') = (1%%o T, while in the second one L(T) is a proper subset of
326 Tn, where the sets T, are constructed by the same way as the sets S5, above.

Let us remark that (3) implies (4), so in order to construct a correct example, we need 10 find
a set of side pairing transformations satisfying the conditions of Poincaré’s Polyhedron theorem.

We will give a realization of Bestvina-Cooper’s idea in section 3.

2 The first example

2.1 ST - groups with non - standard fundamental domain

2.1.1 In this section we construct an example of an ST-group acting on the plane with non-standard

isometric fundamental domain.

We start with the description of the isometric circles of the generators. In what follows we
identify the plane E? with the complex plane C and write z = z; + iz3.

The following table gives the centers of the isometric circles $, and S]. All the circles S, and S

have radius 1.



T sl 5] [LG_s] s
1 -3 3 8 -946t|9+6:
2 -9 -1 9| -74+6i|7+6i
3 5 | 10 || -5+ 6i | 5+ 6¢
4 -7 7 11 || -3+6i|3+6:
5 -9 9 12 || =3+4: | 3444
6| 9421942 13( -34+2:|13+2:
T -9+4i |9+ 4
Table 1: The centers of the isometric circles.

We define the Mabius transformations g; as g, = p, 0 g,, where ¢, is the inversion in S;. and p; is
the reflection in the bisector of the centers of S, and S!. Then g, is hyperbolic. and 5; and S are
the isometric circles of g, and g, ! respectively.

Figure 5 shows all the isometric circles and the transformations g,.

Figure 5.

Applying proposition 1.3 in section 1, we obtain that the matrices of the transformations are:

ne(13) 2= (7 7)) »=(35):

9 80 _(9+2i 84
I A U T T b

and

Let I = {gi,...,013) be the group generated by g,...,¢1a.

Let D be the complement of all closed discs bounded by the circles S, and §’. Notice that D
has three connected components 1)y, Dy, Dj (see Figure 6.)

Figure 6.

Our purpose now is to prove that D is a fundamental domain for I'.

First we observe that g;(S,) = 5] and g;(D)N D = @. Besides, g; sends points of contact to
points of contact. So the only hypothesis of PPoincaré’s Polyhedron Theorem we need to verify is
that each cyclic transforination is parabolic.



Let us list all the cycles of points of contact. One easily sees that there are 12 cycles of points
of contact as follows:

(1) The cycle {-6;6;0} with the cyclic transformation
R -17 108
h =g, 9394:(. 3 19 .
(2) Vhe cycle {—4;4;2; -2} with the cyclic transformation

-1 -17 —64
"2=§219| l9391=( 4 15 )

(3) The cycles consisting of two points with the cyclic transformations h, = 94 g1, and b, =
¢y for4<i< 12,

We have two types (modulo changing coordinates):

(a) Type 1: 8, is centered at —a and S! at a, and 5,;, at —a — 2 and Sigyata+t 2,a > 0.

Then

_('ua2—x) _fa+2 (u+2)-'—lJ
9 1 a C 9= 1 a+t2 ’

and

1 4 2a —2(a+l)‘)

h.=9."9-+x=( ) 3=

(b) Type 2: S, is centered at —a + 1, 5/ at a« + 1. and §,4) at ~a — 1. and S,y ata — o

Then
a+i al a-1 a*
9 = ) )v Yiy1 = . )
1 a-—1 1 a4+

~1 42 -2a4 )

and

hi=g! =
AN ( 2 —1-2w

We see that all the cyclic transformations h are parabolic. Therefore, we can conclude from
Poincaré’s Polyhedron Theorem that D is a fundamental polyhedron for I', and [' is Kleinian . [t is
clear that I is free on these generators, i.e., [ = (g;) ¢ ...+ {g13). In particular, the minimal number
of generators is 13.

We now show that I' constructed above is an ST-group.

Lemma 2.1 The regular set R([') of I' ts connected.
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Proof: Consider the path a:[0,1] — D connecting the points p,q € 8D as shown in Figure 6.
Let 3:[0,1] —» € be the path 8 = g;' o . Then it is clear that A(t) € R(T) for all ¢ € [0.1],
and f(0) = p € dD, and (1) = ¢’ € 3D3. It follows that for any pair of points z € Dy and y € D3
there is a path in R(I') connecting z and y. The same argument shows that for any pair of points
7' € Dy and ' € D there is a path in R(I') connecting z’ and y'. Observing that
RN = U gt D\ {points of contact}).
g€l

we conclude that R(I') is connected. (al]
Theorem 2.1 I’ is an ST-group of type (1, 12).

Proof: Observe that the natural extension of T’ to the action in H3. as follows from the construc-
tion, is a geometrically finite discrete subgroup of the isometry group of H3. Applying the lemma
above and Theorem 6.2 in [8], we conclude that T has no totally degenerate groups as subgroups.
Since R(I') is connected, it is clear that T has no quasi-Fuchsian subgroups of the first kind. Then
it follows from Proposition 5.8 in [8) that T is constructed by Klein's Combination Theorem from a
finite number of elementary groups. Since I' does not contain free abelian subgroups of rank 2, we
obtain that I' is an $T-group in the sense of our definition.

We also note that every maximal parabolic subgroup of I' has rank 1. and that there are exactly
12 distinct conjugacy classes of such subgroups. Therefore, I' is an ST-group of type (1, 12).

a

Corollary 2.1 The limit set L(T') of T is a Cantor sel.
The proof is contained in, e.g., [3].

Corollary 2.2 For the group T construcled above, S(T) = R(T)/T is a Riemennian surface of

stgnature (1, 24). that is, §(T} is compact Riemannian surface of genus ! with 2{ punctures.

2.2  Let I' be the group constructed in section 2.1. Consider the natural extension I'* of T to E3.
Let P be the spherical polyhedron in E3 formed by the spheres spanning the circles §; and 5]. We
will keep the same letters S, and §! for denoting the sides of P. Using again Poincaré’s Polyhedron
Theorem, we obtain that P is a fundamental polyhedron for I'". It is not difficult to show that I'*
is an ST-group acting on E3, and P is its non-standard isometric fundamental domain, but we will
only need the fact that the limit set of T' is a Cantor set.

2.2.1 Let & be the graph in the ry-plane, depicted in Figure 7. /" has the centers of the spheres
S, and §' as its verteces; the edges of I are the straight segments connecting centers of adjacent
spheres.

We will call the graph K a spine of the group I'".

Figure 7.
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2.3 Constructing FST-groups acting on E3.

In this section we construct the first example of a Kleinian group acune un E3 with the limit set 4

wild Cantor set.
2.3.1 Let I'* be the group built in seciion 2.2; P its fundamental polyhedron; and & its spine.

2.3.2 Take a Mobius transformation h € M(3). Lev 1 = hol™oh ' Uhen h(P) s a fundamental
polyhedron for I';.

One easily sees that one can find Mobius transformations hy, hy, hy, hey from M{3) such that the
groups Iy = h,o Mo h}, i = 1,2,3. 4 satisfy the following:

1). The polyhedra P, = h,(P), 1+ = 1,2,3,4, satisfy the conditions of Klein's Combination
Theorern, that is, the complement of ¥, in E3 is contained in P,, i # j;

2). The spines A, of the groups I', forin the link as shown iu Figure 5.

Figure 8.

Let H = (I';, T2, T3, T4) be the group generated by I',. Then it follows from Klein's Combination
Theorem that H is a Kleinian group; F = P, N P, N P3N P4 is a fundamental domain for N;
H =T, %3+, (See Figure9.)

Figure 9.

Remark. One sees that the group I/ is of type {1, 48).

2.3.3 In section 4 we will prove that the limit set of the group H is a wild Cantor set, that is, H is

a Fake Schottky type group.

3 'i‘he second example

Our second example of an FS$T-group acting on E3 is closely related ta the example of Hestvina and
Cooper [1]. In fact, this is its correct version. The construction we offer is quite complicated and
much harder than the first one. The main difficulties are in finding a suitabie linear construction of
the spine and a set of side pairing transforniations in order to satisfy Poincaré’s Polvhedron Theorem.
It is reasonable to believe that this is not an ideal construction, and that different approaches could
work better. On the other hand, many approaclies that at first glance appear to be easy, do not
work, and we believe that, in any case, the construction must be far from tnivial.

3.1 We start with the description of the spine. Here we adopt the coordinates (r,y, z) lor E3.
Let K be the graph embedded in E? as shown in Figure 10. As in section 2.2.1, we call this
graph the spine of the group.
Figure 10.



The coordinates of its vertices p; = {z,,%.), p. = (2!, !, z!) are given in Table 2 below. The
length of each edge of I equals 2.
ifl zi|wi|a|l 2| vz | map il zi| wi|a|o2i| vi| 2| map
Il s ool -1] 0o of & nf-rlwlof 7wl of «
2 5( 0] 0 1{ 0] o0 by 121 15| 0f{ 0| 21| o o c3
3|-3| 0|0 3| o]0 b3 13| 15] 2[00 21| 2| O ay
4l-7|1 0| 0 710[0 4 14 15 4( 021 4| 0 ag
51 -3 2|0 3| 2]0 a 15 15| 6| 021 6| 0O as
6(-3) 4|0 3| 410 az 16 || 15 810)21) 8 0 ar
71 -3 6| 0 3 6| 0 a3 17 15| 10| 0| 21|10 0 (73
8l-3| 8|0 3| 8|0 a4 18| -7| -4 0| 15| 0] —4 c7
9| -3|10( 0 3|110| 0 as 19|(-5|-410)13]| 0| -1 M,
10 -5|101| 0 5110] 0 ag 200 -3|-4] 01 11 2| -4 10
i m]w] ] ] map ifz]u] a] s]s] ] mw
21 || -3 2] -4 11 2| -4 M,y 31 || -1 |14 | -4 —-1|14 | —4 dy
22 || -3 41 =4 11 4| -4 cg 32 1| 14| -4 ~1 |14 -4 d;
23 || -1 4] -4 9 4| -4 D, 33 J (14| -4 -1|14]| -4 d3
24 1 4| -4 5 4| -4 D, 34 7| 0] -4 -1 0] -4 Asa
o5 3| 4|-4af 7| 4]|-a]| Ds 35 7|10|-4ff-1]10]|-4| ayp
26 || -7 [1w|-a]15|10]-a| o5 36f-7) 0|-2f-1] 0] -2 Apn
27| -5 |10 | -4 || 13| 10] -4 mj 37 151 0| =21 -1 0] -2 Az
28| -3 |10 -4 |11 ]10]| -4 cy 38 T 0| -=6| -1 0| -6 Ay
29 -3 12| -afn|12| -4 m sof 7| o|l-8[-1] of-8{ cn
Jo|| -3 |14 -4 11|14/ -4 Ce 40 9] 0| -8{ -1 0| -8 Dy
il | w| oz x| V| 2| map
arf | ol=s8 -1 o|-s| bs
42 13| 0| -8 -1 0| -8 Dg
aall =71 -2|-1[10]-2] ay
44 1510 -2 ~-1]10]| -2 as;
15 7(10| -6 ~1|10| -6 a
46 7110 -8 ~-1]|10| -8 [T
47 9/10| -8 -1[10]| -8 dy
481010 11 (10| -8 -1]10]| -8 ds
49 13 |10| -8 || -1(10| -8 dg
Table 2

The centers of the isometric spheres S5, and 5], and the corresponding side pairing transformations.
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It is easy to see that A’ is a linearization of the graph in Bestvina-Cooper's example. For instance

the bridge of K is the segment [pa, p§].

3.2 Consider a family of 2-spheres 1 = {5,.5/ : | < 1 < 19}, all of radius one, centered o' the
points p,, p! respectively. One sees that adjacent spheres touch.

Let P be the complement in E* of the union of all the closed balls bounded by the spheres 8,

Next we will define the side pairing transformations for I’

For each pair (S, §') from T define the Mébius transformation hs: E* — E* as follows
hs = J,0ls,

where [5 is the inversion in S. and Js is the reflection in the bisector of the centers of 5 and 5°.
Then ks is hyperbolic, and § and & are the isometric spheres of &g and h;‘. respectively, One
can easily verify that for each S from T hs maps the points of contact of $ ta those of 5 Table 2
provides also the notations of all the side pairing transformations. For tnstance, by cortesponds 1o

the pair ($), 57). We denote the set of these side pairing transfoninations for I a4~ W

3.3  Let & be the group generated by these side paring transfonations

We next prove that the group (7 is Kleinian, and that P is a fundamental doman tor ¢/

To this end, we will list all the cycles of points of contact and verify that each cyclic transfor-
mation is parabolic.

First of all, we observe that each cycle of poiuts of contact ¢ = {eg,....e4 1} biesin the same plane
L. as the centers of the isometric spheres of the transformauons ¢,... ., gy where b = gy 0...04,
is the cyclic transformation related to the cycle . Since gy....,gx are hyperbolic, the plane £, is
invariant under g,... ., gx-

Note that any Mobius transformation from M(3) 15 parabolic if and only il 1ts restrcion (o any
invariant plane is parabolic as an element of M(2). Thus. we can use convenient coordinates in each

such plane to verify whether the cyclic transformations are parabolic or not.

3.3.1 The cycles with cydic transformations Jy = b3'07 by and by = b 'b.by have the same
structure as the analogues cycles in the first example, where it was verified that &y, and I, are

parabolic; see (1) and (2) in section 2.1.1.

3.3.2 Let us now consider the two point cycles. The cyclic transformatons i this case are of the
form h = g,g;}, where g, and g; are transformations from \V.

Let L be a plane invariant under g, and g2 passing through the centers of the isometric spheres
of g; and g;. We identify L with the complex plane C and call the intersection L N P> a slice of P



corresponding to L. All the slices we need are shown in Figures 11 - 15. The arrows show the side

pairing transformations.

Figures 11-15.

Now we are going to write down the matrices of the restrictions of the elements g1,g2. and h to
the corresponding invariant plane L.

We have the following cases to consider.

For the first case. we have:

P S, S! map
1 -a a N
2l -a—2ja+2 g2
The first case: Here a > 0.

Henee

) _(a a2 —1 _fa+2 (a422-1
LU ) - 1 a+2 '

1+2a 2a+1)?
2 -3 =2a })°

and

h = !]!_‘7;' =

which is parabolic.
Below we list the pairs of the transformations (g;.g2) and the planes L invariant under g, and

g2 corresponding to this case (sece slices).
o L ={z:=0]}; (ag.c1). (as.ag).
o 1L = {z= =4} (my.e5). (dy,cgh (ca.m2), (Mg, e3), (€10, M3). ( Dy, cg).

o L {z= -8} (deen) A Dy.eqa).

For the second case. we have:

1 S, .—S','-‘ map
1l —a+ija+i 1)
2| —a—ti|a—1 72

T'he second case: Here a > 0

Hence

ati  a? =] TAn a2
N = e = )
1 a -1 1 a+1 )



—1+2ai —2a%i )

h= e
92 ( % —1-2ai

which is parabolic.
This corresponds to the following pairs (gy,¢2) and the invariant planes L:

o L = {z =0}; (a1,b3), (a2,@1), (a3,42), (a4.23), (as,04), (€2,07), (a7,ag), (¢, @), (@3,a10),
(@10, ¢3).

o L ={z=-4}; (my,c9), (c6.m1), (M1, 10}, (cs, My).

o L={y=10} (c11,61), (14, 013), (212, €2), (@01, €1).

o L={y=0} (c12,Aws)s (Ar4, A3}, (A12,63), (Anr,cq).

3.3.3 Consider now the four point cycles. We apply the same procedure as in section 3.3.2. The

cyclic transformations in this case have the form h = g3'97' 9491, where:

T T T m

[i]] & | S | map |
T1la+i b+i| ¢ :
:32-C+i d+i!- g2 |
|3la—i ¢c—i| 93‘
! b—i’d—i‘ gs |

Here a,b,c,d € R..

The matrices of g; are:

(b+i —ab—(a+b)i) . (d+i —cd-—(c+d)i)
] 2 = [

1 -a-1 1 —c -1
_ [ e—-i ~act+la+c) _[d-i —=bd+(b+d)i
$B=1 0 —a+i A “b4i ‘

Hence
14 4ai —-4a%i .
h =g g7} = , which is parabolic.
93 ( 4i l—4ai) P

This corresponds to the following 4-tuples (g), 92, ¢3.94) and the invariant planes L: ¥

s L= {y=0}; (c7, A3, A11, 412).

o L = {y=10}; (es,a13,@n,012).

17



3.3.4 Finally, we have the five point cycles. In this case the cyclic transformations are of the form
h = 951939295914, where we have the following:

T

il s S{F map

a1y

2‘—3 gz”
ush—llsh g3

(5 24 AL T _[3 2
Sl s JC 2SN gt BEL
Thus, we obtain that
h=(-19 —80)'
3 21

This corresponds to the following 3-tuples (g;.92,93) and the invariant planes L:

with

which is parabolic.

o L ={z=-4);(d1,dy d3), (Dy, Dy, D3).

o L= {z=-8};(ds.ds.dgs), (D4, Ds, Dg).
3.4 It is seen that we have listed all the cycles of points of contact. We have also verified that all
the cyclic transformations are parabolic. Therefore, it follows from Poincaré’s Polyhedron Theorem
that the group G is Kieinian, and P is its fundamental domain. In the next section we will prove

the the limit set of the group G is a wild Cantor set, that is, G is an FST-group.
Remark. It follows from Theorem 1.2 that the group G is of type (9.40).

4 The groups H and G are Fake Schottky Type groups

In this section we show that both Kieinian groups # and G constructed in sections 2 and 3 have
wild Canfor set limit sets.

4.1 We recall that a Kleinian group I' C M(n) is said to be geometrically finite if it has a
hyperbolic fundamental domain iz H"+! with a finite number of sides.

18



4.2 Let T and I' be Kleinian groups. We say that an isomorphism ¢: T — I is type preserving
if it carries parabolic elements of T' bijectively onto parabolic elements of I".
We will need the following theorem. '

Theorem 4.1 (Tukia [11]) Let T and I be geometrically finite Kleinian groups. Let ¢:T — I
be a type preserving isomorphism. Then there is an homeomorphism [f,: L(T) — L(T*) of the limit
sels inducing ¢.

Corollary 4.1 LetT be a geometrically finite Kleinian group. Assume that there is a type preserving
isomorphism ¢:T — T', where IV is a non-elementary ST-group. Then the limit sei L(T) of the
group T is a Canlor set.

4.3

Proposition 4.1 The limit set of the group H constructed in section 2 is a Cantor set.

Proof: Let I' be the Kleinian group constructed in section 2.1.1. Consider the groups Iy =
ATS7Y, T2 = AT, Ty = fsT45Y, T = foT 7Y, where f; € PSL(2,C). One easily sees that we
can choose the elements f; in such a way that the fundamental domains F; = f;(D) of the groups
I'; are located as in Figure 16.

Figure 16.

Then applying Klein's Combination Theorem, we obtain that ' = ('}, 5, '3, I's) generated by
[ is a Kleinian group. Its fundamental domain £ = (=1 F, is the complement of all the closed
discs bounded by the circles shown in Figure 16.

The same argument as in section 2.2 show that [ is an ST-group. Therefore. in particular, the
limit set L(T") of T is a Cantor set.

We know that I' = (g1,....¢13) (see section 2.1). Take the following generators of the group I:

o g g TN
o fale)f7's- o flga) 7Y
¢ [lafs's. . falaa)fsh
o SISt Jalga) S

Let us denote them as a,; = fi(g;)/!.

Now let us consider the natural extension of I' to the action on E and keep old notations for
the group and its generators.

Recall that the group H constructed in section 2.3 looks like H = (I'y,I';,I'3,T,), where T; =
AR, i=1,2,3,4..

Take the following generators of the group H:
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o h(gDhys. .. ha(gia)hi s
o ha(gi)hz", .. halgialhz":
o ha(g)h3'.. ... ha(gia)h3 "
o h(g)h3's. .. halgia)hT"

where g7, ¢ = 1,2,...,13 are the generators of I'* (see section 2.3).

We let denote these generators as b;; = hi(g;)h.

It is easy to see that the cycles of points of contact and the cyclic transformations of the groups
H and [ have the same structure. By applying Theorem 1.2, we obtain that the assignment

¢:a;; — by,

i=1,2,3,4,j = 1,2,...,13, defines a type preserving isomorphism ¢: I — H. Then Corollary 4.1
implies that the limit set L(}]) of the group } is a Cantor set.

4.3.1

Proposition 4.2 The limit set of the group G consirucied in section 3 is a Canlor sel.

Proof: Let us consider the group G' acting on the plane generated by the hyperbolic transfor-
mations shown in Figure 17. This figure also shows the isometric circles of all these generators. As
usual, each generator A’ of G’ is the composition J o J, where / is the inversion in the isometric circle
of A’ and J is the reflection in the bisector of the centers of the isometric circles of A’ and (A’')-1.

By the same arguments as in section 2, we conclude that the complement of all the closed discs
bounded by the circles shown in this figure is a fundamental domain for G’, and that G’ is an
ST-group. Also, one can verify that G’ is a free group of the same rank as G, and that the cycles
of points of contact and the cyclic transformations of the groups G and G’ have the same structure.
Now we can finish the proof following the same lines as in the proof of proposition 4.1.

Figure 17.

4.4 In this section we show that the limit sets of the groups #/ and G are wild Cantor sets,
First of all, we recall the following well-known fact.

Proposition 4.3 If L C E? is a tame Cantor set. then E? \ L is simply connected.

Thus, if we establish that the regular sets R(H ) and R(G) are not simply connected, we will
obtain the result we need.
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4.4.1 We start with the group H.

Proposition 4.4 Let § be a side of F, where F is the Jundamental domain for H constructed in
section 2.3.2. Then the inclusion S C F (F is the closure of F in R(H)) induces a monomorphism
n1(S) = n(F).

Proof: Consider the graph Ky formed by the spines R, of the groups I'; (see section 2.3.2 and

Figure 8), and let us compute the fundamental group of E\ K'j. To this end, consider a projection

4 of K'p into the plane L which is in general position with respect to A'y. To K}, we associate
arrows whose directions are shown in Figure 18.

Figure 18.

We designate them with letters a;, b,, ¢;, d;, 8;,i = 1,2,3,4.

Then, by applying a standard procedure for writing down a presentation of the fundamental
group of a graph (see, for instance, Bing [2]), we obtain that the group =, (E? \ Ay) has the
following presentation.

Generators: a;, b;, ¢;, d;, B,, 1 = 1,2,3,4.

Relatjons:

(a) at branching points:

Prasa;?, Beagay’,
Brbsbr?, Babebsz !,
Baeser, Bacqcs",
Badady?, fedad;’.

(b) at crossing points:
a1a4a; a3t agase;tall,
bybeby 1031, babeb7 b7,
acees'er!, eseqcylcy?,
dydd;'d;, dydedy ' d, !,

Now we are going to show that all the elements @, b;, ¢, di, 8; are non-trivial.
To prove this, let us consider the group A having the following presentation:

A= (2),23,23,24,y: y7az]! = yzaz3} = 1yzezi'z3) = 23zl = 1)

We may simplify this presentation.

From the relations 2247723 = z3z4z;'z]! = 1, we get 13 = 712427" and 13 = z42323".
Then the relations y:;:," = yz4z7' = 1 are equivalent to y = [z,24]. That is, the group A is free
on the generators z, and z,. Observe that x,, zy and y are nontrivial elements of A.

Consider the map of x(E?\ K') onto the group A given for all i by :

a;y biv iy di Landt T ﬂi — Y.
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One sees that this map defines 3 homomorphism. We have that all the elements a;, b;, ¢;, d;, 5;
are mapped to nontrivial elements of A and, therefore, are non-trivial.

Remark: It is clear that 8; = 8; = B = B4, see Figure 18. Therefore, the group x(E?\ K'y)
has generators aj, 8q. b1, by, €1, €4, d1, dq, and relations [y, aq} = [b1, 4] = [€10¢4) = [dr,dy)-

Consider now the boundary of F. We see that each component of OF is either a 2-punctured
or a 3-punctured sphere. Also, note that each non-trivial simple loop on OF is homotopic to a
small linking circle around the edge of A'y, and, hence, its homotopy class is an element from
the set {a¥,8%,c*,dE). It proves that for each component § C OF the inclusion homomorphism

1,(S) — 7 (F) is injective.
Proposition 4.5 The regular set R(H) of the group H is not simply connected.

Proof: We know that R(H) = ¢y 7(F). The pair (v(F), 7(9F)) is homeomorphic to (F,dF).
Therefore, for each component S, C Y(8F), 1(5,) — 71(7(F)) is a monomorphism. Thus, R(H)
is the union of manifolds with incompressible boundary glued along their boundaries. Using Van

Kampen's Theorem and an easy induction, we obtain that x;( R(H)) is a non-trivial group; moreover
my( R(H)) is infinitely generated.
Summarizing, we have the following theorem.

Theorem 4.2 The limit set of the group H is a wild Cantor set.

4.4.2 In this section we consider the group G.
Theorem 4.3 The limit set of the group G is a wild Cantor set.

Proof: First of all, we note that the fundamental group of E \ A is isomorphic to the group
A in Proposition 4.4, where K is the spine of the group G, see section 3.1. In particular, a small
linking circle around the bridge of A’ represents the commutator 8 = [b, ¢]. Therefore, following the
lines in section 4.4.1, we obtain the proof of the theorem.

4.5 In this section we present another proof of the fact that the limit sets of the groups H and G
are wild Cantor sets. Besides, this result will be used in section 5.

4.5.1 We start with recalling the following.

Theorem 4.4 Let L be a tame Cantor set in E3. Then E®\ L is not aspheric in dimension 2, that
is, a(E*\ L) £ 0. i

Proof: This property actually is always true of a Cantor set L in E® with simply connected
complement. One then can apply the Hurewicz Isomorphism Theorem and the Sphere Theorem.
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Theorem 4.5 (3.H.C. Whitehead [12]) Let P = PyU P;, Pi3 = PiN\ Py, where P, P, end P,
are connecled polyhedra, and suppose that

1 x3(P)=0,i=1,2;
2. any loop in P,3 which is homotopic to a point in Py or in P, is homotopic to a point in Py ;.

Then x2(P) = 0.

4.5.2

Theorem 4.6 The reqular sets R(H) and R(G ) of the groups H and G are aspheric in dimension
2

Proof: The proof follows immediately by induction from the results in sections 4.4.1,4.4.2 and
Theorem 4.5. For instance, for the group H, we have that R(H) = Usenr 7 F), and we have already
proved that F is incompressible in F; besides, F is aspheric because of the Sphere Theorem.

4.6 In this section we compare the fundamental and the 1-homology groups of the manifold
M(H) = R(H)/H and the manifold M(T') = R(I')/T, where T is the ST-group constructed in
Proposition 4.1. Also, we compare the manifolds M(G) and M(G’), where G and G are the groups
from Proposition 4.2.

We start with the groups H and [ Recall that [ is an ST-group, while H is an FST-group. It
has been already verified that H and T have the same type. It follows from results in sections 2.2
and 4.2.3 that the group [ is of type (4,48).

4.6.1 Since R(I") is simply connected, the fandamental group m)( M(T')) is isomorphic to I'. It
implies that x;(M(T')) is a free group of rank 52, and H\(M(T').Z) is a free abelian group of rank
52.

4.8.2 Now let us consider the manifold Af(H ).

M(H) is a 3-manifold that can be obtained from the closure of the fundamental domain F by
glueing the equivalent points on the boundary OF of F'. We have already proved that for each
component § C JF the homomorphism x3(S) — 71 F) is 2 monomorphism, therefore, x,( M(H))
is an HNN-extension of the fundamental group of F.

Recall that x;(F) has the following presentation.

Generators: a;, b;, ¢;, d;, Bi, i =1,2,3,4.

Relations:

(2) Brasa?, Baasag ™, Brbsbr?, Bobebs !, Bacacy™, Breacs, Badady), Bedod; .



(b) sraa;la;?, asaea; ot bababy 05, b3beb'bY, ereaciies !, eacacileq!, didadi N,
dydyd'd]’,

Let a;; = h.-(g;)h.-" (i = 1,2,3,4,1 < j < 13) be the generators of H as in section 4.2.3. Let
7ij be a path in F connecting equivalent points on the sides S;; and Si; which are equivalent under
a,;. Consider the natural projection F L, M(H). Then the image p(7;;) is a loop in M(H).

We desote p(11;) a5 4;. P(72;) 38 Bj, p(13;) s Cj, pl4;) 28 D;. We also denote p(a;), p(bi),
plei). pldi) and p(B;) as &, b;, G, di, Bi, respectively.

Then we have the following presentation of x3(M(H)).

Geaerators: &;, b;. &, di» Bi, § = 1.2,3.4; 4;, B;, C;, D;, 1 < 5 < 13.

The relations are devided into two groups:

(1) Old relations which come from =;(F):

(a) Briad;?, B, Prbabit, Babedy?, Batay ", Bataly 1, Badyd; ', Bededs".

(b) &1aea a5 ", daded ", Bibadi by Babebi By, E@icadi eyt el didediNag,
dddrap.

(2) New relations which come from the identifications of the sides of F:

o ¥y = ABAT. dy = ASBATY, B = ABATY 8y = AldbAT du = AiduATY, 83 = ArdaA!

(k= 4,5,6). a5 = Aede A" (TS k< 13);

° “I = BzBB;l, 2 = B;;EBa—l. B = B]BBF‘, 51 = B]I—l]Bl—l, i’a = Blﬁ3B|-l, 51 = Bkl'hB['
(4<k<9), by = BidaB. ' (10 < k< 13);

s i = CQBC;I. iz = Csﬁca_l' ﬁ = C.BC,"‘. &2 = Cli’chl‘ &4 = Clihcl‘." &2 = Cki’zck-l
(k=4,5,6), & = CibC.' (TS k< 13N

o dy = D2fD;', & = DifD3", = DyBD; dy = Dy&\ D', ds = D\&3Dy !, dy = Diey D!
(4 < E<9).d3= DiisD (10 kS 13);

Here B = py = B2 = B3 = Bs.

To find a presentation of the group H,(M(H),Z), we recall that this group is the abelianization
of 5y (M(H)). Therefore, from the relations above together with all the commutator relations needed
we can deduce the following relations:

l=f=a=b=¢=4d;, i=1,234;

that implies that H (M (H ), Z) is free abelian of rank 52 genenh;d by the letters A;, B;, C; and D;.
4.8.3 For the manifold M(G). we have the following presentation of the fundamental group.
As in the previous example, we first compute the fundamental group x,(P) of the fundamental

domain P of the group G. It has the following presentation.
Generators: a, b,c. d, ¢, [, 9. h.i, ).
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Relations: acb=! = aed=) = 1; feb~le~! = 1; geh~te~! = ged=le~! = 1; ecj~le~! =
'i'cj"‘c" =ich~le~l =1

It is an easy exercise to verify that this presentation can be reduced to one with the generators
cand e and with no relations.

To find a presentation of (M(G)), we follow the same procedure as before. We will denote
the image of the loops generating xi( F) under the natural projection map F — M(G) by the same
letters. We denote by ; a path in F connecting equivalent points of the isometric spheres 5, and S,
1< i < 49. Table 3 gives the loops on Si, S} and the corresponding side pairing transformations.

k| S¢ | map | Si
1 & | b a k|| Sy | map | S} k|| Sx | map | Si
20 d|b a 11| ¢ | g e 21§ ¢ |eo ¢
3| a |ba a 12| ¢ | e2 j 20 ¢ |my ¢
34 b | b3 d 13f ¢ | a7 j 23 ¢ |es c
3 ¢ |bs e 14 ¢ | as j 241l ¢ |dy c
4 b | cq d 15| ¢ | a0 i 25l ¢ | dy ¢
5| ¢ | a e 16 || ¢ | a0 i 20 ¢ |ds ¢
6 c az e 17 c C3 J 27 d A]J ]
71 ¢ | aa e 18| e | aja 7 2801 & | er c
81| ¢ | aq e 19 ¢ |e5 c 24 b | M, ¢
9| ¢ |as e 2| ¢ | m c 304 & | ero ¢
10 ¢ | as e

k|| S | map | Si k|l Sx | map | S}

31 & | My ¢ 414 g | Ds i

32 b (] c 42 h Ds h

33| 6 | Dy ¢ 43| h | De i

|l f|Ds c 44 b | An d

5( f| D2 | S 45 c A | J

36| e | enn ] 460 9 | A b

37| e | dy J 47 || ¢ | an e

38| e |ds J 48[ c laz | J

39| e | ds i 9f e |me | J

40| ¢ e | i

Table 3: Loops on S and S} and the corresponding side pairing transformations.

We denote also by 7; the loop in M(G) which is the image under the natural projection F —
M(G) of the path 7; in F. So %;(M(G)) has the following presentation.
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Generators: a, b, ¢, d, ¢, [, 9, h, 1, j,and 9 (1 < k < 49). (See Table 3 relating the loaps 7 to
the elements of G and the loops a,...,j.)

The relations are:

(1) Old relations coming from the fundamental group of the fundamental domain:
ach~! = aed~? = 1; feb'e' = 1; geh~te~! = ged~le! = 1: ecj ¢! Fiej e =
ich-l¢-1 = ).

(2) New relations coming from group identifications of the sides of the fundantental domain:
b=may . d=may;" a=1a9;",
b=ndyt e=mers’,
e=veqt £=5,6,7,8,9,1011,47;
c=njy " k=12,13,14.15,16,17,45,48;
c=1eey b, k =19,20,21,22,23,24,25, 26;
e=1j1 " k= 18,36,37,38,39.49;
b=cy ", k= 28,29,30,31.32.33;
g=niyt k=404
b=mada k=4,44;
d=y17j17" S =1acrn' =135 S5’ 0= 165746
h=vahy3' h=vai15'

Observe that the letters a, b, ¢, d, ¢, f, g, h, i and j and the relations (1) above can be
reduced to the letters ¢ and e and no relations, because we can deduce the relations a = ¢ ~lece -,
b=ctece le,d=h=j=clec, f=ece !, g=eclece~),and s = ¢.

To compute Hy(A{(G).Z), we have to add the commutator relations to the ones above. From
these and from ¢ = yse 15, we get € = e. From b = c~'ece~'c, we get b = o, From b = y,27,",
we get b = a. But from a = c~Yecc~!, we get a = 1. This implies that H,(M(G),Z) is free abelian
of rank 49. It can be presented as a free abelian group generated by the letters v, (1 < & < 49).

Remark. Let A be an ST-group of the type (r,s) acting on E3. Then the manifold M(A) =
R(A)/A is homeomorphic to the connected sum of r Hopf manifolds S? x ! and s solid open tori
E? x S,

We call a manifold M an ST-manifold of type (r.s) if M is homeomorphic to the manifold M(A)
above.

Summarizing, we have the following theorem.

Theorem 4.7 The manifolds M(H) and M(G) have the same 1-homology groups as the corre-
sponding ST-manifolds.



5 Constructing inequivalent FST-groups of the same rank

5.1 Wesay'that the actions of two FST-groups Iy and T3 in M(n) are equivalent (or more shortly,
T’y and I'; are equivalent) if there is a homeomorphism h: E" — E™ such that l2=hol,0h"!,
Otherwise, the actions of I'y and I'; are inequivalent. :

It is clear that if the actions of Ty and T are equivalent, then the manifolds M, = R(T)/T,
and M; = R(Ty)/T; are homeamorphic.

5.2 The objective of this section is to show that there are a lot of inequivalent FST-groups of the
same tank and type acting on E3; more precisely, we will prove the following.

Theorenty 5.1 For any integer N > 2 there ezist al least N inequivalent FST-groups acting on E3
having the same rank k = k(N) and the same type.

5.3 Construction

Let H be the group constructed in section 2.3.2 , and F be its fundamental spherical polyhedron
(see Figure 9.) Take a Mébius transformation g € M(3) and consider the group 'y = goHog-!,
Then F; = g(F) is a fundamental domain for I'y. Let T, be a 2-torus in E3 such that the boundary
OF, lies in the interior of T,. (See Figure 19.)

Figure 190.

Let N > 2 be given, Take Mobius transformations 9i; EM(3),i,7=1,...,N, and consider the
following groups I'i; = g;; o H og‘;l with the fundamental domains F;; = g;;(F). Let T;; be the tori
associated to the group T;; as above. Let

I = (Tu.la,....ThWN)
Iz = (T21,T22....,Tan)
I'n = (FN].I‘NQ....,FNN)

be the groups generated by the groups listed in the parentheses.

It is easy to see that we can choose the transformations g,; in such a way that the tori 1), are
situated as shown in Figure 20.

Figure 20.

Having chosen such transformations g,,, we can apply Klein’s Combination Theorem to conclude
that all the groups T'; are Kleinian, F, = nl’i, F,, is a fundamental domain for I';, and that I', is a
free group of rank & = N - rank(T').

By applying the same arguments as in section 4. we can conclude that all the groups I, are
FST-groups. Moreover, one sees that they are all of the same type.
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Let M; = R(T:)/T;. We know that the manifold M = R(H)/H is aspheric (see section 4.5).
Then it follows easily from Milnor’s Decomposition Theorem [7] that all the manifolds M, are
mutually non-homeomorphic. This proves the theorem.

Remark 1. Following the same lines as in section 4.6, we obtain that all the manifolds M,
above have isomorphic first homology groups; Hi(M;,Z) is a free abelian group of rank &.

Remark 2. It is easy to see that the regular sets R(T,) of the groups T; are mutually non-
homeomorphic. For instance, this follows from the fact that they have non-isomorphic second
homotopy groups considered as x,-modules. This implies that their limit sets are non-equivalent
Cantor sets in E2.

Remark 3. We also point out topological distinctions between the limit sets of the FST-groups
constructed in sections 2 and 3 and the limit sets of the FST-groups constructed in this section.

The FST-groups'in sections 2 and 3 have the property that every proper sub-Cantor set of their
limit set has simply connected compiement. The limit sets of the FST-groups in this section do not
share this property, because these groups have proper FST-subgroups.

6 Extension

In this section we will prove that the natural extensions of the FST-groups G and H we constructed
in sections 2 and 3 to the action in E* are ST-groups.

6.1

Lemma 6.1 Let A C M(n) be an ST-group acting on E". Then the natural ertension A® C
M(n + 1) of the group A is also an ST-group.

Lemma 8.2 Let A; and Az be ST-groups acting on E®. Assume that there ezist fundamental
domains Fy and F; for A; and Az such that U F; = E" and F = Ry N £y # 0. Besides, suppose
that there erists an (n — 1 )-dimensional locally flat topological sphere S C F which separates the
boundaries 8F; and 8F; of Fy and F3, that is, 8Fy and 8F; lie in distinct components of E"\S.
Then the group A =< A;, A2 > is an ST-group.

The proof of these lemmas is left to the reader.

6.2 In this section we use the notations of section 2.3.2. )

Let T and H* denote the extensions of the groups I'; and H to the action in E*. Let P} and F*
be the spherical polyhedra in E* formed by the 3-spheres spanning the 2-spheres on the boundaries
of the spherical polyhedra P; and F respectively. Then it is clear that F* = PPNP; NP3 NF;. Let
us note that F* is a fundamental domain for H*, and P is a fundamental domain for T;.
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Let us remark that the 1-link formed by the spines K;; of the groups I'7, i = 1,2,3, 4, is splittable
in E*. In particular, there are disjoint locally flat compact 4-balls B, Ba, By, B, containing 8Py,
OP;, 0P; and 3F; respectively. Let S; = 3B,.

It follows from lemma 6.1 that the groups I'; are ST-groups. Now applying lemma 6.2 inductively
and the remark, above we conclude that the group H* is an ST-group.

6.3 In this section we use the notations of sections 3.3 and 4.3.1.

Let G* and G* denote the extensions of the groups G and G’ to the action on E‘. Let P*
and P’ be the spherical polyhedra in E* spanning the polyhedra of G and G’ respectively. Since
the spines of the groups G* and G’* are unknotted in E4, it follows that there exists an orientation
preserving homeomorphism h: P* — P", where P* and P° are the closures.of P and P* in R(G")
and R(G"") respectively, satisfying the following conditions:

1. h maps bijectively the sides of P~ onto the sides of P'";

2. If the sides S and §' of P~ are paired by the side pairing transformation T € G*, T(S) = §",
then the sides A(S) and h(S") are paired by the side pairing transformation ¢{T') € G', where
¢ is the isomorphism constructed in section 4.3;

3. The following diagram is commutative

s L s
A lh
r(s) I n(s)

Now h extends equivariantly to all of E*, that is, the groups G* and G are conjugated.
It follows from lemma 6.1 that the group G* is an ST-group. Then the above implies that G*
is also an ST-group.
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