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Introduction 

· In (SJ, M Freedman and R.. Scora have constructed exotic examples of co-compact topological group 
actions on the 3-dimensional 1phere S3 with" wild Cantor sets u their limit aets. 

Their groups have interesting features: each element of a group is individually conjugate to a · 
conformal (hyperbolic) transformation of S3 , but the whole group is not topologically conjugate to 
a conformal group; ao the wildness of the limit set arises from the interplay .of the generator1 and 
not. from the dynamics of any el~ment alone. 
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They conject•red in (6) that if a gro•p act, conformally on S3 with limit aet liomeomorph.ic to a 

Cantor set and with compact quotient of the domain of dilcontinuity, then that Cantor aet i■ tame. 

The purpo■e of thi• paper ia to exhibit explicit examplea of conformal groupa • Kleinian gro•pa · 

acting on S3 , wboae limit sets are wild Cantor sets. As opposed to the Freedma.n-Scora examples, 

the group• we constructed have non-compact quotient,. they contain lots of parabolic elements. We 

will call those i,oupa Fakt Schottky lype groups (or FST-groups). 

w~ will present three d,ifferent constructions of FST-groups. It is interesting to note that we 

obtain in thi• way examples of non-equivalent wild Cant.or sets in S3• 

In the first example we use Klein's Combination Theorem to build FST-group1 from Schottky 

type groups. The key point in this part is in constructing the Schottky type group (acting on 5 3
) 

with non-standard isometric fundamental domain. 

It should be not~ here that the first attempt to construct FST-gro•p• was made by M. Bestvina 

and D. Cooper (I), but unfortunately their paper contain, a gap (see comments below). Nevertheless 

their idea is beautiful and fruitful. Our second example is in fact a reali:z.ation of their idea. 

The third con,truction is a generalisation of the first one. Using this construction we obtain the 

following result. For any positive integer N there are at least N free f'ST-groups acting on S3 with 

the same rank k(N) which uniformiie N non-homeomorphic manifolds. Moreover, the limit sets of 

th<'se groups are non-equivalent wild Cantor sets. 

The organiza.lion of lhe pa.per runs as follows. In 1eclion 1 we review Kleinian groups and discuss 

some example, including M. Bealvina and D. Cooper's one. The first and the second constructions 

are given in section, 2 and 3 respectively. Section 4 contains the topological part of the proofs. 

In section :i we pmient the third construction. In section 6 we prove that the extensions of the 

FST-Ji:roups we conslructed lo the action on 4-dimensional sphere are Schottky type groups. 

1 Preliminaries 

1.1 We denote the Euclidean n-space by E". We will write a point :re E" as z = (z1, ••• ,z,.). 

The unit sphere in E" is S = {z EE" : lzl = I}, the open unit ball i1 B = {z E E": lzl < l}, and 

the upp<'r haU space is H" = {.z: = (z1, ... ,.z:,.) EE": .z:,. > O}. The one point compactilication 

of E" is denotNI by E" or S". The natural inclusion of E"-1 into E" i1 given by E"-1 = {.z: = 

(.z:1, •.. , .z:,.) E E" : .z:,. = O} and extend, to lhe one point compactification1, 10 that we have 

:t .. -, = aH". 

1.1.1 The differential metric on ff" is given by da1 = (dzJ + ... + dz!)/:r!, With this metric H" 

is a model of hyperbolic spact>. 

1.1 .2 Let M( n) be the group of all orientation preserving Mobius transformation, of E", that is, 

each element of M(n) is a composition of a finite (even) number of inversions in spheres in E". This 
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group is isomorphic to the connected component of the unity of the Lorentz group SO( n + I, I). In 

dimension n = 2 there is also a canonical identification of M(2i 1.1,;th PSL(2,C). 

l.US It is well known that there is a natural embedding of M(n) into M(n + I), that is, ror each 

g e M( n) there is a g• e M( n + 1) such that g•IE" = g and g•(ff•+a) = ff•+I. 

We remark also that M(n) is both the full group of orientation-preserving isometries of H"+ 1 

and also the Cull group of orientation-preserving conformal mappings of tn. 

1.2 Classification of the elements of M(n) 

1.2.1 Every element g e M( n) has at least one fixed point in the closure of un+ 1• If g has a fixed 

point in H•+l, then it is ellip&ic; if g is not elliptic, and hu exactly one fixed point on DH"+ 1, then 

it is parabolic; otherwise, it is loxodromic. A loxodromic transformation which is conjugate to a 

dilation :r ..... A:r, oo ..... oo, A > 0 A '# 1, is called hyperbolic. 

1.2.2 In dimension n = 2 we may identiry M(2) with PSL(2, C). 

Proposition 1.1 Let g E PSL(2, C), and let Tr2(g) denote thi: squart of tin tro,e of a matri:r in 

SL(2,C) representing g. Then: 

J. Tr2 (g) ia real with OS Tr2 (g) S 4 i/ and only if g ia elliptic; 

!. Tr2(g) = 4 if and onl11 if g is either parabolic or the identity; 

3. Tr2(g) i., real with Tr2(g) > 4 if and only if g is hyperbolic; 

4. Tr2(g) is not in the interval IO, oo) if and only if g is lorodromic, but not hyperbolic. 

1.3 Isometric spheres 

For a transformation g e M(n) with g(oo} '# oo, the isometric sphere ( isometric circle in dimension 

2) /(g) or g i• defined by /(g) = {z EE": IIDzgll = l}. 

Proposition 1.2 A tranafonnation g E M( n) such that g( oo) /: oo can be ulTitten in the fonn 

g = O o q op, tDllen p u lhe inversion in /(g); q u the nfleclion in lhe l,iaeelor of the center, of 

/(g) and /(g-1 ) i//(g) f, /(g-1), or the reflection in on arbitrarr, lar,,erplane in E" pasaing through 

the center of l(g) if l(g) = l(g-• ); and O ia a rotation around the crnler of l(g-• ). 

In particular, for dimension 2 we have: 
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Proposition 1.S Tht lronaformation g E M(2) IDilh g(oo) "Foo hu lht follolDing form 

r2ei(l+2AJ 
g(z) = /J- --- , 

z-o 

IDhtre o EC i, lht center of l(g), r ia ,1, rodiua, /J ia the center of /(g- 1), ~ ia the ongle VJhich 

·the •i,ector of o and /J (if di,tind) makea with the imaginarJI azis (or the angle of a lint pa.11ing 

through o i/ o = {3), and 9 i, lht angle of rotation around {3. 

1.4 Kleinian groups 

Let r he ;t subgroup of M(n). We say that the action of rat a. point z E En is discontinuous if 

I. The stabilizer C.- = {g E r : gz = z} is finite; 

2. There is a neighborhood ll of z such that g( ll) n ll = 0 for aJI g E r \ f Z" 

The s<'t of points at which the action of r is discontinuous is called the regular set, and is denoted 

by R(r). Its complement L{f) = E" \ R(r) is called the limit set of r . A group r is called Kleinian 

if R(f) # 0 . An elemenlary group is a K}einian group whose limit set has a finite number of points. 

1.5 Fundamental domains 

A fundamental domain D for the Kleinian group r is an open subset of R(f) such that: 

·l. g(D)n D = 0, for aJI g Er\ {id}; 

2. for every x E R(I') there is a g E r, with g(x) E fJ (iJ is the closure of D). 

A fundamental domain D for r is said to be isometricifD bounded by isometric spheres (isometric 

circles in dimensioa 2) of generators of r. 
A Kleinian group r is ~eometrically linite if it has a finite sided fundamental hyperbolic polyhe­

dron for its adion on hyprrbolic space H"~ 1• 

1.6 Klein'11 combination theorem 

Let 1'1 and r 2 he KIPinian ,:roups. Supp0&e that there are fundamental domains D; of r, (i = 1,2), 

1ucb that D, U D2 = E" and D = Di n D2 -I 0. Then r = (f 1, f 2) ia a Kleinian group, and D is a 

fundamental domain for rand r = f1 • f2 (the free product of r1 and f 2). 

\ 
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I. 7 Poincare's polyhedron theorem 

This section is devoted to the exposition of a fundamental theorem of Poincare. It will be given in 

the form we need for our purpose. A general treatment can be found in l9). 
Let { ( T;, T;) : I $ i $ m} be a family of closed metric balls in E". Assume that any pa.ir uf them 

either intersect in a. point or a.re disjoint. A point of intersection of two balls will be called a. poinl 

of contact. Let C be the set of all point& of contact ofthoae balls. Let S; = iJ1; \ {points of contact} 

and Sf= llT! \ {points uf contact}. Then either S; = IJT;, (S/ = lfl'!), or S., (respectively s:, i~ a 

punctured (n - 1)-sphere. Let S = {S;,S:}. The complement of the union of all T., Tf we denote 

by P. An element of Swill be called a side of P. 

Suppose tha.t for each i there ing, E M(n)such that g(S,) = S/, g;- 1(SD = S, and g,( P)nP = 0. 

Let F = {g;,g;1} = {/1, ••• ,fl.,.}. An element of Fis called a side pairing transformation. A side 

pairing transformation, say /;, sends a. point of contact e E T, to a point of contact e' E 11- We 

say that e and e' are related. This relation gives an equivalence relation iu C, partitioning C into 

equivalence classes, called cycles of points of contact. 

Each cycle c can be cyclically ordered as c = { e1, ... , fl-1, q = eo}, in such a. way that for each 

i, I $ i $ I.:, there ia a/; E F such that /;(e,_ 1 ) = e,. Let /c = /lo ... o /i. The element le is called 

the cyclic transformation related to the cycle c. Clearly /,(eo) = eo, that is, eo is a fixed point of le• 

Theorem 1.1 Let P be a spherical polyhedron conslructed abooc. Lei F = {g.,g:; I $ i $ 111} be 
a set of side pairing tnmsfonnations related to P. Suppose that for each cycle uf puinta u/ contact 

c we have that gc is parabolic. Then f generated by Fis a·Kleinian ..ubgroup o/M(n), and Pis a 

fundamental domain for f . 

• Thjs theorem is a particular case of general Poincare's Polyhedron Theorem proved by Ma.skit 

in (9). 
We will also need the following corollary of the proof of Poincare's Polyhedron Theorem. 

Theorem 1.2 Let r be a Kleinian group a& aboue. Then each parabolic element from f is c"njugated 

in r to the element of the form g~, where gc is~ cyclic traruformation and k E Z. • 

1.8 Schottky type groups 

1.8.1 We say that a Kleinian group r ~ M(n) is an ST-group of type (r,5) (Scbotlly Type group) • 

if r has genera.ion fa, ... ,g., h1, ... , h. and a fundamental domain D bounded Jordan surfaces (or 

curves in dimension 2) S1, s; ... , S., s;, T1, 1j, ... , T., T., and they satisfy the.following conditions: 

1: The surfaces (or curves) are disjoint, except that T, and TJ have a common point z1 ; 

2. g;(S,) = St, h;(T,) = TJ; 
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3. h; is parabolic with fixed point z;. 

The elements g;, h; are called standard generators of r, and Dis called a standard fundamental 

domain for r. 
Ifs= O then I' ii; called a Schotlky group. 

Figure 1. 
One can see that every ST-group of type (r,s) is constructed from r cyclic loxodromic groups 

ands cyclic parabolic groups by Klein"s Combination Theorem. 

1,8.2 It is easy to verify that an ST-group r ha.s the following properties; 

I. r has" fr~ product decomposition r = F1 • ... • F, • JI 1 • . , . • H ,, where F; is cyclic loxodromic 

and II, is cyclic parabolic; 

2. The limit set L( I') is totally disconnected; 

3. In dimension 2 the regular set R(r) iB connected, and in dimension n > 2 R(f) is simply 
connerted. 

1.9 Wild Cantor sets in E" and Fake Schottky type groups 

1.9.1 Cantor sets imbedded in E" are of two types. A Cantor set n· ~ E" is called tame if there is 

a homeomor11hism h: E" - E" such that h(h") lif'!I 011 a smoothly embedded arc. Otherwise, I,: is 
called wild. 

Two Cantor sets h"1,l12 ~ E" are equivalent is there is a homeomorphism h:E" - E" such 
that h(h.1 ) = K2, his well known that any two Cantor sets in E2 are equivalent. and any two tame 
Cantor sets in E" are equivalent. 

1.9.2 It is not difficult to show that the limit set of an ST-group is either finite or a tame Cantor 
set. and up to topol~ical conju,;ation two ST-,:ro11p5 of the same type are equivalent. 

1.10 In (4) Freedman has considered a lopolo,:ical ,:f'neralization of the ST-,:roup~. Ht> defines a 
11:roup r of homeomorphisms of E" to be admis.~ib/p if: 

1. The limit set J,(f) is a Cantor set; 

2. I' ~rt~ disl'onli1111ously on R( I'); 

3. The quotient R(l')/1 ib compact. 

r is called weak/_v admissible if the condition (3) above is dropped . 
Schottky p;ro11p1 provide examples of admissible actions. and Schottky type groups provide ex­

amples of weakly admissible actions. 
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1.11 We say that a. Kleinian group r ~ M(n) is an FST-group of type (r,-') (Fake Schottky Type 

group) if: 

1. r has a free product decomposition r = F1 • ••• • F, • II 1 • .. ·•JI,. where/-~ i~ cyclic loxodromic 

and 111 is cyclic parabolic; 

2. The limit set L(f) is a Cantor set; 

3. r is not an ST-group. 

Remark 1. We will show that in dimension 3, conditions (I), (2), (3) above imply that L( I') i~ 

wild. The aame i■ true in dimension greater than 4, but we do not know about it in dimen5ion -1. 

Remark 2. It is well-known (see, for instance, Chuckrow (3)) that when 11=2 conditions I and 

2 imply that r is an ST-group. Thus, there are no FST-groups in dimension 2. 

1.12 Examples related to Poincare's Polyhedron Theorem 

lo this section we present two examples which show that one should be careful in applyiug spherical 

polyhedra to construct fundamental domains for Kleinian groups. We also recall Destvina- Cooper's 

example. 

1.12.1 Consider the domain D ~ E3 bounded by the spheres T1 , r:. T2 , 1~. where 1'1 , 1·; 

are spheres centered at the origin and with radii 1 and 3 respectively, and Ti, 72 a.re spheres of radii 

l and centered at o = (0, -2,0) and b = (0. 2, 0) r~pectively. (See figure 2.) 

Figure 2. 

1.12.2 Example 1 

Let 91(x) = 3z, 92 =Jo 1, where I is the inversion in 1i, and J is the reflection iu thl' (x1, x;s)-plauc. 

We aee that there are four points of contact Pl, Pl, P:J, p~. Let S1 = T, \ {P2,P:s), S1 = 1j \ (p1 ,p4}, 

S2 = T1 \ {p1,,i}, and Si=~\ {PJ,p4 }. Then we have that g(Si) = Sj, g,(S,l = -"t In addition, 

g;(D)n D = 0, i = 1,2. 

Let r = (91,92)- In order to prove that D i~ a fuudameutal domain for 1', we need to verify 

whether all the cyclic transformations are parabolic. 

It is easy to verify that we have only one cycle of points of conlacl c = {p,, 1'1 = g,(p,), 

p4 =!ho g1(P1), p:, = 911 o 92 o g1(PlH- The cyclic element corre11ponding to thi• cycle of point• of 

contact is 9c = gj1 o gj"1 o !ho 91, 

Observe that r leaves invariant the (z1,z2)-plane which we identify with the complex plane C, 

and put z = z 1 + iz2. Then the action of the elements 91, 92 on thi■ C-plane i1 given by 91(z) = 3z, 

and g,(z) = (2z + 3)/(z + 2) (see proposition 1.3). 
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We obtain tha.t the action of le on the C-pla.ne is given by g.(z) = (-5z - 4)/(4z + 3). It 

i■ obvious that g, i■ parabolic if and only if the restriction of g, 'to the C-plane i■ parabolic If we 

con■.ider it a■ u element of PSL(2, C). Since Tr2(g,) = 4, we obtain tha.t 9c is para.bolic. Therefore, 

by Poincare'■ Polyhedron Theorem, D is a fundamental doma.in for r. 
Notice that the restriction of r to the C-plane is a Fuchsian group of the first kind. In particular, 

the limit set f,(fl is the real a.xis completed by oo. 

1.12.3: Example 2 

Let 110w j 1(z) =·Jz, i2 = po 101, where Ii■ the inversion in T,, 1 is the reflection in the (z1, z3 )-plane, 

and pis the rotation of 1r around the line L = {z2 = 2, z 1 = O}. We have again that 9i(Si) = S[, and · 

j;( D) n D = 0, i = .1, 2. The cycl" of point.■ of contact is c = {P2, p4 = j 2 (P2 ), P3 = jj" 1 .92(P2), Pt = 
iii'1jj192(J)2)}. The cyclic element is j, = j 11ji'1j 11j2. 

Let j• = (g1,j1)- Th~n i' leaves invariant the (x1,z2)-plane. which we again identify with the 

C-planl'. 

The action oflhe elements 9; on thit1 plane"'" given by: 91( :-)• = 3=, and 97( z) = (2z+5)/( z+2). 
Thi' artion of g, is given h~· 

g,(z) = (11/J)z+(~0/3)• 
--4.z - ' 

whh Tr2(jc) = 100/91' ◄. We see that j, is loxodromic, and thereforl' thl' conditions of Poincare's 
Polyhedron Thl'Drmt are not satisfied. 

It follows from Ma.,;kit's result (10) that D is not a fundamental domain for f. 
It is int<'rl'llting to note that the limit set L(l') is a Canlor sel lying on the z 2-axis completed 

by oo and f does not rontain parabolic elements. This ali;o follows from Ma.skit (10). In fact, f is a 
Schottky 1troup. 

1.13 Bestvina-Coopers' example 

In this section WI' outline Bl'Btvina - Cooper's t>xa.mple (1). 
Let h" be the graph consisting of two disjoint ~imple closed curve■ J,1 and J,2 joined by an arc 

L. and emheddNI in E 3 a.,; in Figure J. The arr I, "'ill he callro a bridge of ,.. .. 
Figure 3. 

Consider a collection S = {Ti, T2, ... } of closed round balls placed along A" so that adjacent 
bii.111 touch in one point (11tt Figure 4.) 

Figure 4. 

Let ~: S _... S be a fixe<l point-frt>e involution such that: 

' 
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• along each circular part I,1, h:2 of Ji: there are at least two balls T'. 1'" such that tl>(T') and 

tP(T") lie along L. 

For each TE S, choose a Mobius transformation h7: EJ - EJ so that: 

• h7(T) = E3 \ int(l/>(T)); 

• /,7 maps the points of contact of'/' to the points of rnnt;,.rt of <P(T); 

Let G be the group generated by {hT : TE S} . 

Then in Ill it has been concluded without proof that: 

1. G is a free group of finite rank; 

2. (.' acts fr~ly and Jiscontinuously in tlw ro111plt•111cnt of its limit st'l /.((,' J; 

3. D = S3 \ (l.h-es T) is a fundamental domain for G; 

But we have seen in section I.I:.! that conclusion, (:I) and (·1) are uot true iu general. Example~ 

and 2 show that il depends on the particular choice of a set {hT ; T E S} or side pairing 

transformations. 

Observe that if T is the collection of the closed l,alls rorresponding to thP spheres iu scctiou 

1.12.1 then in the first example L(f) = '1:=o Tn, while in the second one l(f) is a proper subset of 

n:'=o Tn, where the sets Tn are constructed by tl,c same way as the sets S,. abo\"e. 

Let us remark that (3) implies (-1), so iu order to construct a correct example, we uced to find 

a set of side pa.iring transformations satisfying the conditions of l'oincani's PolyheJrou theorem. 

We will give a realization of Best vina-Cooper's idea in section 3. 

2 The first example 

2.1 ST - groups with non - standard fundamental domain 

2.1.l In this section we construct an example of au ST- group acting 011 the plaue with 11011-st,u1dud 

isometric fundamental domain. 

We start with the description of the isometric circles of the generator•. lu what follows we 

identify the plane E3 with the complex plane C and write z = z 1 + iz2. 

The following table gives the centers of the isometric circles S, and Sf. All the circles S1 and s; 
have radius 1. 
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j S; s: j s, s: 
1 -3 3 8 -9 + 6i 9+ 6i 

2 -5 -1 9 -7+6i 7 + 6i 

J 5 I IO -5+6i 5 + 6i 

4 -i 7 11 -3 + 6i 3 + 6i 

5 -9 9 12 -3 + 4i 3+ 4i 

6 -9 + 2i 9 + 2i 13 -3 + 2i 3+ 2i 

i -9+4i 9 + 4i 
Table 1: The center s or t he isometric circles. 

We define the Mohius transformations g; a.~ g, = 7,, o q,. where q, is the inversion in S;. a.nd p; is 
the refl('ction in the bisector of the centers of S, and s:. Then g, is hyperbolic. and S; and s: are 

the isometrir circles or g, 11.nd g; 1 respectively. 

Figurer, 11ho11,•s all the isom('tric circl('S and the transformations g,. 

Figure 5. 

Applyinl!: proposition 1.3 in s<'clion I, we obtain that the matrices of the transformations are: 

91 = ( ~ ~ )- ( -I -Ii ),93= ( =: : ) . 92 = I 
-'> 

( i 48) (9 80). ( 9+2i 84 ) · 9• = I i , 95 = 9fl = 
I !l I 9 - 2i 

( 
9 + 4i 9(i ) ( 9 + 6i 116 ) ( i +, 6i 

9' = I !I - 4i ' gA = I 9 - 6i ' 99 = ) . i - 6i 

84 

and 

( 
:1+2i 12 ) 

!In "' I :1 - 2, . 

I.et I"~ (91, ... ,913) he the group generatNI by 91, ... ,913• 

Let D be th., rnmplement of all closed discs bounded by the circles S, and S/. Notice that D 
h.i~ three connM"ted rompmt('nls /) 1 • D2, DJ ( see Fi~nre 6.) 

Figar~ 6. 

Our purpose now is ta pron• that D is a fundamental domain for r. 
First we obsen·e that _q;(S,) = .:i: and g;( D) n D = 0. Besides, g; sends points ol contact to 

points of contact. So the only hypothesi11 of l'oincare's l'olyhedron Theorem we need to verify is 

that each ryclir transformation is parabolic. 
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l.et u& list all the cycles of poinh of contact. Oue ea.sily see5 that tht'rt' art• 12 cycles of poinb 

of conta.ct as follows: 

(I) 1 he cycle {-ti; ti; 0} with the cyclic lro.nsfur111atiu11 

-10~ ) ' 
19 

(2) 'I he cycle {-4; 4; 2; -2} with the cyclic lransformatiou 

(3) The cycles consisting of two points with the cyclic transformation~ 11 :, = 9131 g 1, and Ii, = 
g; 1g;+i for 4 ~ i S 12. 

and 

and 

We have two types (modulo changing coordinates): 

(a) Type 1: S; is centered at -a and S/ at a, and S,+ 1 at -11 - 2 and s:+i at ,1 + 2; 11 > O. 

Then 

a 2 - I 

u 

_ 1 ( I+ 211 
h, =g, 9,tl = 

2 

a+2 (ut2f­

u+2 

-2(« + I)' ) . 
-3- 2o 

(b} Type 2: S, is centered at -n + i, s; at u + 1. and S,tt .ti -n - 1. a11,I s;, 1 al u -- 1. 

Then 

g, = ( 
ti -1 

ti - I 

_ 1 ( - I+ 2m 
/i; = 9, 9,+I = 

21 

We see that all the cyclic transformations h arc paraholic. Therefon,. w,• rau runclude from 

Poincare's Polyhedron Theorem that Dis a fundamental polyhedron for I', and r is l\leiniau. ll is 

clear that f is free on these generators, i.e., f = (91) • ... • (913). In particular. the minimal number 

of generators is 13. 

w~ now show that f constructed above is an ST-group. 

Lemma 2.1 The regular set R(rJ of r is connected. 
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Proof: Consider the path o: (0, 1) - b connecting the points p, q E 8D3 as shown in Figure 6. 

Let /J: {O, t) - C be the path (J = g11 o o. Then it is clear that /3(1) E R(r) for all t E (0.1), 

and /3(0) = p' E iJD1 and /J( I) = q' E IJD3. It follows that for any pair of points z E D1 and II E D3 

there is a path in R(r) connecting z and II• The same argument show& that for any pair of points 

:r' e D1 and y' E D3 there is a path in R(r) connecting z' and y'. Observing that 

R( n = u g( f) \ { point, of contact}). 
,er 

we conclude that R( r) is connected. 

Theorem 2.1 I' i.• au ST-group of lype { I, 12). 

□ 

Proof: ObsE"rve that the natural extE"n&ion of r to th" action in H3
• as follows from the construc­

tion, is a p:oometrically finite discrete subgroup of the isometry group of H3 • Applying the lemma 

abovf' a11d Theorem 6.2 in (8). we rnnclude that r has no totally degenerate groups a.s subgroups. 

Since ll( I') is ronnE"cted. it is clear that r has no quasi-Fuchsia.n subgroups of the first kind. Then 

it follows from Proposition 5.8 in (8) that r is construrted by Klein's Combination Theorem from a 

finiLe number of ir-l<·meutary groups. Since f does not contain free abelian subgroup" of rank 2, we 

obtain that I' is an ST-group in the sense of our definition. 

We also note that every maximal parabolic subgroup of r has rank I. and that thPre a.re exactly 

1:1 distinrt rnnjugary dass(•s of such subgroups . Thl'f<'for<'. r is au ST-r;roup of type ( 1, 12). 

□ 

CorollAry 2. I J'ht limit set L( r) of r i.• n Cnntor srl. 

The proof is contain<'d in, e .g .• (Jj. 

Corollary 2.2 Fnr tht group r construcled above, S(f) = R{f' )/r is a Ritmannian 1urfact of 

.•i911at11n { I. 24). thnt i.• . . 'i'{f') i.• rompacl Ritmnn11ian 11urfau of gtnt1,• I with !!4 puncl11res. 

2.2 Let I' he the ,:roup ronstnl("ted in section 2.1. C:onsid<'r th<' natural extension r· of r to E3 • 

Let P he the spherical polyhedron in E3 formed hy the spheres spanning th<' circles S; and s:. We 

will keep the saml' l<'llers S, and S/ for denoting thP sides of I'. Using again Poinca.1-e"s Pol_vhedron 

Theorem, we obtain that P is a fundamental polyh ... dron for r·. It is not difficult to show that r• 
is an ST-,:roup acting on E3 • and Pis its non-standard isometric fundamental domain, but we will 

1111ly nePd the fact that thl' limit set of r is a Cantor ~et. 

2.2.1 I.et H he th<' graph in thl' :ry-plan<', d<'pict<'tl in Fi11;ure , . 1,· ha.~ the centers of thr spheres 

S, and s: as its wrt.,,·,•s: ttu· "''!!,I'S of h. at<' th!' strair;ht segml'nls connl'cting centl'rs of adja<"ent 

spherl's . 

We will call the graph K a spine of the group r·. 
Figure 7. 
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2.3 Constructing FST-groups acting on E3 • 

In this section we construct the first examph• of a Kleiuian group ani:::,: uu E 3 with tlte limit sf'l a 

wild Cantor set. 

2.3.1 Let r• be the group built in section 2.2; I' its fundamenta.l polyh,~dron; a11<I /,· it, spiu,•. 

2.3.2 Tak" a Mobius tra11sfor111atio11 ,, E M(J) . J.,,, r;, = I, 0 r· 0 I, 1. Tli,·11 /,(/')Is .. l11111la111e11tal 

polyhedron for f~. 

One easily sees that oue can find Mobius transformations li 1, Iii, hJ, 1,i from M( :1) sud1 that tli,• 

groups ri = h, o f• oh; 1 , i = 1, 2, 3. -t satisfy the following: 

1 ). The polyhedra P, = h,( P), 1 = l, 2, J, -1, satisfy the conditiom, of hl,·in \ Coml,inatiou 

Theorem, that is, the complement of I-', i11 E3 is co11tained iu 1'1 , i # j; 

2). The spines h", of the groups r, form the link as showu in Figun• IS. 

Figure 8. 

Let H = {I\, f 2 , 1'3 , f 4) be the group generated by r,. Then it follows froru Klein's Combinatio11 

Theorem that H is a Kleinian group; F = P1 n Pl n /'3 n /'4 is a fundamental domain for II; 

H = f1 • f2 • f 3 • r~. (See Figure 9.) 

Figure 9. 
Remark. One sees that the group I! is or type (-J, 48). 

2.3.3 In section 4 we will prove that the limit ,et of the group If is a wild ~l;i11t11r sl'l, thill b. I/ i, 

a Fake Schottky type group. 

3 The second example 

Our second example of an F ST-group acting 011 E3 is closely related lo thl' exarnph• of ll,•sl ,·ina and 

Cooper (1). In fact, this is its correct version. _The conslruction we offer is 11uit1• rnmplicated and 

much harder than the first one. The main difficulties are in finding a suitable liuear conslrul'liun of 

the spine and a set of side pairing transformations in order to sali.fy Poincare·s Polyh,•tlron Tueore111. 

It is reasonable to believe that lhis is not au .ideal co11structio11, and that dilfnenl approad1Ps could 

work better. On the other hand, many approaches that at first glance appear to be easy, do not 

work, and we believe that, in any case, the construction must be Car from trivial. 

3.1 We start with the description of the spine. Here we adopt the coordinates (.c, !I, z) for E 3 • 

i.et K be the graph embedded in E 3 as shown in figure 10. As in section 2.2.1, we call this 

graph the spine of the group. 

Figure 10. 
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ThP. rnordinatei: of its vertice,; p; ::: (z,.y,..z;), ,r.::: (z:,Yl,zD are given in Table 2 below. The 

length of rach edge of Ii f'qUals 2. 

i z; Yi .. :r' y: z' map 
I I i z; Y, Zi z' Yi Z; map I ._ 

I -5 0 0 - I 0 0 bi 11 -7 10 0 i 10 0 CJ 

2 5 0 0 I 0 0 b2 12 15 0 0 21 0 0 CJ 

3 - 3 0 0 3 0 0 b3 13 15 2 0 21 2 0 aso 

4 -7 0 0 i 0 0 C4 14 15 4 0 21 4 0 as 

5 -3 2 0 3 2 0 a1 15 15 6 0 21 6 0 as 

6 -3 4 0 J 4 0 a2 16 15 8 0 21 8 0 a, 
j' -3 6 0 3 6 0 a3 17 15 JO 0 21 10 0 c2 

8 -3 8 0 3 8 0 a4 18 -7 -4 0 15 0 -4 C7 

9 - 3 JO 0 3 JO 0 as 19 -5 -4 0 13 0 -4 M2 
10 -5 10 0 5 JO 0 06 20 -3 -4 0 11 2 -4 CJO 

i :r; Yi z, :r' y: ~~ map -· ., - - e- --
i X; Yi Zi x' y: ., map I ~i 

21 - J 2 -4 II 2 -4 Mi 31 -1 14 -4 -) 14 -4 di 

22 - 3 4 - •I II 4 -.J C@ 32 1 14 -4 -I 14 -4 d1 

2:1 - I ·I - 4 9 4 - ·1 D, 33 J 14 --1 -I 14 - 4 d3 

2-1 1 4 -4 5 4 -4 D2 34 j 0 -4 -1 0 -4 A13 

25 3 4 -4 7 4 -4 D3 35 i 10 -4 - 1 10 -4 a13 

26 -7 10 -4 15 JO - 4 C5 36 -7 0 - 2 -1 0 -2 Au 
2i -5 10 -4 13 JO -4 1112 Ji 15 () -2 -I 0 -2 A,2 
28 -3 10 -4 11 JO -4 C9 38 i 0 - 6 -I 0 -6 A14 

29 - 3 12 - 4 11 12 -4 lliJ 39 j' 0 -8 -I 0 -8 cu 
30 -3 14 -4 11 14 -4 C6 40 9 0 -8 -1 0 -8 Dt 

i :r, Yi ~, :r' Vi ., map I ., 
·11 11 0 -8 -1 0 -8 v~ 
'12 13 0 -8 -1 0 -8 D6 

43 -7 10 -2 - I JO -2 "11 

44 15 10 -2 -I 10 -2 au 
45 7 JO -6 -I 10 -6 014 

46 7 JO - 8 -1 JO -8 <'11 

-Ii 9 JO -8 -I JO -8 d4 
.:~ 11 JO -8 -1 JO -8 ds 

49 13 JO -8 -1 10 -8 d6 

Table 2 

The crntrrs of t l,r i~o11wt rir sphrrrs S, and s:. an,! the rorrrspomli11g side pairing transformations . 

J.I 



It is easy to see that f, is a linearizat1011 of the ~raph in llestvina-Cooper's cxamph· . For inslann•. 

the bridge of J..: is the 6egment [p:i,p3j. 

3.2 ( 'onsider a family of :!-sphert•s '/ = jS,, s; : I ::; 1 :S: ·l!l}. all of r ,11li11, one, 1·.,1,lt·n•d tl 11 • 

point~ p., Pi respectively. One secs that adjacent sphnes toucl1. 

Let I' b1• the complement in E.1 of the union of all the closed h.ill, ho1111d,·,I l,_1· 1 l1t· sph,·r,·s .\. 

Next we will deti11c the side pairing tran,format1ons for /' . 

For each pair (S, S') from T define the Mobius transformation II:;: E;' - E' a, follows 

/1:; = J, o Is, 

where Is is the inversion in S. and Js is the reflection in the bisector of lh•• n•nters of S a111I S'. 
Then hs is hyperbolic, and 5' and S' arc the isometric spheres of /is and 1, ; 1 , rt·s1u·1·tivd)·, On,· 

can easily verify that for each S from T Ii ., maps 1l1t• points of rnntarl of.~ to 1 lio,,· "f '-i' ·1.11,1 .. :! 

provides also the notations c,f all the sidt> pairing transfur111,1lio11s . For i1"t.1111 , .. /, 1 , ""''' l"'"'b 10 

the pair (S1, s; ). We denote the M'l of thest• siclt• pairing tr,wsfor111.it1011, fc,r I'·" \\· _ 

3.3 Let(; be the group ge11eral•••l I,~· tl1t'M' sid,, p,11n11i; tra11.,fo1111;i11011 ., 

We next prove that the group <i I$ h:leinictu. and tha.t I' b a funda111t·utal ,iot1H1t11 tu.- (; . 

To this end, we will list all the cycles of points of co11tarl a.ml verify that each cycli, tra.11,for ­

mation is parabolic. 

First of all, we observe that each cycle of poi111s of contact c = j <u, . .. • q . 1) Ill', in I 1,., s.111,.. plitlll' 

L, as the centers of the isometric spheres of tl11• transformaunu, y1 . ... ,y,. wl,"r" I, = ,,._ o .. . o 91 

is the cyclic transformation related lo the cycle c . Siucc y 1 • .. .• g1 art• hnwrl,oli,· . the pl,1111· /.,. i, 

invariant under 91, ... , 9k· 

Note that any Mobrns transformation from 1\1(:1) 1, paraboli<- if a11<1 0111 _1· 1I ii, n•,tr&< 11011 tu .,11 _1 

invariant plane is parabolic as an element of M( :.!). Thus. w~· can u,e co11,·•·nie11t n,orcli11att·s i11 t•acl, 

such plane to verify whether the cyclic transformatiu11s are p,iral,oli,· or 1101. 

3.3.l Tl11· cycles with cyclic tra11sfor111alio11s /q = b31b'z 1b.,b1 ,rnd 1,, - /,111,,1, 1 h,t\'l' the ,am•• 

structure as the analogues cycles in the fi~st example, where it was v<•rili1•d that Ii I a11J 1, 1 arc 

parabolic; see (I) and (:.!) i11 section :.! . I , I. 

3.3.2 Let us now consider the two poi111 cycles. The cyclic tra11sfor111a11011, i11 tl,i, .- .. ,,. an• of the 

form h = 9 1921, where 91 and 91 are transformations from \V. 

Let L be a. plane invariant under 9 1 and 92 passing ti.rough the centers of tlw isomrtrir spheres 

of 91 and 92· We identify L with the complex plane C and call the intersl·ctio11 l n /' a slice of P 
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corresponding to L. All the slices we need a.re shown in Figures 11 - 15. The a.rrows show the side 

pa.iring tra.nsformMions. 

Figures 11-15. 

Now WI' arl' ,;oing to write down l!tl' matrirl's of the rl'slrictions of the elements g1, g2• and h to 

thr corrl'spondint invariant plane L. 

and 

We havr thf' following Casi's to ronsidN. 

For th!' first ca.sl'. WI' ha,·l': 

i s. S' I map 

l -a (I 91 

2 -n - 2 II +2 92 . . 
I hC' first ca.5r: lll'rl' a > 0. 

II ('llrf' 

g, n
1 

- I ) , 92 = ( n + 2 (n + 2)
2 

- I ) • 

a I a+ 2 

f1=919'i' = ( 1+2n 2(a+1)2 ). 
'l -:J - 'la 

which is parabolic 

lll'low Wl' list tlw pairs of the transformations (g 1.g2 ) and the planps L invariant under 9 1 and 

~2 corr1•spo11<ling to this rasp (SP!' slir<'s). 

i s, ~-· • I map 

I -a+ i (I+ i 91 

2 -a- i (I - i 92 
Thr sPrond rasr· : l!Prr II '> (I 

(I+; n - I 

(I - I 

Hi 

"2 

II+ I 



and 
h _ _1 _ ( -1 + 2ai -2a2 i ) 

- 9192 - 2. 1 2 . • 
I - - UI 

which is parabolic. 

This corresponds to the following pairs (91,92) and the invariant planes L: 

• L = {z = O}; (a1,b3), (a2,ai), (a3,a2), (a4,a:i), (a~,a4), (c2,a1), (a1,a8), (as,a9), (a9,a1ul, 

(a10,c3). 

3.3.3 Consider now the four point cycles. We apply the same procedure as in section 3.3.i. The 

cyclic transformations in this case have the form h = 93 1 92 1 9◄91, where: 

i s, S' 
' 

map 

1 a+i b+i 91 
2 c+i d+i 92 
3 a-i c- i 93 

4 b- i d-i 9◄ 
Here a, b,c, tl E R . 

The matrices of 9_; are: 

(
b+i -ab-(a:b)i), (d+i -cd-(c:°d)i), 

YI = 1 -Q - I 
92 = 1 -C - I 

(
c-i -ac+(a:c)i). (d-i -bd+(b+d)i)· 

93 = I -a + 1 
94 = I -b + i 

Hence 

( 
1 + 4ai -4a2 i ) . . . 

h = 9319219491 = . . , which 1s parabolic. 
41 1 - 4a, 

This corresponds to the following 4- tuples (91, 92, g3,94 ) and the invariant planes L: " 



3.3.4 Finally, we have the five point cycles. In this ca.&e the cyclic tra.nsforma.tiom, a.re of the form 

h = 9119392931914, where we ha.ve the following: 

i s, S' I map 

I -5 5 91 

2 -3 1 92 

3 -1 3 93 

with 

Thus, we obtain that 

h = ( -19 -80) 
5 21 ' 

which is pa.ra.bolk. 
This corresponds to the following 3- tuples (g1• 92,93) and the invariant planes L: 

• l = {z = -4}; (d1,d2,d3), (D1,D2,D3). 

• L = {z = -8} ; (d4 .d~. ds), (D •• D~.Ds) -

3.4 It is seen tha.t we have listed all the cycles of points of contact. We ha.ve also verified that all 
the cyclic transformations are parabolic. Therefore, it follows from Poincare's Polyhedron Theorem 
that the group G is Kleinian, and P is its fundamental domain. In the next section we will prove 

the the limit set of the ~roup G is a. wild Cantor set, that is, G is an FST-group. 

Rem11rk. It follows from Throrem 1.2 that the Rroup G is of type (9,40). 

4 The groups H and G are Fake Schottky Type groups 

In this section we show that both Kleinia.n groups II and G constructed in sections 2 and 3 have 

wild Can ior set limit sets. 

4.1 We recall that " Kleinia.n group r C M(n) is said to be geometrically finite if it ha.& a 
hyperbolic fundamental domain i;: H"+ 1 with a. finite number of sides. 
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4.2 Let r and I" be Kleinian groups. We say that an isomorphism ~: r - f' ia type pl'ffffYiag 
if it carries parabolic element■ of r bijectively onto parabolic elements of r'. 

We will need the following theorem. 

Theorem 4.1 (Tukia [11]) Let r and f' be geometrically finite Kleinian groups. Let~: f - I" 
be a type pre1ennng iaomorpliiam. Then there is on homeomorpliiam /♦ : L(f)-. L(f') of the /imil 
,et, inducing (p. 

Corollary 4.1 Let r be a geometricallr finite Kleinian grovp. Auume that thn-r ia a type preaff't1ing 
iaomorphiam ~: f -. f', tdaere f' ia a non-elementa,-, ST-group. Then the limit aet L( f) of t/ae 
group r i, a Cantor set. 

4.3 

Proposition 4.1 The limit set of the group II constructed in section l u a Cantor set. 

Proof: Let r be the Kleinian group constructed in section 2.1. l. Consider the groups f 1 = 
/ 1f/j 1

, f, = /,f / 21, f 3 = '3f /31, f 4 = / 4f / 41
, where/; E PSL(2, C). One easily._ that we 

can choose the elements /; in such a way that the fundamental domains F'; = /;( D) or the groups 
i'; are located u in Figure 16. 

Figure HI. 

Then applying Klein's Combination Theorem, we obtain that t = (fi, f 2 , f 3 , f 4) generated by 
f; is a Kleinian group. Its fundamental domain F = ().=• f. is the complement or all the dosed 
discs bounded by the circles shown in Figure Hi. 

The same argument as in section 2.2 show that f is an ST-group. Therefore. in particular. tlae 
limit aet L(f) of i' is a Cantor set. 

We know that r = (91 , ••• , 913) ( see section 2.1 ). Take the following generators of the group f: 

• /1(91 )/i1, ... , /1(913)/1-1; 

• h(9i)/i1
,- • .,/,(913)/i1; 

• '3(gi)J; 1
, ••• ,'3(913)/3 1

; 

• /4(9t)/;1, • • ·, /4(913)/;
1 
· 

Let us denote them as a,; = /i(g;)/,- 1
• 

Now let us consider the natural extension of i' to the action on E3 and keep old notation■ for 
the group and it■ generator&. 

Recall that the group H constructed in section 2.3 looks like H = (f., f 2, f 3 , r 4), where f; = 
h;f"hi"1

, i = 1, 2, 3, 4 .. 
Take the following generators of the group H: 
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• h1(gj)hj1,, •• , h1(gj3)hj1 i 

• h2(gj)h21, ••• ,h2(gj3)hi"1
: 

• h3(gj)h31, ••• , h3(gj3)hj 1
; 

• h4(gj)h; 1 , .... h4(gj3)h; 1
; 

where g;. i = 1, 2, ... , 13 are the generators of r· (see section 2.3). 

We let denote theR generator1 u b;; = h;(g;)h;- 1
• 

It i1 easy to see that the cycles of point■ of contact and the cyclic transformations of the groups 

H and f' have the aame structure. By applying Theorem 1.2, we obtain that the assignment 

i = 1,2.3,4, j = 1,2, ... , 13, defines a type preserving isomorphism ip: f' - H. Then Corollary 4.1 

implies that the limit set L( lJ ) of the group II is a Cantor set. 

Propo1idon 4.2 The limit ,et of the group G conslrueted i"n ,ectio11 3 is o Cantor set. 

Proof: Let us consider the group G' acting on the plane generated by the hyperbolic transfor­

mation, 1howa in Figure 17. This figure also shows the isometric circles of all these generators. As 

uaaJ, each generator h' of G' is the composition Jo I. where / is the inversion in the isometric circle 

of h' and J is the reflection in the bisector of the centers of the isometric circles of h' and (h')- 1 • 

By the aame arguments u in &eCtion 2, we conclude that the complement of all the closed discs 

bounded by the circles shown in this figure is a fundamental domain for G', and that G' is an 

ST-group. Abo, one can verify that G' is a free group of the same rank as G, and that the cycles 

ol points of contact and the cyclic transformations of the groups G and G' have the same structure. 

Now we can finish the proof following the same lines as in the proof of proposition 4.1. 

Figure JT. 

4.4 In this aection we ■how that the limit sets of the groups // and G' are wild Cantor sets. 

First of all, we recall the following well-known fact. 

Proposition 4.3 If L C E3 ia a tame Cantor set. then E3 \ L is simply connected. 

Tilus, if we establish that th• rpgular sets R( ll) and R( G) are not simply connected, we will 

obtain the result we need. 
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4,4.1 We ■tart with the group H. 

Proposition 4.4 ut S be a lide of F, wre F i, the fvrnlamental domain for R corutrwccJ in 
,ection 1.3.1. Then the inclU8ion SC I' (I' i, the donre of Fin R(H)) induce,•~ 

•1(S) - •1(f). 

Proof: Consider the graph 1i.·H formed by the spines K, of the groups r, ( ■ee 11eCtioa 2.3.2 ud 
Figure 8), and let ua compute the fundamental group of E3 \ 1i.·,,. To this end, con■ider a projectioti 
Ki, of KH into the plane L which is in general po■ition with respect \o Jiff. To A'i, we auociate 

arrows whose directions are shown in Figure 18. 

Figure 18, 

We designate them with letters a;, b;, c;, d;, /J;, i = I, 2,3,4. 
Then, by applying a ■tandard procedure for writing down a pN!RDtation of &he fandamntal 

group of a graph (see, for instance, Bing [2]), we obtain that the group • 1('E3 \ 1t.·H) •• &lie 
following pre.■enta.tion. 

Generators: a;, b;, c;, d;, {J,. i = 1,2,3,4. 

Relations: 

(a) at branching points; 

/J1a3aj" 1, {J4a4a2I , 

/Jib:,611, /J264b21, 
/33c3c11, /J3c4c21, 

/Jld3di"1, /J4d◄d2 1 . 
(b) at ClOlling points: 

a1a4011a 21 , a304011a 41, 

b1b4b1
1b21

, "3b4b1
1b41

, 

C1C4C11c,1• C3(◄ cj" 1 c; 1 • 
d1d4dj1tl'j1, ,l3,l4d11d41, 

Now we are going to abow that all the elements a;, b;, c;, d;, /3; are non-trivial. 
To prove this, Jet us consider the group A having the following pr&entation: 

We may simplify this presentation. 

Fro h _, . -1 -1 -1 -I 1 l -I d - .-1 m t e n:1at1ons r 1z 4z1 z 2 = Z3r4r 1 z 4 = , we ge z2 = z1z4z1 an %3 - Z4Z1•4 • 

Then the relation■ rz3z11 = rz4z21 = 1 are equivalent to,= (r1,z4). That is, the gro■p A ia free 
on the generaton z 1 and z 4 . Observe that r 3 , r3 and , are nontrivial elements of A. 

Consider the map of r 1(E3 \ A') onto the group A give• for all i by: 

a;, b;, c;, d; .... :r;, /J; .... 1· 
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Oae ._. tba& tlaia map defiaa a bomomorphiam. We have that all the element• a;, b;, c;, d;, /J; 

are mapped to nontrivial element■ of A and, therefore, are non-trivial. 

B.emark: It i■ c:lea.r that /31 :: th= I¼:: /34, aee Figure 18. Therefore, the group r 1(E3 \ KH) 

lau geaera&on a 1, •◄• hi, 64, Ct, c4, d1, d4, and relation• (a1,a4J = (61,64) = (ct,c4) = (ds,d4]. 

Consider now the boundary oft. We eee that ea.ch component of at is either a 2-punctured 

or a 3-,-.ctured aphere. Abo, note tba.t ea.ch non-trivial simple loop on at is hornotopic to a 

mall linking cirde around the edge of l,H, and, hence, its homotopy class is a.n element from 

tile aet (af ,6f ,cf ,,tf'}. It proves that for ea.ch component SC at the inclusion homomorphism 

r1(S) - r 1(t) i• injective. 

Propoaitioa 4.5 The rTgular ut R( H) of ~ group H i, not simply conncclea. 

Proof: We know that R(H) = IJ.,EH'Y(l'). The pair ('Y(F),7(c'JF)) is homeomorphic to (f,81'). 

Tlierelore, for Neb component S., C 7(/JF}, .-,(S.,) - .-,(-y(F)) is a monomorphism. Thus, R(H) 

ii tile union of manifold■ with incompressible boundary glued along their boundaries. Using Va.n 

Kampen'• Theorem and an easy induction, we obtain that r 1(R(H)) is a non-trivial group; moreover 

.-1(R(H)) ia infinitely generated. 

S■mmarizing, we have the following theorem. 

Theorem 4.2 The limit act of the group H ill a wild Cantor ad. 

,.,.2 In thia 1eetion we consider the group G. 

Tlleorem ,&,I The limit ul of lht group G ii a wild Cantor ael. 

Proof: Fint of all, we note that the fundamental group of E3 \ A' is isomorphic to the group 

A in Proposition 4.4, where A" is the spine of the group G, see section 3.1. ln particular, a small 

liaking drde around the bridge of A" represent, the commutator /3 :: (b, c). Therefore, following the 

Ii- ia aection 4.4.l, we obtain the proof of the theorem. 

4.5 I■ tbi■ aection we present anoll1er proof of lhr. fact thal the Ii mil sets of lhP. groups H and G 

are wild Cantor ■et&. Ucsides. this result will be used in section 5. 

,&.&.l We start with recalling the following. 

Tlleorem ,&.4 Let L be • tame Cantor act in £3 • Tht!n E3 \ L ill not upheric in dimenaion t, that 

u, .-,(E3 \ L) ~ 0. 

Proof: Tkia property actually is always true of a Cantor set L in E3 with simply connected 

complement. One then can apply the Hurewicz Isomorphism Theorem and the Sphere Theorem. 
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Theorem 4.& (J.H.C. Whitehead [12)) Let P = P1 u Pi, P12 = P1 n P2, 1mn-e P, P1 an,I P2 
Cln! conn«lt.tl polyhedra, and R PflOM lhal 

1. ir2(P;) = 0, i = 1,2; 

t. any loop in Pi 2 IDhich u homolopic lo a point in P1 or in P2 u homolopic lo a poinf in P1 2. 

Then ir2( P) = 0. 

4.6.Z 

Theorem 4.8 The regular ,et, R( H ) and R( G) of the ff'OUP• H and G are aqlaeric in dinwruion 
!. 

Proof: The proof rollow1 immediately by induction from the raulla in eection1 4.4.1, 4.4.2 ud 
Theorem 4.5. For instance, for the group H, we have that R( H) = ~ff 7( I'), aad we haw alrady 
proved that IJF i1 incompressible in I'; besides, f ia upheric because of the Sphere Theorem. 

4.6 In this section we compare the fundamental and the I-homology groups of the maaifold 
M(H) = R(H)/H and the manifold M(I') = R(f)/f, where ti, the ST-group coa1tncted i• 
Proposition 4.1. Also, we compare the manifolds M(G) and M(G'), where G and G' are the groups 
from Proposition 4.2. 

We 1tart with the groups H and t. Recall that t i1 an ST-group, while H is an FST-groap. It 
hu been already verified that H and i' have the 1&111e type. It follow■ from re■ulll i• ledioD1 2.2 
and 4.2.3 that the group i' is of type ( 4,48 ). 

4.8.l Since R(f) is simply c~nnected, the fundamental group .-,(M(f)) i1 iaomorphic to t. It 
implies that .-1(M(f)) is a free ~up of rank 52, and H,( M(f). Z) i, a free abelian group of rank 
52. 

4.6.2 Now let us consider the manifold M( H ). 
M(H) is a 3-manifold that can be obtained from the closure of the fundamental domai• F by 

glueing tbe equivalent pointa on the boundary 8F of I'. We have already prowd llm b eac:• 
component SC 8F the homomorphism l'1(S) ..... ir1(I') i1 a monomorphism, therefore, •,(M{R)) 
is aa HNN-aten1ion of the fundamental group of F. 

llecall that • 1(F) hu the following pl"ellt!ntation. 
Generaton: a., I>,, c., ti;, {J,, i = 1,2,3,4. 
Relations: 

(a) /Jia3a.1-•, {J4a4a21, /J1"31>11, /J,641>;1, /J:sc3t:11, /J,c4t:i1, /J3d3d11, /J4"4d21. 
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(b) •aa.•,'•11, •30401-
10;

1• '16t611621
, 6:,6,.6116;1

, c,c.c1-
1c21

, c:,c4c11t:;1, d1d,.d11
",-

1, 

,~,.-•,i'. 
l,eL l&i; ::: 1&.(1;)hi-1 (i ::: 1, 2,3,4, 1 $ j S 13) be the generators of H u in aec:tion 4.2.3. Let 

1,; be a patll i■ I' connecting equivalent point• on the aides S,; and S!; which are equivalent under 

-.;. Coaaider the natural projection f !. M(H). Then the image p(1;;) is a loop in M(H). 

We 4e11CMe p(11;) u A;, Pl12;) u B;, p(13;) u C;, Pl1•;) u D;. We also denote p(a;), p(6;), 

p(c.), p(d;) and p(/J;) u ti;,,;;, Ci,~. iJ;, respectively. 

Tian we llave the following pre1e11tation of ir1(Af(H)). 

Geaera&on: Ai, 6;, c;, d;, ~;,,::: 1,2,3,4; A;, B;, C;, D;, 1 ~ j $ 13. 

Tile relatiODI are devided into two groaps: 

(1) Old malioa• which come from ir,(F): 

(a) ,i1i 3a,-•, d.a..a;1, {J,i,,&1-
1, ~•••i', /J:,c3c1-

1, ~,.1:;1, fJ:,d3d11, jj,.J.J2-•. 

(b) .,a,.a,-1ij1, G3G,tii1-•a;1, £,li.li1- 1£;1, '31i.li.-1b;1, C1C4C·-•c; 1, C3C4c.-•c.- 1, ii,t1.t1.•r1;1, 

l3'.l,'l;1
• 

(2) New malioa• which come from the identifications or the aides of f: 

• 1, • A2~.A71• l2 -= A,.BA31, iJ = A1iJA11
, i2 = A1cl2A11

, a,. = A,cl,.A.11
, 42 = A,cl2A;-1 

(k = 4,5,6). a, = AtiltA;1 (7 $ k S 13); 

• '1 = B2/JB2-
1, i1 = BJB3-•, 'iJ = B,;3B1-

1, Ii,= B1il1B,-1, 6:, = B1il3B1-
1, 61 = B1ri1B1,-1 

(4 S k S 9), h:,::: B1,a.3B;' (10 SI. S 13); 

• CJ = C,ftc,-1, '2 = C3dC;'. jj = C.{Jc.-1• c, = c,;;,c.-1• C4 = c., .. c.-1• i:2 = C1,b:,C1,- 1 

(l: = 4,s,6), C4 = c,;;.c.,-1 (7 $ 1 s 13): 

e ,, : D~D,-1, c1 = D3dD3-1, {J = D,iJv.-1 
t ii, = D1i:1D1-1

, J3 = D1c3D.-1 
t ii1 = D,c1D;1 

(4 St S 9), d3 = Di,c:,D;1 (10 S k S 13); 

Here tJ = /11 = 112 = /J3 = fJ. • 
To i■d a p-.ataiion of the group H,(M(H),Z), we reca.11 that this group ia the abelianization 

af •• ( M( H )). Tlaerefore, from the relation• above together with all the commutator relation& needed 

we caa dedace the followinp; relations: 

I = iJ = ii; =ii;= c; = J;, i = I, 2, 3,4; 

llaal implies tlaal H,(M(ll ), Z) is Cree abelian ofrank 52 generated by the letters A;, B;, C; and D,. 

U~ For the manifold M(G), "''C! bve the following presentation of the fundamental group. 

Alia the previOU1 example, we firal compute the fundamental group ir1(P) or the fundamental 

domai■ P of the group G. It bu the following presentation. 

Geoeraton: •• 6, c, d, e, J, f, h, i, j. 
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• Relatiou: ae6-1 = aed-1 = l; /cb-•c- 1 = l; geh- 1e-1 = ged- 1e- 1 = l; ec;-•c-1 = 
tfc;-1c-1 = ich-1c-1 = I. 

It is an easy exercise to verify that this presentation can be reduced to one with the generators 

c &nd e and with no relations. 

To find a presentation of 1t1(M(G)), we follow the same procedure u before. We will denote 

the image oflhe loopa genera\ing .-,( F) under the naturaJ projection map F - Al{G) by the same 

letters. We denote by -,; a path in t connecting equivalent point, of the i10metric 1pherea S, and s:, 
1 ~ i ~ 49. Table 3 givea the loopa on S1r, St and the corresponding aide pairing transformations. 

" s,. map s~ 
l b 61 a k s,. map s. k s,. map s. 

-2 d bi a 11 C c, e 21 C Cg C 

3 a b3 a 12 C t'1 j 22 C m, C 

3 b 63 d 13 C ar j 23 C 4; r. 

.. 3 C b3 e 14 C as j 24 C d1 C 

4 b C4 d 15 C Og ; 25 C d2 C 

5 C a, e 16 C 010 j 26 C d3 C 

6 C a, e 17 C CJ j 27 d A13 ; 
7 C 03 e 18 e GtJ j 28 ,, 

c; C 

8 C 114 e 19 C C5 C 29 6 M1 C 

9 C a, e 20 C m, C 30 ,, 
CJO C 

10 C ae e 

I: S1r map s;, I: S1r map s;, 
31 r, M, C 41 g D4 i 

32 6 Cs C 42 h D, ,, 
33 b D, C 43 h Ds i 

34 I D3 C 44 b Au d 

35 I D1 I 45 C An j 

36 e cu j 46 g 

"·· 
j 

37 e d• j 47 C au e 

38 e ds j 48 C •n ; 
39 e 4 j 49 e Dt4 ; 

• 40 g C11 i 

• Table 3: Loops on St and Si, and the correaponding aide pairing transformation, . 

-, We denote aJso by 7, the loop in M(G) which is thP image under the natural projection F -

M(G) of the path 7, in I'. So r 1( M(G)) has the following presentation. 
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~ .. , .. 
~ 4 • • . # ·-. .. 

- ~ - . Geaerators: o, b, c, d, e, /, g, h, i, j, and-,,. (1 ~ 1c ~ .f9). (See"fable 3 relating the loo_pa lt to 

the element• oC G ud the loopa a, ... , j.) • • 

TIie relations are: • 
(I) Old relalions coming from the fundamental group of the fundamental domain: 

ad-I = ,ud-1 = l; Jcb-•c- 1 = l; geh-•t-• = ged-•t-• = 1: cc;- 1c-• ;,· fo•j- 1c-1 t:: 

ich-1,-1 = 1. 

(2) New relalio111 coming from group identifications of the sides of the fundamental domain: 

b = lt •11-•, d = 120121
, a= '1'3413-

1
, 

6 = -,,d731
, C = l3C13-I, 

c-= -,,.e,,- 1 , t = S,6,7,8,9,10.ll.4i; .. • 
c-= 71,;;-,,.- 1 • t = 12,13,14.15,16,17,45,48; 

c = -,1,;c-,/1, k = 19,20,21.22,23,24,25,26; 

C: llii11,-I, k: 18,36,37,38,39,49; 

b= -,1,;q,.-1 , le= 28,29,30,31.32.33; 

g = -,,.i-,,.- 1, k = 40,41; 

b-= -,,.d-,,.- 1 , k = 4,44; 

" .. .. 
fl= 1ni1211

, I= l:MC'l:u
1

, / = 13s{1:ii.1, g = 1'46i1is
1

, 

h = -,42 h -,411, h = -,4, i-,431• 
'I Obeerve that the letters a, b, c, d, e, /, g, h, i and j and the relations (1) above can be 

reduced to the letten c and e and no relations, because we can deduce the relation• a= c-1ece- 1• 

b = c-1ece-•c, d = h = j = c-1ec, f = ccc- 1, g = u-•ecc-1, and i = e. 
4 

• To compute H 1( A/(G). ZJ, we have to add the commutator relations to the ones above. From 
theae and from c = -,, r , 5-I, we get r = e. From b = r- 1ece-1c, we get b = o. From b = -,1 a ,.1-

1, 

we get b = a. But from a = c -• ccc - 1, we get a = J. This implies that H 1 ( M ( G), Z) is free abelian 

of ruk 49. It can be presented as a free abelian group generated by the letters n (I ~ k $ 49). -
Remark. Let A be an ST-group of the type (r,s) acting on £3• Then the manifold M(A) = 

R(A)/A is homeomorphic to the connected sum of r Hopf manifolds 51 x 5 1 and I solid open tori 
c2 x s•. 

We call a manifold Man ST-manifold of type (r,s) if Mis homeomorphic to the manifold M(A) 
above. 

Summarizing, we have the following theorem. 

Theorem 4. 7 Tht mani/olJs !H H ) and M ( G) have the same I -homology groups as ~ corn­

,ponding ST-man if olds. t 
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• 5 Constructing inequivalent FST-groups of the same rank 
• 5.1 Wesaythat the.actionsoftwo FST-groups r1 and f 2 in M(n) are equivalent (or moreshortly, ... 

r, and f 2 are equivalent) if there is a homeomorphism h: E" - E" such that r2 =ho f 1 o h- 1 • 
• O&herwise, the actions of r 1 and r 2 are inequivalen, . 

• It is clear that if the actions of f 1 and f 1 are equivalent, then the manifolds M1 = R(f1)/f1 
and M2 = R(f2)/f2 are hom~morphic. . . 

5.2 The objective of this section is to 1how that there are a lot of inequivalent FST-groups of the 

41
• • same rank and type acting on E3; more precisely, we will prove the following. 

Theorerft 6.1 For any integer N ~ 2 there ezist at lelJ$I N inequivalent FST-groups acting on E3 

having the same rank k = k( N) and the same type. 

5.3 Construction 

Let H be the gro11p constructed in section 2.3.2 , and F be its fundamental spherical polyhedron 
( see Figure 9.) Take a Mobius transformation g E M( 3) and consider the group r, a= g o H o g -•. 
Then F11 = g(F) is a fundamental domain for 1'11 • Let T9 be a 2-torus in E3 such that the boundary 

• IJJ~ lies in the interior of T,. (See Figure 19. ) 
Figure 19. 

Let N ~ 2 be given. Take Mobius transformations 9ij E M(3), i,j = 1, ..• , N, and consider the 
• • following groups f;; = 9ii o Ho gi;' with the fundamental domains Fij = g;j( F). Let T;1 be the tori 

auodated to the group f;, as abo\'e. Let 

f1 = (f11,fu, ... ,f1N} 
f1 == (f21, f11 .. .. , f1N} 

-be the groups generated by the groups listed in the parentheses. 
• It is easy to see that we can choose the transformations g,1 i11 such a wa)' that the tori 1;, are 

situated as shown in Figure 20. 
Figure 20. 
Having chosen such transformations g,,, we can apply Klein's Com'bination Theorem to conclude 

that all the groups f; are Kleinian, Fi == n::, F;, is a fundamental domain for ri, and that f, is a 
free group of rank k = N · rank(f). 

By applying the same arguments as in section 4. we can conclude tl1at all the groups r, are 
FST-groups. Moreover, one sees that they are all or the same type. 
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• 
Let M; = R(r;)/r;. We know that the manifold M = R(H)/H i■ upheric (1ee section 4.5). 

Tlien it follow, easily from Milnor'• Decomp01ition Theorem (7) that all the manifolds M; are 

mutually non-homeomorphic. This proves the theorem. 
• 

Remark 1. Following the ■ame lines as in eection 4.6, we obtain that all the manifolds M; • 

above have i10morphic firat homology group■; Hi(Al;,Z) i• a free abelian group of rank A:. 

Remark 2. It i ■ easy to aee that the regular sets R(f;) of the groups f; are mutually non­

homeomorphic. 1-'or instance, this follows from the fact that they have non-l10morphic second 

homotopy groups considered u ,r1 -modules. This implies that their limit sets a.re non-equivalent 

Cantor sets in f:3. 

Remark S. We also point out topological distinctions between the limit sets of the FST-groups 

constructed in sections 2 and 3 and the limit sets of the FST-groups constructed in this section. 

The FST-groupa 
0

in sections 2 and 3 have the property that every proper sub-Cantor set of their 

limit set has simply connected complement. The limit sets of the FST-groups in this section do not 

share this property, because these groups have proper FST-subgroup6. 

6 Extension 

In this section we will prove that the natural extensions of the FST-groups G and H we constructed 

in sections 2 and 3 to the action in E4 are ST-groups. 

8.1 

Lemma 8.1 Let A C M(n) be an ST-group acting on E". Then the naturol eztension A• c 

M(n + l} of the group A is also an ST-group. 

Lemma 6.2 Let A1 and A2 be ST-groups acting on E". Assume that there erist fundamental 

domaina Fi and F2 for Ai and A2 such that Fi U F2 = E" and F = Fi n F2 "F •· Besides, suppose 

that there emts an (n - 1 )-dimen,ional locally flat topological 1phere S C F which separotes the 

boundaries lJ Fi and lJ F2 of F2 and F2, that is, lJ Fi and lJ F2 lie in distinct component11 of E" \ S . 

Thtn the group A=< A1,A2 > is an ST-group. 

The proof of these lemmas ia left to the rea.der. 

8.2 In this section "'e use the notations of section 2.3.2. 

Let r; and H• denote the extensions of the groups r; a.nd H to the action in F,4 • Let P;" a.nd F• 

be the spherical polyhedra in E4 formed by the 3-spheres spanning the 2-spherea on the boundaries 

of the spherical polyhedra P; and F respectively. Then it ia clear tha.t F" = Pj n Pi n Pj n f7. Let 

ua note that F" is a fundamental domain for H", and pt is a funda.menta.1 domain for r;-. 
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Let u remark that the I-link formed by the 1pines K; of the groups J:'7, i = 1, 2, 3, 4, is 1plittable 
in E4• In particular, there are disjoint loe&lly flat compact 4-balls B1, Bi, B3, B4 containing 8Pj, 
81';, 81'; and IJP; respectively. Let S; = IJB;. 

It follows from lemma 6.1 that the groups f;' are ST-groups. Now applying lemma 6.2 inductively 
and the remark, above we conclude that the group JI• is an ST-group. 

6.3 In this section we use the notations ofsections 3.3 and 4.3.1. 
Let G• and G1

• denote the extensions of the groups G and G' to the action on t◄• Let P• 
and P'• be the spherical polyhedra in E4 spanning the polyhedra of G and G' respectively. Since 
the spines of the groups G• and G'" are unknotted in E4 , it follows that there exists a.n orientation 
preserving homeomorphism h: P- - p,·, where P- and P," are the closures.of P- and J>'• in R( G•) 
and R(G'•) respectively, satisfying the following conditions: 

1. h maps bij«tively the 1ides off>• onto the sides off>'"; 

2. If the sides S and S' of f'• are paired by the side pairing transformation T e G•, T( S) = S1
, 

then the aides h(S) and h(S1
) are paired by the side pairing transformation q>{T) e G'•, where 

q, is the isomorphism constructed in section 4.3; 

3. The following diagram is commutativt> 

S .I... S' 

!h !h 
h(S) ~ h(S') 

Now h extends equivaria.ntly to all of E4 , that is. the groups G• and G'• are conjugated. 
It follow• from lemma 6.1 that the group G'• is an ST-group. Then the above implies tbat G• 

is also an ST-group. 
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