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1. Introduction

Suppose we need to connect n servers in order to minimize the latency of the information delivery between them.
If we know an estimate for the latency of delivering an information unit between each pair of servers and the amount
of information units they share, then we are dealing with the optimum communication spanning tree problem (OCT),
introduced by Hu in [6]. The OCT receives a graph G = (V, E) with non-negative lengths associated to each edge and
a non-negative communication requirement function v (u, v) over all pair of nodes u,v € V. The objective is to find a
spanning tree T of G that minimizes the total communication cost. This cost is calculated by summing over all pair of
nodes the communication requirement multiplied by the distance in the tree between them. Other interesting problems of
the literature consider routing costs in graphs, such as, [2,3,8,13].

In this work we study the optimum weighted source-destination communication spanning tree problem (WSDOCT),
a particular case of OCT introduced in [10]. The main applications of the WSDOCT lay in the area of network design
problems: computer networks, telecommunication networks, transportation networks or supply networks. This problem
considers the class of product-requirements incorporating directedness into the requirement model, in the sense that each

* Corresponding author.
E-mail addresses: ravelo@furg.br (S.V. Ravelo), cef@ime.usp.br (C.E. Ferreira).

https://doi.org/10.1016/.tcs.2018.11.008
0304-3975/© 2018 Elsevier B.V. All rights reserved.

Please cite this article in press as: S.V. Ravelo, C.E. Ferreira, A PTAS for the metric case of the optimum weighted source-destination communication
spanning tree problem, Theoret. Comput. Sci. (2018), https://doi.org/10.1016/j.tcs.2018.11.008



https://doi.org/10.1016/j.tcs.2018.11.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:ravelo@furg.br
mailto:cef@ime.usp.br
https://doi.org/10.1016/j.tcs.2018.11.008

Doctopic: Algorithms, automata, complexity and games TCS:11802

2 S.V. Ravelo, C.E. Ferreira / Theoretical Computer Science eee (esee) soe—eee

node u € V has non-negative sending and receiving requirements o (u) and p(u), and the requirement function is defined
as Y (u,v) =3 (@ Wpv) + pu)o (v)).

The WSDOCT is NP-hard even when all the requirements are unitary (i.e. o(u) = p(u) =1 for all u € V) [7]. This special
case is known as the minimum routing cost spanning tree problem (MRCT), and in [17] the authors presented a reduction
from the general to the metric case which implies that even with edge-length satisfying the triangular inequality the prob-
lem remains NP-hard. Also, in [17], were given a PTAS for the MRCT and using results of [1] a O (log? n)-approximation for
OCT. Later, results of [12] allowed to improve to O(logn) the approximation ratio for OCT which still is the best known
ratio for the general and metric versions of OCT and WSDOCT.

The complexity of the WSDOCT justified the study of special cases of the problem, most of them NP-hard problems, as
well. That are the cases of the minimum product-requirement communication spanning tree problem (PROCT) and min-
imum sum-requirement communication spanning tree problem (SROCT), introduced in [15]. PROCT is the case in which
the requirements are equal for each node (i.e. o(u) = p(u) for all u € V), and SROCT is the case in which all the re-
ceiving requirement are unitary (i.e. p(u) =1 for all u € V). In [15] a 1.577-approximation algorithm for PROCT and a
2-approximation for SROCT were presented. The approximation ratio for PROCT was improved in [16], where a PTAS was
given.

Another particular case of WSDOCT is the weighted p-MRCT, which is also the particular case of SROCT where, given
an integer p, only p nodes of the graph will have a positive sending requirement (i.e. the remaining nodes have zero
sending requirement). When all the p nodes have sending requirement equals to 1, the problem is called p-MRCT. In [5] it
was proved that 2-MRCT is NP-hard, this result was also proved in [14] where a PTAS for 2-MRCT and the metric case of
weighted 2-MRCT were given.

Two other NP-hard particular cases of WSDOCT were introduced and studied in [10], the p-WSDOCT and the p-WDOCT.
The p-WSDOCT is a generalization of p-MRCT where the receiving requirement for each node may be any non-negative
value, while the p-WDOCT is a particular case of p-WSDOCT where all the non-zero sending requirement are 1. Also, in
[10] and [11], PTASs were given for the metric versions of SROCT, p-MRCT, p-WDOCT and fixed parameter p-WSDOCT
(where the fixed parameter was on the sending requirements).

In this work we give a 2-approximation algorithm for WSDOCT with time complexity O (n?logn+mn) and also we prove
that there exists a PTAS for metric case of WSDOCT. Both the results improve the best known ratios for the problem.

This paper is organized as follows. In the next section we give some notation. In section 3 we present our PTAS for
the metric WSDOCT. Subsections 3.1, 3.2 and 3.3, discuss over the proofs to achieve our result. In section 4 we show the
2-approximation for WSDOCT. Finally, in section 5 the conclusions and future work are given.

2. Definitions

Given a graph G we denote the set of its nodes as V¢ and the set of its edges as E¢g (when G is implicit by context we
use V and E instead of V¢ and Eg).

Definition 1. Given a graph G with non-negative lengths associated to its edges, the length of a path in G is defined as the
sum of the lengths of its edges (a path with no edges has length zero). The distance between node x and node y in H
sub-graph of G is the length of a path with minimum length between x and y in H and is denoted by d(H, x, y).

Now we can define WSDOCT as:

Problem 1. WSDOCT: Weighted Source Destination Communication Spanning Tree problem

Input: A graph G, a non-negative length function over the edges of G, w : E — Q. a non-negative sending requirement function
over the nodes of G, o : V — Q. and a non-negative receiving requirement function over the nodes of G, p : V. — Q4.

Output: A spanning tree T of G which minimizes the total routing cost:

o(T,0,0) =3 Xyev Lvey @WPV) + pWo () d(T, u, v).

Definition 2. Given a graph G and a non-negative sending and receiving requirement functions over the nodes of G, o :
V - Q4 and p: V — Q, we denote ¢ (G) = Zuch o), p(G) = Zuevc p(u) and n(G) = |V¢|. When G is implicit by the
context we use R, to denote o (G), R, to denote o(G) and n to denote n(G).

3. PTAS for metric-WSDOCT

In this section we only consider the metric-WSDOCT(the metric case of WSDOCT), which is the particular case of WS-
DOCT where the graph G is complete and the length function over the edges satisfies the triangular inequality.
In order to approximate an optimal solution of metric-WSDOCT we introduce the concept of k-star!:

1 The definition of k-star used in this paper is the same used by [10,11,15-17], which is different from the usual definition of k-star in graph theory (a
tree with k leaves linked to a single vertex of degree k).
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Definition 3. Given a graph G and a positive integer k, a k-star of G is a spanning tree of G with no more than k internal
nodes (that is, at least n —k leaves). A core of a k-star T of G is a tree resulting by eliminating n —k leaves from T. A k-star
may be defined by (z, S), being 7 its core and S = {Su1 o ,Suk}, where S, represents the set of leaves adjacent in the
k-star to the node u; of T (1 <i<k).

The idea of the PTAS is to select a fixed integer k > 0 depending on the desired approximation ratio and to iterate over
all the possible sub-trees of the graph with k nodes. Then, for each sub-tree T we approximate an optimal k-star with core
7. Finally, we select the k-star with minimum communication cost which will guarantee the approximation.

In order to approximate an optimal k-star with a given core T we split the proof into three parts:

e First, we show how to obtain an optimal k-star with core 7 if all the leaves (nodes out of t) have binary receiving
requirement (i.e. r(u) € {0,1} forallueV — V).

e Then, we show that when the leaves have integer receiving requirement (i.e. r(u) € N*) we can transform the problem
to the case in which the receiving requirement of the leaves are binary.

e Finally, we show that for any receiving requirements on the leaves, there exists a reduction to integer receiving require-
ment on the leaves that guarantees some approximation.

This section is organized as follows. In subsection 3.1 we show how to obtain an optimal k-star with a given core T when
all the receiving requirements of the leaves are binary. In subsection 3.2 we show how to obtain an optimal k-star with a
given core T when the receiving requirements of the leaves are integers. In subsection 3.3 we show how to approximate an
optimal k-star with core T when the receiving requirements of the leaves are any rational. Finally, in subsection 3.4 we give
the PTAS for metric-WSDOCT.

3.1. Optimal k-star with binary receiving requirement on leaves

Suppose we are given a sub-tree T of G with k nodes and an instance of metric-WSDOCT where all the receiving
requirements of the leaves are binary: p(u) € {0, 1} for each u € V — V. In this subsection we will show how to obtain an
optimal k-star with core T for such instance, by modeling the problem as a minimum flow problem.

First we introduce the notion of configuration of a k-star:

Definition 4. Given a k-star T = (7, S) and a receiving requirement function p : V — Q4 such that p(u) € {0, 1} for each
u € Vg_¢, a configuration of T is (t, Ly, L) where Ly = {lﬁ1 s ees lgk} and Ly = {ILT1 s ees lu+k} are two vectors of integers being
19 =1S%| and I} =S} |, where S9 is the set of nodes of S, with receiving requirement equals to zero and S} is the set

of nodes of S,, with receiving requirement equals to one (1 <i <k).

Observe that the number of possible configurations with core 7 is O (n") which is polynomial in n. So, our proposal is
to enumerate all possible configurations with core t, finding an optimal k-star of each configuration, and finally select the
best k-star among them.

We find an optimal k-star for metric-WSDOCT with a given configuration (t, Ly, L) where p : Vg_; — {0, 1}, by reduc-
ing the problem to an uncapacitated minimum cost flow problem (UMCF).

Problem 2. UMCF - Uncapacitated Minimum Cost Flow problem

Input: A directed graph G, a cost function over the arcs w : E — Q4 and a demand function over the nodesr:V — Z.

Output: An integer vector indexed by the arcs X = (Xe)ecg Which minimizes c(X) = Y, w(e)x. and guarantees for each node
ueV:

Zee&*(u)xé’ - Zee&*(u) Xe =1(U),

wheree e T (w)ande e~ (v) iffe= (v, w) (Ve € E,v,we V).

Given an instance I = (G, 0, p, w, k) of metric-WSDOCT with configuration C = (7, Ly, L) where p: Vc_r — {0, 1}, in
order to reduce our problem to UMCF we define the set of nodes Uy (U;) obtained by creating the node ug (u) for
each node u of t. Then, we define the directed graph G’ on the set of nodes Vs_; U Uy U U, which is bipartite and the
bi-partition is given by the nodes in V;_; and outside this set. Also, we add an arc between each node of Uy (U) to each
node of Vg_; in G’ with receiving requirement zero (one). We associate, to each arc (ug, v) ({uy,v)), a cost equivalent
to the value of assigning v as adjacent of u in a k-star with the given configuration. In order to calculate that cost, we
have to consider the cost of routing the sending requirement of v to all nodes of T assuming that each node w € V,
receives (I}, + p(w)) times the value o (v) (considering the transmission to the node w and the leaves adjacent to it that
have receiving requirement one); also, when v has receiving requirement one, we must add the cost of routing the sending
requirement of the entire graph (Rs — o (v)) to node v, which will pass by node u. Finally we set the demands to ensure
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Fig. 1. Given an instance of WSDOCT with binary receiving requirement on the leaves and a configuration (t, Ly, L). First, we create a partition with the
nodes (u;)y and (u;)+ where u; € T and 1 <i <k. We also associate to each node (u;)y a demand with value 71ﬂ, and to each node (u;)+ a demand
with value —II,. Then we create a second partition with the nodes v; € G — 7 (1 < j <n — k), associating to each one of those nodes a demand with
value 1. Finally, we add an arc from each node (u;)y to each node in the second partition with p =0 and also from each node (u;)+ to each node in the
second partition with p = 1. We set a cost to each arc (ug, v) ((u4, v)) equivalent to the value of assigning v as adjacent of u in a k-star with the given
configuration.

assignment between nodes out of V¢_; and nodes in Vs_;. The following proposition gives us that reduction and Fig. 1
illustrates it.

Proposition 1. Given an instance I = (G, o, p, w, k) of the optimum k-star for metric-WSDOCT and a configuration C = (t, Ly, L)
where p : Vc_¢ — {0, 1}, the problem of finding an optimal k-star with configuration C for I can be reduced in polynomial time to
the UMCF with instance I' = (G', o', 1), where:

Ve =Ve_rUlug,uy :ue Vel
Ecr ={(ug,v)lue Ve AveVc_r Ap(v)=0}
U{us, MlueVrAaveVerApv)=1}
@' (Ug, V) =Y ey, 0 (V) @(T,u, w) + o, v)) (I + p(w));
@' Uy, V)= (Rs —20(vV))w(u, v)
+Y ey, (V) M(T, u, w) + o, v)) (I + p(w));
o ifueVg_; thent (u) =1, otherwise r'(ug) = =1 and r'(u,) = 1.

Proof. Since demands are integer we know that in any feasible solution the values x, will be either zero or one. Moreover,
exactly n — k arcs of G’ will have value 1. This guarantees that every feasible solution S’ of the flow problem represents
an assignment of leaves of V;_; to be adjacent to nodes in t for a k-star T of G with configuration (t, Ly, L+). Also, it
is easy to see that any k-star T with configuration (t, Ly, L+) provides a feasible solution to the flow problem: for each
u € T connect uyg to the lﬂ leaves with receiving requirement zero adjacent to u in T and connect u4 to the I leaves with
receiving requirement one adjacent to u in T.

Let S’ be a solution for UMCF with instance I’ obtained by the transformation described in Proposition 1 over an instance
I of the optimum k-star for metric-WSDOCT. Let T be the associated k-star to S’, V4 the set of nodes of V_; with receiving
requirement zero and V the set of nodes of V;_; with receiving requirement one. Also, for v € Vs (v € V), p(v) denotes
the node in t such that p(v)y (p(v)4+) is adjacent to v in S’, then:
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csh= Y o(p),u)

ueVg_r

>0 > o @, p), v) +o(pu),w) (If + o))

ueVg_r veVy

+ > (Rg =20 (W) w(p(u), u).

ue{viveVg_rAp(v)=1}

Observe that for every leaf u € V_; and node v of t:

d(T,u,v)=d(z, p(u), v) + o(p(u), u).
Also, R, = Zvevc o (v) and for every leaf u € Vg_¢, if p(u) #1, then p(u) =0. Then:

cSh= > Y owdT. uv)(Iy +pv))

ueVg_r veVy

+ Y | Do —20w) | pwa(pw), u)

ueVg_¢ \veVg

= > Y owpmdT,u,vy+ Y > owdT,u, v}

ueVg_rveVe ueVg_r veVy
+ ) Y oWpwopw,u+ Y —20wpwae(pw),u)
ueVg_r veVg ueVg_¢

= Z Za(u)p(v)d(T,u,v)

ueVg_rveVe

+ Y D owdT u vy + Y cwpmepv),v)

ueVg_¢ \VET veVg_¢
+ Y Y ompwaepu),w+ Y —20wpwo(pw),u).
ueVg_r veVy ueVg_¢

Notice that for every pair of nodes u, v of Vg_;:

d(T,u,v)=d(T,u, p(v)) + w(p(v), v).
Then:

cSh= D D owpmd(T.u,v)

ueVg_rveVe

+ Y D cpWAT, u, v+ Y 20 pa(pu),u)

ueVg_r veVg_¢ ueVg_¢
+ Y. Y ompwepu),u+ Y =20 wpww(pw),u)
ueVg_r veVy ueVg_¢
= Y. Y owpWdT,uv+ Y Y oWpwao(pu)u).
ueVg_r veVg ueVg_r veVy

By considering the sending requirement from each node of 7:

D) owd(T,u, vy + p(v)),

ueVyveVe
we get:
csh= Y D owpmdT.uv)+ Y Y oWpwapm).u)
ueVg_r veVg ueVg_r veVy
+ 30 ) od(T u, v + p(v))
ueVeveVy
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= > > od(T,u, vy + p(v))

ueVy veVy
=Y D opWd(T,u,v)— Y > o @d(T, u, v)({I} + pv))
ueVgveVg ueVyveVy
1
=52 2 (@WpW) +pwov)d(T,u,v)
ueVgveVg
=Y ) owd(T, u, vy + p(v)
ueVyveVe
=c(T,0,p)= Y > odT,u, V) +pW)).
ueVyveVy

Observe that:

Y od(T,u, vy + pv)),

ueVyveVy

is the same for every solution of metric-WSDOCT with instance I and configuration C. Then, an optimum of UMCF with
instance I’ is associated to an optimal k-star with configuration C of metric-WSDOCT with instance I.

In order to obtain I’ from I the cost of each arc in G’ must be calculated. This can be done in 0 ((n — k)k?). Defining
the demands and the graph G’ itself can be done in O ((n — k)k + n). Finally, obtaining the k-star T associated to a solution
S’ can be done in O (n — k), while the complexity of calculating c(T, o, p) would be 0 (k?). So, the reduction above can be
done in 0(nk?). O

It is well known that UMCF can be solved in O (nlog(n)(nk +nlog(n))) = 0 (n? log2 (n)) (e.g. [9]). Then, finding an optimal
k-star for metric-WSDOCT with fixed k can be done efficiently.

Lemma 1. Given 7, if p(u) € {0, 1} for all u € V — V¢, then the optimum k-star with core t for metric-WSDOCT can be solved in
0 (nk+2 log® (n)) time.

3.2. Optimal k-star with integer receiving requirement on leaves

In this subsection we consider there are given a sub-tree T of G with k nodes and an instance of metric-WSDOCT
where p(u) € N* for each u € V — V¢, and we show how to obtain an optimal k-star with core t for metric-WSDOCT in

0] ((n+ R,O)k+2 log® (n +Rp)) time. The proposal is to transform the given instance of metric-WSDOCT into an instance

where all the leaves have binary receiving requirement. In order to do that, we will split each leaf u with receiving require-
ment greater than 1 (p(u) > 1) into p(u) leaves with receiving requirement equals 1 and adjust the sending requirement
and edge-lengths for those new leaves.

Let denote by V.1 the set of leaves (nodes in V — V) with receiving requirement greater than 1. Also, define graph G/,
sending requirement function ¢’, receiving requirement function p’ and length function over the edges ' as follows:

e ForeachueV.jandie(l,---, p(u)}, add node u; to Vs where:
- o'(u) =28, p'(up) =1 and

(c@)(Rp—pW)+p) (R —o (1))
p) (58 (Rp=1)+Ro— 3 )

e The rest of the nodes (those in V — V. 1) are added to Vs with the same sending and receiving requirement values.
Also, the rest of the edges have the same length function.

- o' (Ui, v)= o, v) (veVy).

Notice that the transformation above guarantees:

Z o) = Z o(u)=R,, and Z pu) = Z pu)=R,.

ueVer ueVg ueVeg ueVg

Also, an optimal k-star X’ with core t for instance (G’, o, p, a)/) satisfies that for every node u € V.1 all the nodes u;
(ie{l,---, p(u)}) are adjacent to the same node of 7 in X’. In order to prove that, suppose there exist two nodes u; and
u; obtained from some u € V.1 such that uq is adjacent to vi € V; in X’ and u; is adjacent to v, € V¢, with vy # v;,. Then
the communication cost on X’ results:

Please cite this article in press as: S.V. Ravelo, C.E. Ferreira, A PTAS for the metric case of the optimum weighted source-destination communication
spanning tree problem, Theoret. Comput. Sci. (2018), https://doi.org/10.1016/j.tcs.2018.11.008




Doctopic: Algorithms, automata, complexity and games TCS:11802

S.V. Ravelo, C.E. Ferreira / Theoretical Computer Science eee (esee) soo—eee 7

c«x'o'.ph= > dX.uv) (o' @p' )+ p' Wo'(v))

u,veVg —{ug,uz}

+ Y dX L uw (o' @)p' @) + o' @)

ueVg —{uy,uz}
+ Y dX . upw) (o' wp' @) + o' )
ueVg—{uq,uz}
+ (w1, v1) + o(uz, v2) + d(X', u1, u2)) (o' (1) + 0’ (u2)).
Without loss of generality suppose:

Yo dX urw) (o ) p' @) + o' W) + @i, vi) (07 (ur) + o' (u2))

ueVg —{uy,uz}

< ) dX g w) (07 (W) p' () + 0’ (W) + w(uz, v2) (07 () + 07 (u2)) .

ueVg —{ur,uz}

Denote by X* the k-star with core T obtained by replacing the edge (u3, v2) by (u3, v1) in X/, then:

c(X*, o', p)= Yo dX L uv) (o W' ) + p'wa’ (v))

u,veVg —{u,uz}

+2 Y dxX . urw) (o' wnp W) + o' ()

eV —fuy.uz)
+2 (w(u1, v1)) (o' (u1) + 0" (1))

<cX', o', p") +d(X', vi,v2) (o' (1) + 0" (u2))

<c(X', o', p").

Arriving in a contradiction because X’ is optimal. Since an optimal k-star X’ with core t for instance (G/,o/, p’,w’)
satisfies that for every node u € V.1 all the nodes u; (i € {1,---, p(u)}) are adjacent to the same node of v € V; in X/,
then replacing in X’ all the nodes u; (i € {1,---, p(u)}) by u we obtain a k-star X with core T which is a solution for
metric-WSDOCT and instance (G, o, p, ). Also, it is easy to see that for every k-star with core 7 for (G, o, p,w), there
exists a k-star with core 7 for <G/, o, p, a/) that is obtained by replacing each u € V.1 by the nodes u; (i € {1,---, p(u)}).

Let X be a k-star with core 7 for instance (G,o,p,w) and X’ the associated k-star with core 7 and instance
(G’, o, p, a)/). Also, denote by pr(u) the node in T adjacent to a leaf u in some k-star of core t. Then:

cX',o', p)—c(X,0,p)

pu)
= Y Y o Wi px @) ((Re — o' W) p'w) + 0" w) (R, — p'(w)))
ueV.q i=1
- > o, px@) (Re — o) pu) + o W) (R, — p(u)))
ueV.q
, o) o)
= , Ry — —— 4+ —— (R, —1
; P (u, px(u)) < R (R, ))
- > o, px) (Re — o W) pu) + o @) (R, — p(u)))
ueV.q

=0.
Implying that X and X’ have same communication cost. Then, if X’ is optimal, the k-star X obtained from X’ is an
optimal k-star with core t for metric-WSDOCT with instance (G, o, p, ®).
In the previous subsection we show how to find in O (n"+2 log2 (n)) computational time, an optimal k-star with core t

for metric-WSDOCT when p(u) € {0, 1} for all u € V — V; which is the case of p’, where n(G’) <n+ R,. Leading us to the
following result.

Lemma 2. Given an instance I = (G, o, p, ®) for metric-WSDOCT and a sub-tree T of G, such that for everyu e V. —V; p(u) €N,
an optimal k-star (k =n(t)) with core t for metric-WSDOCT can be found in O ((n + Rp)k+2 log? (n + R,,)) time complexity.
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3.3. Approximation ratio of optimal k-star for metric-WSDOCT

In this subsection we consider an instance I of metric-WSDOCT, 0 < § < % and a sub-tree t of G with k nodes. We will
transform the given instance I into an instance I’ where all receiving requirement of the leaves are integers, and we will
show that an optimal k-star with core t of I’ is a (1 + 88)-approximation for some optimal special k-star X with core t of
I (if such X exists).

First we need to define the special k-star mentioned above, which is the §-balanced k-star. This definition depends on
the concept of §-0 p-separator.

Definition 5. Given 0 < § < % a spanning tree T of a graph G and two non-negative functions o and p of sending and
receiving requirements over the set of nodes V, a sub-tree S of T is a §-op-separator of T if every component B of T — S,
satisfies 0 (B) <8R, and p(B) <éR,.

Definition 6. Given 0 < § < % a k-star T of a graph G and two non-negative functions o and p of sending and receiving

requirements over the set of nodes V. We say, that T is a §-balanced k-star if its core 7 is a minimal §-o p-separator of T.

Our goal is to approximate an optimal §-balanced k-star with core 7. In order to achieve that, we show how to transform
any instance of metric-WSDOCT to an instance in which every node out of T have integer receiving requirement. The idea
is to identify a threshold such that every leaf u with receiving requirement lower than the threshold gets p(u) = 0. Then,
we modify the new receiving requirement to guarantee that each leaf gets an integer receiving requirement and the sum of
them is a value that depends on n and §.

Denote by V; =V — V; = {u1, e ,un,k}, the set of leaves to be added to t in order to build a solution, and consider
a sorting over the elements of V| that if i < j then p(u;) < p(u;) for all i, j € {1,---,n—k}. Also, let m be the maximum
value between 1 and n — k, such that Z:”:l pu) < 52Rp, and consider V? = {uq,---,un}. Then, define a new receiving

requirement function p’, such that p’(u) =0 if u € V?, otherwise p’(u) = p(u).
Consider a value u such that if V| — V? = () then pu =1, otherwise let i be the minimal value of p’ on the set V| — V?,

and define p” a new receiving requirement function where p”(u) = V{;ﬁ')J ifueVvy— V?, otherwise p”(u) = p(;:). Observe

that for every node u, ﬁp/(u) > p”(u) and (1+ 28) p”(u) > 517,0/(11). Then, for any k-star T with core T:
;C(T o,0)<c(T,0,p")< ic(T o,p)
SM (_l + 28) 9 9 f— 9 9 f— 8“ b b .
Let X” be an optimal solution of metric-WSDOCT with requirement function p”, then, for any k-star T with core t:
1
s (14 26)

So, c(X",0,p0) < (1+28)c(T,o, p), for any k-star T with core t.
Now we find an upper bound for the communication cost of a k-star. For any k-star T with core 7:

1
cX" o,p)<c(X",0,0")<c(T,0,p") < 5_C(T’ o,p).
7

o(T.o.p)=c(T.0.p)+ Y pu) Y d(T,ujv)o(v).

i=1 veV

Also, for every i € {1,---,m}, u; is a leaf of T and:

d(T,u;,v) =d(T, uj, pr(uy)) +d(T, pr(u), v),

then:

c(T,o,p)=c(T,o,p)

+Y o) Y (AT, ui, pr(u)) +d(T, pr(v), v) o (v)

i=1 veV?

+Y p@) Y d(T, pru), pr(v)ov)

i=1 veV?

+Y o) Y T, ui, pr(u)) +d(T, pr), v) o (v).

i=1 vev-v}
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Suppose X is an optimal §-balanced k-star with core T and requirement function p. Denote by w(t) the sum of all the
edge lengths in 7, since the graph is metric, for every u € V?,

d(T,u, pr(u) <d(X,u, px(u)) +d(t, pr(u), px(u)) <d(X,u, px(u)) + (7).
Then:

o(T.0,p) <c(T.0.p)+ ) 3puRs0(T)
i=1

+3 o) Y @X.ui. px() +d(X. px(v). v)) o (v)

i=1 veV?
m
+Y p) Y dX i, px(u) +d(X, px (), v)) o (V).
i=1 veV—VI(_’
Since ¢(X”,0, p") <(1+28)c(X, 0, p’), by using in the above equation X” instead of T, we get:
m
(X", 0,p) < (1428)c(X.0.p)+3Roo(T) Y p(ui)
i=1
<(1+28)c(X,0, p) +38°Rg Rpo(T).

Now we analyze the value of 382R6Rpa)(r). In order to do that, the following proposition gives us a lower bound for
the communication requirement passing over any edge of t in X.

Proposition 2. Given an optimal §-balanced k-star X with core T and an edge e € E, the communication requirement passing over e
in X is at least $Ro R ).

Proof. Let X, and X, be the sub-trees of X after removing edge e, then the communication requirement passing over e in
X is:
o (Xu)p(Xy) + p(Xy)o (Xy) =0 (Xy) (R,o - p(Xu)) + p(Xu) (Roe — 0 (Xu)).
Since X is a §-balanced k-star and t is minimal, then:
o(Xy) >8Rs or p(Xy) >R, and
Rs —0(Xy) >8Ry or R, — p(Xy)>IdR,.

Without loss of generality suppose o (X;) > §R,. Then, we analyze two possibilities:

o If Ry —0(Xy) <8Ry, then Ry, — p(Xy) >8Ry, 0(Xy) =Ry — Ry > RT", and the communication requirement passing
over e in X is at least:

Ro 8
— ORp +p(Xu) Ro —0(Xu)) = SRoRp.

e Otherwise, the communication requirement passing over e in X is at least:
1)
8Rg (Rp = p(Xu)) + p(Xu) (BRo) =6Re Ry = SRoRp. O

Proposition 2 allows us to obtain:

1) 1)
(X,0.p)2 Y SRoRyw(€) > SRRy (T).

ecE;

Then:
cX",0,p) <(1+28)c(X,0,p)+382c(X,0,p) <(1+88)c(X,0,p).

The previous subsections showed us how to find X” in computational time O ((n + Ry 2 log? (n + Rr//)). Since Ssz <

(m+1)pu <nw and Ry < R—", then Ry < nzﬁ =1,
m 2R, &
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Lemma 3.Given 0 < § < % and T a sub-tree of G with k nodes, if there exists a 8-balanced k-star of G with core t, then
there exists an (l + 88)-approximation for the optimum §-balanced k-star with core T for metric-WSDOCT, that can be found in

0 <(n + 8%)k log? ( )) time complexity.

3.4. PTAS

In order to obtain our PTAS, we use a result of [11], in which it was proved that for any constant 0 < § < % and any
2
instance of metric-WSDOCT, an optimal §-balanced k-star with k = (3 Gg—l -11 {g—l + 1)) is a (ﬁ)-approximation of

the optimum value, but no algorithm to find such approximation was given.
Then, given an instance of metric-WSDOCT and 0 < § < % Our algorithm proposal is to enumerate over all possible

sub-trees T of G that can be core of a k-star, with k = <3 ((g—‘ —11 ( —‘4— 1)) There are O (k¥) possible trees over

k nodes and <Z) = 0(n*) possible ways of selecting k nodes among the n nodes of G, so the total of possibilities to

enumerate is O (kn¥) = 0 (nk).
k+
As shown in the previous subsections, for each enumerated T we find in O ((n + 6%) log ( )) time, an (1 +

88)-approximation to an optimal §-balanced k-star with core t. Then, by selecting the minimum communication cost k-star
among all of them, we obtain a (122)-approximation for WSDOCT.

Theorem 1. There exists a PTAS for metric-WSDOCT such that, for any constant 0 < § < % ( + 9_5> -approximation can be found

with time complexity O (nk (n + 5%)’( log? (n + 5%)) where k = (3 <{§—‘2 % )

4. 2-Approximation for WSDOCT

Theoretically the PTAS shown in the previous section represents a good step forward on the study of the metric-WSDOCT,
but in practice the time complexity is not feasible. Also, the above discussion does not bring any new light on the com-
plexity of the general WSDOCT. For these reasons, in this section we generalize the result in [15] for SROCT and give a
2-approximation algorithm not only for the metric case but also for the general case of WSDOCT, with time complexity
0 (n? logn + mn), where m is the number of edges of G (m = |Eg|).

The algorithm is simple. For each node u of G calculate a shortest-path spanning tree rooted at u and select the mini-
mum communication tree among them. A shortest-path spanning tree rooted at a node u, is a spanning tree T of G, where
the distance in T from u to each node v of G is equal to the minimum distance from u to v in G (i.e. d(T,u,v) =d(G, u, v)
for all v € V). For example, Dijkstra’s algorithm for minimum distances from a source find such a tree [4]. Since each tree
can be calculated in O (nlogn + m), and we calculate O (n) trees, the time complexity of the algorithm is (n% logn + mn).

Now we prove that the above algorithm guarantees a 2-approximation of the optimum value. Before that we need to
introduce the concepts of o-centroid and p-centroid.

Definition 7. Given an instance of WSDOCT and a spanning tree T of G, a node u is an o-centroid (p-centroid) of T if for
each component C of T resulting after remove u from T, satisfies: o (C) < RT" (p(C) < Rz—").

The idea of the proof is first to establish a lower bound on the communication cost of any spanning tree T of G using
the path P between the o-centroid and the p-centroid of T. Then, we demonstrate that the communication cost of any
spanning tree T of G is at least a half of the minimum between a shortest-path spanning tree rooted at the o -centroid of
T and shortest-path spanning tree rooted at the p-centroid of T. Finally, we conclude the 2-approximation algorithm.

In order to simplify the notation, from now on we will use c(T) to represent the communication cost ¢(T, o, p) of any
spanning tree T of G.

Lemma 4. Given an instance of WSDOCT and a spanning tree T of G. If P is the path in T between the o -centroid and the p-centroid
of T, then:

1 1
(M= > (Rpo W)+ Ry p(w)) d(T, u, P) + > RoRpo(P).

ueVg

Where, d(T, u, P) denotes the distance in T from node u to the nearest node of P, and w(P) is the sum over the lengths of the edges
in P.
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Fig. 2. Consider a tree T and the path (in T) between the o -centroid X, and the p-centroid x,. Notice that CP(vy) = CP(v3) = CP(v4) = {v2, V3, v4}
and CP(vs) = CP(vg) = {vs, v}, while for the rest of the nodes in T, CP(u) = {u}. Also, observe that p(vi) = p(v3) = p(v3) = p(va) = p(Xg) = Xo,
p(vs) =p(ve) = p(u1) = u1, p(v7) = p(vs) = p(u2) = uz, p(u3z) =u3 and p(vg) = p(Xp) =X,.

Proof. Consider a spanning tree T of G:

1
M= Y @wpw)+pwov)dT,u,v)

ueVgveVg

= Z Z oW)pW)d(T, u, v).

ueVgveVg

Denote by T — P the graph resulting from removing the nodes and edges of P from T. Then, for each node u ¢ P define
CP(u) as the set of nodes in the same component of u in T — P and for each node u € P, CP(u) = {u}. Also, we define as
p(u) the node of P with minimum distance to v in T, when u € P, p(u) = u. Fig. 2 exemplifies these notations. Then:

M=y Y owp) @dT,u,P)+dT,v,P)

ueVg v¢CP(u)

+ Y Y opw)d(P, p), p(v))

ueVgveVg
=> > ocwpWdT.u.P)+ Y > o@pwdT,v,P)
ueVg v¢CP(u) ueVg v¢CP(u)
+ Y Y opw)d(P, pu), p(v))
ueVgveVg
=Y owd(T.u,P) Y pw+ Y pwdT.u.P) Y o)
ueVg v¢CP(u) ueVg v¢CP(u)
+ Y Y opw)d(P, p(u), p(v)).
ueVgveVg

Notice that for each node u ¢ P we have:
R R
o(CPw) <=~ and p(CP@W) ===,
and for each node u € P d(T, u, P) =0. Then:

R o
o(T)= Y owd(T,u, P)7” + ) pd(T, u, P)R7

ueVg ueVg
+ Y Y opw)d(P, pu), p(v)).
ueVgveVg
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If we denote by P(T, u, v) the path in T between nodes u and v, then:

oMz Y od(T,u, P) £+ 3" pd(T.u, P)—

ueVg ueVg

+) D owpw) Y o
ueVgveVg eeP(T,u,v)NP

1

=5 D (GR, + p@)Re)d(T.u. P)

ueVg

SICODY > TWp).
ecP ueVg ve{w|weVgnreeP(T,u,w)}

For each edge e of T, denote T.1 and Ty, the sub-trees obtained after remove e from T. Then:

1
LRSS > (cWR,+ pu)Ro)d(T, u, P)

ueVg
+ Y @(e) (0(Te) p(Te2) + p(Te1)o (Te)) -
ecP

For each edge e of P we have the o-centroid in one of the sub-trees T.; or T, and the p-centroid in the other
sub-tree. Without loss of generality suppose the o-centroid of T is in Teq, then the p-centroid is in Tep, and o (Te1) > RT°

and p(Tep) > —£2. Then:

1
LOEE Z (cWRp + p(uW)Rs)d(T, u, P)

ueVg
+> (@) (o (Te)p(Te2) + (Rp — p(Te2)) Ry — & (Ten)))
ecP
o(T) = % > (6WRp + p)Rs)d(T, u, P)
ueVg
Ro
+Z“’(e)< a)p(Tez)+(——a(Te1)) )
ecP
1
>3 > (@R, + p(W)Rs)d(T. u, P)
ueVg
oR Ro
+§a)(e)( £ + (20 (Te1) — RU)—+<7—0(Te1)) )
. R Ro)d(T,u, P RaRp
=5 XV: (@R, + p(U)Rs)d(T, u, )+pr(e)T
ueve ec
:% > (@R, + pu)R)d(T, u, P) + %RGRIOQ)([J). 0
ueVg

The following lemma guarantees that for every spanning tree T there exists a node u such that the shortest-path span-
ning tree rooted at u has communication cost at must twice the communication cost of T.

Lemma 5. Given an instance of WSDOCT and a spanning tree T of G, there exists a node u such that any shortest-path spanning tree
X rooted at u satisfies:

c(X) <2c¢(T).
Proof. Notice that for any spanning tree T and every node x:

1
M= Y @wpW)+pwov)dT,u,v)

ueVgveVg
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=

Y Y @)+ p@o (v) @(T, u, %) +d(T, v, X))

ueVgveVg

N =

o(T) < % Yo Y @)+ po (V) d(T, u, x)

ueVg veVg

+% DY (@pv)+ pwo (v))d(T, v, x)

ueVgveVg

=3 3 @wpm) + pwo @) d(T.u,»

ueVgveVg

=Y dT.ux|ow Y p)+pw) Y oW

ueVg veVg veVg
=Y (0@R,+pRe)d(T, u, ).
ueVg

Then, if we denote by X, a shortest-path spanning tree rooted at the o -centroid x, of T, by X, a shortest-path spanning
tree rooted at the p-centroid x, of T, and by P the path in T between this centroids x, and x,:

cXe) = Y (0 Ry + pW)Rs) d(X. U, X5)

ueVg

< Z (cWRp+ p(WRs)d(T, u, x5)

ueVg

= > (6WRy + p(W)Rs) (T, u, p(u)) +d(P, p(u), X))

ueVg

Analogously:

c(Xp) < Y (0WRp + pWRe) (d(T,u, p(u) +d(P, p(u), xp)) -

ueVg

The minimum between two values is not greater than their average value, then:
min {c(Xy), c(X,)}

=

N[ =

> (0 @Ry + p()Rs) (@(T, u, pw)) +d(P, p(u), X))
ueVg

+

N =

> (0Ry + pu)Rs ) (d(T. u, p(u) +d(P, p(u). x,))
ueVg

1
min {c(Xo), c(Xp)} < 5 > (6WR, + pW)Ro) (2d(T . u, p(w)) + w(P))

ueVg

=Y (R, + p)Ry)d(T, u, p(u))

ueVg

P
+# > (e @Ry + pu)Rs)

ueVg

=Y (6WR,+ pW)Ry)d(T, u, p)) + Ro Ry (P).

ueVg

By using the result of the Lemma 4:

min {c(Xy), c(X,)} < 2¢(T).

Then, for one of the nodes x, or x, in T, any shortest-path spanning tree rooted at it guarantees the result of the
lemma. O
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Suppose T* is an optimal spanning tree for an instance of WSDOCT, by Lemma 5 there exists a node u such that any
shortest-path spanning tree rooted at u is a 2-approximation for T*. Then, obtaining a shortest-path spanning tree for each
node of G and selecting a minimum among them, guarantees to find a 2-approximation for WSDOCT. Since we analyzed
before, such algorithm has O (n?logn + mn) time complexity.

Theorem 2. There exists a 2-approximation algorithm for WSDOCT with time complexity O (n?logn + mn).
5. Conclusions

In this work we present a PTAS for metric-WSDOCT and also a 2-approximation for WSDOCT, both problems are NP-hard
particular cases of OCT. The best previously known result for these problems was a O (log(n))-approximation algorithm due
to [12,17]. This result generalizes previous results for particular cases of the studied problems, these are the cases of MRCT,
PROCT and SROCT ([11,16,17]). Many questions remain open regarding OCT and related problems. One could improve the
approximation ratio for WSDOCT or other particular case of OCT. One could obtain an inapproximability result for OCT and
some of its particular cases. In future works we will attempt to answer these questions for some of these problems.
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