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I.M. Gelfand and V.A. Ponomarev (1969) proved that the 
problem of classifying pairs (A, B) of commuting nilpotent 
operators on a vector space contains the problem of classifying 
an arbitrary t-tuple of linear operators. Moreover, it contains 
the problem of classifying representations of an arbitrary 
quiver and an arbitrary finite-dimensional algebra, and so it 
is considered as hopeless.
If (A, B) is such a pair, then KerA ∩ KerB �= 0. We give a 
simple normal form (Anor, Bnor) of the matrices of (A, B) if 
KerA ∩KerB is one-dimensional. We do not know whether it is 
canonical; i.e., whether (Anor, Bnor) is uniquely determined by 
(A, B). We prove its uniqueness only if the Jordan canonical 
form of A is a direct sum of Jordan blocks of the same size 
and the field is of zero characteristic.
The matrix Anor is the Weyr canonical form of A, and Bnor
commutes with Anor. In order to describe the structure of 
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(Anor, Bnor), we describe explicitly all matrices commuting 
with a given Weyr matrix.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We give a simple normal form under similarity of a pair of commuting nilpotent 
matrices whose common null space is one-dimensional. We also describe explicitly all 
matrices commuting with a given Weyr matrix.

Gelfand and Ponomarev [8] proved that the problem of classifying pairs (M, N) of 
commuting nilpotent matrices under similarity transformations

(M,N) �→ S−1(M,N)S := (S−1MS,S−1NS), S is nonsingular,

contains the problem of classifying t-tuples of matrices with any t under similarity trans-
formations

(A1, . . . , At) �→ (S−1A1S, . . . , S
−1AtS), S is nonsingular

(we say that a problem contains another problem if solving the first would solve the 
second).

Moreover, the problem of classifying matrix pairs under similarity contains the prob-
lem of classifying each system consisting of vector spaces and linear mappings between 
them; that is, representations of an arbitrary quiver (see Belitskii and Sergeichuk [5], 
Barot [1, Section 2.4], and Krause [10, Section 10]). It also contains the problem of clas-
sifying representations of an arbitrary finite-dimensional algebra (Barot [2, Proposition 
9.14]). Classification problems that contain the problem of classifying matrix pairs under 
similarity are called wild; they are considered as hopeless.

However, two classification results about matrix pairs under similarity were obtained 
in 1983:

• Friedland [6] gave a system of invariants of matrix pairs with respect to similarity.
• Belitskii [3] (see also [4,12]) constructed an algorithm that reduces by similarity 

transformations each pair (M, N) of square matrices of the same size over an alge-
braically closed field to some pair (Mcan, Ncan) such that (M, N) is similar to (P, Q)
if and only if (Mcan, Ncan) = (Pcan, Qcan). Thus, (Mcan, Ncan) can be considered as 
a canonical form of (M, N) under similarity.

In the article [12], in which the tame-wild theorem is proved using Belitskii’s al-
gorithm, Sergeichuk calls WM := Mcan the Weyr canonical form of M since WM is 
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constructed by the Weyr characteristic of M . The matrix WM is permutation similar to 
the Jordan canonical form of M and has the property: all matrices commuting with WM

are upper block triangular. The Weyr canonical matrices are studied in [9, Section 3.4]
and [11].

Each pair (M, N) is reduced by Belitskii’s algorithm [3] as follows:

- First (M, N) is reduced by similarity transformations to a pair (WM , P ).
- Then P is reduced to its canonical form by those similarity transformations that 

preserve the Weyr matrix WM . For this purpose, Belitskii partitions P conformally 
with WM and consistently reduces its blocks. On each step, Belitskii makes additional 
partitions into blocks and restricts the set of admissible transformations to those that 
preserve the already reduced blocks.

Let M and N be n × n commuting nilpotent matrices over a field F . Since they 
commute, (M, N) is similar to a pair (M ′, N ′) of upper triangular matrices. Since M ′

and N ′ are nilpotent, their main diagonals are zero. Hence, M ′e1 = N ′e1 = 0 with 
e1 := (1, 0, . . . , 0)T , and so their common null space

N (M,N) := {v ∈ Fn |Mv = Nv = 0} (1)

is nonzero.
From now on, (M, N) denotes a pair of commuting nilpotent matrices over F for 

which dimN (M, N) = 1. We reduce (M, N) by similarity transformations to some sim-
ple pair (WM , B). As in Belitskii’s algorithm, WM is the Weyr canonical form of M , 
we partition P conformally with WM and consistently reduce its blocks by transforma-
tions that preserve WM . However, we do not use all transformations that preserve WM

(unlike Belitskii’s algorithm), and so we do not know whether (WM , B) is uniquely de-
termined by (M, N). We can prove its uniqueness only if the Jordan canonical form of 
M is a direct sum of Jordan blocks of the same size and the field F is of zero character-
istic.

Since N commutes with M , B commutes with the Weyr matrix WM . In order to 
describe the structure of the matrix B, we describe the form of all matrices that commute 
with a Weyr matrix.

The article is organized as follows. The main theorem is formulated in Section 2; 
it is proved in Section 4. In Section 3 we give a method for constructing all matrices 
commuting with a given Weyr matrix.

2. The main theorem

The Weyr canonical form of a nilpotent matrix M over a field F is constructed as 
follows. Let
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J = Jk1(0) ⊕ · · · ⊕ Jk1(0)︸ ︷︷ ︸
p1 summands

⊕ · · · ⊕ Jkt
(0) ⊕ · · · ⊕ Jkt

(0)︸ ︷︷ ︸
pt summands

(2)

be the Jordan canonical form of M , in which k1 > k2 > · · · > kt > 0, p1, . . . , pt are 
nonzero, and

Jk(0) :=

⎡⎢⎢⎢⎣
0 1 0

0
. . .
. . . 1

0 0

⎤⎥⎥⎥⎦ (k-by-k).

Permute the rows of J collecting the first rows of all Jordan blocks at the top, collecting 
the second rows under them, and so on. Make the same permutations of columns of J
and obtain a matrix of the form

W =

⎡⎢⎢⎢⎢⎣
0r1

[
I
0

]
0

0r2
. . .
. . .

[
I
0

]
0 0rk

⎤⎥⎥⎥⎥⎦ , k := k1. (3)

The matrix W is called the Weyr canonical form of M ; it is permutation similar to 
J . The sequence r1, . . . , rk1 is the Weyr characteristics of M ; each ri is the number of 
Jordan blocks in (2) of sizes equal to or greater than i × i.

Other versions of the following theorem are given in [3], [4], [9, Theorem 3.4.2.10(a)], 
[11, Section 3.2], and [12, Theorem 1.2].

Theorem 1 (Belitskii [3]). The set of matrices commuting with the Weyr matrix (3)
consists of all the matrices of the form

S =

⎡⎣S11 . . . S1k
. . .

...
0 Skk

⎤⎦ , each Sii is ri × ri,

in which

• each S1j has a staircase form

⎡⎢⎢⎣
∗

0
. . .

⎤⎥⎥⎦ ; (4)
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all entries on the stairs and over them are arbitrary and all entries under the stairs 
are zero. For each i, the location of stairs is uniquely determined by W , the first stair 
contains an entry from the first column and the last stair contains the last entry from 
the last column.

• every Sij with 1 � i � j is the ri × ri submatrix of S1,j−i+1 located in its upper left 
corner.

A stronger form of Theorem 1 is given in Theorem 3.
Our main result is the following theorem, which is proved in Section 4.

Theorem 2.

(a) Let (M, N) be a pair of commuting nilpotent matrices over a field F , whose common 
null space (1) is one-dimensional. Let (3) be the Weyr canonical form of M . Then 
(M, N) is similar to a pair of the form

(W,B) :=

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0r1
[
I
0

]
0

0r2
. . .
. . .

[
I
0

]
0 0rk

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
Jr1(0) B12 . . . B1k

Jr2(0)
. . .

...
. . . Bk−1,k

0 Jrk(0)

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ (5)

such that
– its first matrix W is the Weyr canonical form of M ,
– each B1j has the staircase form

⎡⎢⎢⎣
0

0
. . .

⎤⎥⎥⎦
whose stairs are located as the stairs of S1j in (4), and all nonzero entries of B1j
are located on the stairs,

– each B1+l,j+l with l � 1 is a submatrix of B1j that is located in its upper left 
corner.

(b) In particular, if the Jordan canonical form of M is

J := Jk(0) ⊕ · · · ⊕ Jk(0) (r summands),

then (M, N) is similar to a pair of the form
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(W,B) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
0r Ir 0r

0r Ir

0r
. . .
. . . Ir

0r 0r

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr(0) B1 B2
. . . Bk−1

Jr(0) B1
. . . . . .

Jr(0)
. . . B2
. . . B1

0r Jr(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

in which every Bi is a matrix whose last row is arbitrary and the other rows are 
zero. If the characteristic of F is zero, then the pair (6) is uniquely determined by 
(M, N).

Remark 1. The fact that the pair (6) over a field of zero characteristic is uniquely de-
termined by (M, N) is unexpected since the similarity transformations with (W, B) that 
preserve all entries except for the entries denoted by stars have free parameters. Our 
proof of (b) is technical and does not explain why these parameters do not change 
the entries denoted by stars. We do not know whether the pair (5) is uniquely de-
termined by (M, N) if the Jordan canonical form of M has Jordan blocks of unequal 
sizes.

Example 1. Let (M, N) be a pair of commuting nilpotent matrices whose common null 
space is one-dimensional. Let the Jordan canonical form of M be one of the matrices

⊕J4(0)︸ ︷︷ ︸
p summands

⊕ ⊕J3(0)︸ ︷︷ ︸
q summands

⊕ ⊕J2(0)︸ ︷︷ ︸
r summands

⊕ ⊕J1(0)︸ ︷︷ ︸
s summands

, (7)

J7(0) ⊕ · · · ⊕ J7(0)︸ ︷︷ ︸
p summands

⊕ J4(0) ⊕ · · · ⊕ J4(0)︸ ︷︷ ︸
q summands

⊕ J2(0) ⊕ · · · ⊕ J2(0)︸ ︷︷ ︸
r summands

, (8)

in which p, q, r, s are nonzero. In Example 3, we describe all matrices that commute with 
the Weyr canonical forms of (7) and (8). Using it and Theorem 2(a), we obtain the 
following normal forms for (M, N).

(a) If the Jordan matrix of M is (7), then (M, N) is similar to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p
0q

0r
0s

Ip 0 0
0 Iq 0
0 0 Ir
0 0 0

0 0

0
0p

0q
0r

Ip 0
0 Iq
0 0

0

0 0 0p
0q

Ip
0

0 0 0 0p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jp+q+r+s

0 0 0
B2 0 0
0 B3 0
0 0 B4

0 0
0 0
C3 0
0 C4

0
0
0
D4

0 Jp+q+r

0 0
B2 0
0 B3

0
0
C3

0 0 Jp+q
0
B2

0 0 0 Jp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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in which Jm := Jm(0) for all m and the blocks B2, B3, B4, C3, C4, D4 have the form

⎡⎣0 0 . . . 0
. . . . . . . . . . . . .
0 0 . . . 0
∗ ∗ . . . ∗

⎤⎦ , (9)

where the stars denote arbitrary elements of F .
(b) If the Jordan matrix of M is (8), then (M, N) is similar to a pair of the form (5), 

in which

[B12| . . . |B17] =

⎡⎢⎣Δ 0 0 Δ 0 0 0 0 0 0
0 Δ 0 0 0 Δ 0 Δ 0 0
0 0 Δ 0 Δ 0 Δ 0 Δ Δ

⎤⎥⎦ ,

the sizes of horizontal strips are p, q, r, the sizes of vertical strips are p, q, r, p, q, p, q, p, p, p, 
and each Δ denotes a block of the form (9).

3. Matrices commuting with a Weyr matrix

The most important property of each Weyr canonical matrix W was found by Belitskii: 
all matrices S commuting with W are block triangular. However, all versions of Belitskii’s 
theorem in [3,4,9,11,12] do not give the positions of stairs in (4). We give them in this 
section, which is important for constructing of pairs (5) (see Example 1) and for other 
applications of Belitskii’s theorem.

3.1. Belitskii’s theorem

A Weyr matrix over a field F is each matrix of the form

W = (λ1In1 + W1) ⊕ · · · ⊕ (λlInl
+ Wl), (10)

in which λ1, . . . , λl ∈ F are distinct and W1, . . . , Wl are nilpotent Weyr matrices of 
the form (3). Each matrix over F in which all with distinct eigenvalues λ1, . . . , λl are 
contained in F is similar to some matrix (10). If a matrix S commutes with W , then it 
has the form

S = S1 ⊕ · · · ⊕ Sl,

in which S1, . . . , Sl commute with W1, . . . , Wl, respectively. Therefore, it suffices to de-
scribe all matrices commuting with a nilpotent Weyr matrix.
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Let J be the Jordan matrix (2). Let us consider the set of its Jordan blocks of sizes 
equal to or greater than i × i, and let mi be the number of Jordan blocks of distinct sizes 
in this set; that is,

(m1, . . . ,mk) =
(
t, . . . , t︸ ︷︷ ︸
kt times

, t− 1, . . . , t− 1︸ ︷︷ ︸
kt−1−kt times

, . . . , 1, . . . , 1︸ ︷︷ ︸
k−k2 times

)
. (11)

Theorem 3. Let W in (3) be the Weyr canonical form of the Jordan matrix (2). Then 
the set of matrices that commute with W consists of all matrices of the form

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12
. . . S1k

S22
. . . . . .
. . . S k−1,k

0 S kk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S αβ =

⎡⎢⎣S
(β−α)
11 . . . S

(β−α)
1mβ

. . . . . . . . . . . . . . . . . . . . .

S
(β−α)
mα1 . . . S

(β−α)
mαmβ

⎤⎥⎦ (12)

(m1, m2, . . . are defined in (11)), in which every S(γ)
ij is a pi × pj matrix,

S
(γ)
ij is arbitrary if kj − ki � γ,

S
(γ)
ij = 0 if kj − ki > γ.

(13)

Proof. The nilpotent Jordan matrix J in (2) is permutation similar to the matrix

J+ := Jk1(0p1) ⊕ · · · ⊕ Jkt
(0pt

), k1 > k2 > · · · > kt > 0,

in which

Jk(0p) :=

⎡⎢⎢⎢⎣
0p Ip 0p

0p
. . .
. . . Ip

0p 0p

⎤⎥⎥⎥⎦ (k2 blocks).

By Gantmacher [7, Chapter VIII, § 2], each matrix that commutes with J+ has the 
form
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C+=

S(0)
11 S(1)

11 S(2)
11

. . . S(k1−1)
11 S(0)

12 S(1)
12

. . . S(k2−1)
12 . . . S(0)

1t
. . . S(kt−1)

1t

S(0)
11 S(1)

11
. . . S(k1−2)

11 S(0)
12

. . . . . . . . .
. . . . . .

S(0)
11

. . . . . . . . . S(1)
12 . . . S(0)

1t k1

. . . S(1)
11 S(0)

12 . . .

S(0)
11 . . .

S(k1−k2)
21 S(k1−k2+1)

21
. . . S(k1−1)

21 S(0)
22 S(1)

22
. . . S(k2−1)

22 . . . S(0)
2t

. . . S(kt−1)
2t

S(k1−k2)
21

. . . S(k1−2)
21 S(0)

22
. . . . . . . . .

. . . . . . k2

. . . . . . . . . S(1)
22 . . . S(0)

2t

S(k1−k2)
21 S(0)

22 . . .

...
...

...
...

...
...

...
...

...
. . .

...
...

...

S
(k1−kt)
t1

. . . S(k1−1)
t1 S(k2−kt)

t2
. . . S(k2−1)

t2 . . . S(0)
tt

. . . S(kt−1)
tt

. . . . . . . . . . . . . . .
. . . . . . kt

S(k1−kt)
t1 S(k2−kt)

t2 . . . S(0)
tt

k1 k2 kt

The sets of rows of J+ and C+ are partitioned into t superstrips, each of them is par-
titioned into k1, k2, . . . , kt strips, respectively. As in [12, Section 1.3], we permute the 
horizontal and vertical strips in J+ and C+, gathering the first strips of each superstrip, 
then the second strips of each superstrip, and so on, until we obtain W of the form (3)
and S of the form (12).

It is observed from the picture that the blocks of C+ satisfy (13). Hence, the blocks 
of S satisfy (13) too. �

Note that each superblock S αβ in (12) consists of the following blocks of C+: the 

(i, j)th block S(β−α)
ij of S αβ is the (α, β)th block of the (i, j)th superblock of C+.

Example 2. The nilpotent Jordan matrix

J = J3(0) ⊕ · · · ⊕ J3(0)︸ ︷︷ ︸
p summands

⊕ J2(0) ⊕ · · · ⊕ J2(0)︸ ︷︷ ︸
q summands

⊕ J1(0) ⊕ · · · ⊕ J1(0)︸ ︷︷ ︸
r summands

is permutation similar to J+ = J3(0p) ⊕ J2(0q) ⊕ 0r. This matrix and each matrix C+

that commutes with it have the form
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J+ =

0p Ip 1

0p Ip 2

0p 3

0q Iq 1 ′

0q 2 ′

0r 1 ′′

1 2 3 1 ′ 2 ′ 1 ′′

C+ =

S
(0)
11 S

(1)
11 S

(2)
11 S

(0)
12 S

(1)
12 S

(0)
13 1

S
(0)
11 S

(1)
11 S

(0)
12 2

S
(0)
11 3

S
(1)
21 S

(2)
21 S

(0)
22 S

(1)
22 S

(0)
23 1 ′

S
(1)
21 S

(0)
22 2 ′

S
(2)
31 S

(1)
32 S

(0)
33 1 ′′

1 2 3 1 ′ 2 ′ 1 ′′

The set of rows of J+ is partitioned into 3 superstrips, each of them is partitioned into 3, 
2, and 1 strips, respectively. We permute the horizontal strips of J+ and of C+ gathering 
atop the first strips of each superstrip, then the second strips, and finally the third strips. 
Making the same permutations of vertical strips, we obtain

J# =

0p Ip 1

0q Iq 1 ′

0r 1 ′′

0p Ip 2

0q 2 ′

0p 3

1 1 ′ 1 ′′ 2 2 ′ 3

C# =

S
(0)
11 S

(0)
12 S

(0)
13 S

(1)
11 S

(1)
12 S

(2)
11 1

S
(0)
22 S

(0)
23 S

(1)
21 S

(1)
22 S

(2)
21 1 ′

S
(0)
33 S

(1)
32 S

(2)
31 1 ′′

S
(0)
11 S

(0)
12 S

(1)
11 2

S
(0)
22 S

(1)
21 2 ′

S
(0)
11 3

1 1 ′ 1 ′′ 2 2 ′ 3

in which W := J# is the Weyr canonical form of J . Each matrix commuting with J#

has the form C#. The matrix C# satisfies (13) since (k1, k2, k3) = (3, 2, 1).

3.2. Method of constructing all matrices that commute with a given Weyr matrix

The matrix (12) can be constructed by the numbers kα and mα (defined in (2) and 
(11)) as follows:

• First we construct the skew-symmetric matrix

K :=

⎡⎢⎣k1 − k1 k2 − k1 . . . kt − k1
k1 − k2 k2 − k2 . . . kt − k2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k1 − kt k2 − kt . . . kt − kt

⎤⎥⎦ .

• Then we construct the block matrix

H := [H1|H2| . . . |Hk1 ], each Hβ is m1 ×mβ ,
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in which the jth column of Hβ is obtained from the jth column of K by replacing 
all its entries that are < β by the multiplication sign × and the other entries by 0.

• Each S1β in (12) is obtained by replacing in Hβ all ×’s by arbitrary blocks of ap-
propriate sizes and all zero entries by zero blocks.

• Each S1+l,β+l with l � 1 is an angular submatrix of S1β ; i.e., it is located in the 
upper left corner of S1β .

Example 3. Let us describe all matrices that commute with the Weyr matrices whose 
Jordan forms are (7) and (8).

(a) Let J be the Jordan matrix (7). Then (p1, p2, p3, p4) = (p, q, r, s),

(k1, k2, k3, k4) = (4, 3, 2, 1), (m1,m2,m3,m4) = (4, 3, 2, 1),

and so

K =

⎡⎢⎣0 −1 −2 −3
1 0 −1 −2
2 1 0 −1
3 2 1 0

⎤⎥⎦ , H =

⎡⎢⎢⎢⎣
× × × × × × × × × ×
0 × × × × × × × × ×
0 0 × × 0 × × × × ×
0 0 0 × 0 0 × 0 × ×

⎤⎥⎥⎥⎦ .

Hence the Weyr canonical form of J and an arbitrary matrix commuting with it have 
the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p
0q

0r
0s

Ip 0 0
0 Iq 0
0 0 Ir
0 0 0

0 0

0
0p

0q
0r

Ip 0
0 Iq
0 0

0

0 0 0p
0q

Ip
0

0 0 0 0p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A′
1 A′′

1 A′′′
1

0 A2 A′
2 A′′

2
0 0 A3 A′

3
0 0 0 A4

B′
1 B′′

1 B′′
1

B2 B′
2 B′′

2
0 B3 B′

3
0 0 B4

C′′
1 C′′′

1
C′

2 C′′
2

C3 C′
3

0 C4

D′′′
1

D′′
2

D′
3

D4

0
A1 A′

1 A′′
1

0 A2 A′
2

0 0 A3

B′
1 B′′

1
B2 B′

2
0 B3

C′′
1

C′
2

C3

0 0 A1 A′
1

0 A2

B′
1

B2

0 0 0 A1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
in which all blocks A(j)

i , B(j)
i , C(j)

i , D(j)
i are arbitrary.

(b) Let J be the Jordan matrix (8). Then t = 3,

(k1, k2, k3) = (7, 4, 2), (m1, . . . ,m7) = (3, 3, 2, 2, 1, 1, 1),

K =
[7 − 7 4 − 7 2 − 7

7 − 4 4 − 4 2 − 4
7 − 2 4 − 2 2 − 2

]
=

[0 −3 −5
3 0 −2
5 2 0

]
,

H = [H1| . . . |H7] =

⎡⎢⎣× × × × × × × × × × × × ×
0 × × 0 × × 0 × × × × × ×
0 0 × 0 0 × 0 × 0 × 0 × ×

⎤⎥⎦ .
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4. Proof of Theorem 2

4.1. Proof of Theorem 2(a)

Each pair (M, N) of commuting nilpotent matrices whose common null space is one-
dimensional is similar to (W, B), in which W is the Weyr canonical form (3) of M . By 
Theorem 3,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12
. . . B1k

B22
. . . . . .
. . . B k−1,k

0 B kk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bαβ =

⎡⎢⎣B
(β−α)
11 . . . B

(β−α)
1mβ

. . . . . . . . . . . . . . . . . . . . . .

B
(β−α)
mα1 . . . B

(β−α)
mαmβ

⎤⎥⎦ ,

in which every B(γ)
ij is an arbitrary pi × pj matrix such that B(γ)

ij = 0 if kj − ki > γ.
We reduce (W, B) by those similarity transformations S−1(W, B)S that preserve W . 

Then WS = SW , and so S is of the form (12).
Since B and S commute with W , they are conformally partitioned and have the same 

staircase form.
Since B is reduced by transformations S−1BS, the superblock B11 is reduced by 

similarity transformations S−1
11 B11S11, in which

B11 =

⎡⎢⎢⎢⎢⎢⎢⎣
B

(0)
11 B

(0)
12

. . . B
(0)
1m1

B
(0)
22

. . . . . .

. . . B
(0)
m1−1,m1

0 B
(0)
m1m1

⎤⎥⎥⎥⎥⎥⎥⎦ , S11 =

⎡⎢⎢⎢⎢⎢⎢⎣
S

(0)
11 S

(0)
12

. . . S
(0)
1m1

S
(0)
22

. . . . . .

. . . S
(0)
m1−1,m1

0 S
(0)
m1m1

⎤⎥⎥⎥⎥⎥⎥⎦ .

We reduce each B(0)
ii to the Jordan canonical form by transformations 

(
S

(0)
ii

)−1
B

(0)
ii S

(0)
ii . 

The matrix B is nilpotent, hence each B(0)
ii is nilpotent too, and so each B(0)

ii is a direct 
sum of singular Jordan blocks. Thus, B11 is of the form

B11 =

⎡⎢⎢⎢⎢⎢⎣
0 b12

. . . b1r1

0
. . . . . .
. . . br1−1,r1

0 0

⎤⎥⎥⎥⎥⎥⎦ .

All bi,i+1 are nonzero since the common null space of W and B is one-dimensional.
We reduce B11 to Jr1(0) by upper triangular similarity transformations (which are 

admissible since S11 is upper block-triangular) as follows. First we multiply the second 
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column by b−1
12 and the second row by b12; we obtain b12 = 1. Then we make zero each 

b1j with j � 3 by adding the second column multiplied by −b1j to the jth column; the 
inverse transformations of rows change the second row. We obtain B11 with the first row 
(0, 1, 0, . . . , 0). In the same way, we make b23 = 1 and b24 = b25 = · · · = 0 (the inverse 
transformations of rows change the third row) and so on, until we obtain B11 = Jr1(0).

By (12), each B αα is an angular submatrix of B11. Hence B αα = Jrα(0) for all α.
The βth upper superdiagonal of B is the sequence of superblocks

(B1,β+1, B2,β+2, . . . , B k1−β,k1
), 0 � β � k1 − 1.

Reasoning by induction, we fix β � 1, assume that if β � 2 then the 1st, . . . , (β − 1)st 
upper superdiagonals of B have the form described in Theorem 2(a), and reduce the 
βth upper superdiagonal to this form as follows. Let S = I − G be of the form (12), 
in which all entries of G are zero except for the entries of βth upper superdiagonal 
(G1,β+1, . . . , G k1−β,k1

). Then the transformation

B �→ S−1BS = (I + G + G2 + · · · )B(I −G)

= B + (GB −BG) + G(GB −BG) + · · ·

preserves the 1st, . . . , (β − 1)st upper superdiagonals of B and reduces the superblock 
B1,β+1 by the transformation

B1,β+1 �→ B̃1,β+1 := B1,β+1 + G1,β+1Jrβ+1(0) − Jr1(0)G1,β+1. (14)

By Theorem 3, some of the entries of B1,β+1 and the entries of G1,β+1 at the same 
positions are arbitrary (they are the entries of those blocks that correspond to ×’s in 
Hβ+1; see Section 3.2). The other entries of B1,β+1 and G1,β+1 are zero; we denote them 
by ∅ (they are the entries of the zero blocks that correspond to 0’s in Hβ+1). All entries 
above the main diagonal are arbitrary. If an entry is arbitrary, then all entries to the 
right and above it are arbitrary too. Thus, B1,β+1 and G1,β+1 are staircase matrices 
with the same location of stairs.

Step 1, in which we reduce the entries of B1,β+1 on its main diagonal and under it. The 
�th lower diagonal of B1,β+1 = [bij ]r1i=1

rβ+1
j=1 is the sequence of its entries

B−(�) := (b�+1,1, b�+2,2, . . . ), 0 � � � r1 − 1.

Reasoning by induction, we assume that all the lower diagonals of B1β under 
B−(�) have the form described in Theorem 2(a). Let B−(�) do not have this form. 
Then B−(�) �= (∅, . . . , ∅). Let G−(�+1) := (g�+2,1, g�+3,2, . . . ) be the (� +1)st lower 
diagonal of G1,β+1 = [gij ]r1i=1

rβ+1
j=1 . Each transformation (14) changes B−(�) as 

follows:
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B̃−(�) = B−(�) + (0, g�+2,1, g�+3,2, . . . ) − (g�+2,1, g�+3,2, g�+4,3, . . . ). (15)

Let us consider a fragment g1, g2, . . . , gk of G−(�+1) of the form

G−(�+1) = ( any, ∅︸ ︷︷ ︸
p entries

, g1, g2, . . . , gk︸ ︷︷ ︸
k entries

, ∅, any︸ ︷︷ ︸
q entries

), all gi �= ∅, (16)

in which p, q ∈ {0, 1, . . . } and k � 1 (which means that gk is on a stair and 
g1, g2, . . . , gk−1 are over this stair).
• Let gk be not in the last column of B1,β+1 without its last entry. By (15),

B̃−(�) = B−(�) + ( . . .︸︷︷︸
p entries

,−g1, g1 − g2, . . . , gk−1 − gk, gk︸ ︷︷ ︸
k+1 entries

, . . .︸︷︷︸
q entries

).

We choose g1, g2, . . . , gk in (16) such that

B̃−(�) = ( . . .︸︷︷︸
p entries

, 0, 0, . . . , 0, b︸ ︷︷ ︸
k+1 entries

, . . .︸︷︷︸
q entries

);

we take zero the other entries of G−(�+1). Then the entries of B̃−(�) outside 
of (0, 0, . . . , 0, b) are not changed.

• Let gk be in the last column of B1,β+1 without its last entry. Then

G−(�+1) = ( any, ∅︸ ︷︷ ︸
p entries

, g1, g2, . . . , gk︸ ︷︷ ︸
k entries

), all gi �= ∅, p � 0,

and (15) takes the form

B̃−(�) = B−(�) + ( . . .︸︷︷︸
p entries

,−g1, g1 − g2, . . . , gk−1 − gk︸ ︷︷ ︸
k entries

).

We choose g1, g2, . . . , gk such that

B̃−(�) = ( . . .︸︷︷︸
p entries

, 0, 0, . . . , 0︸ ︷︷ ︸
k entries

),

and take zero the other entries of G−(�+1).
Using these transformations, we consecutively reduce B−(�), starting at the 

top entry, to the form that is described in Theorem 2(a). The diagonals under 
B−(�) in B1,β+1 are not changed.

We apply this reduction to all lower diagonals of B1,β+1 and to its main 
diagonal, and obtain B1,β+1 in which all entries on the main diagonal and under 
it are in the form described in Theorem 2(a).
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Step 2, in which we reduce the entries of B1,β+1 over its main diagonal. Let � � 1 be 
such that all diagonals of B1,β+1 under its �th upper diagonal

B(�) := (b1,�+1, b2,�+2, . . . , brβ+1−�,rβ+1)

have the form described in Theorem 2(a). We use the transformation (14)
given by G1,β+1 in which only the (� − 1)st upper diagonal G(�−1) =
(g1, g2, . . . , grβ+1−�+1) is nonzero; its entries are arbitrary. This transformation 
adds the vector

(g1 − g2, g2 − g3, . . . , grβ+1−� − grβ+1−�+1)

to B(�); we make B(�) = (0, . . . , 0) preserving all the diagonals under it. We 
repeat this reduction until we obtain B1,β+1 in which all entries over the main 
diagonal are zero. The obtained B1,β+1 is in the form described in Theorem 2(a), 
which completes its proof.

4.2. Proof of Theorem 2(b)

Let (W, B) and (W, B′) be matrix pairs of the form (6) in which all blocks Bi and B′
i

have the form (9).
Suppose that S−1(W, B)S = (W, B′) for some nonsingular S. We must prove that 

B = B′. The matrix S has the form

S =

⎡⎢⎢⎢⎢⎢⎣
S0 S1

. . . Sk−1

S0
. . . . . .
. . . S1

0n S0

⎤⎥⎥⎥⎥⎥⎦ , S0 is nonsingular.

Since S0 commutes with F := Jn(0), we have

S0 =

⎡⎢⎢⎢⎢⎢⎣
a0 a1

. . . an−1

a0
. . . . . .
. . . a1

0 a0

⎤⎥⎥⎥⎥⎥⎦ = a0In + a1F + a2F
2 + · · · + an−1F

n−1 (17)

for some a0 �= 0, a1, a2, . . . from the field F .
Reasoning by induction, we fix v ∈ {1, . . . , k − 1}, assume that

B1 = B′
1, . . . , Bv−1 = B′

v−1 if v � 2, (18)

and prove that Bv = B′
v. For each u = 1, 2, . . . , we define the blocks B(u)

i and B′(u)
i by



JID:LAA AID:15627 /FLA [m1L; v1.297] P.16 (1-18)
16 V.M. Bondarenko et al. / Linear Algebra and its Applications ••• (••••) •••–•••

. 
⎡⎢⎢⎢⎢⎢⎣
Fu B

(u)
1

. . . B
(u)
v

Fu . . . . . .
. . . B

(u)
1

0n Fu

⎤⎥⎥⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎢⎢⎣
F B1

. . . Bv

F
. . . . . .
. . . B1

0n F

⎤⎥⎥⎥⎥⎥⎦

u

and ⎡⎢⎢⎢⎢⎢⎣
Fu B

′(u)
1

. . . B
′(u)
v

Fu . . . . . .
. . . B

′(u)
1

0n Fu

⎤⎥⎥⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎢⎢⎣
F B′

1
. . . B′

v

F
. . . . . .
. . . B′

1
0n F

⎤⎥⎥⎥⎥⎥⎦

u

.

The equalities (18) ensure that B(u)
1 = B

′(u)
1 , . . . , B(u)

v−1 = B
′(u)
v−1. Since BS = SB′, we 

have BuS = SB′u, and so⎡⎢⎢⎣Fu . . . B
(u)
v

. . . . . .
0 Fu

⎤⎥⎥⎦
⎡⎢⎢⎣S0

. . . Sv

. . . . . .
0n S0

⎤⎥⎥⎦ =

⎡⎢⎢⎣S0
. . . Sv

. . . . . .
0n S0

⎤⎥⎥⎦
⎡⎢⎢⎣Fu . . . B

′(u)
v

. . . . . .
0 Fu

⎤⎥⎥⎦ .

Equating the upper-right blocks, we obtain

FuSv + B
(u)
1 Sv−1 + · · · + B

(u)
v−1S1 + B(u)

v S0

= S0B
′(u)
v + S1B

(u)
v−1 + · · · + Sv−1B

(u)
1 + SvF

u. (19)

Since the traces of matrices satisfy tr(XY ) = tr(Y X) for all X and Y , the equality 
(19) implies that tr(B(u)

v S0) = tr(S0B
′(u)
v ), hence

tr
(
(B(u)

v −B′(u)
v )S0

)
= 0. (20)

The blocks B(u)
v and B′(u)

v are represented in the form

B(u)
v = BvF

u−1 + FBvF
u−2 + F 2BvF

u−3 + · · · + Fu−1Bv + s(F,B1, . . . , Bv−1),

B′(u)
v = B′

vF
u−1 + FB′

vF
u−2 + F 2B′

vF
u−3 + · · · + Fu−1B′

v + s(F,B1, . . . , Bv−1),

in which s(F, B1, . . . , Bv−1) is a sum of products of matrices from the set {F, B1, . . . , Bv−1}
Therefore,

B(u)
v −B′(u)

v = (Bv −B′
v)Fu−1 + F (Bv −B′

v)Fu−2 + · · · + Fu−1(Bv −B′
v).

By (20),
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tr
(
(Bv −B′

v)Fu−1S0
)

+ tr
(
F (Bv −B′

v)Fu−2S0
)

+ · · · + tr
(
Fu−1(Bv −B′

v)S0
)

= 0.

Since tr(XY Z) = tr(Y ZX) for all square matrices of the same size,

tr
(
(Bv −B′

v)Fu−1S0
)

+ tr
(
(Bv −B′

v)Fu−2S0F
)

+ · · · + tr
(
(Bv −B′

v)S0F
u−1) = 0

By (17), F commutes with S0. Hence, u tr
(
(Bv −B′

v)Fu−1S0
)

= 0. Since the character-
istic of the field F is zero, u �= 0, and so tr

(
(Bv −B′

v)Fu−1S0
)

= 0.
Substituting (17), we get

a0 tr
(
(Bv −B′

v)Fu−1) + a1 tr
(
(Bv −B′

v)Fu
)

+ · · · + an−1 tr
(
(Bv −B′

v)Fu+n−2) = 0,

in which a0 �= 0. We consecutively take u = n, n − 1, . . . , 1 and obtain

tr
(
(Bv −B′

v)Fn−1) = 0, tr
(
(Bv −B′

v)Fn−2) = 0, . . . , tr
(
(Bv −B′

v)F 0) = 0.

For each n × n matrix X = [xij ] and 0 � k < n,

tr(XF k) = xk+1,1 + xk+2,2 + xk+3,3 + · · ·

is the sum of entries of its kth lower diagonal. Since Bv and B′
v are of the form (9), we 

have Bv = B′
v.
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