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I.M. Gelfand and V.A. Ponomarev (1969) proved that the
problem of classifying pairs (A,B) of commuting nilpotent
operators on a vector space contains the problem of classifying
an arbitrary t-tuple of linear operators. Moreover, it contains
the problem of classifying representations of an arbitrary
quiver and an arbitrary finite-dimensional algebra, and so it
is considered as hopeless.

If (A, B) is such a pair, then Ker A N Ker B # 0. We give a
simple normal form (Anor, Bnor) of the matrices of (A, B) if
Ker ANKer B is one-dimensional. We do not know whether it is
canonical; i.e., whether (Anor, Bnor) is uniquely determined by
(A, B). We prove its uniqueness only if the Jordan canonical
form of A is a direct sum of Jordan blocks of the same size
and the field is of zero characteristic.

The matrix Anor is the Weyr canonical form of A, and Bpor
commutes with Anor. In order to describe the structure of
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(Anor, Bnor), we describe explicitly all matrices commuting
with a given Weyr matrix.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We give a simple normal form under similarity of a pair of commuting nilpotent
matrices whose common null space is one-dimensional. We also describe explicitly all
matrices commuting with a given Weyr matrix.

Gelfand and Ponomarev [8] proved that the problem of classifying pairs (M, N) of
commuting nilpotent matrices under similarity transformations

(M,N)+ S~HM,N)S := (S~'MS,S™INS), S is nonsingular,

contains the problem of classifying t-tuples of matrices with any ¢ under similarity trans-
formations

(A1,...,A) — (STTALS,...,871A,S), S is nonsingular

(we say that a problem contains another problem if solving the first would solve the
second).

Moreover, the problem of classifying matrix pairs under similarity contains the prob-
lem of classifying each system consisting of vector spaces and linear mappings between
them; that is, representations of an arbitrary quiver (see Belitskii and Sergeichuk [5],
Barot [1, Section 2.4], and Krause [10, Section 10]). It also contains the problem of clas-
sifying representations of an arbitrary finite-dimensional algebra (Barot [2, Proposition
9.14]). Classification problems that contain the problem of classifying matrix pairs under
similarity are called wild; they are considered as hopeless.

However, two classification results about matrix pairs under similarity were obtained
in 1983:

¢ Friedland [6] gave a system of invariants of matrix pairs with respect to similarity.

o Belitskii [3] (see also [4,12]) constructed an algorithm that reduces by similarity
transformations each pair (M, N) of square matrices of the same size over an alge-
braically closed field to some pair (Mcan, Nean) such that (M, N) is similar to (P, Q)
if and only if (Mcan, Nean) = (Pean, Qcan)- Thus, (Mcan, Nean) can be considered as
a canonical form of (M, N) under similarity.

In the article [12], in which the tame-wild theorem is proved using Belitskii’s al-
gorithm, Sergeichuk calls Wy, := M., the Weyr canonical form of M since Wy, is
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constructed by the Weyr characteristic of M. The matrix W), is permutation similar to
the Jordan canonical form of M and has the property: all matrices commuting with Wy,
are upper block triangular. The Weyr canonical matrices are studied in [9, Section 3.4]
and [11].

Each pair (M, N) is reduced by Belitskii’s algorithm [3] as follows:

- First (M, N) is reduced by similarity transformations to a pair (W, P).

- Then P is reduced to its canonical form by those similarity transformations that
preserve the Weyr matrix W,. For this purpose, Belitskii partitions P conformally
with Wy, and consistently reduces its blocks. On each step, Belitskii makes additional
partitions into blocks and restricts the set of admissible transformations to those that
preserve the already reduced blocks.

Let M and N be n x n commuting nilpotent matrices over a field F. Since they
commute, (M, N) is similar to a pair (M’, N’) of upper triangular matrices. Since M’
and N’ are nilpotent, their main diagonals are zero. Hence, M’'e; = N'e; = 0 with
e1 := (1,0,...,0)T, and so their common null space

N(M,N):={veF"|Mv=Nv=0} (1)

is nonzero.

From now on, (M, N) denotes a pair of commuting nilpotent matrices over F for
which dim A (M, N) = 1. We reduce (M, N) by similarity transformations to some sim-
ple pair (W, B). As in Belitskii’s algorithm, Wy, is the Weyr canonical form of M,
we partition P conformally with W), and consistently reduce its blocks by transforma-
tions that preserve Wj,;. However, we do not use all transformations that preserve W,
(unlike Belitskii’s algorithm), and so we do not know whether (W, B) is uniquely de-
termined by (M, N). We can prove its uniqueness only if the Jordan canonical form of
M is a direct sum of Jordan blocks of the same size and the field F is of zero character-
istic.

Since N commutes with M, B commutes with the Weyr matrix Wj,. In order to
describe the structure of the matrix B, we describe the form of all matrices that commute
with a Weyr matrix.

The article is organized as follows. The main theorem is formulated in Section 2;
it is proved in Section 4. In Section 3 we give a method for constructing all matrices
commuting with a given Weyr matrix.

2. The main theorem

The Weyr canonical form of a nilpotent matrix M over a field F is constructed as
follows. Let
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p1 summands p+ summands

be the Jordan canonical form of M, in which ky > ko > --- > ky > 0, p1,...,p: are
nonzero, and

0 1 0
0
Ji(0) = (k-by-k).
L
0 0

Permute the rows of J collecting the first rows of all Jordan blocks at the top, collecting
the second rows under them, and so on. Make the same permutations of columns of J
and obtain a matrix of the form

O, [1] 0

W= Or R . 3)
H
0 Op,

The matrix W is called the Weyr canonical form of M; it is permutation similar to
J. The sequence 71, ...,rg, is the Weyr characteristics of M; each r; is the number of
Jordan blocks in (2) of sizes equal to or greater than i X i.

Other versions of the following theorem are given in [3], [4], [9, Theorem 3.4.2.10(a)],
[11, Section 3.2], and [12, Theorem 1.2].

Theorem 1 (Belitskii [3]). The set of matrices commuting with the Weyr matriz (3)
consists of all the matrices of the form

Sy o S
S = , each S;; is Ti X 14,

in which

o each Sy; has a staircase form

; (4)
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all entries on the stairs and over them are arbitrary and all entries under the stairs
are zero. For each i, the location of stairs is uniquely determined by W, the first stair
contains an entry from the first column and the last stair contains the last entry from
the last column.

o every S;; with 1 <i < j is the ry X r; submatriz of Sy ;_, 4, located in its upper left
corner.

A stronger form of Theorem 1 is given in Theorem 3.
Our main result is the following theorem, which is proved in Section 4.

Theorem 2.
(a) Let (M, N) be a pair of commuting nilpotent matrices over a field F, whose common

null space (1) is one-dimensional. Let (3) be the Weyr canonical form of M. Then
(M, N) is similar to a pair of the form

Or,  [1] 0 Jr (0) By, By
07"2 ']7'2(0) :
W, ) = e o)
[0] By
0 Om 0 JTk(O)

such that
— its first matrix W is the Weyr canonical form of M,
— each By; has the staircase form

whose stairs are located as the stairs of Sy; in (4), and all nonzero entries of By ;
are located on the stairs,
— each By ;4 with 1 > 1 is a submatriz of By; that is located in its upper left
corner.
(b) In particular, if the Jordan canonical form of M is

J:=Jp(0)® - P Ji(0) (r summands),

then (M, N) is similar to a pair of the form
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OT Ir 0,« JT(O) Bl B2 - Bk,1
0, I, .
7,000 B
W,B) := 0, , . 6
0, 0, . 1
L Or JT (0>_

in which every B; is a matriz whose last row is arbitrary and the other rows are
zero. If the characteristic of F is zero, then the pair (6) is uniquely determined by
(M, N).

Remark 1. The fact that the pair (6) over a field of zero characteristic is uniquely de-
termined by (M, N) is unexpected since the similarity transformations with (W, B) that
preserve all entries except for the entries denoted by stars have free parameters. Our
proof of (b) is technical and does not explain why these parameters do not change
the entries denoted by stars. We do not know whether the pair (5) is uniquely de-
termined by (M, N) if the Jordan canonical form of M has Jordan blocks of unequal
sizes.

Example 1. Let (M, N) be a pair of commuting nilpotent matrices whose common null
space is one-dimensional. Let the Jordan canonical form of M be one of the matrices

®J1(0) & @®J3(0) & @J2(0) & ©J1(0) , (7)
N—— ~—— ~—— S~——
p summands ¢ summands r summands s summands
J7(0) @ @ J7(0) @ J4(0) @ - @ J4(0) @ J2(0) @ - - - @ J2(0), (8)
p summands q summands r summands

in which p, ¢, r, s are nonzero. In Example 3, we describe all matrices that commute with
the Weyr canonical forms of (7) and (8). Using it and Theorem 2(a), we obtain the
following normal forms for (M, N).

(a) If the Jordan matrix of M is (7), then (M, N) is similar to

0p I, 0 0 0 0 0]o o]0
04 0 I, O B 0 0/0 010
0r 0o 0 I 0 0 Jotatrts |0 By 0 |C; 00
0s| 0 0 0 0 0 Bi| 0 C4|Ds
0p I, 0 0 0]o0
0 Oq 0 Iq 0 ’ 0 Jp+q+r BZ 0 0
0-/0 0 0 Bs3|Cs
0p I, 0
0 0 0g 0 0 0 Jota | B,
i 0 0 0 [0p | | 0 0 0 Jp |
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in which J,, := J,,(0) for all m and the blocks Bg, B3, By, C3, Cy, D4 have the form

where the stars denote arbitrary elements of IF.
(b) If the Jordan matrix of M is (8), then (M, N) is similar to a pair of the form (5),
in which

A0 o0laoloolo]o]o
[Bys|...|1Bys)= |0 A 0[0 0]A 0[Al0|0 |,
00A0Al0Al0AA

the sizes of horizontal strips are p, g, r, the sizes of vertical strips are p, q, r, p, ¢, p, ¢, p, P, P,
and each A denotes a block of the form (9).

3. Matrices commuting with a Weyr matrix

The most important property of each Weyr canonical matrix W was found by Belitskii:
all matrices S commuting with W are block triangular. However, all versions of Belitskii’s
theorem in [3,4,9,11,12] do not give the positions of stairs in (4). We give them in this
section, which is important for constructing of pairs (5) (see Example 1) and for other
applications of Belitskii’s theorem.

3.1. Belitskii’s theorem

A Weyr matriz over a field F is each matrix of the form

W=, + W)@ @& NI, + W), (10)

in which A1,...,;\; € F are distinct and W7y,..., W, are nilpotent Weyr matrices of
the form (3). Each matrix over F in which all with distinct eigenvalues Aq,...,A\; are
contained in F is similar to some matrix (10). If a matrix S commutes with W, then it
has the form

S=5---08,

in which Sy,...,5; commute with Wy, ..., W}, respectively. Therefore, it suffices to de-
scribe all matrices commuting with a nilpotent Weyr matrix.
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Let J be the Jordan matrix (2). Let us consider the set of its Jordan blocks of sizes

equal to or greater than i x ¢, and let m; be the number of Jordan blocks of distinct sizes
in this set; that is,

(ma,.ooomy) =(t,... ¢ t—1,...t—1, ..., 1,...,1). (11)
—_—— —— — ——
k¢ times ki—1—k¢ times k—ko times

Theorem 3. Let W in (3) be the Weyr canonical form of the Jordan matriz (2). Then
the set of matrices that commute with W consists of all matrices of the form

Si1|Sia| - | Suk
(B—a) (B—a)
Soo St Stmgs
S = , Sop = o G (12)
Sko1k Sial Smams
0 S gk
(mi,ma,... are defined in (11)), in which every Si(]) is a p; X pj matriz,

,5'2(7) is arbitrary if k;j —k; <7,

13
S =0 if kj— ki > . (18)

¢

Proof. The nilpotent Jordan matrix J in (2) is permutation similar to the matrix

J+::Jkl(opl)@“'@‘]]@t(opt)ﬂ ki > ko> >k >0,

in which

Op Ip Op

Jr(0,) := O (k2 blocks).
. Ip
Op Op

By Gantmacher [7, Chapter VIII, §2], each matrix that commutes with J* has the

form
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(0) (1) (2) ‘. (kl 1) (0) (1) (k2 1) (0) . (ky—1)
SO gn g LS g g e gl g L gt
(0) (1) . (k1—2) (0)
Sll Sll : Sll 512
SO sy SO |x
(1) (0)
S11 Sis
(0)
Sll

S(kl kQ)Sélil—kQ-H) S(kl 1) S(O) S(l) S(kz 1) S(O) S(kt 1)

Ct= Sga=r) . gl S L SOV P

(1) (0)
. Sy S5

(k1—k2) (0)
521 522

S(kl ke) t. S(k1 1) S(kz k) * S(kz 1) S(O) S(kt 1)

) . . . . . k,
S(kl k) S(kz RO S(O)
k1 ko k¢

The sets of rows of J7 and C7 are partitioned into ¢ superstrips, each of them is par-
titioned into ki, ko, ..., k; strips, respectively. As in [12, Section 1.3], we permute the
horizontal and vertical strips in J* and C™, gathering the first strips of each superstrip,
then the second strips of each superstrip, and so on, until we obtain W of the form (3)
and S of the form (12).

It is observed from the picture that the blocks of C7* satisfy (13). Hence, the blocks
of S satisfy (13) too. O

Note that each superblock S5 in (12) consists of the following blocks of C'*: the
(i, §)th block S5~ of S 5 is the (a, B)th block of the (i, j)th superblock of C'*.

Example 2. The nilpotent Jordan matrix

J=J30)@ - ®J3(0)® J2(0) @ & J2(0) D J1(0) & - ® J1(0)

p summands ¢ summands r summands

is permutation similar to J7* = J3(0,) @& J2(04) @ 0,. This matrix and each matrix C'*
that commutes with it have the form
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0 1 2 0 1 0
0T , S§1) 551) S§1) S§2) Siz) S£3) 1
p Ip 0 1 0
0, I, 2 S£1) S§1) S%Q) 2
0 iy
b 8 11 3
I = 0L, v 7 0 4@ g0 o 0],
q 0‘1 S1" 8317 |S29" Sa9” |Sa3 |1
2’ 1 0 ,
. 0, 1" Sél) 552) 2
1 2 38 1 2 1” Sﬁ) S?g) ngg) 1"

1 2 3 1’ 2’ 1”

The set of rows of J7 is partitioned into 3 superstrips, each of them is partitioned into 3,
2, and 1 strips, respectively. We permute the horizontal strips of J* and of C* gathering
atop the first strips of each superstrip, then the second strips, and finally the third strips.
Making the same permutations of vertical strips, we obtain

—.  FEIRT

0g I, | Ssy g3 |S31” Sa9"| S5 |1
PR O B i
0,2 Spa | So1 |2

11 1" 2 2 3 SQ) 3

1 11”7 2 2’ 3

in which W := J# is the Weyr canonical form of J. Each matrix commuting with J#
has the form C#. The matrix C# satisfies (13) since (k1, ko, k3) = (3,2, 1).

3.2. Method of constructing all matrices that commute with a given Weyr matrix

The matrix (12) can be constructed by the numbers k, and m,, (defined in (2) and
(11)) as follows:

e First we construct the skew-symmetric matrix

ki—ki ko—Fki ... ki—Fk
Ko ki—ke ko—ke ... ki—ko
k‘l—kt kz—k't kt_kt

e Then we construct the block matrix

H :=[H1|Hs|...|Hy,], each Hg is mq x mg,
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in which the jth column of Hg is obtained from the jth column of K by replacing
all its entries that are < 8 by the multiplication sign x and the other entries by 0.
« Each S5 in (12) is obtained by replacing in Hg all x’s by arbitrary blocks of ap-
propriate sizes and all zero entries by zero blocks.
o BEach Sy, 34, with [ > 1 is an angular submatriz of S,4; i.e., it is located in the
upper left corner of S 4.

Example 3. Let us describe all matrices that commute with the Weyr matrices whose
Jordan forms are (7) and (8).
(a) Let J be the Jordan matrix (7). Then (p1,p2,p3,p4) = (P, 4,7, ),

(kla kQa k3a k4) = (47332, 1)3 (m1;m23m37m4) = (47372a 1)7

and so
0 —-1 —2 -3 X X X X[X X X | X
1 0 -1 -2 0 X X X|X X X |X
K = H =
2.1 0 -1} 00 x x|0 X X |x
3 2 1 0 000 x|00 %[0 x|x

Hence the Weyr canonical form of J and an arbitrary matrix commuting with it have

the form

- Op Ip 0 O - r Al All A/ll A/lll B:’l B:ll/ Bi/ C{I C{II Dlll/ 7
0, 0 I, 0 , |, 0 Ay A, Ay |B, B, BY|c, cy DY

0, 0 0o o0 I 0 0 A3 A,|0 Bz By|Cs C}| D4

s10 0 0 0 0 0 As | O 0 Bs| O Cy | Dy

0, I, 0 A, A, AY| B, By|cy

0 0q 0 I,|o0 | 0 0 Ay A,|By B,|cC

Orlo 0 0 0 As| 0 Bs| Cs

0 I, A, A | B!

0 0 P 1 1 1

0q | 0 0 0 0 A | B

2 2
L 0 0 0 101 | 0 0 0 A |

in which all blocks Agj), Bzm, C’i(j), ng) are arbitrary.
(b) Let J be the Jordan matrix (8). Then ¢ = 3,

,2),  (ma,...,m7)=(3,3,2,2,1,1,1),
0 -3 —5]
=13 0o -2,
5 2 0|

H=[H|...|Hi]= |0 x x|0 x x|0 X|x x|xX|X]|X

0 0 %x|0 0 %x|0 x|0 x|0|x]|x

4
4
4
{xxxxxxxxxxxxx

Please cite this article in press as: V.M. Bondarenko et al., Pairs of commuting nilpotent operators with
one-dimensional intersection of kernels and matrices commuting with a Weyr matrix, Linear Algebra
Appl. (2021), https://doi.org/10.1016/j.1aa.2020.10.040




LAA:15627

12 V.M. Bondarenko et al. / Linear Algebra and its Applications see (ssee) ese—see
4. Proof of Theorem 2

4.1. Proof of Theorem 2(a)

Each pair (M, N) of commuting nilpotent matrices whose common null space is one-
dimensional is similar to (W, B), in which W is the Weyr canonical form (3) of M. By

Theorem 3,
By, By, By
B, B~ B
B= , Bog= | oo ,
By 14 B Bl
0 By,

in which every Bi(;f) is an arbitrary p; X p; matrix such that BZ-(]-V) =0if k; —k; > 7.

We reduce (W, B) by those similarity transformations S=(W, B)S that preserve W.
Then WS = SW, and so S is of the form (12).

Since B and S commute with W, they are conformally partitioned and have the same
staircase form.

Since B is reduced by transformations S~!BS, the superblock B;; is reduced by

similarity transformations S7;' B,;S;,, in which

0 0 .. 0 0 0 0
BY BY . BY. s s S,
0 .. .. 0
En = B§2) ' ' 3 §11 = 552)
0 0
B’I(”I’szl,ml anzfl,ml
0 BY .. 0 s

We reduce each Bl-(? ) to the Jordan canonical form by transformations (Si(? )) _1BZ-(? )Si(? ),

The matrix B is nilpotent, hence each BY is nilpotent too, and so each Bi(iO )

b is a direct

sum of singular Jordan blocks. Thus, B;; is of the form

0 b - bir

brlfl,rl

All b; ;41 are nonzero since the common null space of W and B is one-dimensional.
We reduce B;; to J, (0) by upper triangular similarity transformations (which are
admissible since S;; is upper block-triangular) as follows. First we multiply the second
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column by ble and the second row by bio; we obtain bjs = 1. Then we make zero each
by; with j > 3 by adding the second column multiplied by —by; to the jth column; the
inverse transformations of rows change the second row. We obtain B;; with the first row
(0,1,0,...,0). In the same way, we make bys = 1 and byy = bys = --- = 0 (the inverse
transformations of rows change the third row) and so on, until we obtain By; = J,, (0).

By (12), each B,

The pth upper superdiagonal of B is the sequence of superblocks

o, Is an angular submatrix of B;,. Hence B, = J,,(0) for all a.

(El’ﬁ+17§2’ﬁ+27"-7@]@175’]@1)) O<B< kl _1

Reasoning by induction, we fix 8 > 1, assume that if 8 > 2 then the 1st, ..., (8 — 1)st
upper superdiagonals of B have the form described in Theorem 2(a), and reduce the
Bth upper superdiagonal to this form as follows. Let S = I — G be of the form (12),
in which all entries of G are zero except for the entries of Sth upper superdiagonal
(Gi1g415-++>Gk—pk,)- Then the transformation

B S'BS=(I+G+G*+---)B(I-G)
=B+ (GB—-BG)+G(GB—BG) +---

preserves the 1st, ..., (8 — 1)st upper superdiagonals of B and reduces the superblock
B, 51 by the transformation

By g1 By =By g+ Gipy1dr i (0) = I (0)Gy 514 (14)

By Theorem 3, some of the entries of B; 5., and the entries of G 5, ; at the same
positions are arbitrary (they are the entries of those blocks that correspond to x’s in
Hpg 15 see Section 3.2). The other entries of By 5., and G, 5., are zero; we denote them
by 0 (they are the entries of the zero blocks that correspond to 0’s in Hg4q). All entries
above the main diagonal are arbitrary. If an entry is arbitrary, then all entries to the
right and above it are arbitrary too. Thus, B, 5., and G, 3, are staircase matrices
with the same location of stairs.

Step 1, in which we reduce the entries of By 541 on its main diagonal and under it. The

r1 T+l

¢th lower diagonal of By g1 = [bi;];1,,;2" is the sequence of its entries

B_(g) = (bg+171,bg+2,2, ‘e ), 0 g Y4 g r — 1.

Reasoning by induction, we assume that all the lower diagonals of B,z under
B_ (4 have the form described in Theorem 2(a). Let B_ ) do not have this form.
Then B_(g) # (0,...,0). Let G_(¢41) := (942,15 ge+3,2, - - - ) be the (+1)st lower
diagonal of Gy 5,1 = [gi]i,;27" Each transformation (14) changes B_ s as
follows:
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B_(y=B_(t) + (0, 90421, G432 - - ) — (Ges2.1, G432, Ge4azs - - )- (15)

Let us consider a fragment g1, g2, ..., gr of G_(¢41) of the form
G—(Z—i—l) = ( any»(b » 91,925 - -+, Gk, Q),any )7 all gi #@7 (16)
S~ —— Y~
p entries k entries q entries

in which p,q € {0,1,...} and k > 1 (which means that g; is on a stair and
g1,92,---,Jk—1 are over this stair).
o Let gx be not in the last column of B; 5, without its last entry. By (15),

B_yy=B_pp+( - ,=91,91 =925 k-1 — Gkr Gkr -+, )-

p entries k+1 entries g entries

We choose ¢1,92, - .., g, in (16) such that

B_gy=(_..,0,0,...,0,b, ... )
-~ —— =~

p entries k+1 entries 9 entries

we take zero the other entries of G_ ;1 ). Then the entries of E_(g) outside
of (0,0,...,0,b) are not changed.
o Let gi be in the last column of By 5, ; without its last entry. Then

G*(Z‘Fl):( any,@ 7917927"'7gk)7 all gi#mv p>oa
—_— —
p entries k entries

and (15) takes the form

E—(é) =B_p+( -0 ,—91,91 — G2, Gk—1 — Gk )-

p entries

k entries

We choose g1, go, - - ., gk such that

p entries g entries

and take zero the other entries of G_(y11).

Using these transformations, we consecutively reduce B_,), starting at the
top entry, to the form that is described in Theorem 2(a). The diagonals under
B_(4) in By g4, are not changed.

We apply this reduction to all lower diagonals of B 5., and to its main
diagonal, and obtain B, 4, in which all entries on the main diagonal and under
it are in the form described in Theorem 2(a).
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Step 2, in which we reduce the entries of By 3.1 over its main diagonal. Let £ > 1 be
such that all diagonals of B; 5, under its {th upper diagonal

B(f) = (bll-‘rl» b27€+27 sy b’r‘ﬁ+1—f,7"3+1)

have the form described in Theorem 2(a). We use the transformation (14)
given by G; 5.1 in which only the (¢ — 1)st upper diagonal G(_1) =
(91,925 -+ 9rs1—e+1) is nonzero; its entries are arbitrary. This transformation
adds the vector

(gl — 92,92 — g3, .. 797“[1_;_17[ - g7‘[3+1fz+1)

to B(y; we make By = (0,...,0) preserving all the diagonals under it. We
repeat this reduction until we obtain B; 3. in which all entries over the main
diagonal are zero. The obtained B, 4., is in the form described in Theorem 2(a),
which completes its proof.

4.2. Proof of Theorem 2(b)

Let (W, B) and (W, B’) be matrix pairs of the form (6) in which all blocks B; and B;
have the form (9).

Suppose that S~*(W, B)S = (W, B’) for some nonsingular S. We must prove that
B = B’. The matrix S has the form

So S1 e Sk
S = So , Sp is nonsingular.
.. Sl
0, So

Since Sp commutes with F' := J,,(0), we have

ap a1 - Gp_1
Sy = ap - | =aglp+ a1 F+aF? 4 +a, F! (17)
. o
0 ag
for some ag # 0, a1, as, ... from the field F.
Reasoning by induction, we fix v € {1,...,k — 1}, assume that
Bi=B, ...,B,_1=B_, ifv>2 (18)

and prove that B, = B). For each v =1,2,..., we define the blocks BZ-(U) and B;(u) by
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Fe B™ . B F B . B,
0n, e 0, F
and
u
M (u .. (u ..
e B . B F B, -. B
0, e On F
The equalities (18) ensure that B\") = B/™ .. B = B/") Since BS = SB’, we

have B*S = SB’*, and so

Fe o BY Sy Sy So o S| |F o B
0 F o, So 0, Sol L0 P

Equating the upper-right blocks, we obtain
F“S, +B"S, 1 +---+B™, S + B®s,
— 5B +$,B™ +... 48, 1B + S, F*. (19)

Since the traces of matrices satisfy tr(XY) = tr(Y X) for all X and Y, the equality
(19) implies that tr(BqS“)So) = tr(SOB;(u)), hence

tr((B{") — B/())S,) = 0. (20)
The blocks BS" and B are represented in the form

BW = B,F* ' 4+ FB,F* 2+ F?B,F" 3 4+ ...+ F*" !B, + s(F,By,...,By_1)
B\ = B,F*"' + FB,F"? + F*B,F** + ...+ F""'B, + s(F, By, ...

)
i

an—l)

in which s(F, By, ..., B,_1) is a sum of products of matrices from the set {F, By, ..., By_1}.
Therefore,

B{" - B") = (B, = B))F""' + F(B, = B))F"* 4 ..+ F*"/(B, — B)).

By (20),
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tr((B, — B,)F"'So) + tr(F(B, — B,)F"%Sp) + -+ + tr(F*" (B, — B,)S,) = 0.
Since tr(XY Z) = tr(YZX) for all square matrices of the same size,
tr((B, — BL)F""'So) + tr((B, — B,)F* ?SoF) + - -« + tr((B, — B,)SoF*~') =0

By (17), F commutes with Sy. Hence, utr((B, — B})F*~'Sy) = 0. Since the character-
istic of the field F is zero, u # 0, and so tr((B, — B},)F*~1S;) = 0.
Substituting (17), we get

ao tr((By — B)F*“™ ') + ay tr((By, — B,)F") 4 -+ + ap_1 tr((B, — B,)F*1"?) = 0,
in which ag # 0. We consecutively take u = n,n —1,...,1 and obtain
tr((B, — B,)F" ') =0, tr((B, — B,)F""?) =0, ..., tr((B, — B,)F°) = 0.
For each n x n matrix X = [z;;] and 0 < k < n,
tr(XF¥) = 2py11 + Thgo + Thgss + o

is the sum of entries of its kth lower diagonal. Since B, and B, are of the form (9), we
have B, = Bj,.
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