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Abstract
Starting from the shell structure in atoms and the significant correlationwithin electron pairs, we
distinguish the exchange-correlation effects between two electrons of opposite spins occupying the
same orbital from the average correlation amongmany electrons in a crystal. In the periodic potential
of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these
correlated electron pairs can form ametastable energy band above the corresponding single-electron
band separated by an energy gap. In order to determine if thesemetastable electron pairs can be
stabilized, we calculate themany-electron exchange-correlation renormalization and the polaron
correction to the two-band systemwith single electrons and electron pairs.We find that the electron-
phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron
pairs. The interplay of the electron-electron and electron-phonon interactions,manifested in the
exchange-correlation energies, polaron effects, and screening, is responsible for the formation of
electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.

1. Introduction

Since the discovery of highTc superconductivity by Bednorz andMüller [1] in 1986, great progresses have been
made in the experimental and theoretical investigation of unconventional superconductivity. However, the
mechanismof electron pairing in unconventional superconductors remains one of themost challenging and
unresolved problems in condensedmatter physics [2–4]. Vast experimental evidences have shown that electron
pairing and unconventional superconductivity occur inmany differentmaterials, such as cuprates [1–4], iron-
based superconductors [5–8], and carbon-based superconductors [9, 10], etc. Although there aremany different
theories for unconventional superconductivity, almost all theories follow the basic idea of the BCS theory [11].
They presume that there is some effective attraction between electrons leading toCooper pairingwhich
spontaneously condense into a collective non-Fermi liquid state.

Wewould like tomention some very recent experimental results related to the electron-pairingmechanism
in unconventional superconductors. Božović et al reported very impressive and accurate results on
superconductivity in high-Tc cuprates [12]. They synthesized atomically perfect thin films andmultilayers of
cuprates La2xSrxCuO4 (LSCO) andmeasured the absolute value of themagnetic penetration depth and the phase
stiffness with high accuracy in thousands of samples. The large statistics revealed clear trends in the intrinsic
properties of the cuprate superconductors. They found that the obtained results disagree with the BCS theory in
any variant, i.e. clean or dirty, including theMigdal-Eliashberg theory. Rather, the experimental data indicated
small (local) and very light electron pairs withmass on the order of an electronmass. These pairs are preformed
well aboveTc and atTc undergo Bose–Einstein condensation [12, 13]. Investigations performed byZhong et al
[14] and byRen et al [15] challenged the d-wave pairingmechanism in cuprates.With scanning tunneling
spectroscopy, they revealed anisotropic and nodeless superconducting gaps in the cuprate superconductors
Bi2Sr2CaCu2O8+δ (Bi2212) andYBa2Cu3O7−x (YBCO). In their paper, Zhong et al [14] affirmed that ‘this is
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contradictory to the nodal d-wave pairing scenario that is often thought to be themost important result in the
30-year study of theHTSmechanismof cuprates’.

Important progresses in recent investigations on the electron pairingmechanism in iron-based
superconductors indicate small and preformedCooper pairs [6–8]. For instance, using Bogoliubov quasiparticle
interference imaging, Sprau et al [6] found that the superconducting energy gap in FeSe is extremely anisotropic
and nodeless. Their investigation discovered the existence of orbital-selective Cooper pairing in FeSe. Gerber
et al [8] combined two time-domain experiments into a coherent lock-inmeasurement in the terahertz regime
andwas able to quantify the electron-phonon coupling strength in FeSe. Their study revealed a strong
enhancement of the electron-phonon coupling strength in FeSe owing to electron correlations and highlighted
the importance of the cooperative interplay between electron-electron and electron-phonon interactions.

In this paper, we present a theory for electron pairing in crystals wherewe consider the electron-electron
correlation, the periodic potential of the crystal lattice, and the electron-phonon interaction. Our theory is
different from all previous ones.We obtain preformed small electron pairs in the periodic potential of the
crystal. This is essentially an orbital dependent electron-pairing theory inwhich the exchange-correlation
between two electrons occupying the same orbital is decisive for pair formation.However such pairs are
metastable unless the electron-phonon interaction is included. The calculations show that the electron-phonon
coupling and the polaron effects are responsible for the stabilization of the electron pairs.

Our basic idea for the electron pairing process is that the electron-electron correlation is orbital dependent.
Within the jelliummodel for the electron gas in solids [16], the atomic nuclei that form the periodic lattice are
smeared out into a uniformpositive charge distribution. Each electron is totally delocalized. Therefore,many
electrons ‘see’ each otherwith theirfluctuation potential at the same time and thus correlate all at once, giving
rise to collective screening and oscillation effects. However, in atoms andmolecules, significant correlations
occurwithin electron pairs [17–19]. Strong exchange-correlation interaction between two electrons in the same
orbitalmanifests in the shell structure of atoms and also in the covalent and ionic bonding inmolecules. Our
starting point in this study is to distinguish the exchange-correlation effects between two electrons of opposite
spins occupying the same atomic orbital from the average correlation amongmany electrons in a crystal. This
may happen in a crystal but the electrons have to ‘feel’ the nuclei potential well. This leads to a preliminary
condition that the effective Bohr radius of the valence electrons in the crystal has to be comparable or smaller
than the lattice constant. For instance, for a cuprate crystal with effective electronmass m m5 0*  and static
dielectric constant 300  , the effective Bohr radius a 3.2B  Å is smaller than the lattice constant of about
3.8Å. Becausewewant to show that the electron-pair correlation in atoms canmanifest themselves in electron
transport in crystals, our calculations have to start first with the formation of energy bands [20].

In order tofind out the electron-pair states in the crystal, wewillfirst establish a simple crystalmodel to
discuss the physical process.We consider a ‘hydrogen solid’model with single-electron state ofH atom and
electron-pair state of theH− ion.Wewill show that, besides the energy bands from the single-electron energy
levels of individual atoms in the crystal, there can exist ametastable electron-pair energy band from the
correlated electron pairs of theH− state for the lattice constantλ being larger than the effective Bohr radius aB
[21]. The electron pairs aremetastable because theCoulomb repulsion is strong overwhelming the exchange-
correlation. In order to stabilize themwehave to include the electron-phonon interaction to counterbalance the
Coulomb repulsion. Therefore, the electron-phonon interaction is necessitated in a natural way in the electron
pairing process.

This paper is organized as follows. In section 2we calculate and discuss themetastable electron-pair energy
band in two-dimensional square-lattice crystals. In section 3we present themany-particleHamiltonian
consisting of electrons in both the single-electron and electron-pair bands being coupled to the LO-phonons. In
sections 4 and 5, we calculate themany-particle exchange-correlation (xc) energies due to electron-electron
interactions and polaron energies due to electron-phonon interactions. Then, we show in section 6 the
conditions under which themetastable electron pairs can be stabilized in the ground state includingmany-body
effects. Finally, we summarize ourwork in section 7.

In the calculations,wewill use effective Bohr radius m eaB 0
2 2* = and effectiveRydberg mR 2 ay B

2 2*=
as theunits for length and energy, respectively.

2.Metastable electron pairs in crystal

Electronic band structure is of fundamental importance for our understanding ofmany physical properties of
solids.Within the independent electron approximation, the electron states are of Bloch form in the periodic
potential of the crystal lattice. The effects of electron-electron interactions are accounted for by an effective
potential which repeats this periodicity [20]. In this section, wewill show that, besides the energy bands from the
single-electron states there can exist ametastable electron-pair energy band depending upon the crystal
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structure and potential. Thismetastable electron-pair band originates from two correlated electrons of opposite
spins occupying the same atomic orbital.

2.1. Two-electron atoms
Our studywill start with the simplest electron-pair system, i.e., two-electron atoms. These helium-like atoms
with two electrons of opposite spins occupying the same orbital, e.g. helium atomHe and negatively charged
hydrogen anionH− have played an important role in the development of theoretical physics in the last century
[22]. It is a challenge to determine accurately the correlation energy, even in simple systems such asHe atomand
H− ion [22–25]. Hylleraas’ result for the ground-state energy ofHe atomobtained in 1929was−5.80648Ry [26].
After generations of calculation, very accurate (non-relativistic) ground-state energies [27–32] of two electron
atoms have been obtained:−5.807448754068L Ry forHe and−1.055502033088L Ry forH

−. Recently, using
high-precision variational calculations Estienne et al [33] determined the critical nuclear chargeZc= 0.911 028
224 077 255 73(4)which is theminimumcharge required to bind two electrons in a helium-like atom.

On the other hand, the famous experiment on two-electron atoms byMadden andCodling [34] revealed
that the simplemodel based on independent particle picture is inappropriate to characterize a series of doubly
excited states because of strong electron-electron correlation [22, 34]. In comparisonwith the single-electron
states of theH atom, theH− ion is a closed-shell systemwith two strongly correlated electrons. Such an electron-
pair state is different in its nature from the single-electron states because of the strong correlation. It should be
recognized as a new strongly correlated electronic state.

Negative hydrogen ionH− in two-dimensional (2D) systemhas also been investigated in the last decades
mostly because of the discovery of its counterpart D− center in 2D semiconductor quantumwells [35]. TheD−

center is a negatively charged shallow donor impurity center in semiconductors, such as a negatively charged Si
impurity in aGaAs quantumwell. It is anH−-like state in solid-state environment butwith very different energy
and length scales (e.g., inGaAs, the effective Rydberg Ry= 5.9meV and effective Bohr radius aB= 98Å).
Therefore, theD− center in semiconductors is considered as an ideal ‘laboratory’ to study theH− properties, for
instance, in highmagnetic fields [36]. Earlier variational calculation by Phelps and Bajaj found the energy of the
H− in 2D is−4.48 Ry [37]. Further numerical calculations obtained−4.48054Ry by Ivanov and Schmelcher [38]
and−4.4804798Ry byRuan et al [39].

In table 1we compare the ground-state energies of the 2D and 3DH− states. The binding energyEb is defined
as the difference between the energies EH of the neutralH atom and EH- of theH− ion. This is the energy
required to remove one of the two electrons from theH− ion to infinity. It is also called electron affinity of the
hydrogen atom.One sees that the binding energyEb of theH

− in 2D is almost 9 times larger than that in 3D
because electron correlation in 2D ismuch stronger. In the last columnwe also give the energy per electron εp in
theH− state.

2.2. ‘Hydrogen solid’modelwith both the single-electron and electron-pair states
In order to explain the so-calledMott insulator andmetal-insulator transition [40, 41],Mott considered a
hydrogen solidmodel with the single-electron energy band only, i.e., a simple cubic lattice crystal of one-
electron atoms andmade the following discussion [40]. For small values of the lattice constantλ, there is a half-
filled band in such a crystal and thus it ismetallic. If one varies the lattice constant to large values (but not so large
as to prevent tunnelling), theCoulomb interactionU for two electrons occupying the same atomic site
overcomes the kinetic energy (characterized by the bandwidthW). In this case, each electron should be assigned
to its parent atom. The crystalmust be nearly the same as a collection of isolated neutral hydrogen atoms and
thus it is an insulator. This reveals a competition between potential and kinetic effects. At largeλ (smallW) the
Coulomb repulsionU dominates, the electrons are localized, and the system is insulating [40, 41]. The idea of
Mott led to the theoreticalmodel introduced byHubbard [42]. TheHubbardmodel traces the insulating
behavior to strongCoulomb repulsion between electrons occupying the same orbital. The competition between
the kinetic andCoulomb energies gives rise to strong electron-electron correlations. TheHubbardmodel was
proposed originally to describe the transition between conducting and insulating systems. It has also beenwidely
used to studymaterials with strongly correlated electrons and high-temperature superconductivity [43].

Table 1.The ground-state energies of negative hydrogen
ionH− and hydrogen atomH in 2D and 3D. Eb is the
binding energy ofH−. The energy per electron inH− state is
given by E 2p He = - . Energies are in units of Ry.

EH- EH Eb εp

3D −1.055 −1.0 0.055 −0.528

2D −4.48 −4.0 0.48 −2.24
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In this paperwewill consider both the single-electron and electron-pair states in the ‘hydrogen solid’model.Our
calculationwill be performed for 2D systemsbecausewe canobtainmore accurate numerical results in 2D.Another
reasonwhy2D systems aremore interesting is that electron-electron correlations are stronger.Manyunconventional
superconductormaterials are found tobe essentially twodimensional. Figure 1 showsdiagrams representing (a) a 2D
Hatomand (b) a 2DH− ionwith their respective energy levels. Thenuclear potentialVa(r−Rm)of the atom is
represented by theblack curves,whereRm is the positionof thenucleus. The single-electron levels of a 2DHatomare
givenby iR 1 2i y

2e = - +( ) (for i=0, 1, 2,K). The energy level of a correlated electronpair inH− ion, i.e., the
energy per electron in the ground state, is givenby E 2 2.24p He = = -- Ry.We remind that a singleH− ion is
stable.

We now consider the following ‘hydrogen solid’:N atoms are arranged into a simple-lattice crystal at
positionsRm (form= 0, 1, 2,L,N− 1)with lattice constantλ of the order of the Bohr radius aB as indicated in
figure 1(c). The crystal potential for an electron at rj is given by

V Vr r R . 1c j
m

N

a j m
0

1

å= -
=

-

( ) ( ) ( )

It is known that the single-electron levels εi of individual atoms form energy bands Ei(k) in such a crystal [20] as
indicated by the horizontal thick-blue lines infigure 1(c). In principle, there is also the possibility that two
electrons of opposite spins occupy the same atomic orbital forming anH−-like state in the crystal, but it becomes
unstable due to the presence of the neighbor atoms. Therefore, the counterpart of theH− state in a crystal has
never been investigated. In this sectionwewill show that, though such an electron pair is unstable in a crystal due
to theCoulomb repulsion, theymay form ametastable energy band (indicated by the horizontal thick-green line
infigure 1(c)) depending on the crystal structure and potential. In such a crystal the lattice constantλ should not
be so small as to prevent individual atoms to bind two electrons, but not so large as to prevent co-tunnelling of an
electron pair between the neighbor unit cells.

In the center ofmass and relative coordinates (R, r) of the two electrons at r1 and r2, defined by

R r r r r r
1

2
and , 21 2 1 2= + = -( ) ( )

thewavefunction of an individual electron pair with energy 2εp bound to the atomatRm is given by
R R r,mf -( ). The Schrödinger equation for two electrons in the crystal potential given by equation (1) can be

written as,

V V

E

r r
r

R r

R r

1

2
2

2
,

2 , , 3

c c

p

R r
2 2

1 2-  -  + + + Y

= Y

⎡
⎣⎢

⎤
⎦⎥( ) ( )

∣ ∣
( )

( ) ( )

where r R r1
1
2= + and r R r2

1
2= - . The term r2 ∣ ∣ is theCoulomb repulsion potential between the two

electrons.We should bear inmind that, due to electron-electron repulsion, the ground state of this system can be
found for r r r1 2- =  ¥∣ ∣ ∣ ∣ . In other words, the ground state of this two-electron system corresponds to two
non-interacting single electrons separated by an infinitely long distance. Butwe are looking for the quantum
states of two-correlated electrons occupying the same orbital in the same unit cell in the crystal with the average
separation rá ñbeing less than the lattice constantλ. Therefore, the electron-pair states in the crystal are
metastable. The calculations in section 2.3will confirm that such ametastable state does exist in 2Dperiodic
potentials.

Figure 1. (a)A2DHatom, (b) a 2DH− ion, and (c) a ‘hydrogen solid’. The horizontal lines indicate the energy levels and bands.
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If the electron-pair states of two correlated electrons in the crystal can be approximated by a linear
combination of the electron-pair wavefunctionsf(R− Rm, r ) of single atoms, written as,

cR r R R r, , 4
m

m må fY = -( ) ( ) ( )

for r lá ñ < , we can obtain the following homogeneous linear equations,

J E cR R R R2 0, 5
m

p m n p p p m n må e a- + - - =[ ( ) ( ) ( )] ( )

for n,m=0, 1, 2,K,N−1, whereαp(Rl ) is the overlap integral

d dR R r R R r R r, , , 6p l l*ò òa f f= -( ) ( ) ( ) ( )

withαp(Rl= 0 )=1, and

J d d VR R r R R r R r R r, , , , 7p l l l*ò ò f f= - - D( ) ( ) ( ) ( ) ( )

with

V V VR r R R r R R r, . 8l
n l

a n a n
1
2

1
2åD = - + + - -

¹

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

Weobserve that equation (5) for cm depends only onRl=Rm−Rn . This is an eigenvalue problemof a
block circulantmatrix [44]. The solution has the following form

c C e , 9m
ik Rm= · ( )·

where the vector k should be a reducedwavevector in the first Brillouin zone andC is the normalization
constant.Wefinally obtain the electron-pair wavefunction in the crystal given by

e

N e
R r

R R r

R
,

,

1
. 10l

i
l

l
i

p l

k

k R

k R
0

l

l

å
å

f

a
Y =

-

+
¹( )

( )
( )

( )
( )

·

·

The abovewavefunction is a Blochwavefunction in the center ofmass coordinatesR because it can bewritten as

Ce eR r R R r, , , 11i

l

i
lk

k R k R Rlå fY = -- -
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )· ·( )

where the part in the square brackets is a periodic function in the coordinatesRwith period of the crystal lattice.
The dispersion relation of the electron-pair band is given by

E
J e

e
k

R

R2
. 12p p

l p l
i

l p l
i

k R

k R

l

l

å
å

e
a

= -( )
( )
( )

( )
·

·

Because the considered electron-pair wavefunction R R r,mf -( ) of a two-electron atomhas essentially the
s-symmetry [24, 37], the dispersion relation of the electron-pair band in the 2D square-lattice crystal with lattice
constantλ can be approximated as

E J J k kk R
1

2
0 cos cos , 13p p p p x y1e l l= - - +( ) ( ) ( )[ ( ) ( )] ( )

where only the nearest-neighbor tunneling term Jp(R1) is considered. The value of Jp(R1) determines the
bandwidth of the electron-pair band. Because this is a co-tunneling process of two paired electrons between the
neighbor sites and the effectivemass of the electron pair is twice of a single electron, the electron-pair bandwidth
should bemuch smaller than that of the single-electron band. This dispersion relationwill be confirmed in the
next section bymaking numerical calculations of themetastable electron-pair band in 2Dperiodic potential of a
square lattice.

2.3.Metastable electron-pair band in 2D square lattices
For a quantitative demonstration of themetastable electron-pair band in a crystal and its renormalization due to
many-body effects, wewill use the following 2Dperiodic potential. For an electron at rj=(xj, yj) in a 2D square
lattice with the lattice constantλ, the considered potential is given by

V V qx qyr cos cos , 14c j j j0= +( ) [ ( ) ( )] ( )

where q=2π /λ andV0 is the amplitude of the crystal potential. Notice that,V0 is not ameasurable quantity,
e.g., the amplitude of the crystal potential infigure 1(c) should be infinity. The potential defined in equation (14)
with two parametersλ andV0 will simplify our numerical calculations without losing any essential features of
the theory. In this 2Dperiodic potential, the energy has a continuous spectrum for E 0 . Therefore, two

5

J. Phys. Commun. 2 (2018) 035017 G-QHai et al



electrons can possibly bind into a pair forE<0 only.We have calculated the single-electron andmetastable
electron-pair states in this periodic potential. For the calculation details we refer to [21].

The single-electron states are well known in this potential. The Schrödinger equation for a single electron is
given by

H Er k r , 15j l jk G k G0 l ly y=+ +( ) ( ) ( ) ( )

with

H Vr r , 16j j c j0
2= - +( ) ( ) ( )

where k is thewavevector in thefirst Brillouin zone, l is the band index, and l q l qG i jl x y= + (with
l l, 0, 1, 2,x y =   ¼) is the reciprocal-lattice vector; El(k) and rk Gl

y + ( ) are the eigenvalue and eigenfunction,
respectively.

Whenwe consider two electrons in this periodic potential, theirHamiltonian is given by

H H Hr r
r r

2
, 170 1 0 2

1 2

= + +
-

( ) ( )
∣ ∣

( )

where the last term is theCoulomb repulsion potential between the two electrons. In the center ofmassR=(X,
Y) and relative r=(x, y) coordinates defined in equation (2), the two-electronHamiltonian becomes

H
r

V qX
qx

qY
qy

1

2
2

2

2 cos cos
2

cos cos
2

. 18

R r
2 2

0

=-  -  +

+ +⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )

ThisHamiltonian is periodic inX andYwith periodλ.We can choose a Blochwavefunction in the center-of-
mass coordinates for our basis. As to the function in the relative coordinates r=(r, θ), we have to consider the
symmetry of the electron-electronCoulombpotential and the periodic potential representing a 2D square
lattice.We use the following basis for ourwavefunction,

A
e R rR r,

1
, 19l l n m

i
n m m

k G R
, ; , ,x y

ly f q= +( ) ( ) ( ) ( )( )·

with

R r c r e L r2 2 , 20n m n m n
m r

n m
m

n, ,
2

nb bx bx= bx-
-( ) ( ) ( ) ( )

and

b
m

1
cos , 21m

m

f q
p

q=( ) ( ) ( )

where n=0, 1, 2,L,m=0, 1, 2,L, n, ξn=2/(2n+1), c n m n m2n m n,
3 1 2x= - +[ ( )! ( )!] , b0=2, bm=1

form�1, and L xn m
m2
- ( ) is the generalized Laguerre polynomial. The functionRn,m(r) is taken from the

wavefunction of a 2Dhydrogen atom [45, 46]with amodification introduced by a dimensionless scaling
parameterβ. The two-electronwavefunction can bewritten as

aR r k R r, , . 22
l l n m

l l n m l l n mk
, ,

, ; , , ; ,

x y

x y x yåå yY =( ) ( ) ( ) ( )

Considering the antisymmetry of the electronwavefunctions with spin states, the two-electronwavefunction of
the spin singlet state is given by the above expressionwith the sumover evenm only.

Solving the corresponding eigenvalue equation of the two-electronHamiltonian given by equation (18)with
the above basis, we find ametastable electron-pair state of spin-singlet in the 2D square lattice potential. As
shown in [21], for fixed periodλ, ametastable electron-pair state can be foundwhenV0 is larger than a certain
value. AminimumpotentialV0 required for ametastable electron-pair state in the periodic potential
corresponds to the critical nuclear chargeZc for a helium-like two-electron atom. Themetastable electron-pair
state exist forE<0 only. This indicates that co-tunneling of the paired electrons occurs in the formation of the
electron-pair band in this 2Dperiodic potential. In the calculations we found that the average separation rá ñ
between two electrons in ametastable pair state is always smaller than half the lattice constant, r 2lá ñ < . The
globalminimumof the eigenenergy of the two-electron systemoccurs at rá ñ  ¥ corresponding to two non-
interacting single electrons.We alsowant to emphasize that the parameterβ in thewavefunction in
equation (20) plays the role of variational parameter to improve the correlation energy of the electron pair.
Because this parameter is directly related to the average distance between the two electrons in a pair, it helps us to
understand better themetastable electron-pair state. However, the parameter βdoes not determine the existence
of the electron-pair state in the periodic potential.
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Figure 2. (a)The dispersion relations of the electron-pair (green) and single-electron (blue) states in the 2D crystal withλ=1.3 aB and
V0=15Ry. (b)The electron-pair band (the green curves) together with the two lowest single-electron bands (the solid and dash blue
curves) versus lattice constantλ forV0=15Ry. (c)The electron-pair band versusλ forV0=5, 10, 15, and 20Ry. (d)The energy gap
Eg
(0) (solid curves) and ν0 (the dashed curves) between the electron-pair and single-electron bands as a function ofλ forV0=5, 10, 15,

and 20 Ry.
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In the following, wewill present numerical results for the band structure and show that the dispersion
relation of the electron-pair band in this potential fits verywell the expression given by equation (13). Figure 2(a)
shows the dispersion relations of the electron states in the 2D crystal potential withλ=1.3 aB andV0=15Ry.
The dispersion relationEp(k) of the spin-singletmetastable electron-pair band is given together with that of the
lowest single-electron band E k0( ). The electron-pair band remains above the corresponding single-electron
band because theCoulomb repulsion between the two electrons is stronger than their correlation.However, the
shape of the dispersion relations of the two bands are very similar. This confirms the dispersion relation of the
electron-pair band discussed in previous sectionwithin the framework of the tight-binding approach. The
similarity is due to the fact that two paired electrons are closely bound in the relative coordinates in real space
with an average separation rá ñ less than half of the lattice period. Furthermore, the single-electron and electron-
pair states in the relative coordinates are of the same symmetry. The average distance between the two electrons
in the case offigure 2(a) is r 0.44lá ñ = . The energy gap between the electron-pair band and the single-electron
band is Eg

0( ). The energy difference between the bottoms of the two bands atΓ point is defined as ν0. The electron
pair behaves as a larger particle with both themass and charge twice of a single electron. Consequently, the
tunneling probability of an electron pair to its neighbor site ismuch smaller than that of a single electron leading
to amuchnarrower electron-pair band.

We alsofind that the dispersion relation of the electron-pair band can indeed be described by equation (13).
For instance, the dispersion of the electron-pair band infigure 2(a) isfitted verywell by E E Jkp p p,0 ,1= -( )

k kcos cosx yl l+[ ( ) ( )], where Ep,0=−1.35401±0.00002Ry and Jp,1=0.03368±0.00002 Ry. Thefitting
gives an extremely smallfitting parameterχ2=3×10−8.

Infigure 2(b)we plot the electron-pair band as a function of the lattice constantλ togetherwith the two
lowest single-electron bands forfixed potential amplitudeV0= 15Ry. The two curves for each band indicate the
minimumandmaximumenergies of the band.We see that the electron-pair band appears forλ 1.22 aBwith a
bandwidth 0.2 Ry. It stays above the lowest single-electron bandwith a gap Eg

0( ) of about 3 to 5Ry. The
bandwidth of the electron-pair band is at least one order ofmagnitude smaller than that of the single-electron
band. Figure 2(c) shows the electron-pair bands as a function ofλ for differentV0.We see that the electron-pair
band appears forE<0 because the energy spectrum is continuous for positive energy in the crystal potential
given by equation (14). Itmeans that co-tunneling of the paired electrons is required to form the energy band.
Therefore, their bandwidth ismuch smaller than that of the single-electron band. The existence of the
metastable electron-pair band is a result of the local confinement in each unit cell, the electron-electron
correlation, and the co-tunneling of the electron pair in the crystal. Infigure 2(d)weplot the energy gap Eg

0( )

togetherwith ν0. They are important quantities for the renormalization of the electron-pair states.
In the rest of the paper, wewill demonstrate that themetastable electron pairs can be stabilized at certain

electron densities by including electron-electron and electron-phonon interactions in the crystal. Since the
electron pairs are spin singlet, theywill be considered as bosonic quasiparticles andmostly distributed at the
bottomof the electron-pair band at low temperature. Themany-body effects in the crystal renormalize the band
structure. If the band renormalization can bring down the bottomof the electron-pair band to the Fermi surface
of the single-electron band, the electron pairs at the bottomof the band cannot decay into two single electrons
because of the Pauli exclusion principle. In such a case, the electron pairs can be stabilized.

3.Hamiltonian of the two-bandmany-electron system interactingwith LO-phonons

Weconsider the 2D electron systemwith two energy bands: a lower single-electron band Es(k) and a higher
metastable electron-pair band ν0+Ep(k). The bottomof the single-electron band is taken as reference for
energyE=0 and the bottomof the electron-pair band is at E 0n= (see figure 2). Assuming that there areNt

electrons in the system consisting ofNs single electrons andNp electron pairs withNt=Ns+2Np, themany-
particle exchange-correlation (xc) interactions will renormalize the energy bands reducing the energies of both
the single electrons and electron pairs. In realmaterials, a 2D electron system can be found in the interface and
surface of bulkmaterials or in a 2D layer of layered crystal structure such as superconducting cuprate, therefore
interaction between the electron system and crystal lattice vibration and polarization affects the electron states.
Considering the ionic and polar-covalent characteristics ofmany superconductingmaterials, the electron-LO-
phonon interactions can be significant and their contribution to the energy band renormalization is important
[16, 47]. In this section, wewill present themany-particleHamiltonian including electron-electron (e-e) and
electron-phonon (e-ph) interactions assuming that the 2D electron layer is immersed in a 3Dphonon field. The
Hamiltonian of the considered system is giving by

H H H H , 23el ph el ph= + + ( )‐
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where Hel is for the electronic part with single electrons and electron pairs,Hph for 3DLO-phonons, andHel−ph

for e-ph interaction. TheHamiltonian of the electronic partHel was derived in [48], and is given by

H H H H , 24el single pair s p= + + ( )‐

whereHsingle is for the single-electron (se) band,Hpair for the electron-pair (ep) band,Hs−p for single-electron-
electron-pair (se-ep) interaction. For theNs electrons in the single-electron band, theirHamiltonian is given by

H E c c

A
v c c c c

k

1

2
, 25

s

q

k
k k

k k q
k q k q k k

single
,

, ,

, , ,
, , , ,

1 2

1 2 2 1

å

å å

=

+ s s s s

s
s s

s s ¢
- + ¢ ¢

( )

( )

†

† †

where v v q 2q ss q

2= = p( ) is the single-electron-single-electron (se-se)Coulomb potential, the operators ck,σ
† and

ck,σ are creation and annihilation operators, respectively, for a single electron ofmomentum ÿk and spinσ. They
obey the fermion anti-commutation relations c c,k k k k, , , ,d d=s s s s¢ ¢ ¢ ¢{ }† , c c, 0k k, , =s s¢ ¢{ } , and c c, 0k k, , =s s¢ ¢{ }† † .
ForNp electron pairs in the electron-pair band, theHamiltonian is given by

H E b b

A
v q b b b b

k2

1

2
, 26

p

pp

k
k k

k k q
k q k q k k

pair 0

, ,1 2

1 2 2 1

å

å

n= +

+ - +

( ( ))

( ) ( )

†

† †

where vpp(q)=4vqfpp(q) is the electron-pair-electron-pair (ep-ep) interaction potential with the form factor
fpp(q) given in [48], the operators b

†
k and bk are creation and annihilation operators, respectively, for a spin-

singlet electron pair ofmomentum ÿk. They obey the boson commutation relations b b,k k k k,d=¢ ¢[ ]† ,

b b, 0k k =¢[ ] , and b b, 0k k =¢[ ]† † .
The se-ep interband interaction is give by

H H H , 27s p int
s

int
t= + ( )‐

with

H
A

v q b c b c
1

28sp
k k q

k q k q k kint
s

, , ,
, ,

1

1 1å= s
s

s- +( ) ( )† †

and

H
A

v q

b c c b c c

1

, 29

k q

k q q k q q

int
t

,

t

, , , ,
k k k k2 2 2 2

å=

´ ++  -  -  + 

( )

( ) ( )† † †

where vsp(q)=2vq fsp(q) is the se-ep interband scattering potential (without breaking the electron pair)with
form factor fsp(q) and v

t(q) is the se-ep interaction potential for interband transition (breaking or forming
electron pairs). They are given in [48] and f 2sp(q)=fpp(q). Notice that in the aboveHamiltonian, the summation
over q does not include q= 0 because it is cancelled out with the background ion-ion interaction and the system
is neutral.

Aswe discussed in the previous section, the single electrons and the paired electrons share the same space in
the crystal. Themaximum total electron density is two electrons per unit cell (per atom), paired or not. However,
when the potential amplitudeV0 of the crystal is larger than a certain value, two electrons in the same unit cell
will occupy the same atomic orbital in the relative coordinates forming an electron pair. Itmeans that in this
case, each unit cell can be occupied by a single electron or by an electron pair, but not both at the same time.
Therefore, for a certain single-electron density ns=Ns/A (whereA is the area of the sample), themaximum
electron-pair density np=Np/A in the square-lattice crystal is given by

n n , 30p s
max 2l= -- ( )

whereλ−2 is the density of the unit cell of the crystal. Notice that ns=λ−2 corresponds to half filling of the
single-electron band. The above condition indicates that the single-electron band should be less than halffilled if
there are any electron pairs in the crystal.

TheHamiltonian of the optical-phononmodes in bulkmaterials with energy
LO

w and 3Dwavevector
Q= (q, qz) is given by

H a a , 31
Q

Q Qph LOå w= ( )†

where aQ
† (aQ ) is the creation (annihilation) operator of the LO-phonons. The interactionHamiltonian of a

many-electron systemwith the LO-phonons is given by [16],
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H V a e V a e , 32
j

N
i i

Q
Q Q

Q r
Q Q

Q r
el ph

1

t

j j*åå= +
=

-( ) ( )‐
· † ·

with the Fourier coefficient of the e-ph interaction potential

V i
m VQ2

4
, 33Q

1 4

2LO

LO*

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w

w
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= -
⎛
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⎞
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where rj is the position of the electron jwith bandmassm*. The Fröhlich electron-phonon coupling constantα
is defined by

e

m2

1 1
, 34

2

0LO*



 
a

w
= -

¥

⎛
⎝⎜

⎞
⎠⎟ ( )

where ò0 and ¥ are the static and high-frequency dielectric constant, respectively.
In the considered two-band system, the gap between the two bands is Eg

0( ) in the zero density limit. Although
the e-e and e-ph interactions in the crystal reduce the energies of both the single-electron and electron-pair
bands, their effects on the electrons in the paired states are larger than those in the unpaired single-electron
band. Therefore, we expect thatmany-body effects will reduce the energy gap between the two bands.Wewill
calculate the exchange-correlation corrections aswell as the polaron energies for both single electrons and
electron pairs including the screening effects in order tofind outwhether the electron pairs can be stabilized
or not.

In order to obtain the ground-state energy of the presentmany-particle systemwith the single electrons,
electron pairs and LO-phonons, wewill employ the Lee-Low-Pines transformation [49] in dealingwith the
many-polaron system [49–52]. Forweak e-ph coupling, we can assume the ground state of the electron-phonon
system as GS GS VACel phñ = ñ ñ∣ ∣ ∣ , where GSelñ∣ is the ground state of the electronic part and VACphñ∣ is the
phonon vacuum state with zero real phonons [49, 50]. The above approximation is valid forweak and
intermediate e-ph coupling strength [47, 49, 50, 53, 54] and it allows us to calculate separately the electron
exchange-correlation and polaron contributions to the ground-state energy of the system, given by

E E E , 35GS GS
el

pol
tot= + ( )( ) ( )

where EGS
el( ) is the ground-state energy of the electronic part without interactionwith phonons and Epol

tot( ) is the
total polaron correction due to electron-phonon interaction.

In the next two sections, wewill calculate the contributions of the electronic exchange-correlation
interaction and electron-phonon interaction to the renormalization of the single-electron end electron-pair
energies.

4. Electron-electron interactionswith single electrons and electron pairs

It is known that in both 3D and 2D systems the exchange-correlation energy for band-gap renormalization
(BGR) is almost independent of the band characteristics. Themany-particle exchange-correlation energy
depends only on the inter-particle distance rs (determined by the particle density) in appropriate rescaled natural
units in a universalmanner [55–57]. The contribution of the electron-electron interaction to the BGR can be
obtained by calculating the average exchange-correlation energies per particle or by calculating the self-energies
of the particles involved. The kinetic energy is usually assumed to be unchanged in a renormalization process.

In this section, wewill calculate the ground-state energy EGS
el( ) of the electronic part consisting of the single

electrons and electron pairs. The correspondingHamiltonian is given by equations (24)–(29). Although the
electron pairs aremetastable, wewill treat them in the calculations as if theywere stable particles. Only the final
results including fullmany-body corrections will tell uswhether they can really be stabilized or not. In the
calculations, wewillfirst take the single-electron density ns and electron-pair density np as inputs. The single
electrons are considered as fermions and electron pairs as bosons. Therefore, we are dealingwith amany-particle
system consisting of a boson-fermionmixture [58]. The exchange-correlation energies are obtained as a
function of ns and np.We then determine their contributions to the ground-state energy and the band
renormalization.Within such a scheme, the se-ep interactionHamiltonian H t

int given in equation (29)will not
be invoked explicitly in the calculations. However, transitions between the single-electron and electron-pair
bands are permitted because of this term. Themany-particle interaction energy in such a two-component
systemof boson-fermionmixture can be obtained by [59]

E
E

d , 36ij

e ij

0

int2

ò
x

x
x=

( )
( )
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where the inter-particle interaction potential Eij
int x( ) is given by

E e
A

v q S q
1

2
. 37ij ij ij ij

q

int 2 å d= -( ) ( )[ ( ) ] ( )

The above potential depends on the ‘bare’ inter-particle potential vij(q) and static structure factor Sij(q), for i,
j=s (single electron) and p (electron pair). The static structure factor can be calculated by,

S q
n n

d q i
1

, . 38ij
i j

ij
0
òp

wc w= -
¥

( ) ( ) ( )

Within the linear response theory, the density-density response functionχij(q,ω) of this two-component plasma
is given by [60, 61],

q q q, , , 39ij ii ij ij
01 1c w c w d j= -

- -{[ ( )] } [ ( )] ( ) ( )( )

where q,ii
0c w( )( ) is the non-interacting polarizability [60–63] of the ith component andjij(q) is the static

effective interaction potential. The function q,ss
0c w( )( ) is for a non-interacting 2D electron gas given in [62]. The

function q,pp
0c w( )( ) is the polarizability of a non-interacting 2Dboson gas of electron pairs with density np. The

effective potentialjij(q) defines a localfield correction [60, 64] in terms of the ‘bare’ potential vij(q).Within the
random-phase approximation (RPA), the localfield correction on the static effective interaction is neglected and
therefore q v qij ijj =( ) ( ). The potential vij(q) has been determined in the previous section given by vss(q)=vq,
v q v f q4pp q pp=( ) ( ), and v q v q v f q2sp ps q sp= =( ) ( ) ( ).

For a non-interacting 2Dboson (i.e., electron-pair) gaswith density np, we can assume that all the electron
pairs are in the same state at the bottomof the electron-pair band at zero temperature, i.e., in the condensate
phase [61, 63]. The polarizability of the non-interacting boson gas is given by,

q i
n

,
2

, 40pp
p q p

q p

0 ,

2
,

2
c w

e

w e
= -

+
( ) ( )( )

where εq,p=q2 /2 .
The contribution of the e-e interaction to the single-electron band renormalization is given by

ΔEs=Ess+Esp and to the electron-pair band given byΔEp=(Epp+ Esp)/2. The ground-state energy of the
two-band system is given by

E E N E E N
E E

2
2

, 41s ss sp p
pp sp

GS
el

kin 0n= + + + +
+⎛

⎝⎜
⎞
⎠⎟( ) ( )( )

where Ekin is the kinetic energy of themany-electron system.We calculate these energies within the RPA.
Although the RPAoverestimates the exchange-correlation energiesΔEs andΔEp, only the difference between
them contributes to the band-gap renormalization. The errors resulting from the RPA should be partially
cancelled in the process when determining the condition of stability of the electron pairs. Therefore, we consider
the RPA a reasonable approximation for our purpose. Asmentioned above, the kinetic energyEkin will be
assumed unchanged in the renormalization. It is given by E N 2s Fkin e= , where εF is the Fermi energy of the
single-electron band in relation to its band bottom. In a two-dimensional system, the average kinetic energy of a
single electron is εF /2. The electron pairs have no kinetic energy because they are assumed to be at the bottomof
the electron-pair band in the condensate phase.

If we further assume that vsp(q)=0, the single electrons and electron pairs become independent in different
energy bands. The single-electron system is an usual one-component 2D electron gaswhich has beenwidely
investigatedwithin differentmethods and approximations [62, 65, 66]. The systemof electron pairs is new.
Although the electron pairs aremetastable states, wewill treat them as stable particles when searching for their
many-particle ground state. The static structure factor of a one-component boson systemof electron pairs
within the RPA is given by,

S q n v q1 2 . 42pp p pp q p
1

,
1
2e= + -( ) [ ( ) ] ( )( )

Consequently, we obtained themany-electron-pair exchange-correlation energy,

E r I8 , 43pp s
p1

2
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-( ) ( )( )
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p

p
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2p= -( ) , and

I dx
x

x
f q f q

4
1

8
1 . 44pp pp

0

3

3ò= + - -
¥ ⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ( ) ( )

11

J. Phys. Commun. 2 (2018) 035017 G-QHai et al



The calculations in [48] showed that fpp(q) is amonotone decreasing functionwith fpp(0)=1 and f 0pp ¥ =( ) .

If we take fpp(q)≡1 (consequently r 0á ñ = ), i.e., assuming the electron pair as an ideal bosonwith charge−2e
andmass m2 *, the above integral becomes I=I0=−1.29 . This is thewell knownRPA result for an ideal
charged 2Dboson gas [67]. Notice that the factor 8 in equation (43) is due to the units used here.

Infigure 3we show themany-particle interaction energiesEss,Esp, andEppwithin theRPA in the system
keeping the samenumber of electrons in the single-electron and electron-pair bands, i.e.,ns=2np. The energy
Esp=Eps is positive because of the se-ep repulsion. Figure 3(a) is for the 2D crystalwith 1.5l = aB andV0=15
Ry. It shows the density dependence of the interaction energies and the effects of se-ep interaction. Theblue-dash
and red-dash curves are the exchange-correlation energies Epp

1( ) and Ess
1( ), respectively,without the se-ep

interaction. In this case, the energy Epp
1( ) is obtained fromequations (43) and (44).We see that thenonzero distance

between the twoelectrons in the pair (i.e., r 0á ñ > ) affects the energyEpp. In the calculationswe found that

r2 3l l> á ñ > . If we assume r 0á ñ = for the electronpairs, weobtain E E r1.29 8pp s
p1

boson

2
3= = - ´

-( )( )

for an ideal charged boson system in2D indicated by the black-dotted curve.
We observe that the se-ep interband interaction not only introduces the energyEsp but also reduces the

energiesEpp andEss being evident in the difference between the solid and dashed curves infigure 3(a). The
density dependence of the ep-ep interaction energyEpp is different from that of the se-se interaction Ess. For
example, Epp is about 7 times larger than Ess at lower density ns=2np=0.001 aB

2- and this ratio is reduced to 3

times at higher density ns=2np=1.0 aB
2- . Infigure 3(b)we show themany-particle interaction energies for

different potentialV0.With increasingV0 for the same lattice constantλ, the average distance rá ñbetween the
two electrons in the same pair decreases and, consequently, the form factor fpp(q) increases (as shown in the
inset) and the energyEpp becomes larger.

Figure 3. (a)Themany-particle interaction energies Ess,Esp, Eps, andEpp in the 2D square-lattice potential with 1.5l = aB and
V0=15Ry keeping ns=2np. The red-dash (blue-dash) curve is for Ess (Epp)without se-ep interaction. The black-dotted curve is for
the 2D ideal charged boson gas. (b)The interaction energies in the 2D systemswith 1.5l = aB and differentV0. The form factor fpp(q)
is given in the inset.
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5. Polaron effects in the two-band systemwith single electrons and electron pairs

In this section, wewill study the polaron effects on theNt electrons in the two-band system interactingwith LO-
phonons assumingNs electrons in the single-electron band andNp electron pairs in the electron-pair band,
Ns+2Np=Nt. TheHamiltonian of the system is given in equation (23) and the electron-phonon interaction
given by equation (32). Considering a boson-fermionmixture (namely, the electron pairs and single electrons)
interactingwith the phonons, the electron-phonon interactionHamiltonian in equation (32) can be separated
into twoparts,

H H H , 45el ph e ph
single

e ph
pair= + ( )‐ ‐ ‐

with

H V a e V a e , 46
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forNs single electrons, and
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forNp electron pairs, whereV Vr 2 cosp
Q Q

Q r

2
= ( )( ) · andRj and r are the center-of-mass and relative coordinates

of the electron pair, respectively.
In the calculations of the polaron energies, wewill ignore the direct participation of the single-electron-

electron-pair interaction potential vsp(q). The potential vsp(q)has aminor effect on the e-ph interaction. Its
influence on the e-ph interaction ismostly indirect through the electronic screening and it is taken into account
in the static structure-factor.Within such an approximation—ignoring the potential vsp(q) in dealingwith the
e-ph interactions, theHamiltonian of thewhole systemdefined in equation (23) can be separated into two
subsystems. They are the one consisting of single electrons interacting with phonons and the other of electron
pairs interacting with phonons. In this way, the contribution of the electron-phonon interaction to the ground-
state energy Epol

tot in equation (35) can be calculated as

E N E N E , 48s ppol
tot

pol
single

pol
pair= + ( )( )

where Epol
single and Epol

pair are the polaron energies of the single electron and electron pair, respectively.
The subsystem composed of single electrons interactingwith LO-phonons is

H H H H , 49pol
single

single ph e ph
single= + + ( )‐

whereHsingle is given by equation (25),Hph by equation (31), and He ph
single
‐ by equation (46). The e-ph coupling

leads to a polaron consisting of an electron and a surrounding phonon cloud.When the e-ph interaction is not
too strong, the polaron correction to the ground-state energy of an electron gas can be calculatedwithin the Lee-
Low-Pines (LLP) unitary transformationmethod [49, 50]. Thismethod has been used to study polaron gases in
bulkmaterials and also in low-dimensional systems [51, 52]. It is known that the polaron energy obtained from
the LLP transformation is exact for 0a  . In the low electron density limit, the polaron energy obtained from
the LLPmethod for e-ph coupling constantα=6 is 90%of the exact value [47, 54]. Herewe are dealingwith a
polaron gas inwhich the screening reduces the electron-phonon interaction strength. Therefore, the LLP
method should yield a reasonable polaron energy forα<6.

We calculate the polaron energywithin the LLPmethod for the aboveHamiltonian in equation (49),
given by,

E
V S q

S q q m2
, 50

q

ss

ssq

Q
pol
single

,

2 2

2 2
z LO * 

å w
= -

+
∣ ∣ ( )
( )

( )

where Sss(q) is the static structure factor of the single-electron gas. In the low electron-density limit, S q 1ss =( ) .
This leads to thewell known perturbation result E 2pol

single
LO

p a w= -( ) for the polaron energy of an electron in
2D coupledwith 3D-phonons [51, 68].

Figure 4(a) shows the polaron energy as a function of the single-electron density ns in the 2D square-lattice
crystal withλ=1.5 aB coupledwith the 3DLO-phonons. The polaron energy in the low-density limit without
screening is indicated by the thin-dotted line. It is seen that the screening of the electron gas considered in the
structure factor Sss(q) in equation (50) reduces the polaron effect. At higher electron density ns=1.0 aB

2- , the
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polaron energy is only about 20%of its low-density value.When there are also electron pairs in the crystal and
the se-ep interaction is included in the structure factor Sss(q) in the screening, the calculation results show that
the se-ep interaction reduces the screening and consequently, enhances the polaron energy. The dashed curves
infigure 4(a) are obtainedwith electron-pair density np=ns/2 interactingwith single-electrons. The red, green
and blue dashed curves are forV0=12, 15, and 18Ry, respectively. The potentialV0 affects the potentials vsp and
vpp. Its influences on the polaron energy is indirectly through the structure factor Sss(q). Therefore, we obtained
almost the same value of Epol

single for differentV0.
The subsystem consisting of electron pairs and LO-phonons is given by the followingHamiltonian,

H H H H , 51pol
pair

pair ph e ph
pair= + + ( )‐

whereHpair is given by equation (26),Hph by equation (31), and He ph
pair
‐ by equation (47). Following a similar

procedure as before and applying the LLP transformation to the electron-pair-phonon interactions, we obtain
the polaron contribution to the energy of the electron pairs, given by

E
M S q

S q q m

Q

4
, 52

q

pp

ppq
pol
pair

,

pair
2 2

2 2
z LO * 

å w
= -

+

∣ ( )∣ ( )
( )

( )

where Spp(q) is the static structure factor of the electron pairs. Thematrix element is given by

M HQ R r Q R r, ; , ; 0 , 53k q kpair
2

e ph
pair 2= áY Y ñ-∣ ( )∣ ∣ ( ) ∣ ∣ ( ) ∣ ( )‐

where R r Q R r Q, ; ,k kY ñ = Y ñ ñ∣ ( ) ∣ ( ) ∣ , with R r,kY ñ∣ ( ) for the electron-pair state and Qñ∣ for the phonon state.
Using themetastable electron-pair wavefunction in equation (22), we obtain

M V f qQ 4 , 54ppQpair
2 2=∣ ( )∣ ∣ ∣ ( ) ( )

Figure 4. (a)The polaron energy as a function of the electron density ns forλ=1.5 aB. The brown-solid curve is for polarons with
screening of the single-electron gas only. The dashed curves are for polarons with screening of the coupled single-electrons and
electron pairs with np=ns/2. The red, green, and blue dashed curves are forV0=12, 15, and 18Ry, respectively. (b)The bipolaron
energy as a function of the electron-pair density np. The solid (dash) curves for screening of the electron pairs without (with)
interactionwith single electrons (ns = 2np). The horizontal dash-dotted lines are for bipolaronswithout screening. The horizontal
black-dotted line is the upper bound of the bipolaron energy.
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whereVQ is the e-ph interaction potential given by equation (33), fpp(q) is the form-factor that appears in the
pair-pair interaction potential in equation (26).

We nowobtain a Fröhlich bipolaron formed by an electron pair coupledwith LO-phonons. Figure 4(b)
shows the bipolaron energy in the crystals withλ=1.5 aB andV0=12, 15, and 18Ry. The solid curves give the
bipolaron energies for differentV0 with only screening of the electron pairs. For largerV0, the average distance
rá ñbetween the two electrons in a pair is smaller, i.e., the size of the electron pair is smaller. Therefore, the
bipolaron energy is larger. But the screening reduces significantly the bipolaron energy.We also see that, when
se-ep interaction is included in the structure factor Spp(q), the screening of the electron-pair-phonon coupling is
reduced enhancing the bipolaron energy as shown by the dashed curves for ns=2np in thefigure.

If we assume S q 1pp =( ) , we obtain the low-density limit of the bipolaron energywithout screening given by
the horizontal dotted-dash lines. This is the case of a single bipolaronwithout screening. If we further assume
fpp(q)=1, we obtain the upper bound of the bipolaron energy, E 4 2 2pol

pair
LO

p a w= - ( ) [69]. This is
equivalent to assuming the electron pair as a ‘larger single electron’with charge−2e andmass 2m* coupled to the
LO-phonons.

As amatter of fact, the effects of electron-phonon interaction and possible bipolaron formation have been
extensively studied as the electron pairingmechanism for unconventional superconductivity [47, 70–72]. In
order to form a bipolaron in the crystal, a crucial point is that the electron-phonon coupling induced attraction
has to overcome the electron-electronCoulomb repulsion [47]. This requires not only a small ratio 0 ¥ of
dielectric constants but also a large enough electron-phonon coupling constantα leading to a critical
e-ph coupling constantαc=2.9 in 2D andαc=6.8 in 3D for bipolaron formation.

However, the bipolaron formationmechanism in the present theory is distinct from the traditional
bipolaron theory in the literature. In this paper, we show a preformedmetastable electron pair due to strong
correlation of two electrons occupying the same orbital. The electron-phonon interaction dresses the electron
pairs upwith a phonon cloud forming bipolarons. Therefore, in the present context we introduce an internal
interaction due to orbital dependent electron correlation of the electron pair. The electron-phonon coupling
involves in the renormalization of the preformed electron pairs. Notice that polaron effects can bemuch larger
on the electrons in the correlated pairs than on the single electrons, and therefore the bipolaron contribution to
the stabilization of the electron pairs overcoming theCoulomb repulsion becomes essential.Wewill show in the
next section that the certain electron pairs can indeed be stabilized as bipolarons.

6. Stabilization of the electron pairs and the ground state of themany-particle system

The condition for stabilization of the electron pairs when including renormalization is that the bottomof the
electron-pair band occurs at the Fermi energy of the single-electron band. Using the same energy reference
defined in section 3, i.e., taking the bottomof the single-electron band atΓ point before the renormalization as
E=0, themany-particle interactions lower the single-electron band bottom to

E E E E , 55ss sps pol
single= + +G ( )

where Ess andEsp are determined by equation (36) and Epol
single is given by equation (50). The Fermi energy of the

single-electron band can be obtained by E EF Fs e= +G where εF is the energy difference between the Fermi
energy and the bottomof the band. It is determined by the single-electron density and the density of states of the
band.Wewill not consider themany-body effects on εF. The average kinetic energy per single electron in this
band is given by εF /2 in a two-dimensional system.

Including the band renormalization, the bottomof the electron-pair band is given by

E E E E , 56pp spp 0
1
2 pol

pairn= + + +G ( ) ( )

where Epp andEsp are given by equation (36) and Epol
pair by equation (52). Notice that the energy of an electron pair

is given by E2 p
G.

Figure 5 shows the energies for the renormalized single-electron and electron-pair bands in the 2D crystal
withλ=1.3 aB andV0=15Ry coupledwith the 3DLO-phonons. The band structure withoutmany-body
correctionswas given infigure 2(a). Themany-particle interaction energies are obtained for a constant total
electron density nt=ns+2np=0.5 aB

2- with different e-ph coupling constantα. Because the polaron energy
is given by the coupling constantα and the LO-phonon energy LOw , the ratio Ry LOw is required in the
calculations [73]. This ratio is amaterial dependent parameter and has been used in the bound-polaron and
bound-bipolaron problems [73, 74]. Its value is in the range from0.5 to 2 for differentmaterials [74, 75]. For the
present discussion, we take Ry LOw = 1.

Figure 5(a) shows forfixed total electron density nt=0.5 aB
2- and e-ph coupling constantα=4, the

dependence of the single-electron band bottom Es
G, its Fermi energyEF, and the electron-pair band bottom Ep

G
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on the electron distribution in the two bands ns and np. The total energy per electron Etot is also given in the
figure. It is the average ground-state energy per electron in the system calculated by equations (35), (41), and
(48), and is given by

E
E

N

E E

N

n

n
E

n

n
E

2
2 , 57

t t

s

t

F p

t

tot
GS GS

el
pol
tot

s p
e

= =
+

= + +G G⎜ ⎟⎛
⎝

⎞
⎠ ( )

( ) ( )

where Es
G and Ep

G are given by equations (55) and (56) respectively. It is seen that, though the total electron
density nt is a constant, the above obtained energies depend on the distribution of the electrons between the two
bands. Especially the energy of the electron-pair band Ep

G depends strongly on np. Infigure 5(a)we see that with
increasing the single-electron density ns, the single-electron band Es

G and the Fermi energy EF vary slowly.
Because nt is a constant, increasing nsmeans decreasing np. At low density np, theweak screening in the electron-
pair band enhances greatly the bipolaron energy resulting in a lowering of the bottomof the electron-pair band
Ep

G which reaches the Fermi surface.Wefind that under the considered condition, Ep
G touches the Fermi surface

at ns=0.4774 aB
2- and np=0.0113 aB

2- as indicated by the black dot. For these densities, the electron pairs (or
the bipolarons) are stabilized on the Fermi surface. Itmeans that only 4.5%of the electrons in the system form
stable electron pairs in this case. If we look at the total energyEtot, it tends to reduce the energy of the system at
the higher single-electron density side. But the electron pairs on the Fermi surface cannot decay into two single
electrons due to the Pauli exclusion principle.Moreover, breaking an electron pair needs a cost to overcome
their correlation energy. Therefore, the electron-pair density is stabilized at np=0.0113 aB

2- in the ground state
of the systemwithα=4 and nt=0.5 aB

2- . Figure 5(b) shows the electron-pair band energy Ep
G and the

Figure 5.The renormalized energies in the system of total electron density n n n2 0.5t s p= + = aB
−2 in the 2D crystal withλ=1.3 aB

andV0=15Ry coupled to phonons. (a)The bottomof single-electron band Es
G, the Fermi energy EF, the bottomof the electron-pair

band Ep
G, and the total energy per electron Etot are shown for e-ph coupling constantα=4. (b)The bottomof the electron-pair band

and the Fermi energy of the single-electron band for different values of the coupling constantα. The black dots indicate the position
where E EFp =G .
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single-electron band Fermi energyEF in the same systemwith nt=0.5 aB
2- but for different e-ph coupling

constantα.We see that forα=2 no stable electron pairs are found. The calculations indicate that for 3a ,
part of the electrons can form electron pairs on the Fermi surface at low electron-pair density. The stabilized
electron-pair densities are np=0.001, 0.011, and 0.026 aB

2- forα=3, 4 and 5, respectively.
In order to determine the electron-pair density in the ground-state of the system,we solve the following

equation

E n n E n n, , , 58s p F s pp =G( ) ( ) ( )

as a function of ns and np forfixedλ,V0 andα. Figures 6(a) and (b) show the density of stabilized electron-pairs
or bipolarons in linear and logarithmic scale, respectively, as a function of the single-electron density in the
systemwithλ=1.3 aB andV0=15Ry forα=2.8, 3.0, 3.5, 4.0, 4.5, and 5.0.We see that forα=2.8 a very low
density of electron pairs become stabilized.With increasingα, more electron pairs appear in the system. For
α=5, their densitymay reach np= 0.032 aB

2- . This corresponds to about 11%of the electrons in the system are
in the electron-pair band. The thick-red curve in thefigure is the possiblemaximum electron-pair density np

max

Figure 6.The stabilized electron-pair density np in (a) linear scale and (b) logarithmic scale as a function of the single-electron density
ns in the systemwithλ=1.3 aB andV0=15Ry for the e-ph coupling constant valuesα=2.8 to 5.0. (c)The same as (a) but for
λ=2.8 aB,V0=5Ry andα=2.2 to 5.0. The thick-red curve indicates themaximumallowed electron-pair density
n np s

max 2l= -- .
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given by equation (30). It is important to notice that the relation between np
max and ns not only restrict the

electron-pair density being less than np
max . It alsomeans that if ns is larger thanλ

−2, i.e., the single-electron band
filling ismore than half, there are no stable electron pairs in the system. For the crystal withλ=1.3 aB, the half
filling of the single-electron band occurs at ns=0.5917 aB

2- .
Infigure 6(c)we show the electron-pair density in a different 2Dpotential withλ=2.8 aB andV0=5 Ry. In

this case, the band-gap Eg
0( ) and also ν0 are small, as shown infigure 2. The half filling of the single-electron band

is at ns= 0.1276 aB
2- .Wefind that for 2a  , some electron pairs can already be stabilizedwith small density.

Forα=5, the electron-pair densitymay reach 0.02 aB
2- corresponding to 31%of the total electrons being in the

paired state.

7. Summary and outlook

The starting point of our work is that the electron-electron correlation is orbital dependent. The exchange-
correlation energy of an electron pair occupying the same orbital is larger than the average of the exchange-
correlation energy ofmany electrons. Depending upon the crystal structure and potential, such electron pairs
can form ametastable electron-pair band. Themetastable electron-pair band is obtained in two different ways.
One follows the tight-bindingmethod and the other is similar to the nearly-free electronmodel. They give
consistent results for the dispersion relation of the electron-pair states in the period potential.

Combining themetastable electron-pair band together with the corresponding single-electron band, we
constructed amany-particle system consisting of single electrons andmetastable electron pairs.When further
consideringmany-body interaction renormalization including single electrons, electron pairs, and optical
phonons, we found that themetastable electron pairs can be stabilized. The calculations show that the polaron
effects play an essential role in counterbalancing theCoulomb repulsion in the stabilization of the electron pairs.
The electron-phonon coupling is enhanced in the strongly correlated electron pairs and leads to the formation of
bipolarons. On the other hand, screening affects significantly both the polaron and bipolaron energies
manifesting a cooperative interplay of electron-electron and electron-phonon interactions. The obtained
ground state of the system consists of polarons in the single-electron band and bipolarons in the electron-pair
band sitting on the Fermi surface of the single-electron band.

The numerical calculations presented in this paper are performed for simple potentials andwith the s-orbital
in 2D square-lattice crystals. However, the physical processes and numerical calculations for electron pairing can
be extended to a quasi-2D crystal of a single atomic layer withfinite thickness or to 3D systems. In principle, it
can also be extended to study the electron pairing in p- and d-orbitals. The obtained results within the present
simplemodel predict light and small electron pairs (bipolarons) in the crystal. In the center-of-mass
coordinates, the electron pair is a Blochwavefunctionwith an effectivemass of twice a single electron. The pair is
small and local because the average separation between the two electrons is less than half of the lattice constant
and they are localized in the same unit cell when expressed in the relative coordinates. Furthermore, only a
fraction of the electrons in the system formpairs.

We have obtained amany-particle ground state with spin-singlet electron pairs in the condensate phase.We
expect that these preformed electron pairs at certain densities in coherent state will contribute to
superconductivity. Finally, wewant to comment on the possible ‘superconducting energy gap’. Fromour
calculations we naturally infer such a gap to the transition energy required to break the stabilized electron pairs
sitting on the Fermi surface. This transition is determined by theHamiltonian Hint

t in equation (29)where the
potential v qt ( )was given by equation (11) in [48]. Because the electron pairs are stabilized on the Fermi surface
in the center of the Brillouin zone at k=0, an external excitation has to overcome the internal correlation
energy of an electron pair to bring two electrons to the single-electron states above the Fermi surface at k 0 ¹ .
Theminimumenergy required (or the gap) is primarily determined by the potential v qt ( ) and thefinal
momenta k of the single-electron states. It is band structure dependent, anisotropic, and nodeless.
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