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First measurement of symmetric cumulants of hexagonal flow harmonics
in Pb-Pb collisions at
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Correlations between event-by-event fluctuations of anisotropic flow harmonics are measured in Pb-Pb
collisions at a center-of-mass energy per nucleon pair of 5.02 TeV, as recorded by the ALICE detector at the
LHC. This study presents correlations up to the hexagonal flow harmonic v6, which was measured for the first
time. The magnitudes of these higher-order correlations are found to vary as a function of collision centrality
and harmonic order. These measurements are compared to viscous hydrodynamic model calculations with EKRT
initial conditions and to the iEBE-VISHNU model with TRENTo initial conditions. The observed discrepancies
between the data and the model calculations vary depending on the harmonic combinations. Due to the sensitivity
of model parameters estimated with Bayesian analyses to these higher-order observables, the results presented in
this work provide new and independent constraints on the initial conditions and transport properties in theoretical
models used to describe the system created in heavy-ion collisions.
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I. INTRODUCTION

The study of ultrarelativistic heavy-ion collisions aims
to investigate the properties of the strongly interacting mat-
ter characterized by high-energy densities and temperatures,
known as quark-gluon plasma (QGP) [1,2]. These extreme
conditions, needed for the production of QGP, can be achieved
at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and at the Large Hadron Collider (LHC)
at CERN. Comparisons between experimental data and state-
of-the-art model calculations have shown that the produced
QGP is the most perfect fluid observed in nature so far, due to
the small value of its shear viscosity over entropy density η/s
[3,4]. In recent years, one of the main focuses in heavy-ion
collision studies has been determining the properties of the
QGP using Bayesian analyses, which are designed to con-
strain parameters of the theoretical models via a comparison
with different measured quantities [5–12].

One important probe of the QGP properties is the collective
anisotropic flow, which translates the initial-state anisotropies
in coordinate space into final-state anisotropies in the mo-
mentum distributions of produced particles [13]. Anisotropic
flow is quantified by the flow amplitudes vn and the sym-
metry plane angles ψn using a Fourier decomposition of the
azimuthal distribution f (ϕ) of the final-state particles in the
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plane transverse to the beam direction [14],

f (ϕ) = 1

2π

[
1 + 2

∞∑
n=1

vn cos[n(ϕ − ψn)]

]
. (1)

Previous analyses have demonstrated that anisotropic flow
is particularly sensitive to η/s of the QGP [15]. While only
the final-state particles can be measured experimentally, it is
possible to relate the observed flow coefficients to the initial-
state spatial eccentricities defined as [16,17]

εnein�n = −{rneinϕ}
{rn} , n � 2. (2)

In Eq. (2), the curly braces indicate an average defined by
{. . .} = ∫

rdrdϕε(r, ϕ) with (r, ϕ) being the polar coordinates
in the transverse plane, ε(r, ϕ) the initial energy density, and
�n represents the participant plane angle (see Refs. [18,19]).
It has been shown [17,20–25] that the second- and third-
order flow harmonics, v2 and v3, have linear contributions
as well as nonlinear dependencies from lower-order eccen-
tricities [20,26–28]. More details on the expressions of these
higher-order flow harmonics can be found in Refs. [29,30].

Experimental measurements [29–32] and theoretical cal-
culations [11,12] have demonstrated that observables related
to the correlations between different flow harmonics are sen-
sitive to the nonlinear response, and in turn to the properties
of the QGP [12]. Only for small eccentricities the harmonics
vn respond linearly to the eccentricities εn of the same order,
vn ∝ εn (linear response), while for large eccentricities the
anisotropies in momentum and coordinate space are interre-
lated via a matrix equation, which couples a set of anisotropic
flow harmonics {vn} on one side, with the set of eccentricities
{εn} on the other (nonlinear response). Later studies quantified
the linear and nonlinear contributions to vn and showed that
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the nonlinear part becomes dominant in more peripheral col-
lisions [29]. Recent Bayesian studies [11,12] have measured
the sensitivities to different observables used to constrain the
model parameters, and concluded that the higher-order corre-
lations are more sensitive to the medium properties than the
ones used previously.

Correlations between different flow harmonics have been
previously measured for harmonics n ranging from n = 2 to
5 [33–35]. This article extends the analysis of these corre-
lations in Pb-Pb collisions at a center-of-mass energy per
nucleon pair

√
sNN = 5.02 TeV up to the sixth order for

the first time, building upon previous studies published in
Refs. [31,33,35,36]. The inclusion of the hexagonal flow har-
monic v6 is particularly interesting because of the different
scaling of its nonlinear response with the eccentricities ε2

and ε3 in the initial state (cubic v6 ∼ ε3
2 vs quadratic v6 ∼ ε2

3,
respectively) [28].

The article is organized as follows. Section II introduces
the experimental observables. The data analysis and system-
atic uncertainty evaluation is described in Sec. III and the
results are shown in Sec. IV. Finally, the main findings are
summarized in Sec. V.

II. EXPERIMENTAL OBSERVABLES

While individual flow amplitudes and their event-by-
event fluctuations provide valuable insight into the initial
conditions, exploring correlations between different flow am-
plitudes can yield further independent constraints. Previous
studies on these correlated fluctuations have led to the devel-
opment of new observables [20,35,37,38]. For instance, the
symmetric cumulants (SC) introduced by the ALICE Col-
laboration [33,36,37,39,40] are direct multivariate cumulants
of flow amplitudes, and each higher-order SC observable
provides information that the lower-order ones cannot ac-
cess. These observables are not dependent on the symmetry
planes ψn and are robust against systematic biases resulting
from nonflow correlations (i.e., correlations typically involv-
ing only a few particles, such as those induced by particle
decays or jet fragmentation) [36]. As reported in Refs. [39,41],
SC observables satisfy all fundamental mathematical and sta-
tistical properties of cumulants for any number and choice of
flow harmonics. Moreover, they are more sensitive to the tem-
perature dependence of η/s than individual flow amplitudes
which primarily reflect the average values 〈η/s〉 [19,36]. In
addition, it was demonstrated that these observables have the
potential to disentangle contributions from initial conditions
and medium properties, making it possible to directly con-
strain different stages in the evolution of heavy-ion collisions
[19,36]. A recent state-of-the-art Bayesian analysis [12] has
quantified the sensitivity of the model parameters to all the
observables included in the Bayesian estimation. This analysis
is based on the TRENTo+iEBE-VISHNU model [42], which
will be discussed in Sec. IV. The model is characterized by
a total of 16 parameters, with key physics features embedded
in the initial conditions, the temperature-dependent specific
shear and bulk viscosity [η/s(T ) and ζ/s(T )], free-streaming
time (τfs), and switching temperature (Tswitch). This study has
also shown that the inclusion of the SC in the set of input

observables has made it possible to reduce the uncertainties
associated with the extracted medium properties.

Robust estimators for SC observables can be constructed
experimentally using standard multiparticle azimuthal cor-
relations [37,39]. In the case of two-harmonic SC, their
definition is given by [33,36,37]

SC(m, n) ≡ 〈
v2

mv2
n

〉 − 〈
v2

m

〉〈
v2

n

〉
= 〈〈cos(mϕ1+nϕ2−mϕ3 −nϕ4)〉〉

− 〈〈cos[m(ϕ1−ϕ2)]〉〉〈〈cos[n(ϕ1−ϕ2)]〉〉, (3)

with the condition m 
= n for two positive integers m and
n. The double angular brackets indicate that the averaging
is done in two separate steps. In the first step, all distinct
particle quadruplets in each event are formed and used to
obtain single-event averages 〈· · · 〉. In the second step, these
single-event averages are weighted with "number of combi-
nations" weight to obtain the final all-event averages 〈〈· · · 〉〉
(for further details, see Sec. IV C in Ref. [37]). It is crucial
to define SC in terms of flow amplitudes vn, to apply the
cumulant expansion directly on vn, and to use multiparticle
azimuthal correlations only as estimators for each term in the
resulting expression. This approach ensures the preservation
of all the mathematical and statistical properties of the cu-
mulants [39,41]. The resulting SC can be normalized by the
product 〈v2

m〉〈v2
n〉 using the following definition [36,43]:

NSC(m, n) ≡ SC(m, n)〈
v2

m

〉〈
v2

n

〉 . (4)

Normalized symmetric cumulants (NSC) allow for direct
comparison of these observables in both momentum space
(using vn) and coordinate space (using εn). This is due to the
fact that the constant of proportionality which quantifies linear
response in the relation vn ∝ εn cancels exactly only in the
NSC observables, and therefore a comparison of correlations
in the initial coordinate and final momentum space can be
performed at the same scale. An additional advantage of the
NSC observables stems from the fact that any dependence
of individual flow amplitudes on kinematic variables (e.g.,
transverse momentum pT) is suppressed, and it can be probed
directly how the nontrivial patterns of correlations of flow
harmonics change as a function of kinematic variables [33].

The sensitivity of model parameters to higher-order har-
monic NSC was quantified using the method from Ref. [12],
with results presented in Fig. 1. The sensitivity S[x j] of
an observable Ô to parameter x j is defined as |Ô(�x′) −
Ô(�x)|/δÔ(�x). This measures how much an observable changes
when a parameter is slightly changed by a constant value
δ = 0.1. Here, Ô(�x) represents the observable value at pa-
rameter point �x = (x1, . . . , xp), while �x′ denotes a point with
a small change δ in x j . The results are averaged across the
centrality range of 5–30%, where centrality is defined in
terms of percentiles of the total hadronic cross section. This
approach enables a quantitative assessment of which param-
eters most significantly impact the model’s predictions. The
analysis reveals that the model’s transport properties are not
highly sensitive to the number of charged particles or average
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FIG. 1. Sensitivity of the model parameters in Bayesian analysis
to the flow observables, shown as a color map. Light yellow shades
represent low or no sensitivity, whereas orange and red colors rep-
resent moderate or strong sensitivities to the corresponding model
parameter variation, respectively. The sensitivity analysis is based on
the TRENTo+iEBE-VISHNU model [42]. Several key parameters
are displayed, including η/s(T ), ζ/s(T ), τfs, and Tswitch. More details
can be found in Ref. [12].

transverse momentum 〈pT〉. However, the temperature-
dependent specific shear viscosity η/s(T ) is sensitive to vn

values. Notably, NSC exhibit even greater sensitivity to a
wider range of parameters. This enhanced sensitivity suggests
that NSC could be valuable to better constrain the parameters
related to the transport properties of the medium.

III. DATA ANALYSIS

A. Event and track selection

This analysis utilizes data from Pb-Pb collisions at
√

sNN =
5.02 TeV recorded by the ALICE detector in 2015 and 2018.
The ALICE detector includes several subdetectors immersed
in a 0.5 T solenoidal field. The inner tracking system (ITS)
[44,45] is used for track reconstruction. Positioned closest
to the beam vacuum tube, the ITS consists of six silicon
layers with three types of detector technologies. The two
innermost layers, silicon pixel detectors (SPD), provide high
spatial granularity which is ideal for reconstructing primary
and secondary vertices. Surrounding the ITS is the time pro-
jection chamber (TPC) [46], a gas-filled cylindrical tracking
detector that provides up to 159 reconstruction points for
charged tracks traversing its full radial extent. It is used for
reconstructing charged-particle tracks and for particle identi-
fication. The detailed descriptions of the various detectors and
their performance are given in Refs. [47,48].

Triggering and centrality determination is carried out using
two scintillator arrays, V0A and V0C [47,49]. The centrality
determined using these V0 detectors is referred to as the
V0 estimator. All three detectors (TPC, ITS, and the V0 ar-
rays) cover the full azimuth. They have pseudorapidity ranges
within |η| < 0.9 for the TPC and ITS, and 2.8 < η < 5.1 and
−3.7 < η < −1.7 for V0A and V0C, respectively.

Minimum bias (MB) events are triggered by a coincident
signal in both the V0A and V0C. Only MB Pb-Pb events
with a reconstructed primary vertex within ±8.0 cm from
the nominal interaction point along the beam direction are

selected. To remove background events such as beam-gas
collisions and pile up, information from the V0 detector and
the SPD is utilized as done in Ref. [50]. After applying all
event selection criteria, 212 million events remain within the
0–60% centrality range.

This analysis involves tracks reconstructed using combined
information from the ITS and TPC within a transverse-
momentum interval of 0.2 < pT < 5.0 GeV/c and a pseu-
dorapidity range of |η| < 0.8. To avoid contributions from
secondary particles, only tracks with a specified distance of
closest approach (DCA) to the primary vertex are accepted.
Furthermore, the reconstructed tracks are required to have a
minimum of 70 TPC space points and a minimum of 2 hits in
the ITS. All kink topology tracks are rejected. The selection
criteria employed in this analysis align closely with those
outlined in Refs. [32,51]. After these track selections, an extra
criterion is enforced to discard any remaining events with
fewer than 10 reconstructed tracks, as this is the smallest num-
ber of tracks necessary for calculating all relevant SC(m, n)
observables, as done in Ref. [32].

Corrections for the nonuniform reconstruction efficiency
(NUE) and the nonuniform acceptance (NUA) are applied
as a function of transverse momentum and as a function
of azimuthal angle, respectively, following previous studies
[29,37,40]. The NUA correction is data driven, while the NUE
correction factor is calculated with a Monte Carlo simulation
using the HIJING [52] event generator and GEANT3 [53]
transport software, accounting for the track reconstruction
efficiency and contamination from secondary particles.

In order to suppress the nonflow contribution resulting
from the two-particle correlations in the denominator of the
NSC in Eq. (4), a pseudorapidity gap of |�η| > 1.0 is used.
For the two two-particle correlations which appear in the
definition of SC(m, n) in Eq. (3), the pseudorapidity gap is not
needed, since nonflow is suppressed by construction of this
observable. This was demonstrated by HIJING model [52]
simulations and the like-sign technique in Ref. [36].

B. Systematic uncertainties

The systematic uncertainties are estimated by varying the
event and track-selection criteria with respect to the default
selections, previously summarized, taking into account the
correlations between their statistical uncertainties as done in
Ref. [32]. Each selection criterion variation is described be-
low.

The effect of the centrality determination is estimated by
changing the default V0 estimator to the SPD. The selection
on the longitudinal position of the primary vertex is varied
from ±8 cm to ±7 and ±9 cm. About 20% of the data col-
lected in 2015 and over 25% of the data collected in 2018
were affected by out-of-bunch pile-up collisions. The effects
of pile-up collisions are studied using correlations between
the number of tracks measured in the TPC and the number
of tracks reconstructed with the ITS to reduce contamination
from events occurring in different bunch crossings [54]. The
impact of the two configurations of the magnetic-field polarity
in the solenoid magnet of ALICE is investigated by perform-
ing the analysis on the data sets taken for each orientation
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FIG. 2. The centrality dependence of the NSC observables. The previously published lower-order harmonics [31] are marked with asterisk
(*). The statistical and total systematic uncertainties are shown with vertical lines and boxes, respectively.

separately. To test the track-quality selections, the minimum
number of space points in the TPC required for the track
reconstruction is changed from 70 to 80 and 65. The χ2 value
per space point from the track fit is reduced from 2.5 to 2.3.
Finally, the DCA of the extrapolated track to the primary
vertex position is tightened from 2 cm to 1 cm along the
beam direction, while in the transverse plane a transverse-
momentum-dependent DCA selection was applied to account
for the pT dependence of the DCA resolution (using the ex-
pression 0.0208 + 0.04/p1.1

T cm, with pT expressed in units
of GeV/c).

The significance of the difference for each variation is
determined using the Barlow test [55]. If the statistical sig-
nificance of the performed systematic variation is found to
be greater than a certain value, that systematic variation is
classified as a statistically relevant deviation, and is added
to the evaluation of total systematic uncertainty. A Barlow
criterion of 2.0 is applied for all observables except NSC(6,2)
and NSC(6,3). For NSC(6,2), a relaxed criterion of 1.0 is used
to assign the systematic uncertainty. In the case of NSC(6,3),
due to large statistical uncertainties, the Barlow test is not
applied. Instead, all trials contribute to the systematic uncer-
tainty, except for the variation in magnetic-field polarity due
to large statistical uncertainties of a given dataset with differ-
ent polarity. It is important to note that the 2015 and 2018
datasets were collected under slightly different detector con-
ditions [54], which particularly affected the 0–5% and 5–10%
centrality percentiles, where track multiplicity is the highest.
Therefore, the two data sets were analyzed separately, and the
observed differences were assigned as an additional source
of systematic uncertainty, which is the dominant source of
systematics for 0–10% centrality percentiles. The variations
from each systematic source are added in quadrature to obtain
the total systematic uncertainties.

IV. RESULTS

The results of the higher-order harmonic normalized sym-
metric cumulants are shown in Fig. 2 together with the

lower-order NSC from Ref. [31] marked with an asterisk (*).
The new measurements include the fifth and sixth harmonic
amplitudes. All observables are positive except for NSC(3,2)
and for NSC(4,3), in noncentral collisions. In general, the sign
of two-harmonic (N)SC observables has a nontrivial physics
interpretation, and can be understood as follows. A positive
(N)SC indicates that measuring vm larger than 〈vm〉 in an
event will increase the probability of measuring vn larger than
〈vn〉 in that event, i.e., event-by-event fluctuations of vm and
vn are correlated. On the other hand, a negative sign can
be interpreted as anticorrelation between the event-by-event
fluctuations of vm and vn amplitudes, meaning that measuring
vm larger than 〈vm〉 will decrease the probability of measuring
vn larger than 〈vn〉 in the same event [36]. The physical inter-
pretation of the sign of higher-order SC observables involving
more than two harmonics is more challenging, and can be
found in Ref. [40].

In Fig. 2, a strong centrality dependence is observed for
NSC(5,3), along with a possible hint for a slightly decreas-
ing trend for NSC(6,3) toward peripheral collisions, while
no significant centrality dependence is seen for NSC(5,2),
NSC(5,4), and NSC(6,2). The different trends of the different
NSC observables from most central to semicentral collisions
are expected due to the fact that the physical origin of the
flow fluctuations is different in these two regimes. While the
main driving force in the most central collisions are fluc-
tuations of participating nucleons, in semicentral collisions
fluctuations are of geometric origin due to the leading-order
ellipsoidal shape. The centrality dependence of NSC(6,2) and
NSC(6,3) is qualitatively different, despite large uncertain-
ties for NSC(6,3). This difference is not surprising given
the distinct scaling of the nonlinear response contribution
in these two cases (v6 ∼ v3

2 and v6 ∼ v2
3 , respectively) [28].

Such different centrality dependence demonstrates that for
different combinations of flow harmonics, NSC observables
extract new and independent information about heavy-ion
collisions.

A systematic comparison of the centrality dependence of
the NSC(m, n) to initial- and final-state models has been
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FIG. 3. The centrality dependence of NSC(m, n) in Pb-Pb collisions at
√

sNN = 5.02 TeV. Results for each observable are compared with
the final-state predictions from the event-by-event EKRT + viscous hydrodynamic calculations [19] and TRENTo+iEBE-VISHNU MAP
(2022), as well as with the initial-state calculations from EKRT and TRENTo. Panels (a) to (c) present data from Ref. [31]. The statistical and
total systematic uncertainties of the data are shown with vertical lines and boxes, respectively. The model results are shown as colored bands
with the width of the band denoting the statistical uncertainties.

performed and it is shown in Fig. 3. For the comparison
to the EKRT and TRENTo initial-state models, the observ-
able is calculated using the initial-state eccentricities. The
data are also compared with the EKRT + viscous hydrody-
namics model [19] and the TRENTo+iEBE-VISHNU model
[42].

In the event-by-event EKRT + viscous hydrodynamic cal-
culations, the initial energy-density profiles are calculated
using a next-to-leading order perturbative quantum chro-
modynamics approach implemented with gluon-saturation
model [56,57]. The subsequent space-time evolution is de-
scribed by relativistic dissipative fluid dynamics with different
parametrizations for the temperature dependence of the shear
viscosity to entropy density ratio η/s(T ). This model gives a
good description of the charged-hadron multiplicity and the

low-pT region of the charged-hadron spectra at RHIC and the
LHC (see Figs. 11–13 in Ref. [19]). Each η/s(T ) parametriza-
tion is tuned to reproduce the measured v2 from central to
semiperipheral collisions (see Fig. 10 in Ref. [58]), while
keeping the average 〈η/s(T )〉 the same for all parametriza-
tions.

The TRENTo+iEBE-VISHNU model uses TRENTo [42]
to simulate the initial conditions, which are then connected
with a free-streaming phase transitioning into a 2+1
dimensional causal hydrodynamic model known as VISH2+1
[59]. The hydrodynamic evolution within VISH2+1 accounts
for the expansion and cooling of the QGP, leading up to
hadronization. After hadronization, the evolution continues
using a hadronic cascade model (UrQMD) [60,61], which
simulates the interactions and decays of the produced hadrons,
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ensuring a realistic description of the final-state particles.
The model calculation uses the best-fit parametrization for
transport coefficients selected based on maximum a posteriori
(MAP) for Pb-Pb collisions at

√
sNN = 5.02 TeV. The MAP

values are based on Ref. [12] and labeled MAP(2022) in
Fig. 3.

Figure 3 presents all the measured NSC’s, where panels
(a) to (c) show the data from Ref. [31]. A good agreement
between the final-state models, the EKRT + viscous hy-
drodynamics model [58] and TRENTo+iEBE-VISHNU, and
data can be seen for NSC(3,2), NSC(4,3), NSC(5,2), and
NSC(5,4). The comparison between initial and final states in
the models reveals that, with the exceptions of NSC(3,2) and
NSC(5,4), all other observables demonstrate a pronounced
nonlinear hydrodynamic response. This response significantly
outweighs the influence of initial-state eccentricities. Most
observables show an increasing correlation in peripheral
collisions, with two exceptions: NSC(6,3) and NSC(5,4).
NSC(5,4) demonstrates minimal centrality dependence within
the uncertainties. NSC(6,3), however, exhibits a distinct cen-
trality dependence. This suggests a negative contribution from
NSC(3,2) coupled with an increasing correlation towards pe-
ripheral collisions, which results in a decreasing trend in
peripheral collisions. In summary, the discrepancies between
experimental data and model calculations vary across differ-
ent harmonic combinations. The two models for the initial
state, EKRT and TRENTo, show distinct initial-state corre-
lations for most observables. Additionally, the hydrodynamic
response to these initial states differs between the models,
leading to distinct predictions for the final-state observables.
These variations offer valuable opportunities to constrain both
initial conditions and final-state effects in heavy-ion collision
models.

V. SUMMARY

In conclusion, the first measurements of higher-order
harmonic NSC(6,2) and NSC(6,3) in Pb-Pb collisions at√

sNN = 5.02 TeV are reported. These observables are crucial
for further constraining theoretical models, as they provide
new and independent information on the evolution of a
heavy-ion collision. It was also demonstrated that the model
parametrization in Bayesian analysis is sensitive to higher-
order harmonic NSC(m, n) and can therefore be used to
decrease the uncertainty on the transport properties of the
QGP. These newly measured observables and the lower-order
harmonic NSC(m, n) are compared with hydrodynamic cal-
culations, where, generally, the agreement with data is worse
for higher-order NSC(m, n). It is also observed that both
NSC(6,2) and NSC(6,3) are positive, and that NSC(6,3) is
the only observable with hint of a decreasing correlation
with increasing centrality. Discrepancies between data and
model calculations vary across harmonic combinations. The
EKRT and iEBE-VISHNU with TRENTo models show dis-
tinct initial-state correlations and hydrodynamic responses.
These variations help constrain initial conditions and final-
state effects in heavy-ion collision models. Moreover, the
sensitivity of Bayesian model parametrization to these higher-
order observables offers new constraints on initial conditions

and transport properties in theoretical models of heavy-ion
collisions.
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C. Pinto ,94 S. Pisano ,49 M. Płoskoń ,73 M. Planinic ,88 D. K. Plociennik ,2 M. G. Poghosyan ,86 B. Polichtchouk ,139

S. Politano ,29 N. Poljak ,88 A. Pop ,45 S. Porteboeuf-Houssais ,125 V. Pozdniakov ,140,§ I. Y. Pozos ,44

K. K. Pradhan ,48 S. K. Prasad ,4 S. Prasad ,48 R. Preghenella ,51 F. Prino ,56 C. A. Pruneau ,135 I. Pshenichnov ,139

M. Puccio ,32 S. Pucillo ,24 S. Qiu ,83 L. Quaglia ,24 A. M. K. Radhakrishnan,48 S. Ragoni ,14 A. Rai ,136

024905-10

https://orcid.org/0000-0002-1469-9022
https://orcid.org/0000-0001-8372-5135
https://orcid.org/0000-0001-9960-2594
https://orcid.org/0000-0001-9785-2215
https://orcid.org/0000-0003-0626-9724
https://orcid.org/0000-0001-5990-482X
https://orcid.org/0000-0002-3809-4984
https://orcid.org/0009-0004-1430-9620
https://orcid.org/0009-0003-0647-8128
https://orcid.org/0000-0002-6769-599X
https://orcid.org/0000-0001-6178-648X
https://orcid.org/0000-0001-7474-0755
https://orcid.org/0009-0008-7071-0418
https://orcid.org/0000-0001-5805-6363
https://orcid.org/0000-0002-2420-7650
https://orcid.org/0000-0002-9336-5169
https://orcid.org/0000-0001-9231-8515
https://orcid.org/0009-0008-2630-1473
https://orcid.org/0000-0003-3808-7917
https://orcid.org/0009-0008-6551-4180
https://orcid.org/0000-0002-8305-3807
https://orcid.org/0000-0003-4518-3528
https://orcid.org/0009-0008-4642-7807
https://orcid.org/0000-0001-7978-9638
https://orcid.org/0000-0002-8535-3061
https://orcid.org/0009-0004-3528-4709
https://orcid.org/0009-0004-8067-2807
https://orcid.org/0000-0002-6529-560X
https://orcid.org/0000-0002-7638-2047
https://orcid.org/0000-0001-9593-6730
https://orcid.org/0000-0002-4743-2885
https://orcid.org/0000-0002-7404-8723
https://orcid.org/0000-0002-9335-9076
https://orcid.org/0009-0001-3006-7332
https://orcid.org/0000-0003-4004-5265
https://orcid.org/0000-0003-4692-7410
https://orcid.org/0009-0002-2276-3757
https://orcid.org/0009-0004-3122-4872
https://orcid.org/0009-0009-1031-8307
https://orcid.org/0000-0002-6527-1245
https://orcid.org/0000-0003-4562-2922
https://orcid.org/0009-0002-6657-5969
https://orcid.org/0000-0001-7272-8226
https://orcid.org/0000-0002-3850-8884
https://orcid.org/0000-0003-4016-3982
https://orcid.org/0000-0001-9001-4198
https://orcid.org/0009-0003-2644-3643
https://orcid.org/0000-0003-1477-8414
https://orcid.org/0000-0001-9352-5049
https://orcid.org/0000-0003-1008-5119
https://orcid.org/0009-0008-7787-9304
https://orcid.org/0000-0002-1488-4009
https://orcid.org/0000-0001-9904-1846
https://orcid.org/0000-0003-3895-9092
https://orcid.org/0000-0003-2478-9651
https://orcid.org/0000-0001-9059-2414
https://orcid.org/0000-0002-2134-967X
https://orcid.org/0000-0002-7934-4038
https://orcid.org/0000-0001-9047-4856
https://orcid.org/0000-0002-5904-9648
https://orcid.org/0000-0001-7461-7327
https://orcid.org/0009-0002-2983-9494
https://orcid.org/0000-0001-6533-4085
https://orcid.org/0000-0003-2406-911X
https://orcid.org/0000-0003-2889-2234
https://orcid.org/0000-0002-3066-855X
https://orcid.org/0000-0001-9980-5199
https://orcid.org/0000-0003-3958-9062
https://orcid.org/0000-0003-1969-6960
https://orcid.org/0000-0001-9334-3798
https://orcid.org/0000-0001-9087-4665
https://orcid.org/0000-0003-1317-1733
https://orcid.org/0009-0004-2421-5409
https://orcid.org/0009-0008-1482-2394
https://orcid.org/0000-0002-7685-0808
https://orcid.org/0000-0002-1605-5837
https://orcid.org/0009-0005-1821-6963
https://orcid.org/0000-0002-9492-3775
https://orcid.org/0000-0001-6811-5240
https://orcid.org/0009-0004-0872-2785
https://orcid.org/0009-0002-4730-9489
https://orcid.org/0009-0009-3972-0631
https://orcid.org/0000-0002-0559-6697
https://orcid.org/0000-0001-6907-0486
https://orcid.org/0000-0001-6297-2532
https://orcid.org/0000-0002-1726-5684
https://orcid.org/0000-0002-5629-5181
https://orcid.org/0000-0002-9355-6379
https://orcid.org/0000-0002-6603-6693
https://orcid.org/0000-0001-7602-1121
https://orcid.org/0000-0003-1831-7957
https://orcid.org/0009-0003-1055-0356
https://orcid.org/0000-0002-3493-3891
https://orcid.org/0009-0003-0670-7357
https://orcid.org/0000-0003-4132-2906
https://orcid.org/0000-0001-6189-3242
https://orcid.org/0000-0003-3075-2871
https://orcid.org/0000-0002-5741-7144
https://orcid.org/0000-0001-6653-6164
https://orcid.org/0000-0002-2724-668X
https://orcid.org/0000-0003-0996-8547
https://orcid.org/0009-0006-2998-3428
https://orcid.org/0009-0009-9098-9839
https://orcid.org/0000-0002-7504-2809
https://orcid.org/0000-0002-6434-7084
https://orcid.org/0000-0002-4816-283X
https://orcid.org/0009-0005-1297-1757
https://orcid.org/0000-0003-1433-6018
https://orcid.org/0009-0000-0438-5567
https://orcid.org/0000-0001-9676-3309
https://orcid.org/0000-0003-0078-8398
https://orcid.org/0000-0002-0906-062X
https://orcid.org/0000-0002-2102-7398
https://orcid.org/0000-0003-4558-7856
https://orcid.org/0009-0004-3408-5783
https://orcid.org/0009-0003-8978-9852
https://orcid.org/0000-0002-4808-419X
https://orcid.org/0000-0002-8354-7786
https://orcid.org/0000-0001-8322-9510
https://orcid.org/0000-0002-5592-0758
https://orcid.org/0000-0002-1301-1636
https://orcid.org/0000-0003-2841-6553
https://orcid.org/0000-0002-7285-3411
https://orcid.org/0009-0003-0133-319X
https://orcid.org/0000-0003-4116-7002
https://orcid.org/0000-0002-6497-3974
https://orcid.org/0000-0001-7296-5248
https://orcid.org/0000-0001-6203-9160
https://orcid.org/0009-0001-5996-0685
https://orcid.org/0000-0002-8831-4009
https://orcid.org/0000-0003-4824-2458
https://orcid.org/0000-0001-8738-7268
https://orcid.org/0000-0002-3652-6683
https://orcid.org/0009-0006-8921-5973
https://orcid.org/0000-0001-6810-6897
https://orcid.org/0009-0000-3393-6110
https://orcid.org/0000-0003-3576-4185
https://orcid.org/0009-0002-6015-6288
https://orcid.org/0000-0001-6012-6615
https://orcid.org/0000-0002-7568-7498
https://orcid.org/0000-0002-0669-7799
https://orcid.org/0000-0001-6441-9300
https://orcid.org/0000-0002-1381-3436
https://orcid.org/0000-0002-4824-8537
https://orcid.org/0000-0001-5091-4159
https://orcid.org/0000-0001-6593-4574
https://orcid.org/0000-0002-5569-1254
https://orcid.org/0000-0003-1758-6776
https://orcid.org/0000-0001-7174-6617
https://orcid.org/0000-0002-1706-4428
https://orcid.org/0000-0002-2197-4109
https://orcid.org/0000-0002-3567-5177
https://orcid.org/0000-0002-7998-5046
https://orcid.org/0000-0002-6987-2048
https://orcid.org/0000-0002-2746-9840
https://orcid.org/0000-0003-3049-9976
https://orcid.org/0000-0003-3150-2831
https://orcid.org/0000-0002-0613-5278
https://orcid.org/0000-0002-1851-4136
https://orcid.org/0000-0003-4528-6578
https://orcid.org/0000-0001-9289-2840
https://orcid.org/0009-0008-2898-3455
https://orcid.org/0009-0003-1411-5116
https://orcid.org/0000-0002-8958-4190
https://orcid.org/0009-0001-4180-0413
https://orcid.org/0000-0002-5267-0140
https://orcid.org/0000-0002-7291-8166
https://orcid.org/0009-0006-1840-462X
https://orcid.org/0000-0003-3185-0879
https://orcid.org/0000-0001-9471-1804
https://orcid.org/0000-0002-5489-3751
https://orcid.org/0009-0006-8424-015X
https://orcid.org/0000-0002-7017-4183
https://orcid.org/0000-0002-8384-0384
https://orcid.org/0000-0001-5955-0769
https://orcid.org/0009-0009-2096-752X
https://orcid.org/0009-0006-1392-7114
https://orcid.org/0009-0007-5832-8630
https://orcid.org/0009-0001-3545-3275
https://orcid.org/0000-0002-1259-979X
https://orcid.org/0000-0002-7919-2150
https://orcid.org/0000-0002-7480-7558
https://orcid.org/0009-0006-9345-9620
https://orcid.org/0000-0003-1752-2078
https://orcid.org/0000-0002-0425-9138
https://orcid.org/0000-0002-9188-9428
https://orcid.org/0009-0006-0273-5360
https://orcid.org/0000-0002-1904-296X
https://orcid.org/0009-0005-9299-3971
https://orcid.org/0000-0001-6335-7427
https://orcid.org/0009-0006-7301-988X
https://orcid.org/0000-0003-0062-0536
https://orcid.org/0009-0000-9832-7586
https://orcid.org/0009-0006-6383-6069
https://orcid.org/0000-0002-8397-7620
https://orcid.org/0000-0001-9674-196X
https://orcid.org/0000-0002-9063-1599
https://orcid.org/0000-0001-8635-8465
https://orcid.org/0000-0002-4447-4836
https://orcid.org/0000-0002-2817-8156
https://orcid.org/0000-0001-8159-8603
https://orcid.org/0000-0002-2850-4222
https://orcid.org/0000-0002-7002-0061
https://orcid.org/0000-0002-9684-5571
https://orcid.org/0009-0008-7139-3194
https://orcid.org/0009-0006-1802-5857
https://orcid.org/0000-0002-9901-2014
https://orcid.org/0000-0002-0233-9900
https://orcid.org/0009-0002-2291-691X
https://orcid.org/0000-0002-4831-2367
https://orcid.org/0009-0005-2034-0410
https://orcid.org/0000-0002-1622-3116
https://orcid.org/0009-0001-9974-0169
https://orcid.org/0000-0001-5455-9502
https://orcid.org/0000-0001-5682-0903
https://orcid.org/0000-0003-0311-9552
https://orcid.org/0000-0002-4256-052X
https://orcid.org/0000-0003-2706-1025
https://orcid.org/0000-0003-4486-4807
https://orcid.org/0000-0002-4515-5941
https://orcid.org/0009-0008-3417-4603
https://orcid.org/0000-0002-4772-3615
https://orcid.org/0009-0008-5115-943X
https://orcid.org/0000-0003-4644-1058
https://orcid.org/0000-0002-3102-1504
https://orcid.org/0000-0002-0786-8545
https://orcid.org/0000-0001-8494-628X
https://orcid.org/0000-0003-1965-7953
https://orcid.org/0000-0003-2146-0391
https://orcid.org/0000-0002-9069-0353
https://orcid.org/0000-0001-9675-4322
https://orcid.org/0000-0003-0288-202X
https://orcid.org/0000-0002-8503-3009
https://orcid.org/0000-0002-8657-6742
https://orcid.org/0009-0006-9081-931X
https://orcid.org/0000-0002-2064-6517
https://orcid.org/0000-0003-1880-5467
https://orcid.org/0000-0002-2699-1522
https://orcid.org/0000-0002-5475-5092
https://orcid.org/0000-0002-7160-5272
https://orcid.org/0000-0003-3711-8902
https://orcid.org/0000-0001-8255-3474
https://orcid.org/0000-0002-4524-563X
https://orcid.org/0000-0003-2613-2901
https://orcid.org/0000-0002-1415-4559
https://orcid.org/0000-0002-4165-505X
https://orcid.org/0000-0001-7970-2651
https://orcid.org/0000-0002-4856-8055
https://orcid.org/0009-0002-4871-6334
https://orcid.org/0000-0003-4389-7711
https://orcid.org/0009-0003-3911-1744
https://orcid.org/0009-0005-3106-8571
https://orcid.org/0000-0002-1430-6655
https://orcid.org/0009-0004-2669-5696
https://orcid.org/0000-0002-6726-6407
https://orcid.org/0000-0003-4002-1888
https://orcid.org/0000-0002-8627-9721
https://orcid.org/0000-0003-3056-8353
https://orcid.org/0000-0001-9610-2914
https://orcid.org/0000-0002-4767-1464
https://orcid.org/0000-0003-2845-8702
https://orcid.org/0000-0002-1518-1460
https://orcid.org/0000-0003-2569-2704
https://orcid.org/0000-0002-3265-9614
https://orcid.org/0000-0003-3941-7607
https://orcid.org/0000-0001-7286-4543
https://orcid.org/0000-0002-3276-0464
https://orcid.org/0000-0003-1281-8291
https://orcid.org/0000-0002-5624-6486
https://orcid.org/0000-0003-2378-9553
https://orcid.org/0000-0002-1074-5116
https://orcid.org/0000-0003-3695-3180
https://orcid.org/0000-0002-8334-6933
https://orcid.org/0000-0001-6548-6775
https://orcid.org/0000-0001-8814-2254
https://orcid.org/0000-0002-5729-4535
https://orcid.org/0000-0001-8506-2275
https://orcid.org/0000-0002-0172-6976
https://orcid.org/0000-0002-2926-0063
https://orcid.org/0009-0007-3988-5095
https://orcid.org/0000-0002-6039-190X
https://orcid.org/0000-0003-2080-9010
https://orcid.org/0000-0001-8927-2798
https://orcid.org/0009-0005-1524-5654
https://orcid.org/0000-0002-8768-6468
https://orcid.org/0000-0003-3795-8872
https://orcid.org/0000-0003-1059-8731
https://orcid.org/0000-0001-6412-7981
https://orcid.org/0009-0000-7829-4748
https://orcid.org/0000-0002-7839-2951
https://orcid.org/0000-0002-0091-1934
https://orcid.org/0000-0002-9394-1066
https://orcid.org/0000-0003-1242-4866
https://orcid.org/0000-0002-4826-6516
https://orcid.org/0000-0002-6704-0256
https://orcid.org/0000-0001-6104-1752
https://orcid.org/0009-0002-1220-1443
https://orcid.org/0000-0002-3783-5760
https://orcid.org/0000-0002-9609-566X
https://orcid.org/0000-0002-7877-2006
https://orcid.org/0009-0005-4425-586X
https://orcid.org/0000-0001-6126-1667
https://orcid.org/0000-0002-4214-5844
https://orcid.org/0000-0002-7162-5345
https://orcid.org/0000-0003-2966-4903
https://orcid.org/0000-0002-8848-1800
https://orcid.org/0000-0001-6194-4601
https://orcid.org/0000-0002-4788-7943
https://orcid.org/0000-0002-5471-6595
https://orcid.org/0000-0002-8576-1268
https://orcid.org/0009-0007-8144-2829
https://orcid.org/0000-0003-0333-448X
https://orcid.org/0000-0003-2513-2459
https://orcid.org/0009-0008-0106-3130
https://orcid.org/0000-0002-5686-6626
https://orcid.org/0000-0002-0343-2082
https://orcid.org/0009-0004-0330-3258
https://orcid.org/0009-0004-9648-4894
https://orcid.org/0000-0003-1180-3469
https://orcid.org/0000-0002-2540-2394
https://orcid.org/0009-0007-0944-2963
https://orcid.org/0000-0002-5166-5788
https://orcid.org/0000-0002-7923-3960
https://orcid.org/0000-0002-1461-3743
https://orcid.org/0000-0002-5078-3336
https://orcid.org/0000-0002-7116-899X
https://orcid.org/0000-0003-0759-2283
https://orcid.org/0009-0009-0033-8291
https://orcid.org/0000-0003-2868-2819
https://orcid.org/0000-0003-3709-5130
https://orcid.org/0000-0001-8817-5013
https://orcid.org/0009-0001-4054-2336
https://orcid.org/0000-0002-2291-6955
https://orcid.org/0000-0003-4903-9865
https://orcid.org/0009-0004-8574-2392
https://orcid.org/0000-0002-9067-0803
https://orcid.org/0000-0001-8923-4003
https://orcid.org/0000-0001-7454-4324
https://orcid.org/0000-0003-4080-6562
https://orcid.org/0000-0003-3161-9183
https://orcid.org/0000-0001-6760-2514
https://orcid.org/0009-0005-4161-7386
https://orcid.org/0000-0002-1832-595X
https://orcid.org/0009-0002-4224-5527
https://orcid.org/0000-0003-0414-5525
https://orcid.org/0000-0002-4512-9620
https://orcid.org/0000-0003-0425-5724
https://orcid.org/0000-0002-2646-6189
https://orcid.org/0000-0002-3362-7411
https://orcid.org/0009-0006-2531-9642
https://orcid.org/0000-0002-3224-7089
https://orcid.org/0000-0002-7394-8834
https://orcid.org/0000-0003-0607-2841
https://orcid.org/0000-0002-1539-9275
https://orcid.org/0000-0002-6179-150X
https://orcid.org/0000-0002-0458-538X
https://orcid.org/0000-0003-1752-4524
https://orcid.org/0000-0002-8118-9049
https://orcid.org/0009-0001-8066-416X
https://orcid.org/0000-0003-1401-5900
https://orcid.org/0000-0002-0793-8275
https://orcid.org/0000-0001-9765-5668
https://orcid.org/0009-0006-9583-114X


FIRST MEASUREMENT OF SYMMETRIC CUMULANTS … PHYSICAL REVIEW C 112, 024905 (2025)

A. Rakotozafindrabe ,128 L. Ramello ,131,56 C. O. Ramirez-Alvarez ,44 M. Rasa ,26 S. S. Räsänen ,43 R. Rath ,51

M. P. Rauch ,20 I. Ravasenga ,32 K. F. Read ,120,86 C. Reckziegel ,111 A. R. Redelbach ,38 K. Redlich ,78,¶

C. A. Reetz ,96 H. D. Regules-Medel,44 A. Rehman,20 F. Reidt ,32 H. A. Reme-Ness ,37 K. Reygers ,93 A. Riabov ,139

V. Riabov ,139 R. Ricci ,28 M. Richter ,20 A. A. Riedel ,94 W. Riegler ,32 A. G. Riffero ,24 M. Rignanese ,27

C. Ripoli ,28 C. Ristea ,63 M. V. Rodriguez ,32 M. Rodríguez Cahuantzi ,44 S.A. Rodríguez Ramírez ,44 K. Røed ,19

R. Rogalev ,139 E. Rogochaya ,140 T. S. Rogoschinski ,64 D. Rohr ,32 D. Röhrich ,20 S. Rojas Torres ,34

P. S. Rokita ,134 G. Romanenko ,25 F. Ronchetti ,32 D. Rosales Herrera ,44 E. D. Rosas,65 K. Roslon ,134 A. Rossi ,54

A. Roy ,48 S. Roy ,47 N. Rubini ,51 J. A. Rudolph,83 D. Ruggiano ,134 R. Rui ,23 P. G. Russek ,2 R. Russo ,83

A. Rustamov ,80 E. Ryabinkin ,139 Y. Ryabov ,139 A. Rybicki ,106 L. C. V. Ryder ,116 J. Ryu ,16 W. Rzesa ,134

B. Sabiu ,51 S. Sadovsky ,139 J. Saetre ,20 S. Saha ,79 B. Sahoo ,48 R. Sahoo ,48 D. Sahu ,48 P. K. Sahu ,61

J. Saini ,133 K. Sajdakova,36 S. Sakai ,123 M. P. Salvan ,96 S. Sambyal ,90 D. Samitz ,101 I. Sanna ,32,94

T. B. Saramela,109 D. Sarkar ,82 P. Sarma ,41 V. Sarritzu ,22 V. M. Sarti ,94 M. H. P. Sas ,32 S. Sawan ,79

E. Scapparone ,51 J. Schambach ,86 H. S. Scheid ,32,64 C. Schiaua ,45 R. Schicker ,93 F. Schlepper ,32,93 A. Schmah,96

C. Schmidt ,96 M. O. Schmidt ,32 M. Schmidt,92 N. V. Schmidt ,86 A. R. Schmier ,120 J. Schoengarth ,64 R. Schotter ,101

A. Schröter ,38 J. Schukraft ,32 K. Schweda ,96 G. Scioli ,25 E. Scomparin ,56 J. E. Seger ,14 Y. Sekiguchi,122

D. Sekihata ,122 M. Selina ,83 I. Selyuzhenkov ,96 S. Senyukov ,127 J. J. Seo ,93 D. Serebryakov ,139 L. Serkin ,65,**
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