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We present a detailed study of the partial decay widths of a spin-parity resonance JP ¼ 3=2− N� with a
mass of ≃2070 MeV obtained from the coupled channel s-wave vector-baryon ρN, ωN, ϕN, K�Λ, and
K�Σ dynamics. This state, which couples strongly to the K�Σ channel, corresponds to a nucleon with a
hidden strange quark content, in analogy to the Pc states discovered by the LHCb Collaboration, and we
denote it as Psð2080Þ. A state with such a nature can decay to vector-baryon, pseudoscalar-baryon, and
pseudoscalar-baryon resonance channels, involving triangular loops in the latter two cases. As we will
show, the partial decay widths to pseudoscalar-baryon resonance channels, like πN�ð1535Þ, πN�ð1650Þ,
KΛð1405Þ, are comparable to those related to ground state baryons in the final state, like πN, ηN, KΛ. In
this way, reactions involving such lighter baryon resonances in the final state can be used as an alternative
source of information on the properties of an N� with hidden strangeness.
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I. INTRODUCTION

The discovery of the Pc pentaquarks by the LHCb
Collaboration [1–3] has undoubtedly proven the existence
of exotic baryons whose properties cannot be understood in
terms of three quarks. Their nature and quantum numbers,
however, are still unclear, and different spin-parity assign-
ments and inner structures, like pentaquarks or meson-
baryon molecular type of hadrons, have been proposed for
describing the Pc states [4–15].
The Pc states, being observed in the J=ψ-p invariant

mass distribution of the process Λ0
b → J=ψpK−, corre-

spond to nucleon resonances with hidden charm and one
could wonder if there may exist in Nature their hidden
strange partners. If the Pc states would be generated from
the meson-baryon dynamics, Pþ

c ð4450Þ seems to be
described as a spin-parity JP ¼ 3=2−, isospin I ¼ 1=2
baryon obtained mainly from the interaction of D̄� and
Σc in the s-wave, and whose nominal mass is ≃8 MeV

below the threshold of the latter channel. One of the
relevant contributions in the description of the D̄� and
Σc interaction consists of exchanging a vector meson, like
ρ, ω, in the t-channel [16]. In such a case, the quark c̄ in D̄�
and the quark c in Σc act as spectators, as shown in Fig. 1. If
the quarks c̄ and c are now replaced by the quarks s̄ and s,
respectively, the D̄�Σc system would become K�Σ, inter-
acting via vector meson exchange in the t-channel, with the
quarks s̄ and s continuing being spectators as well. Since in
both cases, the heavy quarks in the respective systems
behave as spectators, assuming the relevant dynamics
needed to form states in such systems to be the t-channel
exchange of vector mesons, the formation of an isospin 1=2
state, with JP ¼ 3=2− and a mass of ≃2077 MeV, i.e.,
≃8 MeV below the K�Σ threshold, in analogy with D̄�Σc,
seems almost compelling.
After the discovery of the Pc states, several authors have

investigated the existence of the hidden strange partners of
the former. For instance, in Ref. [17], the 3=2− nucleon
resonances N�ð1875Þ and N�ð2120Þ were interpreted as
hadronic molecular states, generated from the coupled
channel interactions Σ�K and ΣK� considering a boson
exchange potential model to solve the Bethe-Salpeter
equation. In Ref. [18], by assuming that N�ð1875Þ and
N�ð2120Þ are indeed s-wave KΣ� and K�Σ states, and by
fixing the mass of these states to be, respectively, 1875 and
2080 MeV, the coupling constants of the former resonances
to the latter states were determined by considering the
Weinberg compositeness condition [19]. Using the obtained
coupling constants and effective Lagrangians to describe the
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vertices, the partial decay widths of the mentioned N�
resonances to final states formed by vector-baryon, pseu-
doscalar-baryon and KΛð1405Þ, KΛð1520Þ were deter-
mined by considering a pion exchange in a triangular loop.
The production of hidden strangeness nucleon resonan-

ces with a mass of ∼2000–2100 MeV has been theoreti-
cally studied [20–25] in the past and related to some of the
bumplike structures observed in the experimental data in
the same energy region [26,27], in different processes
involving final states such as ϕN, KΣ. More recently,
within the context of the existence of hidden strangeness
partners of the Pc states, the presence of Psð2080Þ has been
investigated in data on processes such as γp → ϕp,
Kþp → Kþϕp, π−p → ϕn [28–31]. In some of these
studies, the existence of such states, the mass, width,
and quantum numbers are assumed using the analogy with
the D̄�Σc interaction, and the coupling constants needed to
evaluate the corresponding cross sections are determined
either via the Weinberg compositeness condition, consid-
ering the Ps states to be bound states of two hadrons whose
threshold is close to the assumed mass, or from fits to the
data [29–31].
Before continuing with further discussions, we should

mention that no N� resonance with a mass of 2080 MeV
and quantum numbers JP ¼ 3=2− is listed in the most
recent version of the Review of Particle Physics (PDG)
[32]: before the 2012 version of the PDG, any evidence for
N� resonances with JP ¼ 3=2− and mass above 1800 MeV
were collected under the label of N�ð2080Þ. It is worth
recalling that there existed a proposal for replacing
N�ð2080Þ by D13ð1895Þ and identifying it as a missing
nucleon resonance [33,34], on the basis of the SAPHIR
experimental data on γp → Kþp. In a different work, it
was proposed that N�ð2080Þ could be related to
N�ð2200Þ5=2− [35]. In a more recent work [36], it was
shown that the contribution of N�ð2080Þ is small but not
negligible, and that P13ð1900Þ seems to be more present in
the process. In fact,N�ð2080Þ seems to remain consistently
absent in the latest analysis of data on the photoproduction
of KΛ=KΣ [37–39]. This could imply that N�ð2080Þ
couples weakly to KΛ=KΣ states, and other alternative
processes could be more useful to determine the fate of this
state. It is one of the purposes of this paper to provide
useful alternatives, which are much needed given that the
state has been removed from the PDG listings: in the latest

volume of PDG, two JP ¼ 3=2− states, a three-star
N�ð1875Þ and a two-star N�ð2120Þ, are cataloged.
Further, a closer look at the papers listed in the PDG in
these entries shows a large uncertainty (∼100 MeV) in
these states’ mass and width values.
Despite the absence of N�ð2080Þ in the latest Review of

Particle Physics, theoretical evidence for its existence and its
nature as a 3=2− K�Σ quasibound state was reported in
Ref. [40], long before the discovery of the Pc states by the
LHCb Collaboration. In Refs. [40,41], the coupled channel
K�Σ, K�Λ, ϕN, ωN, and ρN vector-baryon dynamics was
studied by using effective Lagrangians based on the hidden
local symmetry [42], considering t-, s-, u-channel exchange
contributions as well as a contact interaction whose origin
lies in the nature of the Lagrangian considered. The
amplitudes were projected on the s-wave and further on
the spin 1=2 and 3=2 bases. As a consequence of the
aforementioned dynamics, the generation of several JP ¼
1=2− and 3=2− N� and Δ resonances were found, and, in
particular, for the case of JP ¼ 3=2− and isospin 1=2, a pole
in the second Riemann sheet with a mass of ≃2071 MeV
and a width1 of ≃60–70 MeV was obtained, with the state
having a large coupling to the K�Σ channel.
Denoting the former state as N�ð2080Þ, given its large

coupling to K�Σ and the proximity of its mass to the
threshold of this channel, such a state can be considered as a
nucleon resonance with hidden strangeness. In analogy to
the notation for thePc states, we could use the nomenclature
Psð2080Þ to represent the state, where the letter P refers to
the five quark (pentaquark) content (four quarks and an
antiquark) and the subscript s to the presence of a ss̄ pair in
the inner structure of the state.
It is worth mentioning that the generation of a nucleon

resonance with hidden strangeness content, from vector-
baryon dynamics, was also investigated in Ref. [43]. In this
former work, considering t-channel exchange contribu-
tions, spin-degenerate amplitudes were obtained, which
led to the finding of two N� resonances, both with a mass
of 1977 MeV, and a width of 106 MeV, but different spin-
parity quantum numbers (one having JP ¼ 1=2− and
another having JP ¼ 3=2−).
The study of Ref. [43] was revisited in Ref. [20], where

the cross sections for γp → K0Σþ, γn → K0Σ0 were deter-
mined and the role of the production of N� resonances with
hidden strangeness near the K�Λ and K�Σ thresholds was
studied. By readjusting the model parameters used in
Ref. [43] to regularize the vector-baryon loops entering
the Bethe-Salpeter equation, the pole at M − iΓ=2 ¼
1977 − i53 MeV was shifted to ≃2035 − i63 MeV, pro-
viding an interpretation to the bump observed in the cross
section of γp → K0Σþ at energies around 2000 MeV
(which is close to theK�Λ threshold). In this way, according

FIG. 1. Left: vector exchange in the t-channel for the process
D̄�Σc → D̄�Σc Right: same mechanism but for K�Σ → K�Σ. In
both cases, the heavy quarks behave as spectators.

1There is a typo in the original work, in which the full width
obtained for the state is referred to as the half-width of the state.
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to the authors of Ref. [20], there should be two N�
resonances with hidden strangeness at ≃2035− i63MeV,
one with JP ¼ 1=2− and other with JP ¼ 3=2−. An
enhancement in this energy region has been reported
in Ref. [44].
The findings of Refs. [40,41] are different to those of

Ref. [43]. In Refs. [40,41] N� resonances with different
masses for JP ¼ 1=2− and JP ¼ 3=2− were obtained in
the energy region of ∼1900–2100 MeV. In JP ¼ 1=2−

two overlapping poles were found at 1801 − i96 and
1912 − i54 MeV, which produce one peak on the real
axis and were related to N�ð1895Þ. Such a nature of
N�ð1895Þ was found to be useful in describing the cross
sections for γp → KþΛð1405Þ [45]. The JP ¼ 3=2− state,
obtained at ≃2071 − i35 MeV, was related to the JP ¼
3=2− N�ð2080Þ appearing in the previous version of
the PDG.
To summarize this discussion, we can say that there

seems to be progress gathering evidence for the existence of
a 3=2− state with mass around 2080 MeV in recent times.
Some works assume such a possibility and search for the
signals of a hidden strange partner of Pcð4457Þ in the
experimental data, and in some works a simplified model is
used to determine meson-baryon scattering amplitudes.
The experimental data too are still scarce to draw clear
conclusions. Here, we benefit from the work of Ref. [40]
which, using a more complete framework, predicted the
existence of N�ð2080Þ, and study its decay to channels like
πN, ηN, KΛ. We also explore decay channels involving
baryon resonances, such as πN�ð1535Þ, πN�ð1650Þ,
ηN�ð1535Þ, KΛð1405Þ, which could serve as alternative
processes to search for a Ps-state, i.e., a nonstrange partner
of the D̄�Σ quasibound state.

II. CALCULATION OF THE PARTIAL
DECAY WIDTHS

We start the discussions by showing in Fig. 2 different
decay mechanisms for the Psð2080Þ found in Ref. [40].
Since the former state is obtained from the s-wave
vector-octet baryon (VB) coupled channel dynamics with
JP ¼ 3=2−, we can have a direct decay mode of Psð2080Þ
to the VB channels considered for its generation: K�Σ,
K�Λ, ϕN, ωN, and ρN. In this case, the amplitude
describing such a process can be written as

−itPs→ViBi
¼ igPs→ViBi

ūBi
ðP − kÞϵμVi

ðkÞuPsμðPÞ; ð1Þ

where gPs→ViBi
represents the coupling constant of

Psð2080Þ to a VB channel i constituted by a vector Vi
and a baryon Bi, ϵ

μ
Vi

is the polarization vector associated
with the vector meson Vi, uPsμ is a Rarita-Schwinger spinor
[46] related to Ps, and Pμ, kμ represent the four-momenta of
Ps and of the meson in the final state, respectively. To
simplify the notation, the dependence of the spinors on the

spin projection of the corresponding particle has been
omitted in Eq. (1). The Dirac and Rarita-Schwinger spinors
related, respectively, to particles of four-momentaQ, masses
m andM and spin projections α and β, are normalized such
that [22,29]

X1=2
α¼−1=2

uðQ; αÞūðQ; αÞ ¼ ð=QþmIÞ
2m

;

X3=2
β¼−3=2

uμðQ; βÞūνðQ; βÞ ¼ =QþMI
2M

Pμν; ð2Þ

where

Pμν ¼ −gμνI þ
1

3
γμγν þ

2

3

QμQν

M2
I þ γμQν − γνQμ

3M
;

with I being the identity matrix.
When considering the process ViBi → Ps → VjBj in the

s-wave, the amplitude in Eq. (1) gives rise to the following
isospin 1=2, s-wave, and spin 3=2 projected amplitude
TS¼3=2
ij , i.e., IðJPÞ ¼ 1=2ð3=2−Þ, in the nonrelativistic limit,

TS¼3=2
ij ð ffiffiffi

s
p Þ ¼ gPs→ViBi

gPs→VjBjffiffiffi
s

p
−mPs

þ iΓPs
=2

; ð3Þ

with mPs
(ΓPs

) being the mass (width) of Psð2080Þ and
ffiffiffi
s

p
representing the center-of-mass energy of the system.
Equation (3) shows that the coupling constants gPs→ViBi

needed in Eq. (1) can be directly obtained from the residue
of the t-matrix describing the ViBi → ViBi interaction in
which Ps is dynamically generated. These coupling con-
stants were determined in Ref. [40] from the analytical
continuation of the t-matrix in the second Riemann sheet.
Alternatively, it is possible to calculate the mentioned
coupling constants by using the t-matrix determined in
Ref. [40] on the real-energy plane. In this case, from
Eq. (3), we can calculate the coupling constants gPs→ViBi

as

gPs→ViBi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
ΓPs

2
TS¼3=2
ii ðmPs

Þ
r

: ð4Þ

FIG. 2. Decay mechanisms for Psð2080Þ [JP ¼ 3=2−] to VB
(left) and to PB/PR (right) channels, where R represents either
N�ð1535Þ, N�ð1650Þ, or Λð1405Þ, which are JP ¼ 1=2− states.
The four-momenta assignment for each particle is shown between
brackets.

BOLSTERING UP THE EXISTENCE OF PSð2080Þ PHYS. REV. D 111, 116013 (2025)

116013-3



For a channel j ≠ i, the couplings gPs→VjBj
are obtained

from the ratio between TS¼3=2
ij and TS¼3=2

ii at
ffiffiffi
s

p ¼ mPs
, i.e.,

gPs→VjBj
¼ gPs→ViBi

TS¼3=2
ij ðmPs

Þ
TS¼3=2
ii ðmPs

Þ
: ð5Þ

In this way, all the relative phases between the couplings for
i ≠ j are all related to the same channel i. This latter
procedure of calculating the coupling constants is more
convenient when considering the finite width of the ρ- and
K�-mesons through a convolution of the loop functions
while solving the Bethe-Salpeter equation for the coupled
channel system. Here, we follow the latter approach and
provide the obtained coupling constants in Table I. As can
be seen in the table, the coupling of Psð2080Þ to the K�Σ
channel, whose nominal threshold (2085 MeV) is the
closest to the mass of Ps, is the largest, as implicitly
assumed in Refs. [29,30] when considering the Weinberg
compositeness condition to determine the coupling con-
stant of Psð2080Þ to K�Σ by considering Ps to be a K�Σ
bound state. However, this does not necessarily mean that

the other coupled channels listed in Table I will have no
relevant contributions to the partial decay widths of Ps,
especially when considering the triangular loop mecha-
nisms shown in Fig. 2, where the interference effects
between different coupled channels can play a relevant
role obtaining the partial decay widths.
With the coupling constants listed in Table I, and

considering the rest frame of the decaying particle, the
amplitudes in Eq. (1) can be evaluated and the partial decay
width of Psð2080Þ to a ViBi channel can be deter-
mined from

ΓPs→ViBi
ðmPs

; mVi
; mBi

Þ ¼ mBi

mPs

jpij
ð2πÞ

1

2sPs
þ 1

X
pol

jtPs→ViBi
j2ΘðmPs

−mVi
−mBi

Þ; ð6Þ

where jpij is the modulus of the center-of-mass linear
momentum of the particles in the final state, sPs

is the spin
of Psð2080Þ, Θð� � �Þ is the Heaviside Θ-function, and the
symbol

P
pol represents summing over the polarizations of

the particles in the initial and final states. The finite width of
Ps can be incorporated by considering a convolution of the
expression in Eq. (6) with the corresponding spectral
function for Ps:

ΓPs→ViBi
¼ 1

NPs

ZmPsþ2ΓPs

mPs−2ΓPs

dm̃Ps
ρPs

ðm̃Ps
Þ

× ΓPs→ViBi
ðm̃Ps

; mVi
; mBi

Þ; ð7Þ

where

ρPs
ðm̃Ps

Þ ¼ −
1

π
Im

�
1

m̃Ps
−mPs

þ iΓPs
=2

�
; ð8Þ

and NPs
is the normalization of the spectral function of

Eq. (8) when considering m̃Ps
∈ ½mPs

− 2ΓPs
; mPs

þ 2ΓPs
�,

NPs
¼

ZmPsþ2ΓPs

mPs−2ΓPs

dm̃Ps
ρPs

ðm̃Ps
Þ: ð9Þ

Note that the effect of the finite width of the vector mesons
in the final state is already present in the coupling constants
listed in Table I.
In the case of Ps decaying to pseudoscalar-baryon (P0

iBi)
or pseudoscalar-baryon resonance (P0

iRi, with Ri having
JP ¼ 1=2−) channels, the decay mechanism proceeds via
triangular loops, as shown in Fig. 2. Now we can have
contributions from the exchange of pseudoscalars (P) or
vector mesons (V 0) between the vectors (V) and baryons
(B) produced in the primary vertex. For instance, we can
have channels in the final state like πN, ηN, KΛ, KΣ, η0N,
KΛð1405Þ, πN�ð1535Þ, ηN�ð1535Þ, or πN�ð1650Þ, and
intermediate states in the triangular loop like K�Σπ, K�Ση,
K�Ση0, KΛπ, ρNK̄, ωNK̄, ϕNK̄, K�Σω, etc. Thus, to
evaluate the contribution to the partial decay widths of Ps
from the diagrams represented in Fig. 2, we need ampli-
tudes describing the vector-pseudoscalar-pseudoscalar
(VPP), vector-vector-pseudoscalar (VVP), pseudoscalar-
baryon-baryon (PBB), and vector-baryon-baryon (VBB)
vertices. These latter contributions are determined from
effective Lagrangians based on the chiral and hidden local
symmetries [42,47,48], with

TABLE I. Coupling constants (dimensionless) of Psð2080Þ to
the vector-baryon channels, in the isospin 1=2 basis, considered
for its generation.

Channel ρN ωN ϕN
Coupling −0.231 − i0.284 −0.175þ i0.038 0.285þ i0.01

Channel K�Λ K�Σ
Coupling 0.112þ i0.553 2.313 − i0.856
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LVPP ¼ −ighVμ½P; ∂μP�i;

LVVP ¼
Gffiffiffi
2

p ϵμναβh∂μVν∂αVβPi;

LPBB ¼ −
Dþ Fffiffiffi

2
p

fπ
hB̄γμγ5∂μPBi −

D − Fffiffiffi
2

p
fπ

hB̄γμγ5B∂μPi;

LVBB ¼ g½hB̄γμ½Vμ; B�i þ hB̄γμBihVμi�; ð10Þ

where g ¼ mV=ð2fπÞ, mV ≃mρ, G ¼ 3g2=ð4π2fπÞ,
D ≃ 0.80, F ≃ 0.46, fπ ≃ 93 MeV, u ¼ eiP=ð

ffiffi
2

p
fπÞ,

uμ ¼ iu†∂μUu†, U¼ u2, P, B, and Vμ are matrices whose
elements are, respectively, the pseudoscalar, baryon, and
vector fields from the octet,

P ¼

0
BBB@

ηffiffi
3

p þ η0ffiffi
6

p þ π0ffiffi
2

p πþ Kþ

π− ηffiffi
3

p þ η0ffiffi
6

p − π0ffiffi
2

p K0

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0

1
CCCA;

B ¼

0
BBB@

Σ0ffiffi
2

p þ Λffiffi
6

p Σþ p

Σ− − Σ0ffiffi
2

p þ Λffiffi
6

p n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCCA;

Vμ ¼

0
BBB@

ωþρ0ffiffi
2

p ρþ K�þ

ρ− ω−ρ0ffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA

μ

; ð11Þ

and the symbol h� � �i indicates SU(3) trace. Here ideal η-η0
mixing, i.e., a mixing angle of β ≃ −19.43° (sin β ¼ −1=3)
has been assumed when writing the elements of the matrix
P. A value of β in the range ≃ − 15° to−22° is compatible
with the experimental data [49–51], and such uncertainty
will be considered in the calculation of the partial decay
widths. The expression of P in terms of a general mixing
angle β can be found in Appendix B.
In the case of a JP ¼ 1=2− baryon resonance in the final

state, we consider the amplitudes [45]

−itPB→R¼ igR→PBūRðpÞuBðP−k−qÞ;
−itV 0B→R¼−

gR→V 0Bffiffiffi
3

p ϵμV 0 ðqÞūRðpÞγμγ5uBðP−k−qÞ; ð12Þ

with gR→PBðV 0BÞ being the coupling constant of the reso-
nance R to the PB and VB channels considered for its
generation and uR being the Dirac-spinor related to the JP ¼
1=2− baryon in the final state. The factor 1=

ffiffiffi
3

p
in Eq. (12)

has its origin in the fact that the gR→V 0B coupling in
Refs. [41,52,53] are determined by parametrizing the
meson-baryon t-matrices as Breit-Wigner amplitudes while
Eq. (12) provides a spin dependent expression (see Ref. [45]

for more details). Here we consider the low-lying Λ and N�
resonances for which phase space is available for decaying,
i.e., Λð1405Þ, N�ð1535Þ, and N�ð1650Þ, and use the
coupling constants determined in Refs. [41,52,53], where
PB and VB channels were treated as coupled channels when
solving the Bethe-Salpeter equations and the couplings
constants were determined from the residues of the corre-
sponding T-matrix in the complex energy plane.
In the case of the process Ps → P0B0 shown in

Fig. 2, using the previous amplitudes and the effective
Lagrangians in Eq. (10), we get the following contribution
for a particular vector-baryon-pseudoscalar (VBP) channel
in the triangular loop shown in Fig. 2:

−itVBPPs→P0B0 ¼ gCPB→B0CV→P0PgPs→VBūB0 ðpÞγ5

×

�
ð2pν þ ðmB þmB0 ÞγνÞð−Ið1Þνμ þ kμI

ð2Þ
ν Þ

þ Ið3Þμ − kμIð4Þ
�
uμPs

ðPÞ; ð13Þ

where CPB→B0 and CV→P0P are coefficients obtained from
the effective Lagrangians of Eq. (10) and

Ið1Þνμ ¼
�
1þ k2

m2
V

�
Ið1Þνμ −

1

m2
V
Ið2Þνμ ;

Ið2Þν ¼
�
1 −

k2

m2
V

�
Ið3Þν þ 1

m2
V
Ið4Þν ;

Ið3Þμ ¼
�
1þ k2

m2
V

�
Ið4Þμ −

1

m2
V
Ið5Þμ ;

Ið4Þ ¼
�
1 −

k2

m2
V

�
Ið6Þν þ 1

m2
V
Ið7Þ; ð14Þ

with

Ið1Þνμ ¼
Z

d4q
ð2πÞ4

qνqμ
D

; Ið2Þνμ ¼
Z

d4q
ð2πÞ4

q2qνqμ
D

;

Ið3Þν ¼
Z

d4q
ð2πÞ4

qν
D
; Ið4Þν ¼

Z
d4q
ð2πÞ4

q2qν
D

;

Ið5Þμ ¼
Z

d4q
ð2πÞ4

q4qμ
D

; Ið6Þ ¼ gνμIð1Þνμ ;

Ið7Þ ¼ gνμIð2Þνμ ;

D ¼ ½ðP − k − qÞ2 −m2
B þ iϵ�½ðkþ qÞ2 −m2

V þ iϵ�
× ½q2 −m2

P þ iϵ�: ð15Þ

It should be noted that the expressions in Eqs. (12)–(15)
depend on the particular channel considered in the final
and intermediate states, but to simplify the notation we
omit writing such a dependence.
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The integrals in Eq. (15) can be written as combinations
of the four-momenta Pα and kβ by using Lorentz covari-

ance. For example, after integrating in d4q, Ið1Þμν must be a
symmetric tensor of order 2 depending on the four-
momenta P and k. Thus, we can write

Ið1Þνμ ¼ að1Þ1 gνμ þ að1Þ2 PνPμ þ að1Þ3 kνkμ þ að1Þ4 ðPνkμ þ PμkνÞ;
ð16Þ

where að1Þj , j ¼ 1; 2;…; 4 are the coefficients of the
combinations, and which need to be determined. Similar
arguments can be used for the other tensor integrals. Details

on the calculation of the aðiÞj , i ¼ 1; 2;…; 5, coefficients
(which depend on the final and intermediate states) can be
found in Appendix A. The main steps to follow are to use
the Passarino-Veltman decomposition of tensor integrals
[54], then determine the dq0 integration analytically by
using Cauchy’s theorem and the d3q integration numeri-
cally, by using a cutoff or form factors to regularize it. We
have varied the cutoff in the range 600–850 MeV and
considered three types of form factors at the vertices
(Gaussian, Lorentz, and a Heaviside Θ-function), and
estimated uncertainties in the results.

In terms of the aðiÞj coefficients, the amplitude for the
process Ps → P0B0, considering the different VPB inter-
mediate states, thus, exchanging pseudoscalars in the
triangular loop of Fig. 2, can be written as

−itpseudoPs→P0B0 ¼ −i
X
VBP

tVBPPs→P0B0

¼ gūB0 ðpÞγ5tðAÞμ ðA; ÃÞuμPs
ðPÞ; ð17Þ

where

tðAÞμ ðA; ÃÞ ¼
X5
k¼1

½2Akpν þ ðÃk þmB0AkÞγν�TðkÞ
νμ

þ A6Pμ þ A7kμ: ð18Þ

In Eq. (18), TðkÞ
νμ represents the kth element of Tνμ, with

Tνμ ¼ fgνμ; PνPμ; kνkμ; Pνkμ; Pμkνg; ð19Þ

and Ai and Ãi are coefficients given by

Ai ¼
X
VBP

CPB→B0CV→P0PgPs→VBAVBP
i ;

Ãi ¼
X
VBP

CPB→B0CV→P0PgPs→VBmBAVBP
i ; ð20Þ

with i ¼ 1; 2;…; 7. The AVBP
i coefficients appearing in

Eq. (20) depend on the four-momenta of the initial and final

particles as well as of aðiÞj , and their definition can be found
in Appendix A.
In the case of exchanging a vector (V 0) between the

vector and baryon produced in the primary vertex of the
diagram in Fig. 2, we find the following amplitude
describing the process when considering contributions
from the different intermediate VBV 0 channels:

−itvectorPs→P0B0 ¼ −i
X
VBV 0

tVBV
0

Ps→P0B0

¼ −
gGffiffiffi
2

p ūB0 ðpÞtðBÞν0 ðBÞuν0Ps
ðPÞ; ð21Þ

where

tðBÞν0 ðBÞ ¼ ϵμ0ν0α0β0kμ
0
�
ðB1gσα

0 þ B2PσPα0

þ B3Pα0kσÞγσγβ0 þ ðB4 −mB0B5ÞPα0γβ
0
�
;

Bi ¼
X
VBV 0

gPs→VBCV 0B→B0CV→V 0P0BVV 0B
i ; ð22Þ

with i ¼ 1; 2;…; 5. The BVV 0B
i coefficients appearing in

Eq. (22) are defined in Appendix A. They depend on

coefficients, bðiÞj , which can be obtained from the expres-

sions for aðiÞj replacing ωPðqÞ by ωV 0 ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

V 0

q
.

The CV 0B→B0 , and CV→V 0P0 in Eq. (22) are coefficients
obtained from the Lagrangians in Eq. (10), and their values
can be found in Appendix B.
Using Eqs. (17) and (21), the sum over the polarizations

of the initial and final states for

jtPs→P0B0 j2 ¼ jtpseudoPs→P0B0 þ tvectorPs→P0B0 j2 ð23Þ

can be calculated, obtaining

X
pol

jtPs→P0B0 j2 ¼
X
pol

jtpseudoPs→P0B0 j2 þ
X
pol

jtvectorPs→P0B0 j2

þ 2Re

(X
pol

tpseudoPs→P0B0 ðtvectorPs→P0B0 Þ†
)
; ð24Þ

where
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X
pol

jtpseudoPs→P0B0 j2 ¼ jgj2
4mB0mPs

Tr

�
ð=p −mB0 ÞtðAÞμ ðA; ÃÞð=PþmPs

ÞPμσtðAÞσ ðA�; Ã�Þ
�

¼ jgj2
4mB0mPs

X5
l¼0

FðlÞðP · kÞl;

X
pol

jtvectorPs→P0B0 j2 ¼ jgj2jGj2
8mB0mPs

Tr

�
ð=pþmB0 ÞtðBÞν0 ðBÞð=PþmPs

ÞPν0σ0 t̃ðBÞσ0 ðB�Þ
�

¼ jgj2jGj2
8mB0mPs

X4
l¼0

HðlÞðP · kÞl;
X
pol

tpseudoPs→P0B0

�
tvectorPs→P0B0

�†

¼ −
jgj2G

4
ffiffiffi
2

p
mB0mPs

Tr

�
ð=pþmB0 Þγ5tðAÞμ ðA; ÃÞð=PþmPs

ÞPμν0 t̃ðBÞν0 ðB�Þ
�

¼ −i
jgj2G

4
ffiffiffi
2

p
mB0mPs

X4
l¼0

JðlÞðP · kÞl; ð25Þ

with

t̃ðBÞσ ðB�Þ ¼ ϵμ0σα0β0kμ
0
�
−ðB�

1g
σ0α0 þ B�

2P
σ0Pα0

þ B�
3P

α0kσ
0 Þγσ0γβ0 þ 2B�

3P
α0kβ

0

þ ðB�
4 −mB0B�

5ÞPα0γβ
0
�
: ð26Þ

As can be seen from the preceding equations, the traces
present in Eq. (25) can be written as an expansion of powers
of P · k, with FðlÞ, HðlÞ and JðlÞ being the coefficients for
such expansions, and their values are given in Appendix C.
Next, we can also have a resonance, like Λð1405Þ,

N�ð1535Þ, and N�ð1650Þ, in the final state of a decaying Ps
since the former resonances have sizable couplings to PB
[55–60] and VB channels [41,52,53,61,62]. We have
considered final states formed by a pseudoscalar and one
of these resonances, which we denote as R. As shown in
Fig. 2, the decay mechanism of Ps → P0R proceeds via
triangular loops as well. In this case, the amplitude
describing such a process, involving the exchange of
pseudoscalar mesons between the hadrons of the primary
vertex, can be written as

tpseudoPs→P0R ¼
X
VBP

tVBPPs→P0R ¼ gūRt
ðCÞ
μ ðCÞuμPs

ðPÞ; ð27Þ

where

tðCÞμ ðCÞ ¼
X7
k¼1

CkU
ðkÞ
μ ; ð28Þ

with UðkÞ
μ being the kth element of

Uμ ¼ fγνgνμ; =PPμ; =kkμ; =Pkμ; =Pkν; Pμ; kμg: ð29Þ

In Eq. (28), Ck are coefficients given by

Ci ¼
X
VBP

gR→PBgPs→VBCV→P0PCVBP
i ; ð30Þ

with i ¼ 1; 2;…; 7, and the definition of CVBP
i , which

depend on aðiÞj , and the four-momenta of the particles in the
initial, intermediate, and final states, can be found in
Appendix A.
In the case of exchanging a vector meson between the

particles produced in the primary vertex of the triangular
loop for the reaction Ps → P0R, the amplitude can be
written, once the contribution from different VBV 0 chan-
nels is included, as

tvectorPs→P0R ¼ 1ffiffiffi
6

p GūRðpÞtðDÞ
ν0 ðDÞuν0Ps

ðPÞ; ð31Þ

where

tðDÞ
ν0 ðDÞ ¼ ϵμ0ν0α0β0kμ

0
γ5½ðD1gσα

0 þD2PσPα0

þD3Pα0kσÞγβ0γσ −D4Pα0γβ
0 �; ð32Þ

with

Di ¼
X
VBV 0

gR→V 0BgPs→VBCV→V 0P0DVBV 0
i ; ð33Þ

where i ¼ 1; 2;…; 4. We refer the reader to Appendix A for
the definition of the coefficientsDVBV 0

i . We should mention
at this point that the coupling constants gR→PB and gR→V 0B
can be found, for instance, in Refs. [41,53]. There, η − η0
mixing was not considered, but the coupling constants of R
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to the channels ηB (η0B) can be estimated by multiplying
those obtained in Refs. [41,53] by cos β (sin β), where the
latter factor is the coefficient multiplying the octet compo-
nent in the wave function of η (η0) in terms of the singlet and
octet of SU(3) [43].
Considering the amplitudes of Eqs. (27) and (31), we can

determine the sum over the polarizations of

jtPs→P0Rj2 ¼ jtpseudoPs→P0R þ tvectorPs→P0Rj2; ð34Þ

finding

X
pol

jtPs→P0Rj2 ¼
X
pol

jtpseudoPs→P0Rj2 þ
X
pol

jtvectorPs→P0Rj2

þ 2Re

�X
pol

tpseudoPs→P0RðtvectorPs→P0RÞ†
�
; ð35Þ

where

X
pol

jtpseudoPs→P0Rj2 ¼
jgj2

4mRmPs

Tr
n
ð=P − =kþmRÞtðCÞμ ðCÞð=PþmPs

ÞPμσtðCÞσ ðC�Þ
o
¼ jgj2

4mRmPs

X4
l¼0

LðlÞðP · kÞl;

X
pol

jtvectorPs→P0Rj2 ¼
jGj2

24mRmPs

Tr
n
ð=pþmRÞtðDÞ

ν0 ðDÞð=PþmPs
ÞPν0ν̃tðDÞ

ν̃ ðD�Þ
o
¼ jGj2

24mRmPs

X4
l¼0

MðlÞðP · kÞl;

X
pol

tpseudoPs→P0R

	
tvectorPs→P0R


† ¼ gG

4
ffiffiffi
2

p
mRmPs

Tr
n
ð=pþmRÞtðCÞμ ðCÞð=PþmPs

ÞPμν0tðDÞ
ν0 ðD�Þ

o

¼ i
gG

4
ffiffiffi
2

p
mRmPs

X4
l¼0

NðlÞðP · kÞl; ð36Þ

with the coefficients LðlÞ, MðlÞ, and NðlÞ listed in the
Appendix C.
With the above amplitudes, the partial decay width of

Ps → P0
iB

0
i, or Ps → P0

iRi, can be determined from Eq. (6)
replacing

P
pol jtPs→ViBi

j2 by either
P

pol jtPs→P0
iB

0
i
j2 orP

pol jtPs→P0
iRi
j2, and mVi

by mP0
i
, mBi

by mRi
. The unstable

character of the vector mesons in the intermediate states has
been taken into account replacing ωVðV 0Þ − iϵ, with ωVðV 0Þ
representing their energies, by ωVðV 0Þ − iΓVðV 0Þ=2, with
ΓVðV 0Þ being their widths. In the case of having a resonance
in the final state, its unstable character has been

implemented by convoluting Eq. (6) with the correspond-
ing spectral function for the resonance, i.e.,

ΓPs→P0
iRi

¼ 1

NPs
NRi

ZmPsþ2ΓPs

mPs−2ΓPs

dm̃Ps
ρPs

ðm̃Ps
Þ

×
ZmRi
þ2ΓRi

mRi
−2ΓRi

dm̃Ri
ρRi

ðm̃Ri
ÞΓPs→P0

iRi
ðm̃Ps

;mP0
i
; m̃Ri

Þ;

TABLE II. Partial decay widths (in MeV) of Psð2080Þ to final states formed by a pseudoscalar and an octet baryon and a pseudoscalar
and Λð1405Þ=N�ð1535Þ=N�ð1650Þ. We present the results obtained by considering the triangular loop mechanism of Fig. 2, including
only the exchange of pseudoscalars between the vector and baryon produced from the primary vertex (P exch.) and considering the
exchange of vector mesons too (Pþ V exch.). Here Λ1ð1405Þ [Λ2ð1405Þ] represents the lower (higher) pole related to Λð1405Þ
[53,56,57].

Width Width

Channel P exchange Pþ V exchange Channel P exchange Pþ V exchange

πþn 0.77� 0.21 0.95� 0.27 KþΛ2ð1405Þ 5.05� 0.76 5.10� 0.77
π0p 0.38� 0.11 0.47� 0.13 πþN�0ð1535Þ 1.18� 0.28 1.18� 0.28
ηp 0.87� 0.23 0.77� 0.21 π0N�þð1535Þ 0.59� 0.14 0.59� 0.14
KþΛ 3.83� 0.84 3.74� 0.82 ηN�0ð1535Þ 0.33� 0.05 0.34� 0.06
KþΣ0 1.56� 0.31 1.45� 0.29 πþN�0ð1650Þ 0.34� 0.03 0.26� 0.02
K0Σþ 3.11� 0.62 2.90� 0.57 π0N�þð1650Þ 0.17� 0.01 0.13� 0.01
η0p 0.014� 0.005 0.07� 0.02
KþΛ1ð1405Þ 16.97� 2.67 17.16� 2.71
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with

ρRi
ðm̃Ri

Þ ¼ −
1

π
Im

�
1

m̃Ri
−mRi

þ iΓRi
=2

�
;

NRi
¼

ZmRi
þ2ΓRi

mRi
−2ΓRi

dm̃Ri
ρRi

ðm̃Ri
Þ: ð37Þ

III. RESULTS

In Table II we show the partial decay widths obtained for
the processes Psð2080Þ → P0B0, P0R without considering
the convolution over the widths of the Ps and of the
resonance R in the final state. The central values obtained
represent the average values resulting from consideration of
different form factors at the vertices, different cutoffs in
those form factors as well as different η − η0 mixing angles,
while the uncertainty shown in the results of Table II
corresponds to the standard deviation obtained. As can
be seen, the contribution to the partial decay widths of
diagrams in which a vector is exchanged between the vector
and baryon produced at the primary vertex of the diagram in
Fig. 2 is small, except for the case of the η0p final state.
It is interesting to notice that the partial decay width of

Psð2080Þ to pseudoscalar-baryon channels with hidden
strangeness, like KΛ (ΓKΛ ¼ 3.74� 0.82 MeV) and KΣ
(ΓKΣ ¼ ΓKþΣ0 þ ΓK0Σþ ¼ 4.35� 0.86), is larger than the
partial decay width to a channel like πN (ΓπN ¼
Γπþn þ Γπ0p ¼ 1.42� 0.40 MeV). This result suggests
that considering reactions in which Psð2080Þ is produced
and decays to a final state like KΣ and KΛ can be more
relevant than those involving πN for identifying the
generation of Psð2080Þ. But even more interesting is
the fact that the partial decay width of Psð2080Þ to a final
state formed by πN�ð1535Þ, for which ΓπN�ð1535Þ ¼
ΓπþN�0ð1535Þ þ Γπ0N�þð1535Þ ¼ 1.77� 0.42 MeV, is also
comparable to the previous partial decay widths. There
are several studies suggesting that N�ð1535Þ has a sizable
hidden strangeness KΣ component in its wave function
[41,58,59], producing a partial decay width of Psð2080Þ
which is similar to that of πN, even if there is more phase
space available for the latter channel.
As can be seen in Table II, the decay of Psð2080Þ to

KΛ1ð1405Þ produces the largest contribution of the final
states considered. Here we denote as Λ1ð1405Þ and
Λ2ð1405Þ to the lower and upper mass poles, respectively,
obtained in Refs. [53,56,57], where a double pole structure
is suggested for Λð1405Þ, with the lower (upper) pole
having a mass ∼1380 (1426) MeVand a larger coupling to
the πΣ (K̄N) channel. In this way, reactions with a final
state like KπΣ, where πΣ has its origin in the decay of
Λð1405Þ, can be very relevant to extract information on the
properties of Psð2080Þ.

Considering all the partial decay widths listed in
Table II, we obtain a width of ∼35� 6 MeV, which is
to be added to the width of ∼60–70 MeV obtained from
vector-baryon channels in Ref. [41]. In this way, within our
model, summing up the partial decay widths to all
channels, the total width for Psð2080Þ turns out to be
around 100 MeV. Thus, using as an estimation for the total
width of Psð2080Þ a value of ∼100 MeV, we determine the
partial decay widths of Ps to the vector-baryon channels
investigated in Ref. [41]. We can also estimate the effect of
convoluting the partial decay widths of Psð2080Þ to P0B0
and P0Rwith the spectral function related to Ps and, for the
P0R channels, we can incorporate the finite width of the
resonances R in the calculation of the partial decay widths
of Psð2080Þ. The results obtained are similar to those
found without implementing such effects, with the excep-
tion that when varying the masses of Ps and R, the channel
ηN�þð1650Þ would be open for decay, finding a very small
partial decay width (∼0.005 MeV).
In Table III we list the partial decay widths of Psð2080Þ

to the vector-baryon channels considered in Refs. [41,52].
As can be seen, the largest contribution to the width comes
from the K�Σ channel, to which Ps couples more strongly,
and whose nominal threshold is slightly above the mass of
Ps, thus, the convolution here plays a relevant role for the
calculation of the decay widths.
It should also be mentioned that the consideration of all

the VB channels listed in Table III is necessary when
determining the partial decay widths of Ps → P0B0, P0R via
the triangular loop mechanism shown in Fig. 2. For
instance, considering only the primary vertex Ps → K�Σ,
in view that the coupling constant of Ps to K�Σ is the
largest, drastically reduces the partial decay widths found.
For example, to mention a few cases, the partial decay
width to πN would be ∼26 times smaller, to KΣ it will be a
factor of ∼2 smaller, and to ηN about 3 times smaller.

IV. PROCESSES USEFUL FOR STUDYING
THE PROPERTIES OF Ps

Our study shows that the Ps state couples strongly to
K�Σ and KΛð1405Þ channels. These findings imply that
processes with KπΣ final states would be the most

TABLE III. Partial decay widths (in MeV) of Psð2080Þ to the
vector-baryon channels (in the isospin 1=2 basis) used for its
generation in Refs. [41,52].

Channel Width

ρN 5.66
ωN 1.33
ϕN 1.92
K�Λ 6.64
K�Σ 49.97
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appropriate ones to study the properties of Ps. We find it
useful to provide concrete examples of processes that are
going to be studied, those on which data are already
available, and those that can be studied in the existing
experimental facilities.
The first encouraging example is a proposal to inves-

tigate the π−p → KπΣ process, which is currently being
prepared to be submitted for measurements at the J-PARC
(Japan Proton Accelerator Complex) facility [63]. Given
our findings, besides a K=K� exchange in the t-channel, an
exchange of the Ps state in π−p → KπΣ would proceed
through the s- and u-channel diagrams shown in Fig. 3. The
results obtained in our present work can be used to describe
the vertices Ps → πN;K�Σ; KΛð1405Þ in a theoretical
analysis on the process. For a complete study, one must
include exchange of other possibleN�s following Ref. [45],
though the strong couplings of Ps to K�Σ and KΛð1405Þ
found in our present work indicate that the exchange of Ps
must dominate. In fact, the results of this work can also be
used to study the excitation of Ps in the γN → KΛð1405Þ
and such a consideration can improve the description of the
experimental data studied in Ref. [45].
With the recent progress in the analysis of data on weak

processes, another source of useful information on the
properties of Ps can be decays of heavy hadrons like Λc. In
fact, an attempt to describe the data on Λþ

c → π0pϕ has

been made in Ref. [64], and it was shown that interesting
effects like triangular singularities can be seen in the data,
though the statistics are poor at this moment. Findings of
our work can be used to further analyze Λþ

c → π0pϕ.
However, even though the phase space would be small, data
on Λþ

c → π0K�þΣ0, if measured, could show a much better
signal of the Ps state in the K�þΣ0 invariant mass spectrum
[or in that of KπΣ, where the kaon and the pion would
come from the decay of K�ð892Þ]. A possible mechanism
for such a weak decay of Λc is shown in Fig. 4. We hope
that data on such a process can be obtained in the near
future. Yet another possibility could be the process
ψð3686Þ → p̄K�þΣ0, which is similar to ψð3686Þ →
p̄K�þΛ studied by the BESIII Collaboration [65]. The
invariant mass spectrum of the K�þΛ system shown in
Ref. [65] does not show any clear evidence of the presence
of the Ps state, which can be understood from the weak
coupling of Ps to K�Λ found in our work. However, a
similar process, with Σ present in the final state, instead of
Λ, should be more useful to find a clear signal of Ps. We
encourage experimental groups to determine data on such a
process.

V. CONCLUSIONS

The interest in studying the existence of N� resonances
with hidden strangeness and masses around 2000 MeV has
grown since the discovery of the Pc states by the LHCb
Collaboration. Understanding the existence of lighter
partners of these Pc states with hidden strange content is
part of the program of several experimental collaborations.
However, detecting such states can be challenging due to
the existence of several N� resonances in the same energy
region. For this reason, studying the decay properties of
these states and proposing nonstandard final states, where
the hidden strange quark content of the state could play a
major role, is important for a better understanding of the
properties of these states. In this work, we have focused our
attention on the JP ¼ 3=2− Psð2080Þ state generated from
vector-baryon dynamics in Refs. [41,52] and show that its
partial decay widths to channels like KΣ, KΛ, πN�ð1535Þ
are as big as that to πN, with the decay to KΛð1405Þ giving
a larger contribution. In this way, considering final states
like KπΣ could be relevant to understanding the properties
of Psð2080Þ. We have provided a list of processes which
can produce KπΣ in the final state. We hope that our work
encourages experimental investigation of such processes.
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APPENDIX A: EVALUATION OF THE TENSOR
INTEGRALS APPEARING IN THE FORMALISM

To calculate the integrals in Eq. (15), we use the
Passarino-Veltman decomposition of tensor integrals
[54]: Let us consider, for example, the tensor integral

Ið1Þνμ . As a consequence of the Lorentz covariance, we see

from Eq. (15) that Ið1Þμν can be written as a linear combi-
nation of the metric tensor gνμ and combinations of the
four-momenta P and k forming a symmetric tensor of rank
2 under the interchange of μ and ν, i.e.,

Ið1Þνμ ¼ að1Þ1 gνμ þ að1Þ2 PνPμ þ að1Þ3 kνkμ

þ að1Þ4 ðPνkμ þ PμkνÞ: ðA1Þ

The coefficients að1Þi , i ¼ 1; 2;…; 4, in Eq. (A1) can be
determined by contracting the latter equation by the differ-
ent Lorentz structures present on it, i.e., gνμ, PνPμ, kνkμ,
and Pνkμ. In this way, we can form a system of four coupled

equations that allow us to express the coefficients að1Þi in
terms of the integrals

GIð1Þ ≡ gνμIð1Þνμ ¼
Zþ∞

−∞

d4q
ð2πÞ4

q2

D
;

PPIð1Þ ≡ PνPμIð1Þνμ ¼
Zþ∞

−∞

d4q
ð2πÞ4

ðP · qÞ2
D

;

KKIð1Þ ≡ kνkμIð1Þ ¼
Zþ∞

−∞

d4q
ð2πÞ4

ðk · qÞ2
D

;

PKIð1Þ ≡ PνkμIð1Þνμ ¼
Zþ∞

−∞

d4q
ð2πÞ4

ðP · qÞðk · qÞ
D

; ðA2Þ

as

að1Þ1 ¼ −
1

2½ðP · kÞ2 − P2k2�
�
GIð1Þf−ðP · kÞ2 þ P2k2g þ 2PKIð1ÞðP · kÞ − PPIð1Þk2 − KKIð1ÞP2

�
;

að1Þ2 ¼ −
1

2½ðP · kÞ2 − P2k2�2
�
GIð1Þk2f−ðP · kÞ2 þ P2k2g

− KKIð1Þf2ðP · kÞ2 þ P2k2g þ 6PKIð1Þk2ðP · kÞ − 3PPIð1Þk4
�
;

að1Þ3 ¼ −
1

2½ðP · kÞ2 − P2k2�2
�
GIð1ÞP2f−ðP · kÞ2 þ P2k2g

− PPIð1Þf2ðP · kÞ2 þ P2k2g þ 6PKIð1ÞP2ðP · kÞ − 3KKIð1ÞP4

�
;

að1Þ4 ¼ −
1

2½ðP · kÞ2 − P2k2�2
�
GIð1ÞðP · kÞfðP · kÞ2 − P2k2g

− 2PKIð1Þf2ðP · kÞ2 þ P2k2g þ 3KKIð1ÞP2ðP · kÞ þ 3PPIð1Þk2ðP · kÞ
�
: ðA3Þ

Next, to determine the integrals in Eq. (A2), and find, in

this way, the value of að1Þi , we first perform the dq0

integration by considering Cauchy’s theorem, finding

In ¼
Zþ∞

−∞

dq0

2π

ðq0Þn
D

¼ −i
Nn

D
; ðA4Þ

where

D ¼ 2ωBωVωPðP0 þ ωB þ ωVÞðk0 þ ωV þ ωPÞ
× ½P0 − k0 − ωB − ωP þ iϵ�½k0 − P0 − ωB − ωP þ iϵ�
× ½P0 − ωB − ωV þ iϵ�½k0 − ωV − ωP þ iϵ�; ðA5Þ

with
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ωB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − k − qÞ2 þm2

B

q
;

ωV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ qÞ2 þm2

V

q
;

ωP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

P

q
: ðA6Þ

The numerators Nn in Eq. (A4) for the cases concerned in Eq. (A2) are

N0 ¼ 2k0P0ωBωP − ðk0Þ2ωPωBþV þ ωPþV ½−ðP0Þ2ωB þ ωBþPωBþVωBþVþP�;
N1 ¼ ωP

	
−k0ðP0Þ2ωB − ðk0Þ3ωBþV þ ðk0Þ2P0ð2ωB þ ωVÞ − P0ωVωPþVð2ωB þ ωPþVÞ

þ k0ωBþV ½ω2
B þ ω2

PþV þ ωBð2ωP þ ωVÞ�


;

N2 ¼ ωP

	
ðk0Þ2ωBþV ½ðP0 − k0Þ2 − ω2

BþP − 2ωPωV − ω2
V � þ ωVωPþV ½ωBωBþPωBþV − ðP0Þ2ωBþPþV �

þ 2k0P0ωV ½ω2
PþV þ ωBð2ωP þ ωVÞ�



;

N3 ¼ ωP

	
−ðk0Þ5ωBþV þ ðk0Þ4P0ð2ωB þ 3ωVÞ þ ðk0Þ2P0ωV ½ðP0Þ2 − ω2

B − 3ω2
PþV − 2ωB

× ð3ωP þ ωVÞ� þ ðk0Þ3½−ðP0Þ2ðωB þ 3ωVÞ þ ωBþVðω2
BþP þ 2ωPωV þ ω2

VÞ� þ P0ωVωPþV

× ½−ðP0Þ2ωPþV þ ωBð2ωPωV þ ωBωPþVÞ� þ k0ωV ½ðP0Þ2ð3ω2
PþV þ ωBð2ωP þ ωVÞÞ

− ωBωBþVðωBð2ωP þ ωVÞ þ ωPð3ωP þ 2ωVÞÞ�


;

N4 ¼ ωP

	
ðk0Þ6ωBþV − 2ðk0Þ5P0ðωB þ 2ωVÞ þ 4ðk0Þ3P0ωV ½−ðP0Þ2 þ ω2

BþP þ ðωB þ 2ωPÞωV þ ω2
V �

þ ðk0Þ4½ðP0Þ2ðωB þ 6ωVÞ − ωBþVðω2
BþP þ ðωB þ 2ωPÞωV þ ω2

VÞ� − ωVωPþV ½ðP0Þ4ωPþV

þ ωBωBþPωBþVðωPωV þ ωBωPþVÞ − ðP0Þ2ωBðω2
P þ 3ωPωV þ ω2

V þ 2ωBωPþVÞ� þ 2k0P0ωV

× ½2ðP0Þ2ω2
PþV − ωBð2ωBω

2
PþV þ ωVð2ωP þ ωVÞ2Þ� þ ðk0Þ2ωV ½ðP0Þ4 − 2ðP0Þ2ðω2

B þ 3ω2
PþV þ ωBð2ωP þ ωVÞÞ

þ ωBωBþVðω2
B þ 6ω2

P þ 4ωPωV þ ω2
V þ ωBð4ωP þ ωVÞÞ�



;

N5 ¼ ωP

	
−ðk0Þ7ωBþV þ ðk0Þ6P0ð2ωB þ 5ωVÞ − ωVωPþV ½ðP0 þ ωBÞðP0Þ4ωPþV þ ωBω

2
BþPω

2
BþVωPþV

− 2ðP0Þ3ωBωPþVωBþPþV þ P0ωBðω2
BωPðωB þ 2ωPÞ þ ωBðωB þ 2ωPÞ2ωV þ 2ω2

BþPω
2
VÞ − ðP0Þ2ωBωPþV

× ð2ω2
B þ ω2

P þ ω2
V þ 2ωBωPþVÞ� − ðk0Þ4ωV ½−10ðP0Þ3 − ðP0Þ2ωB þ ωBω

2
BþV þ 5P0

× ð2ω2
B þ 2ωBωPþV þ ω2

PþVÞ� − ðk0Þ3ωV ½5ðP0Þ4 þ 2ðP0Þ3ωB − 2P0ωBω
2
BþV − 2ðP0Þ2ð4ω2

B þ 4ωBωPþV

þ 5ω2
PþVÞ þ ωBωBþVð3ω2

B þ 10ω2
P þ 8ωPωV þ 3ω2

V þ ωBð8ωP þ ωVÞÞ� þ ðk0Þ5½−ðP0Þ2ðωB þ 10ωVÞ
þ ωBþVðω2

B þ ω2
PþV þ ωBð2ωP þ 3ωVÞÞ�

þ k0ωV ½5ðP0Þ4ω2
PþV þ 2ðP0Þ3ωBω

2
PþV − 2P0ωBω

2
BþVω

2
PþV − ðP0Þ2ωBð4ω3

P þ 18ω2
PωV

þ 20ωPω
2
V þ 7ω3

V þ 8ωBω
2
PþVÞ þ ωBωBþVð3ω2

Bω
2
PþV þ ω2

PωVð4ωP þ 3ωVÞ þ ωBωP

× ðωP þ 2ωVÞð4ωP þ 3ωVÞÞ� þ ðk0Þ2ωV ½ðP0Þ5 þ ðP0Þ4ωB þ ωBω
2
BþVðω2

BþP þ ω2
PþVÞ

− 2ðP0Þ2ωBðω2
B þ ω2

P þ ωPωV þ ω2
V þ ωBωPþVÞ − 2ðP0Þ3ðω2

B þ ωBωPþV þ 5ω2
PþVÞ þ P0ωB

× ðω3
B þ 2ω2

BωPþV þ 2ωVð10ω2
P þ 11ωPωV þ 4ω2

VÞ þ 2ωBð5ω2
P þ 12ωPωV þ 5ω2

VÞÞ�


; ðA7Þ

where
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ωBþV ¼ ωB þ ωV;

ωBþP ¼ ωB þ ωP;

ωPþV ¼ ωP þ ωV;

ωBþPþV ¼ ωB þ ωP þ ωV: ðA8Þ

Here we consider the rest frame of the decaying particle
to determine the partial decay widths of Psð2080Þ, thus,
P ¼ 0, P0 ¼ ffiffiffi

s
p ¼ mPs

, and

k0 ¼
sþm2

P0 −m2
B0ðRÞ

2
ffiffiffi
s

p ; ðA9Þ

with mP0 , mB0ðRÞ being, respectively, the masses of the
pseudoscalar and baryon (resonance) in the final state.
Using Eq. (A4), we can write the integrals in Eq. (A2) as

GIð1Þ ¼
Zþ∞

−∞

d3q
ð2πÞ3 ½I2 − I0q2�;

PPIð1Þ ¼
Zþ∞

−∞

d3q
ð2πÞ3 ðP

0Þ2I2;

KKIð1Þ ¼
Zþ∞

−∞

d3q
ð2πÞ3 ½ðk

0Þ2I2 − 2k0ðk · qÞI1 þ ðk · qÞ2I0�;

PKIð1Þ ¼
Zþ∞

−∞

d3q
ð2πÞ3 ½P

0k0I2 − P0ðk · qÞI1�; ðA10Þ

and the d3q integral is given by

Zþ∞

−∞

d3q
ð2πÞ3 ¼

Z∞
0

djqj
Z1
−1

d cos θjqj2 1

ð2πÞ2 : ðA11Þ

The djqj integral is regularized with form factors. We
consider either Gaussian (FG), Lorentzian (FL), or
Heaviside (FH) Θ-function form factors at each vertex, i.e.,

FGðqÞ ¼ e−jqj2=ð2Λ2Þ;

FLðqÞ ¼
Λ2

Λ2 þ jqj2 ;

FHðqÞ ¼ ΘðΛ − jqjÞ; ðA12Þ

where Λ ∼ 600–900 MeV. To compare results obtained
with different form factors, we consider the normalization

Z∞
0

djqjF2
HðqÞ ¼

Z∞
0

djqjF2
GðqÞ ¼

Z∞
0

djqjF2
LðqÞ; ðA13Þ

which implies a different value of Λ for each type of form
factor. When considering final states involving a resonance,
the cutoff Λ used is for the modulus of the center of mass
momentum of the particles forming the resonance, thus, a
boost needs to be performed from the rest frame of the
decaying particle to the rest frame of the resonance in the
final state.
Similarly, we can write

Ið2Þνμ ¼ að2Þ1 gνμ þ að2Þ2 PνPμ þ að2Þ3 kνkμ

þ að2Þ4 ðPνkμ þ PμkνÞ; ðA14Þ

and

IðiÞν ¼ aðiÞ1 Pν þ aðiÞ2 kν; ðA15Þ

with i ¼ 3, 4, 5, where the coefficients að2Þi can be obtained
from Eq. (A3) by changing GIð1Þ, PPIð1Þ, KKIð1Þ, and
PKIð1Þ to

GIð2Þ ¼
Zþ∞

−∞

d4q
ð2πÞ4

q4

D
¼

Zþ∞

−∞

d3q
ð2πÞ3 ðI4 − 2q2I2 þ q4I0Þ;

PPIð2Þ ¼
Zþ∞

−∞

d4q
ð2πÞ4

q2ðP · qÞ2
D

¼
Zþ∞

−∞

d3q
ð2πÞ3 ðP

0Þ2ðI4 − q2I2Þ;

KKIð2Þ ¼
Zþ∞

−∞

d4q
ð2πÞ4

q2ðk · qÞ2
D

¼
Zþ∞

−∞

d3q
ð2πÞ3 ½ðk

0Þ2I4 − 2k0ðk · qÞI3 þ ððk · qÞ2 − ðk0Þ2q2ÞI2 þ 2k0ðk · qÞq2I1 − q2ðk · qÞ2I0�;

PKIð2Þ ¼
Zþ∞

−∞

d4q
ð2πÞ4

q2ðP · qÞðk · qÞ
D

¼
Zþ∞

−∞

d3q
ð2πÞ3P

0½k0I4 − k · qI3 − k0q2I2 þ q2ðk · qÞI1�;

and
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aðiÞ1 ¼ −
k2PIðiÞ − ðP · kÞKIðiÞ

ðP · kÞ2 − k2P2
;

aðiÞ2 ¼ ðP · kÞPIðiÞ − P2KIðiÞ

ðP · kÞ2 − k2P2
; ðA16Þ

with i ¼ 3, 4, 5.

Once we have determined the coefficients aðiÞj , we define
the following combinations appearing in Eq. (20):

AVBP
1 ¼ −

��
1þ k2

m2
V

�
að1Þ1 −

1

m2
V
að2Þ1

�
;

AVBP
2 ¼ −

��
1þ k2

m2
V

�
að1Þ2 −

1

m2
V
að2Þ2

�
;

AVBP
3 ¼ −að1Þ3 þ að3Þ2 −

k2

m2
V
ðað1Þ3 þ að3Þ2 Þ þ 1

m2
V
ðað2Þ3 þ að4Þ2 Þ;

AVBP
4 ¼ −að1Þ4 þ að3Þ1 −

k2

m2
V
ðað1Þ4 þ að3Þ1 Þ þ 1

m2
V
ðað2Þ4 þ að4Þ1 Þ;

AVBP
5 ¼ −

��
1þ k2

m2
V

�
að1Þ4 −

1

m2
V
að2Þ4

�
; ðA17Þ

AVBP
6 ¼

�
1þ k2

m2
V

�
að4Þ1 −

1

m2
V
að5Þ1 ;

AVBP
7 ¼ að4Þ2 − 4að1Þ1 − að1Þ2 P2 − að1Þ3 k2 − 2að1Þ4 ðP · kÞ

þ k2

m2
V
ðað4Þ2 þ 4að1Þ1 þ að1Þ2 P2 þ að1Þ3 k2

þ 2að1Þ4 ðP · kÞÞ − 1

m2
V
ðað5Þ2 þ 4að2Þ1

þ að2Þ2 P2 þ að2Þ3 k2 þ 2að2Þ4 ðP · kÞÞ: ðA18Þ

Next, when dealing with a particular vector-vector-
baryon intermediate state, VV 0B, in the triangular loop,
we define the coefficients

BVV 0B
1 ¼ bð1Þ1 ; BVV 0B

2 ¼ bð1Þ2 ; BVV 0B
3 ¼ bð1Þ4 ;

BVV 0B
4 ¼ bð3Þ1 mB; BVV 0B

5 ¼ bð3Þ1 ; ðA19Þ

which appear in Eq. (22). Here, the coefficients bðiÞj are

analogous to aðiÞj but replacing ωP by ωV 0.

In case of Eq. (30), we have the following coefficients:

CVBP
l ¼−AVBP

l ; l¼ 1;2;…;5

CVBP
6 ¼ ðmRþmBÞ

�
−
�
1þ k2

m2
V

�
að3Þ1 það4Þ1

m2
V

�
;

CVBP
7 ¼ ðmRþmBÞ

�
I8 −að3Þ2 −

k2

m2
V
ðað3Þ2 þ Ið8ÞÞ

þ 1

m2
V
ðað4Þ2 þ 4að1Þ1 það1Þ2 P2það1Þ3 k2þ 2að1Þ4 P · kÞ

�
;

ðA20Þ

where the integral Ið8Þ is given by

Ið8Þ ¼
Zþ∞

−∞

d3q
ð2πÞ3 I0: ðA21Þ

To determine Eq. (33), we need the coefficients DVBV 0
i ,

which are given by

DVBV 0
1 ¼ bð1Þ1 ; DVBV 0

2 ¼ bð1Þ2 ;

DVBV 0
3 ¼ bð1Þ4 ; DVBV 0

4 ¼ ðmR þmBÞbð3Þ1 ; ðA22Þ

where mBðmRÞ represents the mass of the baryon (reso-
nance) in the intermediate (final) state.

TABLE IV. Coefficients CV→PP0 , CBP→B0 , CV→V 0P0 , and
CBV 0→B0 for the final state K0Σþ. To simplify the notation, we
define Cβ ¼ cos β and Sβ ¼ sin β.

VBP CV→PP0 CBP→B0

K�0Σþπ0 −1=
ffiffiffi
2

p
−F=fπ

K�0Σþη
ffiffiffiffiffiffiffiffi
3=2

p
Cβ ð−DCβ þ

ffiffiffi
2

p
DSβÞ=ð

ffiffiffi
3

p
fπÞ

K�0Σþη0
ffiffiffiffiffiffiffiffi
3=2

p
Sβ −Dð ffiffiffi

2
p

Cβ þ SβÞ=ð
ffiffiffi
3

p
fπÞ

K�0Σ0πþ 1 F=fπ
K�0Λπþ 1 −D=ð ffiffiffi

3
p

fπÞ
ρ0pK̄0 1=

ffiffiffi
2

p ð−Dþ FÞ=ð ffiffiffi
2

p
fπÞ

ωpK̄0 −1=
ffiffiffi
2

p ð−Dþ FÞ=ð ffiffiffi
2

p
fπÞ

ϕpK̄0 1 ð−Dþ FÞ=ð ffiffiffi
2

p
fπÞ

VBV 0 CV→V 0P0 CBV 0→B0

K�0Σþρ0 −1=
ffiffiffi
2

p ffiffiffi
2

p
K�0Σþω 1=

ffiffiffi
2

p ffiffiffi
2

p
K�0Σþϕ 1 1
K�0Σ0ρþ 1 −

ffiffiffi
2

p
K�0Λρþ 1 0
ρ0pK̄�0 −1=

ffiffiffi
2

p
−1

ωpK̄�0 1=
ffiffiffi
2

p
−1

ϕpK̄�0 1 −1

AGATÃO, NIETO, KHEMCHANDANI, TORRES, and NAM PHYS. REV. D 111, 116013 (2025)

116013-14



APPENDIX B: COEFFICIENTS CPB→B0 ;…;CV→V0P0

In Tables IV–VIII, we provide the coefficients CPB→B0 ,
CV→P0P, CV 0B→B0 , CV→V 0P0 needed to evaluate the ampli-
tudes associated with the triangular diagrams shown in
Fig. 2 for the different final and intermediate states. In the
case of the coefficients related to vector-pseudoscalar-
pseudoscalar, baryon-baryon-pseudoscalar, vector-vector-

pseudoscalar vertices, we have considered an η − η0 mix-
ing angle in the range β ≃ −15° to −22° [49–51] instead of
assuming ideal mixing, which corresponds to an angle β
with sin β ¼ −1=3, i.e., β ≃ −19.43°.
It should be noted that for a general mixing angle β, the

matrix P related to the pseudoscalar fields in Eq. (11) reads
as [66]

P ¼

0
BBB@

AðβÞηþ BðβÞη0 þ π0ffiffi
2

p πþ Kþ

π− AðβÞηþ BðβÞη0 − π0ffiffi
2

p K0

K− K̄0 CðβÞηþDðβÞη0

1
CCCA; ðB1Þ

where

TABLE V. Same as in Table IV but for the KþΣ0, KþΛ and KþΛð1405Þ final states. In the case of
Ps → KþΛð1405Þ, CBP→B0 ¼ gΛ�→PB, CBV 0→B0 ¼ gΛ�→V 0B, i.e., the coupling constants of the resonance to the
PB and VB channels. Here, by Λð1405Þ, we refer to any of the two poles obtained in Refs. [52,57].

CBP→B0

VBP CV→PP0 KþΣ0=KþΛ=KþΛð1405Þ KþΣ0 KþΛ

K�0Σþπ− 1 F=fπ −D=ð ffiffiffi
3

p
fπÞ

K�þΣ0π0 1=
ffiffiffi
2

p
0 −D=ð ffiffiffi

3
p

fπÞ
K�þΣ0η

ffiffiffiffiffiffiffiffi
3=2

p
Cβ ð−DCβ þ

ffiffiffi
2

p
DSβÞ=ð

ffiffiffi
3

p
fπÞ 0

K�þΣ0η0
ffiffiffiffiffiffiffiffi
3=2

p
Sβ −Dð ffiffiffi

2
p

Cβ þ SβÞ=ð
ffiffiffi
3

p
fπÞ 0

K�þΛπ0 1=
ffiffiffi
2

p
−D=ð ffiffiffi

3
p

fπÞ 0
K�þΛη

ffiffiffiffiffiffiffiffi
3=2

p
Cβ

0 DðCβ þ
ffiffiffi
2

p
SβÞ=ð

ffiffiffi
3

p
fπÞ

K�þΛη0
ffiffiffiffiffiffiffiffi
3=2

p
Sβ 0 Dð− ffiffiffi

2
p

Cβ þ SβÞ=ð
ffiffiffi
3

p
fπÞ

ρ0pK− −1=
ffiffiffi
2

p ð−Dþ FÞ=ð2fπÞ ðDþ 3FÞ=ð2 ffiffiffi
3

p
fπÞ

ρþnK̄0 −1 ðD − FÞ=ð2fπÞ ðDþ 3FÞ=ð2 ffiffiffi
3

p
fπÞ

ωpK− −1=
ffiffiffi
2

p ð−Dþ FÞ=ð2fπÞ ðDþ 3FÞ=ð2 ffiffiffi
3

p
fπÞ

ϕpK− 1 ð−Dþ FÞ=ð2fπÞ ðDþ 3FÞ=ð2 ffiffiffi
3

p
fπÞ

CBV 0→B0

VBV 0 CV→V 0P0 KþΣ0=KþΛ=KþΛð1405Þ KþΣ0 KþΛ

K�0Σþρ− 1 −
ffiffiffi
2

p
0

K�þΣ0ρ0 1=
ffiffiffi
2

p
0 0

K�þΣ0ω 1=
ffiffiffi
2

p ffiffiffi
2

p
0

K�þΣ0ϕ 1 1 0
K�þΛρ0 1=

ffiffiffi
2

p
0 0

K�þΛω 1=
ffiffiffi
2

p
0

ffiffiffi
2

p
K�þΛϕ 1 0 1
ρ0pK�− 1=

ffiffiffi
2

p
−1=

ffiffiffi
2

p
−

ffiffiffiffiffiffiffiffi
3=2

p
ρþnK̄�0 1 1=

ffiffiffi
2

p
−

ffiffiffiffiffiffiffiffi
3=2

p
ωpK�−

1=
ffiffiffi
2

p
−1=

ffiffiffi
2

p
−

ffiffiffiffiffiffiffiffi
3=2

p
ϕpK�− 1 −1=

ffiffiffi
2

p
−

ffiffiffiffiffiffiffiffi
3=2

p
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AðβÞ ¼ −
sin βffiffiffi

3
p þ cos βffiffiffi

6
p ;

BðβÞ ¼ sin βffiffiffi
6

p þ cos βffiffiffi
3

p ;

CðβÞ ¼ −
sin βffiffiffi

3
p −

ffiffiffi
2

3

r
cos β;

DðβÞ ¼ −
ffiffiffi
2

3

r
sin β þ cos βffiffiffi

3
p : ðB2Þ

APPENDIX C: COEFFICIENTS
FðlÞ;HðlÞ; JðlÞ; � � � ;NðlÞ

The coefficients FðlÞ, HðlÞ, JðlÞ, LðlÞ, MðlÞ, and NðlÞ
appearing in Eqs. (25) and (36) can be written in terms of
the coefficients Ai, Bi, Ci, and Di as follows:

FðlÞ ¼ cðlÞF · vF; HðlÞ ¼ cðlÞH · vB; JðlÞ ¼ cðlÞJ · vJ;

LðlÞ ¼ cðlÞL · vL; MðlÞ ¼ cðlÞM · vM; NðlÞ ¼ cðlÞN · vN;

ðC1Þ

where vF, vB, …, vN are vectors whose elements are

TABLE VI. Same as in Table IV but for the π0p and
π0N�þ final states. Here N�þ represents either N�þð1535Þ or
N�þð1650Þ. In the case of Ps → π0N�þ, CBP→B0 ¼ gN�þ→PB,
CBV 0→B0 ¼ gN�þ→V 0B, i.e., the coupling constants of the resonance
to the PB and VB channels.

VBP
CV→PP0

π0p=π0N�þ CBP→B0 π0p

K�0ΣþK0 1=
ffiffiffi
2

p ð−Dþ FÞ=ð ffiffiffi
2

p
fπÞ

K�þΣ0Kþ −1=
ffiffiffi
2

p ð−Dþ FÞ=ð2fπÞ
K�þΛKþ −1=

ffiffiffi
2

p ðDþ 3FÞ=ð2 ffiffiffi
3

p
fπÞ

ρ0pπ0 0 −ðDþ FÞ=ð2fπÞ
ρ0pη 0 ðCβðD − 3FÞ þ 2

ffiffiffi
2

p
DSβÞ=ð2

ffiffiffi
3

p
fπÞ

ρ0pη0 0 ð−2 ffiffiffi
2

p
DCβ þ ðD − 3FÞSβÞ=ð2

ffiffiffi
3

p
fπÞ

ρþnπþ −
ffiffiffi
2

p
−ðDþ FÞ=ð ffiffiffi

2
p

fπÞ
ωpπ0 0 −ðDþ FÞ=ð2fπÞ
ωpη 0 ðCβðD − 3FÞ þ 2

ffiffiffi
2

p
DSβÞ=ð2

ffiffiffi
3

p
fπÞ

ωpη0 0 ð−2 ffiffiffi
2

p
DCβ þ ðD − 3FÞSβÞ=ð2

ffiffiffi
3

p
fπÞ

ϕpπ0 0 −ðDþ FÞ=ð2fπÞ
ϕpη 0 ðCβðD − 3FÞ þ 2

ffiffiffi
2

p
DSβÞ=ð2

ffiffiffi
3

p
fπÞ

ϕpη0 0 ð−2 ffiffiffi
2

p
DCβ þ ðD − 3FÞSβÞ=ð2

ffiffiffi
3

p
fπÞ

VBV 0 CV→V0P0 π0p=π0N�þ CBV 0→B0 π0p

K�0ΣþK�0 −1=
ffiffiffi
2

p
−1

K�þΣ0K�þ 1=
ffiffiffi
2

p
−1=

ffiffiffi
2

p
K�þΛK�þ

1=
ffiffiffi
2

p
−

ffiffiffiffiffiffiffiffi
3=2

p
ρ0pρ0 0 1=

ffiffiffi
2

p
ρ0pω

ffiffiffi
2

p
3=

ffiffiffi
2

p
ρ0pϕ 0 0
ρþnρþ 0 1
ωpρ0

ffiffiffi
2

p
1=

ffiffiffi
2

p
ωpω 0 3=

ffiffiffi
2

p
ωpϕ 0 0
ϕpρ0 0 1=

ffiffiffi
2

p
ϕpω 0 3=

ffiffiffi
2

p
ϕpϕ 0 0

TABLE VII. Same as in Table IV but for the πþn and
πþN�0 final states. Here N�0 represents either N�0ð1535Þ or
N�0ð1650Þ. In the case of Ps → πþN�0, CBP→B0 ¼ gN�0→PB,
CBV 0→B0 ¼ gN�0→V 0B, i.e., the coupling constants of the resonance
to the PB and VB channels.

VBP
CV→PP0

πþn=πþN�0 CBP→B0 πþn

K�0Σ0K0 −1 ðD − FÞ=ð2fπÞ
K�þΛK0 −1 ðDþ 3FÞ=ð2 ffiffiffi

3
p

fπÞ
ρ0pπ− −

ffiffiffi
2

p
−ðDþ FÞ=ð ffiffiffi

2
p

fπÞ
ρþnπ0

ffiffiffi
2

p ðDþ FÞ=ð2fπÞ
ρþnη 0 ðCβðD − 3FÞ þ 2

ffiffiffi
2

p
DSβÞ=ð2

ffiffiffi
3

p
fπÞ

ρþnη0 0 ð−2 ffiffiffi
2

p
DCβ þ ðD − 3FÞSβÞ=ð2

ffiffiffi
3

p
fπÞ

ωpπ− 0 −ðDþ FÞ=ð ffiffiffi
2

p
fπÞ

ϕpπ− 0 −ðDþ FÞ=ð ffiffiffi
2

p
fπÞ

VBV 0 CV→V 0P0 πþn=πþN�0 CBV 0→B0 πþn

K�0Σ0K�0 1 1=
ffiffiffi
2

p
K�þΛK�0 1 −

ffiffiffiffiffiffiffiffi
3=2

p
ρ0pρ− 0 1
ρþnρ0 0 −1=

ffiffiffi
2

p
ρþnω

ffiffiffi
2

p
3=

ffiffiffi
2

p
ρþnϕ 0 0
ωpρ−

ffiffiffi
2

p
1

ϕpρ− 0 1
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vF ¼ fjA1j2; 2ReðA1A�
3Þ; 2ReðA1A�

4Þ; 2ReðA1A�
7Þ; 2ReðA1Ã

�
3Þ; 2ReðA1Ã

�
4Þ; jA3j2; 2ReðA3A�

4Þ;
2ReðA3A�

7Þ; 2ReðA3Ã
�
3Þ; 2ReðA3Ã

�
4Þ; jA4j2; 2ReðA4A�

7Þ; 2ReðA4Ã
�
3Þ; 2ReðA4Ã

�
4Þ; jA7j2;

2ReðA7Ã
�
3Þ; 2ReðA7Ã

�
4Þ; jÃ3j2; 2ReðÃ3Ã

�
4Þ; jÃ4j2g;

vH ¼ fjB1j2; 2ReðB1B�
2Þ; 2ReðB1B�

3Þ; 2ReðB1B�
4Þ; 2ReðB1B�

5Þ; jB2j2; 2ReðB2B�
3Þ; 2ReðB2B�

4Þ;
2ReðB2B�

5Þ; jB3j2; 2ReðB3B�
4Þ; 2ReðB3B�

5Þ; jB4j2; 2ReðB4B�
5Þ; jB5j2g;

vJ ¼ fA1B�
1; A1B�

2; A1B�
3; A1B�

4; A1B�
5; A3B�

1; A3B�
2; A3B�

3; A3B�
4; A3B�

5; A4B�
1; A4B�

2; A4B�
3; A4B�

4; A4B�
5; A7B�

1; A7B�
2;

A7B�
3; A7B�

4; A7B�
5; Ã3B�

1; Ã3B�
2; Ã3B�

3; Ã3B�
4; Ã3B�

5; Ã4B�
1; Ã4B�

2; Ã4B�
3; Ã4B�

4; Ã4B�
5g;

vL ¼ fjC3j2; 2ReðC3C�
4Þ; 2ReðC3C�

7Þ; jC4j2; 2ReðC4C�
7Þ; jC7j2g;

vM ¼ fjD1j2; 2ReðD1D�
2Þ; 2ReðD1D�

3Þ; 2ReðD1D�
4Þ; jD2j2; 2ReðD2D�

3Þ; 2ReðD2D�
4Þ; jD3j2; 2ReðD3D�

4Þ; jD4j2g;
vN ¼ fC3D�

1; C3D�
2; C3D�

3; C3D�
4; C4D�

1; C4D�
2; C4D�

3; C4D�
4; C7D�

1; C7D�
2; C7D�

3; C7D�
4g:

TABLE VIII. Same as in Table IV but for the ηp, η0p, and ηN�þ final states. In the case of Ps → ηN�þ, CBP→B0 ¼ gN�þ→PB,
CBV 0→B0 ¼ gN�þ→V 0B, i.e., the coupling constants of the resonance to the PB and VB channels. Here N�þ refers to either N�þð1535Þ or
N�þð1650Þ.

CV→PP0

VBP ηp=ηN�þ η0p CBP→B0 ηp=η0p

K�0ΣþK0 −
ffiffiffiffiffiffiffiffi
3=2

p
Cβ −

ffiffiffiffiffiffiffiffi
3=2

p
Sβ ð−Dþ FÞ=ð ffiffiffi

2
p

fπÞ
K�þΣ0Kþ −

ffiffiffiffiffiffiffiffi
3=2

p
Cβ −

ffiffiffiffiffiffiffiffi
3=2

p
Sβ ð−Dþ FÞ=ð2fπÞ

K�þΛKþ −
ffiffiffiffiffiffiffiffi
3=2

p
Cβ −

ffiffiffiffiffiffiffiffi
3=2

p
Sβ ðDþ 3FÞ=ð2 ffiffiffi

3
p

fπÞ
ρ0pπ0 0 0 −ðDþ FÞ=ð2fπÞ
ρ0pη 0 0 ðCβðD − 3FÞ þ 2

ffiffiffi
2

p
DSβÞ=ð2

ffiffiffi
3

p
fπÞ

ρ0pη0 0 0 ð−2 ffiffiffi
2

p
DCβ þ ðD − 3FÞSβÞ=ð2

ffiffiffi
3

p
fπÞ

ρþnπþ 0 0 −ðDþ FÞ=ð ffiffiffi
2

p
fπÞ

ωpπ0 0 0 −ðDþ FÞ=ð2fπÞ
ωpη 0 0 ðCβðD − 3FÞ þ 2

ffiffiffi
2

p
DSβÞ=ð2

ffiffiffi
3

p
fπÞ

ωpη0 0 0 ð−2 ffiffiffi
2

p
DCβ þ ðD − 3FÞSβÞ=ð2

ffiffiffi
3

p
fπÞ

ϕpπ0 0 0 −ðDþ FÞ=ð2fπÞ
ϕpη 0 0 ðCβðD − 3FÞ þ 2

ffiffiffi
2

p
DSβÞ=ð2

ffiffiffi
3

p
fπÞ

ϕpη0 0 0 ð−2 ffiffiffi
2

p
DCβ þ ðD − 3FÞSβÞ=ð2

ffiffiffi
3

p
fπÞ

CV→V0P0

VBV 0 ηp=ηN�þ η0p CBV0→B0 ηp=η0p

K�0ΣþK�0 −ðCβ þ 2
ffiffiffi
2

p
SβÞ=

ffiffiffi
6

p ð2 ffiffiffi
2

p
Cβ − SβÞ=

ffiffiffi
6

p
−1

K�þΣ0K�þ −ðCβ þ 2
ffiffiffi
2

p
SβÞ=

ffiffiffi
6

p ð2 ffiffiffi
2

p
Cβ − SβÞ=

ffiffiffi
6

p
−1=

ffiffiffi
2

p
K�þΛK�þ −ðCβ þ 2

ffiffiffi
2

p
SβÞ=

ffiffiffi
6

p ð2 ffiffiffi
2

p
Cβ − SβÞ=

ffiffiffi
6

p
−

ffiffiffiffiffiffiffiffi
3=2

p
ρ0pρ0 ð ffiffiffi

2
p

Cβ − 2SβÞ=
ffiffiffi
3

p ð2Cβ þ
ffiffiffi
2

p
SβÞ=

ffiffiffi
3

p
1=

ffiffiffi
2

p
ρ0pω 0 0 3=

ffiffiffi
2

p
ρ0pϕ 0 0 0
ρþnρþ ð ffiffiffi

2
p

Cβ − 2SβÞ=
ffiffiffi
3

p ð2Cβ þ
ffiffiffi
2

p
SβÞ=

ffiffiffi
3

p
1

ωpρ0 0 0 1=
ffiffiffi
2

p
ωpω ð ffiffiffi

2
p

Cβ − 2SβÞ=
ffiffiffi
3

p ð2Cβ þ
ffiffiffi
2

p
SβÞ=

ffiffiffi
3

p
3=

ffiffiffi
2

p
ωpϕ 0 0 0
ϕpρ0 0 0 1=

ffiffiffi
2

p
ϕpω 0 0 3=

ffiffiffi
2

p
ϕpϕ −2ð ffiffiffi

2
p

Cβ þ SβÞ=
ffiffiffi
3

p
2ðCβ −

ffiffiffi
2

p
SβÞ=

ffiffiffi
3

p
0
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In the following, we give some of the elements of the vectors cðlÞF , cðlÞH , …, cðlÞN :

cð0ÞF ¼
�
−
32

3
mPs

ðmPs
−mB0 Þm2

P0 ;
16

3
ðmB0 − 2mPs

ÞmPs
m4

P0 ;−
16

3
m2

Ps
ðm2

B0 þmPs
mB0 − 2m2

Ps
Þm2

P0 ;…

�
;

cð1ÞF ¼
�
32

3
m2

P0 ;−
16

3
m2

P0 ½m2
B0 þmPs

mB0 − 2ðm2
Ps
þm2

P0 Þ�; 16
3
ðmB0 − 4mPs

ÞmPs
m2

P0 ;…

�
;

cð2ÞF ¼
�
−
32ðmB0 −mPs

Þ
3mPs

;−
16mB0m2

P0

3mPs

;
16

3
ðm2

B0 þmPs
mB0 − 2m2

Ps
þ 2m2

P0 Þ;…
�
;

cð3ÞF ¼
�
−

32

3m2
Ps

;
16½m2

B0 þmPs
mB0 − 2ðm2

Ps
þm2

P0 Þ�
3m2

Ps

;−
16ðmB0 − 4mPs

Þ
3mPs

;…

�
;

cð4ÞF ¼
�
0;

32

3m2
Ps

;−
32

3m2
Ps

;…

�
;

cð5ÞF ¼
�
0; 0; 0; 0; 0; 0;−

32

3m2
Ps

;
32

3m2
Ps

;…

�
;

cð0ÞH ¼
�
32

3
mPs

m2
P0 ðmB0 −mPs

Þ; 16
3
m3

Ps
m2

P0 ðmB0 −mPs
Þ; 16

3
m2

Ps
m4

P0 ;…

�
;

cð1ÞH ¼
�
32m2

P0

3
;
16m2

Ps
m2

P0

3
;
16mPs

m2
P0 ðmB0 −mPs

Þ
3

;…

�
;

cð2ÞH ¼
�
−
32ðmB0 −mPs

Þ
3mPs

;−
16mPs

ðmB0 −mPs
Þ

3
;−

16m2
P0

3
;…

�
;

cð3ÞH ¼
�
−

32

3m2
Ps

;−
16

3
;−

16ðmB0 −mPs
Þ

3mPs

;…

�
;

cð4ÞH ¼
�
0; 0; 0; 0; 0; 0; 0; 0; 0;

16

3
;…

�
;

cð0ÞJ ¼
�
−
32mPs

m2
P0 ðmPs

−mB0 Þ
3

;
16

3
m3

Ps
m2

P0 ðmB0 −mPs
Þ; 16

3
m2

Ps
m4

P0 ;…

�
;

cð1ÞJ ¼
�
32m2

P0

3
;
16m2

Ps
m2

P0

3
;−

16

3
mPs

m2
P0 ðmPs

−mB0 Þ;…
�
;

cð2ÞJ ¼
�
−
32ðmB0 −mPs

Þ
3mPs

;−
16

3
mPs

ðmB0 −mPs
Þ;− 16

3
m2

P0 ;…
�
;

cð3ÞJ ¼
�
−

32

3m2
Ps

;−
16

3
;−

16ðmB0 −mPs
Þ

3mPs

;…

�
;

cð4ÞJ ¼
�
0; 0; 0; 0; 0;

32

3m2
Ps

;
16

3
;…

�
;

cð0ÞL ¼
�
8mPs

m4
P0 ðmPs

−mRÞ
3

;
8m2

Ps
m4

P0

3
;
8mPs

m4
P0

3
;…

�
;
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cð1ÞL ¼
�
8m4

P0

3
;−

8mPs
m2

P0 ðmPs
þmRÞ

3
;−

8

3
m2

P0 ðmPs
þmRÞ;…

�
;

cð2ÞL ¼
�
8

3

�
mR

mPs

− 3

�
m2

P0 ;−
8m2

P0

3
;−

8m2
P0

3mPs

;…

�
;

cð3ÞL ¼
�
−
8m2

P0

3m2
Ps

;
8ðmPs

þmRÞ
3mPs

;
8ðmPs

þmRÞ
3m2

Ps

;…

�
;

cð4ÞL ¼
�

16

3m2
Ps

; 0; 0;…

�
;

cð0ÞM ¼
�
−
32mPs

ðmPs
þmRÞm2

P0

3
;−

16m3
Ps
m2

P0 ðmPs
þmRÞ

3
;
16m2

Ps
m4

P0

3
;…

�

cð1ÞM ¼
�
32m2

P0

3
;
16m2

Ps
m2

P0

3
;−

16mPs
m2

P0 ðmPs
þmRÞ

3
;…

�
;

cð2ÞM ¼
�
32ðmPs

þmRÞ
3mPs

;
16mPs

ðmPs
þmRÞ

3
;−

16m2
P0

3
;…

�
;

cð3ÞM ¼
�
−

32

3m2
Ps

;−
16

3
;
16ðmPs

þmRÞ
3mPs

;…

�
;

cð4ÞM ¼
�
0; 0; 0; 0; 0; 0; 0;

16

3
;…;

�
;

cð0ÞN ¼
�
16m4

P0mPs

3
;
8m4

P0m3
Ps

3
;
8m4

P0m2
Ps
ðmPs

−mRÞ
3

;…

�
;

cð1ÞN ¼
�
−
16m2

P0 ðmPs
þmRÞ

3
;−

8m2
P0m2

Ps
ðmPs

þmRÞ
3

;
8m4

P0mPs

3
;…

�
;

cð2ÞN ¼
�
−
16m2

P0

3mPs

;−
8m2

P0mPs

3
;−

8m2
P0 ð3mPs

−mRÞ
3

;…

�
;

cð3ÞN ¼
�
16ðmPs

þmRÞ
3m2

Ps

;
8ðmPs

þmRÞ
3

;−
8m2

P0

3mPs

;…

�
;

cð4ÞN ¼
�
0; 0;

16

3mPs

; 0;…

�
: ðC2Þ
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