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We present a detailed study of the partial decay widths of a spin-parity resonance J” = 3/2~ N* with a
mass of ~2070 MeV obtained from the coupled channel s-wave vector-baryon pN, oN, ¢N, K*A, and
K*Y dynamics. This state, which couples strongly to the K*X channel, corresponds to a nucleon with a
hidden strange quark content, in analogy to the P, states discovered by the LHCb Collaboration, and we
denote it as P,(2080). A state with such a nature can decay to vector-baryon, pseudoscalar-baryon, and
pseudoscalar-baryon resonance channels, involving triangular loops in the latter two cases. As we will
show, the partial decay widths to pseudoscalar-baryon resonance channels, like zN*(1535), zN*(1650),
KA(1405), are comparable to those related to ground state baryons in the final state, like zN, yN, KA. In
this way, reactions involving such lighter baryon resonances in the final state can be used as an alternative
source of information on the properties of an N* with hidden strangeness.
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I. INTRODUCTION

The discovery of the P, pentaquarks by the LHCb
Collaboration [1-3] has undoubtedly proven the existence
of exotic baryons whose properties cannot be understood in
terms of three quarks. Their nature and quantum numbers,
however, are still unclear, and different spin-parity assign-
ments and inner structures, like pentaquarks or meson-
baryon molecular type of hadrons, have been proposed for
describing the P, states [4—15].

The P, states, being observed in the J/y-p invariant
mass distribution of the process Ag — J/wpK~, corre-
spond to nucleon resonances with hidden charm and one
could wonder if there may exist in Nature their hidden
strange partners. If the P, states would be generated from
the meson-baryon dynamics, P/} (4450) seems to be
described as a spin-parity J¥ =3/27, isospin I = 1/2
baryon obtained mainly from the interaction of D* and
2. in the s-wave, and whose nominal mass is ~8 MeV
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below the threshold of the latter channel. One of the
relevant contributions in the description of the D* and
2. interaction consists of exchanging a vector meson, like
p, o, in the t-channel [16]. In such a case, the quark ¢ in D*
and the quark c in X act as spectators, as shown in Fig. 1. If
the quarks ¢ and ¢ are now replaced by the quarks s and s,
respectively, the D*X,. system would become K*X, inter-
acting via vector meson exchange in the 7-channel, with the
quarks s and s continuing being spectators as well. Since in
both cases, the heavy quarks in the respective systems
behave as spectators, assuming the relevant dynamics
needed to form states in such systems to be the ¢-channel
exchange of vector mesons, the formation of an isospin 1,/2
state, with J¥ =3/27 and a mass of ~2077 MeV, i.e.,
~8 MeV below the K* threshold, in analogy with D*X,,
seems almost compelling.

After the discovery of the P, states, several authors have
investigated the existence of the hidden strange partners of
the former. For instance, in Ref. [17], the 3/2 nucleon
resonances N*(1875) and N*(2120) were interpreted as
hadronic molecular states, generated from the coupled
channel interactions X*K and XK* considering a boson
exchange potential model to solve the Bethe-Salpeter
equation. In Ref. [18], by assuming that N*(1875) and
N*(2120) are indeed s-wave KX* and K*X states, and by
fixing the mass of these states to be, respectively, 1875 and
2080 MeV, the coupling constants of the former resonances
to the latter states were determined by considering the
Weinberg compositeness condition [19]. Using the obtained
coupling constants and effective Lagrangians to describe the

Published by the American Physical Society
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FIG. 1. Left: vector exchange in the t-channel for the process
D*Y, — D*Z,. Right: same mechanism but for K*T — K*Z. In
both cases, the heavy quarks behave as spectators.

vertices, the partial decay widths of the mentioned N*
resonances to final states formed by vector-baryon, pseu-
doscalar-baryon and KA(1405), KA(1520) were deter-
mined by considering a pion exchange in a triangular loop.

The production of hidden strangeness nucleon resonan-
ces with a mass of ~2000-2100 MeV has been theoreti-
cally studied [20-25] in the past and related to some of the
bumplike structures observed in the experimental data in
the same energy region [26,27], in different processes
involving final states such as ¢N, KX. More recently,
within the context of the existence of hidden strangeness
partners of the P, states, the presence of P(2080) has been
investigated in data on processes such as yp — ¢p,
Ktp - Kt¢p, 7p = ¢n [28-31]. In some of these
studies, the existence of such states, the mass, width,
and quantum numbers are assumed using the analogy with
the D*X, interaction, and the coupling constants needed to
evaluate the corresponding cross sections are determined
either via the Weinberg compositeness condition, consid-
ering the P, states to be bound states of two hadrons whose
threshold is close to the assumed mass, or from fits to the
data [29-31].

Before continuing with further discussions, we should
mention that no N* resonance with a mass of 2080 MeV
and quantum numbers J” = 3/27 is listed in the most
recent version of the Review of Particle Physics (PDG)
[32]: before the 2012 version of the PDG, any evidence for
N* resonances with J¥ = 3/2~ and mass above 1800 MeV
were collected under the label of N*(2080). It is worth
recalling that there existed a proposal for replacing
N*(2080) by D,3(1895) and identifying it as a missing
nucleon resonance [33,34], on the basis of the SAPHIR
experimental data on yp — K*p. In a different work, it
was proposed that N*(2080) could be related to
N*(2200)5/2 [35]. In a more recent work [36], it was
shown that the contribution of N*(2080) is small but not
negligible, and that P;5(1900) seems to be more present in
the process. In fact, N*(2080) seems to remain consistently
absent in the latest analysis of data on the photoproduction
of KA/KX [37-39]. This could imply that N*(2080)
couples weakly to KA/KX states, and other alternative
processes could be more useful to determine the fate of this
state. It is one of the purposes of this paper to provide
useful alternatives, which are much needed given that the
state has been removed from the PDG listings: in the latest

volume of PDG, two JP =3/2~ states, a three-star
N*(1875) and a two-star N*(2120), are cataloged.
Further, a closer look at the papers listed in the PDG in
these entries shows a large uncertainty (~100 MeV) in
these states’ mass and width values.

Despite the absence of N*(2080) in the latest Review of
Particle Physics, theoretical evidence for its existence and its
nature as a 3/2~ K*X quasibound state was reported in
Ref. [40], long before the discovery of the P, states by the
LHCDb Collaboration. In Refs. [40,41], the coupled channel
K*%Z, K*A, ¢N, oN, and pN vector-baryon dynamics was
studied by using effective Lagrangians based on the hidden
local symmetry [42], considering ¢-, s-, u-channel exchange
contributions as well as a contact interaction whose origin
lies in the nature of the Lagrangian considered. The
amplitudes were projected on the s-wave and further on
the spin 1/2 and 3/2 bases. As a consequence of the
aforementioned dynamics, the generation of several J¥ =
1/27 and 3/2~ N* and A resonances were found, and, in
particular, for the case of J¥ = 3/2~ and isospin 1/2, a pole
in the second Riemann sheet with a mass of ~2071 MeV
and a width! of ~60-70 MeV was obtained, with the state
having a large coupling to the K*% channel.

Denoting the former state as N*(2080), given its large
coupling to K*X and the proximity of its mass to the
threshold of this channel, such a state can be considered as a
nucleon resonance with hidden strangeness. In analogy to
the notation for the P, states, we could use the nomenclature
P,(2080) to represent the state, where the letter P refers to
the five quark (pentaquark) content (four quarks and an
antiquark) and the subscript s to the presence of a s5 pair in
the inner structure of the state.

It is worth mentioning that the generation of a nucleon
resonance with hidden strangeness content, from vector-
baryon dynamics, was also investigated in Ref. [43]. In this
former work, considering #-channel exchange contribu-
tions, spin-degenerate amplitudes were obtained, which
led to the finding of two N* resonances, both with a mass
of 1977 MeV, and a width of 106 MeV, but different spin-
parity quantum numbers (one having J =1/2 and
another having J” = 3/27).

The study of Ref. [43] was revisited in Ref. [20], where
the cross sections for yp — K°ZF, yn — K°2° were deter-
mined and the role of the production of N* resonances with
hidden strangeness near the K*A and K*X thresholds was
studied. By readjusting the model parameters used in
Ref. [43] to regularize the vector-baryon loops entering
the Bethe-Salpeter equation, the pole at M —il'/2 =
1977 —i53 MeV was shifted to ~2035 —i63 MeV, pro-
viding an interpretation to the bump observed in the cross
section of yp — K°Z* at energies around 2000 MeV
(which is close to the K*A threshold). In this way, according

"There is a typo in the original work, in which the full width
obtained for the state is referred to as the half-width of the state.
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to the authors of Ref. [20], there should be two N*
resonances with hidden strangeness at ~2035—i63 MeV,
one with JF =1/2= and other with J¥ =3/2". An
enhancement in this energy region has been reported
in Ref. [44].

The findings of Refs. [40,41] are different to those of
Ref. [43]. In Refs. [40,41] N* resonances with different
masses for J* =1/2 and J¥ = 3/2~ were obtained in
the energy region of ~1900-2100 MeV. In J¥ = 1/2~
two overlapping poles were found at 1801 —i96 and
1912 — i54 MeV, which produce one peak on the real
axis and were related to N*(1895). Such a nature of
N*(1895) was found to be useful in describing the cross
sections for yp — K*TA(1405) [45]. The J¥ = 3/2" state,
obtained at ~2071 — i35 MeV, was related to the JX =
3/2~ N*(2080) appearing in the previous version of
the PDG.

To summarize this discussion, we can say that there
seems to be progress gathering evidence for the existence of
a 3/2~ state with mass around 2080 MeV in recent times.
Some works assume such a possibility and search for the
signals of a hidden strange partner of P.(4457) in the
experimental data, and in some works a simplified model is
used to determine meson-baryon scattering amplitudes.
The experimental data too are still scarce to draw clear
conclusions. Here, we benefit from the work of Ref. [40]
which, using a more complete framework, predicted the
existence of N*(2080), and study its decay to channels like
zN, nN, KA. We also explore decay channels involving
baryon resonances, such as zN*(1535), zN*(1650),
nN*(1535), KA(1405), which could serve as alternative
processes to search for a P-state, i.e., a nonstrange partner
of the D*XT quasibound state.

II. CALCULATION OF THE PARTIAL
DECAY WIDTHS

We start the discussions by showing in Fig. 2 different
decay mechanisms for the P;(2080) found in Ref. [40].
Since the former state is obtained from the s-wave
vector-octet baryon (VB) coupled channel dynamics with
JP =3/27, we can have a direct decay mode of P(2080)
to the VB channels considered for its generation: K*X,
K*A, ¢N, oN, and pN. In this case, the amplitude
describing such a process can be written as

—itp _y,p, = igp v,p,i,(P = k)ey (K)up,(P), (1)

where gp _yp, represents the coupling constant of
P(2080) to a VB channel i constituted by a vector V;
and a baryon B;, e"‘/i is the polarization vector associated
with the vector meson V;, up , is a Rarita-Schwinger spinor
[46] related to P, and P*, k* represent the four-momenta of
P, and of the meson in the final state, respectively. To
simplify the notation, the dependence of the spinors on the

V (k) P’ (k)

Vk+q)

Py(P)

B',R(P—k)

FIG. 2. Decay mechanisms for P;(2080) [J* =3/27] to VB
(left) and to PB/PR (right) channels, where R represents either
N*(1535), N*(1650), or A(1405), which are J* = 1/2~ states.
The four-momenta assignment for each particle is shown between
brackets.

spin projection of the corresponding particle has been
omitted in Eq. (1). The Dirac and Rarita-Schwinger spinors
related, respectively, to particles of four-momenta Q, masses
m and M and spin projections « and /3, are normalized such
that [22,29]

12
_ + ml
> w(.@ue.q =2,
a=-1/2 m
iE 0+ Ml
Z uy(Q7ﬁ>ﬁu(Q’ﬂ) = M Pﬂl/’ (2)
p==3/2
where
1 2Q Qy 4 Qu _}/DQ
PﬂU:_gﬂU]I+§yﬂyD+§ ;‘;2 I+ £ IM ”’

with I being the identity matrix.

When considering the process V;B; — P, — V;B; in the
s-wave, the amplitude in Eq. (1) gives rise to the following
isospin 1/2, s-wave, and spin 3/2 projected amplitude

Tl.sj:3/2, i.e., I1(JP) = 1/2(3/27), in the nonrelativistic limit,

_ 9p.—v,B;9P,~V B,
T.S.73/2 _ s2ViBIP VB
K (\/E) N mp_ =+ iFPJ/2

with mp (I'p ) being the mass (width) of P(2080) and /s
representing the center-of-mass energy of the system.
Equation (3) shows that the coupling constants gp _y.p.
needed in Eq. (1) can be directly obtained from the residue
of the r-matrix describing the V;B; — VB, interaction in
which P, is dynamically generated. These coupling con-
stants were determined in Ref. [40] from the analytical
continuation of the #-matrix in the second Riemann sheet.
Alternatively, it is possible to calculate the mentioned
coupling constants by using the f-matrix determined in
Ref. [40] on the real-energy plane. In this case, from
Eg. (3), we can calculate the coupling constants gp _,y g, as

(3)

Tp, s
9.V, = J i Ti ). (4)
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For a channel j # i, the couplings gp,—v,p, are obtained

. 5=3/2 5=3/2 :
from the ratio between T7;; /2 and T;; /2 at Vs =mp_ie.,

§=3/2
T ! (mp,)

-2 - 5
T mp) >

In this way, all the relative phases between the couplings for
i #j are all related to the same channel i. This latter
procedure of calculating the coupling constants is more
convenient when considering the finite width of the p- and
K*-mesons through a convolution of the loop functions
while solving the Bethe-Salpeter equation for the coupled
channel system. Here, we follow the latter approach and
provide the obtained coupling constants in Table I. As can
be seen in the table, the coupling of P(2080) to the K*X
channel, whose nominal threshold (2085 MeV) is the
closest to the mass of P, is the largest, as implicitly
assumed in Refs. [29,30] when considering the Weinberg
compositeness condition to determine the coupling con-
stant of P;(2080) to K*X by considering P, to be a K*X
bound state. However, this does not necessarily mean that

|

9p,~v;B; = 9P~V B,

Mp, Ip1’

FP\.—>VI-B,-(mP\.’ my,, mB,») =

where |p;| is the modulus of the center-of-mass linear
momentum of the particles in the final state, sp_is the spin
of P¢(2080), O(---) is the Heaviside ®-function, and the
symbol Zpol represents summing over the polarizations of
the particles in the initial and final states. The finite width of
P, can be incorporated by considering a convolution of the
expression in Eq. (6) with the corresponding spectral
function for P,:

Mpy +2rP~"
1 - -
FP,-—»ViBi - N— / dex'DPy (me)
PS
mp —=20p,
X Fp\__,ViBi(ﬁ’lP‘_, mvi’ mBi)’ (7)
where
1 1
7 — —7Im ’ 8
pP,y(me) Js (ﬁlpx —mp, + ZFPA/2> ( )

and Np_ is the normalization of the spectral function of
Eq. (8) when considering 7ip € [mp —2'p ,mp +2Ip |,

TABLE I.  Coupling constants (dimensionless) of P(2080) to
the vector-baryon channels, in the isospin 1/2 basis, considered
for its generation.

Channel pN wN ¢N
Coupling —-0.231 —i0.284 —0.175+i0.038 0.285 + i0.01
Channel K*A K*Z

Coupling  0.112 +70.553 2.313 — i0.856

the other coupled channels listed in Table I will have no
relevant contributions to the partial decay widths of P,
especially when considering the triangular loop mecha-
nisms shown in Fig. 2, where the interference effects
between different coupled channels can play a relevant
role obtaining the partial decay widths.

With the coupling constants listed in Table I, and
considering the rest frame of the decaying particle, the
amplitudes in Eq. (1) can be evaluated and the partial decay
width of P (2080) to a V,B; channel can be deter-
mined from

—— tp v lP®(mp —my —mp), 6
me‘v (277:) 2SP‘\_ + 1 ;| P.y V,B,| ( P“- V, B,) ( )

mp,+20p,

Np = dinp pp (fp,). )

mp,—20p

Note that the effect of the finite width of the vector mesons
in the final state is already present in the coupling constants
listed in Table L.

In the case of P, decaying to pseudoscalar-baryon (P;B;)
or pseudoscalar-baryon resonance (P;R;, with R; having
JP =1/27) channels, the decay mechanism proceeds via
triangular loops, as shown in Fig. 2. Now we can have
contributions from the exchange of pseudoscalars (P) or
vector mesons (V') between the vectors (V) and baryons
(B) produced in the primary vertex. For instance, we can
have channels in the final state like zN, N, KA, KX, 'N,
KA(1405), zN*(1535), nN*(1535), or zN*(1650), and
intermediate states in the triangular loop like K*2z, K*X7,
K*3y', KAr, pNK, oNK, ¢NK, K*Xw, etc. Thus, to
evaluate the contribution to the partial decay widths of P
from the diagrams represented in Fig. 2, we need ampli-
tudes describing the vector-pseudoscalar-pseudoscalar
(VPP), vector-vector-pseudoscalar (VVP), pseudoscalar-
baryon-baryon (PBB), and vector-baryon-baryon (VBB)
vertices. These latter contributions are determined from
effective Lagrangians based on the chiral and hidden local
symmetries [42,47,48], with
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Lypp = —ig(V”[P,aﬂPD,

G
Lyyp = 7§€”Daﬁ<0ﬂ‘/y5avﬂp>,

D + F
Lppp = \ﬁf,, (By"ys0,PB) — f—<37"}’535 P),
Ly = gl(Br,[V*, B]) + (By,B)(V¥)], (10)
where 9= mV/(zfn)’ my = mp’ G= 392/(4ﬂ2f7z)’
D ~080, F~046, f,~93MeV, u=.iP/(V2fa),

u,=iu'0,Uu’, U=u?, P, B, and V* are matrices whose
elements are, respectively, the pseudoscalar, baryon, and
vector fields from the octet,

K- K° -+
B=| = -Z44
B~ =0 —=A
ﬂ\/go pt Kt
vV, = o w—\/_g" Ko |, (11)
K* I_(*O ¢

and the symbol (- - -) indicates SU(3) trace. Here ideal n-’
mixing, i.e., a mixing angle of f ~ —19.43° (sin f = —1/3)
has been assumed when writing the elements of the matrix
P. A value of fin the range ~ — 15° to—22° is compatible
with the experimental data [49-51], and such uncertainty
will be considered in the calculation of the partial decay
widths. The expression of P in terms of a general mixing
angle f can be found in Appendix B.

In the case of a J* = 1/2~ baryon resonance in the final
state, we consider the amplitudes [45]

—itpp_g = igr_ppitg(p)ug(P—k—q),

. g -V —
—Ulypp=— R\/gBelé/(Q)”R(P)YyYSMB(P_k_q)7 (12)

with gr_pp(y'p) being the coupling constant of the reso-
nance R to the PB and VB channels considered for its
generation and u being the Dirac-spinor related to the J¥ =
1/2~ baryon in the final state. The factor 1/+/3 in Eq. (12)
has its origin in the fact that the gg_yp coupling in
Refs. [41,52,53] are determined by parametrizing the
meson-baryon #-matrices as Breit-Wigner amplitudes while
Eq. (12) provides a spin dependent expression (see Ref. [45]

for more details). Here we consider the low-lying A and N*
resonances for which phase space is available for decaying,
ie., A(1405), N*(1535), and N*(1650), and use the
coupling constants determined in Refs. [41,52,53], where
PB and VB channels were treated as coupled channels when
solving the Bethe-Salpeter equations and the couplings
constants were determined from the residues of the corre-
sponding 7-matrix in the complex energy plane.

In the case of the process P, — P'B’ shown in
Fig. 2, using the previous amplitudes and the effective
Lagrangians in Eq. (10), we get the following contribution
for a particular vector-baryon-pseudoscalar (VBP) channel
in the triangular loop shown in Fig. 2:

V . —_
—itp _,p/ = 9Cpp_pCy_ppgp,~vpilp (P)7s

[(zp T (g + map )Y (=1 + k1)

K

+19 - kﬂ1(4>} Wb (P), (13)

where Cpp_p and Cy_ pp are coefficients obtained from
the effective Lagrangians of Eq. (10) and

2
) k (1 e
Il/ =1 ]Il/t ]L/ s
H ( 2) b 2 dop

Vv Vv
K2 1
I£2) _ <1 _ 2)]19) +—2]I£4),
nmy, my,
k> 1
3 4 5
1P = <1+_2)]I’(‘)_WH’(‘)’
\%4 |4
Neo) , 1
% = <1——2)]1U +—17), (14)
my my
with
0 _ / d'q 09 0 _ / d*q 49,9,
o (2z)* D’ o 2z)* D °

® :/ dq q,. @ :/ d'q ¢’q,
’ (2z)*D’ : 2r)* D’

4 4
) _ [ 49 99, — (D)
L _/W IDﬂ’ ]1(6)_9144]1””’
= g1
D=[(P-k—q)*—m3+ie|[(k + q)* —m} + ie]
X [q* — m3 + ie]. (15)

It should be noted that the expressions in Egs. (12)—(15)
depend on the particular channel considered in the final
and intermediate states, but to simplify the notation we
omit writing such a dependence.
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The integrals in Eq. (15) can be written as combinations
of the four-momenta P, and kz by using Lorentz covari-

1)

ance. For example, after integrating in d*q, ]I,(”, must be a
symmetric tensor of order 2 depending on the four-
momenta P and k. Thus, we can write

1, = a\"g,, +a"P,P, +a ki, +d\" (P, +P,k,),
(16)

where aﬁl), j=1,2,...,4 are the coefficients of the

combinations, and which need to be determined. Similar
arguments can be used for the other tensor integrals. Details
on the calculation of the aﬁ-l),
(which depend on the final and intermediate states) can be
found in Appendix A. The main steps to follow are to use
the Passarino-Veltman decomposition of tensor integrals
[54], then determine the dg° integration analytically by
using Cauchy’s theorem and the d*¢ integration numeri-
cally, by using a cutoff or form factors to regularize it. We
have varied the cutoff in the range 600-850 MeV and
considered three types of form factors at the vertices
(Gaussian, Lorentz, and a Heaviside ®-function), and
estimated uncertainties in the results.

In terms of the ay’) coefficients, the amplitude for the

process P, — P'B’, considering the different VPB inter-
mediate states, thus, exchanging pseudoscalars in the
triangular loop of Fig. 2, can be written as

i=1,2,...,5, coefficients

__..pseudo . VBP
Up _pp = l§ :IPS—>P’B’
VBP

= gy (p)yst (A Ay (P).  (17)

where

5
$(AA) =S RAWY + (A + mpA)PIT)

k=1
+ AeP, + Ark,. (18)
In Eq. (18), Ty;,) represents the kth element of 7',,, with
Ty, = {9u- PP, kk,, Pk, Pk, }, (19)
and A; and A; are coefficients given by
A= ZCPBﬁB’CV—»P’PgP\.—»VBAlyBP»
VBP
Ai = ZCPB—>B’CV—»P’PgPS—WBmBAIVBP’ (20)
VBP

with i =1,2,...,7. The AYBF coefficients appearing in
Eq. (20) depend on the four-momenta of the initial and final
()

particles as well as of a; ", and their definition can be found

in Appendix A.

In the case of exchanging a vector (V') between the
vector and baryon produced in the primary vertex of the
diagram in Fig. 2, we find the following amplitude
describing the process when considering contributions
from the different intermediate VBV’ channels:

__ievector . _ ¢ VBV’
p Spp = l§ :th—>P’B’
VBV'
G

where

17 (B) = €y k” [(Blg“"’ + ByPoP?
+ B3Pa/k5)y0yﬂ/ + (B4 _ mB’Bs)Pa,yﬂ/ 7

B; = ZgPS—>VBCV’B—>B’CV—»V’P’BIVV/B’ (22)
VBV

with i = 1,2,...,5. The BYV'? coefficients appearing in
Eq. (22) are defined in Appendix A. They depend on
coefficients, b}l), which can be obtained from the expres-

sions for aﬁ-w replacing wp(g) by wy(q) = \/q* + mi,.

The Cyp_p, and Cy_yp in Eq. (22) are coefficients
obtained from the Lagrangians in Eq. (10), and their values
can be found in Appendix B.

Using Egs. (17) and (21), the sum over the polarizations
of the initial and final states for

tp—pp|* = |t1p:ie_u$3/ + : (23)

can be calculated, obtaining

Dl = D IRy P4 D I

pol pol pol

+ 2Re{ Zzﬁjﬁ‘iﬁ’,g,(r;ﬁ%w,)* } (24)

pol

where
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| tpseudo
P,—P B’

pol 4m3/mps

9?7

4m3/mPS =0

2 G 2
Sltp = 21O gy

pol 8m pm P

g6l $
8m3/mp =0

(P - k),

(5 - A AP+ g ol 4 )

{(ﬁ ) P B)(P + mp, )P ’(B*)]

¥
E pseudo vector
H P k tP _>P/B/ <tP _>P/B/>

pol

2G ~ ]~
== G e st A AP )P B
4\/§m3/mp‘_
. lgPG 24:](1) (P k) (25)
R e — . ,
4\/§m3/mpl‘ 1—0

with

12 (B*) = €youph” [—(B’{ g% + B3P PY
+ B5P7 k% Yy gy? + 2B3PU K

+ (B; — mp B%)P¥ yﬂ’] . (26)

As can be seen from the preceding equations, the traces
present in Eq. (25) can be written as an expansion of powers
of P-k, with F), H() and JU) being the coefficients for
such expansions, and their values are given in Appendix C.

Next, we can also have a resonance, like A(1405),
N*(1535), and N*(1650), in the final state of a decaying P,
since the former resonances have sizable couplings to PB
[55-60] and VB channels [41,52,53,61,62]. We have
considered final states formed by a pseudoscalar and one
of these resonances, which we denote as R. As shown in
Fig. 2, the decay mechanism of P, — P'R proceeds via
triangular loops as well. In this case, the amplitude
describing such a process, involving the exchange of
pseudoscalar mesons between the hadrons of the primary
vertex, can be written as

— N pvep
E : P—P'R

VBP

tpseudo

pueude = gigt,” (C)ulh (P),  (27)

where
7
= Z Ck Ul(lk)’ (28)
k=1

with U ,Sk) being the kth element of

|
U;l = {}'ygzzw PP/U kklﬂ Pkﬂv Pkwpw ;4} (29)

In Eq. (28), C; are coefficients given by

C = ZQR—»PBQPWVB Cy_ppCY™, (30)
VBP

with i =1,2,...,
)

7, and the definition of CYBP, which

depend on a;’, and the four-momenta of the particles in the
initial, intermediate, and final states, can be found in
Appendix A.

In the case of exchanging a vector meson between the
particles produced in the primary vertex of the triangular
loop for the reaction P, — P'R, the amplitude can be
written, once the contribution from different VBV’ chan-
nels is included, as

tVCCtOI‘ 1

e = %Gw)rﬁ” (D)uy (P),  (31)

where

D / oo’ o /
t</ >(D) == €/4'l/a/ﬂ/kﬂ 75[(D19 @ + DzP Pa

+ D3Pk g = DaPUY) (32)
with
D; = Z9R->V’BQPS—>VBCV—>V’P’D,VBV/, (33)
VBV'

where i = 1,2, ..., 4. We refer the reader to Appendix A for
the definition of the coefficients D2"". We should mention
at this point that the coupling constants gz_ pp and gg_y/p
can be found, for instance, in Refs. [41,53]. There, n — 1/
mixing was not considered, but the coupling constants of R
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to the channels #B (5 B) can be estimated by multiplying  finding
those obtained in Refs. [41,53] by cos f (sin ), where the
latter factor is the coefficient multiplying the octet compo- 2 pseudo |2 vector |2
nent in the wave function of 5 (') in terms of the singlet and Z);'tp —rrl” = Zo;ltp —rrl Zol:ltp il
octet of SU(3) [43]. P P P
; C0n§idering the amplitudes of Egs. _(27) and (31), we can + 2Re { Z t%i‘ilng ( t;ic_t?;/zeﬁ } . (35)
etermine the sum over the polarizations of ool
seud
ltp, el = |t Zpg + O pg (34)  Where

2 2 4
tpseudo/ 2 _ |g| T { _ t(C) C P””tgc) C* } _ |g| L(l) P-k l,
%1] PS_,PR| 4m—RmPs r (P k + mR) M ( )(P + mPS) ( ) 4mRmPS — ( )
G|? D 15 (D G|* °
frector 2 _ | T { [(, ) D Puutg ) (* } — M(Z) P-k l’
§| Px_’PR‘ 24mRmPs r (p+mR) vV ( )(P+mP:) v ( ) 24mRmP s ( )

U G /
S (155n) = G T (B moi QP+ mp 7 (D)
pol ’ ' 4\/§mRmP.x
4
. 4G
=i———) NOP-k), 36
4\/§mRme; | ) o

with the coefficients L), M, and N listed in the
Appendix C.

With the above amplitudes, the partial decay width of
P, — PiB!, or P, — P!R;, can be determined from Eq. (6)

[ A 12

implemented by convoluting Eq. (6) with the correspond-
ing spectral function for the resonance, i.e.,

replacing > .o [1p ~v.5, > by either > pol 1P P8, > or | et 2,

2 ol |tpb\__>P;Rl_|2, and my, by mp, mp by mg. The unstable  T'p _prp, NN / dinp pp (itp,)

character of the vector mesons in the intermediate states has PR, mp, —2Tp

been taken into account replacing wy vy — i€, with wy ) pig 420

representing their energies, by @y — Ly /2, with o y y y

'y (v being their widths. In the case of having a resonance X diitg pr, (g, )Up ik, (p, 1y i, ),
in the final state, its unstable character has been Mg —20,

TABLE II.

Partial decay widths (in MeV) of P(2080) to final states formed by a pseudoscalar and an octet baryon and a pseudoscalar

and A(1405)/N*(1535)/N*(1650). We present the results obtained by considering the triangular loop mechanism of Fig. 2, including
only the exchange of pseudoscalars between the vector and baryon produced from the primary vertex (P exch.) and considering the
exchange of vector mesons too (P + V exch.). Here A;(1405) [A,(1405)] represents the lower (higher) pole related to A(1405)

[53,56,57].

Width Width

Channel P exchange P 4 V exchange Channel P exchange P 4 V exchange
ztn 0.77 £0.21 0.95 £0.27 KA, (1405) 5.05£0.76 5.10£0.77
p 0.38 £0.11 0.47+0.13 aTN*0(1535) 1.18 £0.28 1.18 £0.28
np 0.87+£0.23 0.77 £0.21 2ON*F(1535) 0.59 £0.14 0.59 +£0.14
KA 3.83 +£0.84 3.74 £0.82 nN*9(1535) 0.33 £0.05 0.34 +£0.06
K*x0 1.56 £0.31 1.45£0.29 7 N*0(1650) 0.34 +£0.03 0.26 +0.02
KO+ 3.11 £0.62 2.90 £ 0.57 2ON*+(1650) 0.17 £0.01 0.13 £ 0.01
n'p 0.014 £ 0.005 0.07 £0.02

KA (1405) 16.97 £ 2.67 17.16 £2.71
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with

pr,(Mg,) =—llm<~ 1 )

V mR[ - mR[_ + ZFR[/Z

mR[+2FR[
Ng, = ding pr, (fig,). (37)

mp.—2I'g;

III. RESULTS

In Table II we show the partial decay widths obtained for
the processes P;(2080) — P'B’, P'R without considering
the convolution over the widths of the P, and of the
resonance R in the final state. The central values obtained
represent the average values resulting from consideration of
different form factors at the vertices, different cutoffs in
those form factors as well as different # — 7’ mixing angles,
while the uncertainty shown in the results of Table II
corresponds to the standard deviation obtained. As can
be seen, the contribution to the partial decay widths of
diagrams in which a vector is exchanged between the vector
and baryon produced at the primary vertex of the diagram in
Fig. 2 is small, except for the case of the #'p final state.

It is interesting to notice that the partial decay width of
P,(2080) to pseudoscalar-baryon channels with hidden
strangeness, like KA (I'xy = 3.74 £ 0.82 MeV) and KX
(Tky = Tg+so + Tgog+ = 4.35 £0.86), is larger than the
partial decay width to a channel like zN Iy =
[y + 10, =1.42+£0.40 MeV). This result suggests
that considering reactions in which P(2080) is produced
and decays to a final state like KX and KA can be more
relevant than those involving zN for identifying the
generation of P (2080). But even more interesting is
the fact that the partial decay width of P,(2080) to a final
state formed by zN*(1535), for which T’ y«(1535) =
Loeno(isssy + Doy is3s) = 1.77£0.42 MeV,  is  also
comparable to the previous partial decay widths. There
are several studies suggesting that N*(1535) has a sizable
hidden strangeness KX component in its wave function
[41,58,59], producing a partial decay width of P (2080)
which is similar to that of zN, even if there is more phase
space available for the latter channel.

As can be seen in Table II, the decay of P,(2080) to
KA (1405) produces the largest contribution of the final
states considered. Here we denote as A;(1405) and
A, (1405) to the lower and upper mass poles, respectively,
obtained in Refs. [53,56,57], where a double pole structure
is suggested for A(1405), with the lower (upper) pole
having a mass ~1380 (1426) MeV and a larger coupling to
the #X (KN) channel. In this way, reactions with a final
state like K7X, where zX has its origin in the decay of
A(1405), can be very relevant to extract information on the
properties of P(2080).

TABLE III.  Partial decay widths (in MeV) of P(2080) to the
vector-baryon channels (in the isospin 1/2 basis) used for its
generation in Refs. [41,52].

Channel Width
pN 5.66
oN 1.33
¢N 1.92
K*A 6.64
KX 49.97

Considering all the partial decay widths listed in
Table II, we obtain a width of ~35 £ 6 MeV, which is
to be added to the width of ~60-70 MeV obtained from
vector-baryon channels in Ref. [41]. In this way, within our
model, summing up the partial decay widths to all
channels, the total width for P (2080) turns out to be
around 100 MeV. Thus, using as an estimation for the total
width of P,(2080) a value of ~100 MeV, we determine the
partial decay widths of P, to the vector-baryon channels
investigated in Ref. [41]. We can also estimate the effect of
convoluting the partial decay widths of P (2080) to P'B’
and P’'R with the spectral function related to P and, for the
P'R channels, we can incorporate the finite width of the
resonances R in the calculation of the partial decay widths
of P,(2080). The results obtained are similar to those
found without implementing such effects, with the excep-
tion that when varying the masses of P, and R, the channel
nN**(1650) would be open for decay, finding a very small
partial decay width (~0.005 MeV).

In Table III we list the partial decay widths of P(2080)
to the vector-baryon channels considered in Refs. [41,52].
As can be seen, the largest contribution to the width comes
from the K*X channel, to which P, couples more strongly,
and whose nominal threshold is slightly above the mass of
P, thus, the convolution here plays a relevant role for the
calculation of the decay widths.

It should also be mentioned that the consideration of all
the VB channels listed in Table III is necessary when
determining the partial decay widths of P, — P’'B’, P'R via
the triangular loop mechanism shown in Fig. 2. For
instance, considering only the primary vertex P, — K*X,
in view that the coupling constant of P; to K*X is the
largest, drastically reduces the partial decay widths found.
For example, to mention a few cases, the partial decay
width to zN would be ~26 times smaller, to KX it will be a
factor of ~2 smaller, and to #/N about 3 times smaller.

IV. PROCESSES USEFUL FOR STUDYING
THE PROPERTIES OF P,

Our study shows that the P, state couples strongly to
K*X and KA(1405) channels. These findings imply that
processes with KzX final states would be the most
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K* K

K, K* p/3
N —~4 3

K
K
V. K* V1
p/4 T
N by N
N*, P N*, P A(1405)
: : )
K
V1 K* V4 K
T VA
N z N
N*, ["S N*, P.\ A(1405) >

FIG. 3. Different diagrams contributing to the process
n~p — KnZ.

appropriate ones to study the properties of P,. We find it
useful to provide concrete examples of processes that are
going to be studied, those on which data are already
available, and those that can be studied in the existing
experimental facilities.

The first encouraging example is a proposal to inves-
tigate the 7~ p — KX process, which is currently being
prepared to be submitted for measurements at the J-PARC
(Japan Proton Accelerator Complex) facility [63]. Given
our findings, besides a K/K* exchange in the #-channel, an
exchange of the P, state in 7~ p — KzX would proceed
through the s- and u-channel diagrams shown in Fig. 3. The
results obtained in our present work can be used to describe
the vertices P, — zN, K*X, KA(1405) in a theoretical
analysis on the process. For a complete study, one must
include exchange of other possible N*s following Ref. [45],
though the strong couplings of P, to K*X and KA(1405)
found in our present work indicate that the exchange of P,
must dominate. In fact, the results of this work can also be
used to study the excitation of P, in the yN — KA(1405)
and such a consideration can improve the description of the
experimental data studied in Ref. [45].

With the recent progress in the analysis of data on weak
processes, another source of useful information on the
properties of P, can be decays of heavy hadrons like A,. In
fact, an attempt to describe the data on A7 — 7%p¢ has

A+ 20

C u

.
vy

FIG. 4. The weak decay A7 — z°K**X° where K** and X°
can interact and produce P (2080), which can decay to K*X.

been made in Ref. [64], and it was shown that interesting
effects like triangular singularities can be seen in the data,
though the statistics are poor at this moment. Findings of
our work can be used to further analyze A7 — 7°pg.
However, even though the phase space would be small, data
on Al — 7°K*+X°, if measured, could show a much better
signal of the P, state in the K** X invariant mass spectrum
[or in that of KzX, where the kaon and the pion would
come from the decay of K*(892)]. A possible mechanism
for such a weak decay of A, is shown in Fig. 4. We hope
that data on such a process can be obtained in the near
future. Yet another possibility could be the process
w(3686) — pK**X°, which is similar to w(3686) —
pK*tA studied by the BESIII Collaboration [65]. The
invariant mass spectrum of the K*TA system shown in
Ref. [65] does not show any clear evidence of the presence
of the P, state, which can be understood from the weak
coupling of P, to K*A found in our work. However, a
similar process, with X present in the final state, instead of
A, should be more useful to find a clear signal of P,. We
encourage experimental groups to determine data on such a
process.

V. CONCLUSIONS

The interest in studying the existence of N* resonances
with hidden strangeness and masses around 2000 MeV has
grown since the discovery of the P, states by the LHCb
Collaboration. Understanding the existence of lighter
partners of these P, states with hidden strange content is
part of the program of several experimental collaborations.
However, detecting such states can be challenging due to
the existence of several N* resonances in the same energy
region. For this reason, studying the decay properties of
these states and proposing nonstandard final states, where
the hidden strange quark content of the state could play a
major role, is important for a better understanding of the
properties of these states. In this work, we have focused our
attention on the J¥ = 3/2~ P(2080) state generated from
vector-baryon dynamics in Refs. [41,52] and show that its
partial decay widths to channels like KX, KA, zN*(1535)
are as big as that to zN, with the decay to KA(1405) giving
a larger contribution. In this way, considering final states
like KzZ could be relevant to understanding the properties
of P;(2080). We have provided a list of processes which
can produce KzX in the final state. We hope that our work
encourages experimental investigation of such processes.
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The coefficients agl), i=1,2,...,4, in Eq. (Al) can be
determined by contracting the latter equation by the differ-
ent Lorentz structures present on it, i.e., g*#, P*P*, Kk,

and PYk*. In this way, we can form a system of four coupled
(1)

equations that allow us to express the coefficients a; * in
DATA AVAILABILITY terms of the integrals
The data supporting this study’s findings are available
within the article. +o0
(1) d‘q ¢
G]I(l) = gvﬂ]IW — T
APPENDIX A: EVALUATION OF THE TENSOR (27)* D
INTEGRALS APPEARING IN THE FORMALISM :’°
To .calculate the integrals 1n Eq. (15), we use the PPI() = P”P”]L(/,l) _ / d4CI4 (P-q)? |
Passarino-Veltman decomposition of tensor integrals (2z)* D
[54]: Let us consider, for example, the tensor integral e
I,(,,l). As a consequence of the Lorentz covariance, we see KK — () e d*q (k- q)z
from Eq. (15) that ]I,(,L) can be written as a linear combi- - o / 2z)* D
nation of the metric tensor g,, and combinations of the o
four-momenta P and k forming a symmetric tensor of rank e da (P-a)k-
2 under the interchange of y and v, i.e., PKIY) = P”k”]L(,L) = / 2 3]4( qu)jf Q), (A2)
b4
Hﬁ,l,) = agl)g,,,, + a(zl)P,,P,, + agl)k,,k#
+a\(Pk, + Pk,). (Al) o
|
M= - ! GIN{—(P- k)2 + P2k2} + 2PKIV) (P - k) — PPIVA? — KKI( P2
a 2[(P-k)2—P2k2] { { ( ) + }+ ( ) 5
M- _ ! GIVIR{~(P - k)2 + P*k?
“ T PR - PRT [ =P B+ P
- KKIW{2(P - k)* + P2k*} + 6PKIV K> (P - k) — 3[P>[P’]I(1>k4] :
(1 _ 1 (1) p2 2 272
= - GI'WP{—(P -k Pk
a3 2[(1; . k)z —P2k2]2 |: { ( ) + }
—PPIV{2(P - k)* + P?k*} + 6PKIV P2 (P - k) — 3[K[K]I<1)P4} ,
(n _ 1 (1) 2 272
= - GI'YV (P - k){(P- k)" — Pk
ay 2[(P K k)z _ P2k2]2 |: ( ){( ) }
—2PKIW{2(P - k)? + P2k*} 4 3KKIW P2 (P - k) + 3PPIV K (P - k)] : (A3)

Next, to determine the integrals in Eq. (A2), and find, in

m

this way, the value of a;’, we first perform the dq°

integration by considering Cauchy’s theorem, finding

+oo
I _ dqo(qo)n_ -Nn
Y

(A4)

—0o0

where

D = 20zwywp(P’ + wg + oy) (K + oy + wp)
X [PY =k — wp — wp + i€][k° — P* — wp — wp + ié€]

X [P? — wp — wy + ie] [k — wy — wp + i€], (AS)

with
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wp = \/(P—k—q)2+m%,
Wy = 4/ (k +q)* +my,
wp =\/q*> + m>. (A6)

The numerators N, in Eq. (A4) for the cases concerned in Eq. (A2) are

Ny = 2k°PPwgwp — (K°)?wpwpy + @poy[~(P°)0p + @p, popyop vipl,
Ny = op (<K (PP = (K g,y + (KPP Qo + 0y) = Ploywp.y oy + op,y)
+ Kwg ywp + op,y + 0p(2wp + wv)])v
Ny = wp ((ko)20)3+v[<Po - k0)2 - 0)129+p —2wpwy — a)%,] + oywpy|@pwg popy — (PO)ZO)B-FP—}—V}
+ 2k Pay|wp,y + wp(2wp + wv)])
N3 = wp (‘(kO)SCUBw + (K0)*P°2wp + 3wy) + (k°)2PPwy[(P°)* — 0} — 3w}, — 2w
X (3(013 + (1)\/)] + (k0)3 [_(P0)2<CUB + 3&)\/) + O)B+V(a)%3+P + 2&)1)&)\/ + a)%/)] + Poa)va)P+V
X [=(P°)op v + wp(2opoy + wpap,y)] + Koy [(P°) Bwp,y + @p(20p + oy))
— wpwpy(0p(20p + oy) + wp(3wp + 260\/))])
Ny = wp ((k0)6w3+v = 2(k°P(wp + 20y) + 4(k°)’ PPoy [~ (P°)? + wf. p + (0p + 20p)0y + @7
+ (K [(P°)* (w5 + 6wy) — wpy v (0 p + (0 + 20p) 0y + @F)] = wyop, v [(P°) @py
+ wpwppopy(0poy + 0pop,y) = (P 2wg(wp + 3wpwy + @y + 20p0p.y)] + 2k PPy
x 2(P)’wp,y — 0p(2wpwp,y + oy (2wp + oy)?)] + (k) oy [(P°)* = 2(P°)* (0} + 30p,y + @p(2wp + ay))
+ wpwp v (0f + 605 + dwpoy + of + wp(4ap + wv))D’
Ns = wp (—(k0)7w3+v + (K)°P°2wp + 5wy) — wywpy[(P° + @p) (PO) @p,y + 0pwy, paf,yopyy
- 2(P0)3waP+Va)B+P+V + POO’B(CU%CUP(WB + 2wp) + wg(wp + 20p) @y + 20’%#0)%/) - (Po)sza)P+V
X (205 + wp + @y + 20p0p,y)] = (K0) @y [-10(P?)* — (P*)*wp + wpwj,y + SP°
X (205 + 2wp0p,y + @py)] = (k)P wy[S(PO)* + 2(P°) wp — 2P wpary — 2(P°)* (4w + dopap,y
+ 5w}, y) + 0pwpy 30k + 1003 + 8wpwy + 30y + 0p(8wp + wy))] + (k) [-(P°)* (g + 10wy)
+ opv(0f + 0y + @p(20p + 30y))]
+ Kay[S(P)'wp.y +2(P°V opwp,y — 2P wpwg, v}y — (P°)’wp(4wp + 18wp0y
+ 20wp0} + Twy, + 8wpw? ) + wpwp v (3wiwh, , + wiwy(4op + 3wy) + opwp
x (wp + 2wy)(4wp + 3ov))] + (k) 2wy [(P) + (P°)*0p + wpap v (0 p + ©py)
= 2(P°Ywp(0f + 0p + wpoy + @ + opop.y) = 2(P°) (0f + opopy + Swp,y) + Plag

x (0} + 203wpy + 20y (1003 + Nwpwy + 40?) + 205503 + 120p0y + Sa)%,))]), (A7)
where
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Wpiy = Wp + Wy,
Wpp = Wp + Wp,
Wpiy = Wp + Wy,

Wpypiy = Wp + Wp + Oy. (A8)

Here we consider the rest frame of the decaying particle
to determine the partial decay widths of P(2080), thus,
P=0,P" =./s=mp, and

2 _ .2
S+ Mpr = Mg gy

N

with mp, mp ) being, respectively, the masses of the

pseudoscalar and baryon (resonance) in the final state.
Using Eq. (A4), we can write the integrals in Eq. (A2) as

;O = (A9)

GIY = / (2)3 7, = Zog?),

+o0

d3q
pPI() — / o (P")2Z,,

+o0
d3
it = | Gy (KPT2 = 2K0-a) T, + (k-0
+o0 d3
q
PRI = / (27)? [PPKZ, — PO(k - q)T1].

—00

—0o0

—00

(A10)

and the d°q integral is given by

4000 o 1

/(;1:33 —/d|q|_/1dcose|q|2ﬁ.

-0 0

(Al1)

+o0

+00
d4q q4 d3q
G]I(Z):/ T _ T,-2¢*T, +q*Z,),

+0o0 +oo
d'q ¢*(P-q)* d*q
PP]I(2>:/ :/ POY2(T, — T

—0o0 —0

+o0 +0o0

The d|q| integral is regularized with form factors. We
consider either Gaussian (Fg), Lorentzian (F;), or
Heaviside (F ) ®-function form factors at each vertex, i.e.,

Fol(q) = e-laP/en),
/\2
Fr(q) =53
BTN 1 g

Fu(q) = O(A—|ql), (A12)

where A ~ 600-900 MeV. To compare results obtained
with different form factors, we consider the normalization

dlq|F7(q) = | diq|Fg(q) = | dlg|Fi(q). (A13)
[#arita= [ aario = |

which implies a different value of A for each type of form
factor. When considering final states involving a resonance,
the cutoff A used is for the modulus of the center of mass
momentum of the particles forming the resonance, thus, a
boost needs to be performed from the rest frame of the
decaying particle to the rest frame of the resonance in the
final state.
Similarly, we can write

]Ii,z,) = a(12> o T+ agz)PyP,, + agz)k,,k

"
+adP (P, + Pk, (Al4)

and

I =a'P, + alk,. (A15)

with i = 3, 4, 5, where the coefficients al(»z) can be obtained
from Eq. (A3) by changing GI"), PPIV, KKI"), and
PKIV to

KKI® = / (d4q o - / (dqu [(K°)*Z4 =2k (k- q)Z5 + ((k - q)* = (K°)*q*)I, + 2k"(k - )¢°Z, — ¢* (k- 9)° ).

27)* D

—00 —00

27):

—+o0 +o0

4 2(P-o)k- 3
PM(Z):/(d 9 4" (P-q)( ‘I):/ 4q PKOT, — k- qT5 - K°¢*T, + ¢*(k - q)T,],

2r)* D

—00 —0o0

(27)*

and
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@ KPIO — (P k)KID
- 2

“ (P kE—K2P?
W _ (P k)PI) — P2KI() AL
e (P-K2—i2P2 (A16)
with i = 3, 4, 5.
Once we have determined the coefficients a;i), we define

the following combinations appearing in Eq. (20):

I (2
| (1o -
my, my
K2 1 o
A}’BP_—K _2> _2‘12}
ny ny

3)

I 4
AP — o) ) (@) ) 4 (o 4 al?),
my my

k 1
AYBP = —agl) + a?) - (af‘l) + a§3)) + - (af) + a§4)),

=S

Y 1y 1 e
AYEP Kl+mz> Y= f‘)}, (A17)
\% |4
vBP BN w_1
A I+-5 o’ ——5ar.
\%4 \4
AYBP — o _4a\V — ol p2 — a2 — 24V (P - k)
k2
+ —2(aé4) + 4a51) + ag])P2 + agl)k2
ny
1
+2a} (P k) = — (a5 +4a}”
nmy
+aPP? + aP'k + 240 (P - k). (A18)

Next, when dealing with a particular vector-vector-
baryon intermediate state, VV’'B, in the triangular loop,
we define the coefficients

BYV'E = bV
(A19)

BYV'E = plV;
BYVE = b1,

'B _ 3, (1),
B}/VBibl .

BYVS — by

which appear in Eq. (22). Here, the coefficients b;i) are

()

analogous to a;’ but replacing wp by wy.

In case of Eq. (30), we have the following coefficients:

CYBP =—AYBP 1=1,2,...,5

VBP __ K a® a(14>
C (mR +mB) 1 +_2 1 + 2|
my my

k2
CYP" = (mg +mp) [Hg —ay) = (ag” +10)
Vv

1
+W(a§4) —|—4a§l) —|—a§])P2 +agl>k2 +2a£{l)P-k)} ,
14

(A20)
where the integral I®) is given by
+o00 d3
I6) = / <4 7, A21
To determine Eq. (33), we need the coefficients D}V,
which are given by
DYBY = b(11)§ DYBY = bgl),
DYB = b, DYV = (mg+mp)btY,  (A22)

where mpg(mpy) represents the mass of the baryon (reso-
nance) in the intermediate (final) state.

TABLE 1V. Coefficients CV—?PP, 5 CBP—>B, . Cv_,vfpl N and
Cgy_p for the final state K°S*. To simplify the notation, we
define Cy = cos f# and Sy = sinf.

VBP CV—>PP’ CBP—»B'

K%+ 70 -1/V2 —F/fx

K05y V/3/2C, (=DCs +V2DSp)/(V3f )
KOsty V/3/28, ~D(V2Cy + S5)/ (V3[)
K*OzOﬂHr 1 F/f;r

K*01}ﬂ+ 1 -D/(V3fz)

PPk’ 1/v2 (=D + F)/(V2fx)
a)pl_(o -1/V2 (=D + F)/(V2f,)
$pK° 1 (=D +F)/(V2fx)
VBV’ Cy_yp Cpvop
K%t p0 —-1/V2 V2
K5t 1/v2 V2
K*02+¢ 1 1
K*020p+ 1 —V2
K*OAp+ 1 0
popl_(*o _1/\/5 -1
wpK*? 1/V2 —1
¢pl_(*0 1 -1
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APPENDIX B: COEFFICIENTS Cpg_p'.....Cy_yp

In Tables IV-VIII, we provide the coefficients Cpp_, 5,
Cy_pp> Cyp_p, Cy_yp needed to evaluate the ampli-
tudes associated with the triangular diagrams shown in
Fig. 2 for the different final and intermediate states. In the
case of the coefficients related to vector-pseudoscalar-
pseudoscalar, baryon-baryon-pseudoscalar, vector-vector-

pseudoscalar vertices, we have considered an # — 7’ mix-
ing angle in the range ff ~ —15° to —22° [49-51] instead of
assuming ideal mixing, which corresponds to an angle f
with sinff = —1/3, i.e., f~—19.43°.

It should be noted that for a general mixing angle S, the
matrix P related to the pseudoscalar fields in Eq. (11) reads
as [66]

AP+ B + % x* K*
P = n A(B)n+ B(p)n - K° ; (B1)
K- K? C(B)n+ D)

where

TABLE V. Same as in Table IV but for the K*X°, KTA and K*A(1405) final states. In the case of
P, - KTA(1405), Cpp_p = gr-—pp> Cpy'—p = gr—y'p, 1.€., the coupling constants of the resonance to the
PB and VB channels. Here, by A(1405), we refer to any of the two poles obtained in Refs. [52,57].

Cpp_p

VBP Cy_pp KTX0/K*A/K+A(1405) K+x0 KA
Koz n ! F/fx -D/(v3f)
K*+3070 1/v2 0 -D/(V3fs)
KX V/3/2C; (=DCy + V2DSy)/(V3f2) 0
K50 V/3/25, ~D(V2Cy + 85)/ (V3f) 0
K** Az’ 1/V2 -D/(V3fx) 0
K An V/3/2¢, 0 D(Cp+ V255)/(V3f,)
K=oy V/3/28; 0 D(=v2Cy + Sp)/(V3f )
P’ pK- ~1/V2 (=D +F)/(2f,) (D +3F)/(2V/3f,)
ptnk? -1 (D= F)/(2f%) (D +3F)/(2V3f,)
wpK~ —1/V/2 (=D +F)/(2f,) (D +3F)/(2V3f,)
2. 1 (=D +F)/(2f,) (D +3F)/(2V3f,)

Cpy—p
VBV Cy_yp KYZV/KYA/KTA(1405) K*x0 KTA
KO0%+p- 1 -2 0
K*+20p0 1/\/5 0 0
K+ 1/V2 V2 0
K304 1 1 0
K Ap" 1/v2 0 0
K*"Aw 1/V2 0 V2
K**Ag 1 0 1
P’ pK*- 1/v2 ~-1/V2 -\/3/2
pnK*° 1 1/V2 -/3/2
wpK*™ 1/V2 -1/V2 -/3/2
$pK*~ 1 -1/V2 -\/3/2

116013-15



AGATAO, NIETO, KHEMCHANDANI, TORRES, and NAM

PHYS. REV. D 111, 116013 (2025)

TABLE VI. Same as in Table IV but for the z%p and
72°N** final states. Here N** represents either N**(1535) or
N*t(1650). In the case of P, — 7°N**, Cyp_p = gy —pp
Cpy'_p = gn++-v'p, 1.€., the coupling constants of the resonance
to the PB and VB channels.

TABLE VII. Same as in Table IV but for the z*n and
aTN*0 final states. Here N*O represents either N*°(1535) or
N*0(1650). In the case of Py — 2"N*°, Cpp_p = gyo_pps
Cpy_p = gyo_yp, 1.€., the coupling constants of the resonance
to the PB and VB channels.

Cy_pp Cy_pp
VBP 2°p/2ON** Cppp 7'p VBP atn/atN* Cppop 70
KSR /2 (=D + F)/(V2f,) K*020K0 -1 (D—F)/(2f%)
KH3KY —1/v2 (=D +F)/(2f») K"+ AK® -1 (D +3F)/(2V/3f,)
KAKT  _1/\/2 (D +3F)/(2V3f,) p’pr —V2 ~(D+F)/(V2f,)
P pr® 0 —(D+F)/(2f,) pnad V2 (D+ F)/(2fx)
p’pn 0 (Cy(D = 3F) +2v2DS;)/(2V3f,)  pinn 0 (Cy(D = 3F) +2v/2DS;)/ (2\/3f,)
P prf 0 (=2v2DCy + (D = 3F)Sy)/(2V/3f,)  pini 0 (=2v2DCy + (D = 3F)S;)/ (2V/3f,)
prnat -V2 ~(D+F)/(V2f,) wpr 0 ~(D+F)/(V2f,)
wpr’ 0 (D +F)/(2fx) 2z 0 —(D+F)/(V2f,)
wpn 0 (C4(D = 3F) +2v2DS;)/(2V/3f,)
CUP’?’ 0 (—2\/§DCﬂ + (D - 3F)S/))/(2\/§fﬂ) VBV’ CV—»V’P’ ﬂ+l’l/7l'+N*0 CBV’—»B’ ztn
¢pﬂ0 0 _(D + F)/(zfﬂ) K*030 g0 1
$pn 0 (Cs(D = 3F) +2v2DS;)/(2V/3f,) K AR ) _1/ ‘52
bpr’ 0 (=2V2DCy + (D = 3F)Sy)/(2V3f,) N pp- 0 1
pnp’ 0 -1/V2
VBV’ Cy_yp 7°p/7°N** Cpyep 7°p pnw V2 3/V2
KOs+ g+0 _1/\/5 -1 p+nqz 0 0
KK 1/v2 BYN vz !
P pp° 0 1/v2
P pw V2 3/V2
P’ pe 0 0
ot npt 0 1 APPENDIX C: COEFFICIENTS
wpp” V32 1/v32 FO gO g ... NO
- X V2 The coefficients F(, H, JO, L0, MO, and NO
d)P A 0 V3 appearing in Egs. (25) and (36) can be written in terms of
¢§ 'Z) 0 3/V2 the coefficients A;, B;, C;, and D; as follows:
Ppp 0 0
A(ﬂ) = _—S% + C(\)/Sgﬂ , F(l) = C;-) Vg, H(l) = C%) Vp, J(l) = C.(][> vy,
B(p) = sin n cosf} LO = c,(j) L MY = c;!fl) Ve N = Cz(v) Uy,
Ve V3 (C1)
sin f3 2
C(ﬂ)_—ﬁ— 3COSﬁ,

(B2)

where vy, vp, ..., Uy are vectors whose elements are
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TABLE VIII. Same as in Table IV but for the p, #'p, and nN** final states. In the case of P, — nN**, Cpp_p = gn++—pps
Cpyip = gn++_y'p» 1.€., the coupling constants of the resonance to the PB and VB channels. Here N** refers to either N**(1535) or
N*7(1650).

Cy_pp
VBP np/nN** n'p Cgp—p 1P/’ P
K5t KO ~\/3/2C, ~\/3/25; (=D + F)/(V2fx)
K30k -\/3/2C, ~\/3/25, (=D + F)/(2fx)
K AKY -\/3/2C, —\/3/28; (D +3F)/(2V3f,)
P’ pr® 0 0 —(D+F)/(2fz)
POpn 0 0 (Cy(D =3F) +2V2DSp)/(2V3f,)
P ol 0 0 (=2V2DCy + (D = 3F)Sy)/ (2v/3f,)
prng* 0 0 —(D+F)/(V2f»)
wpﬂ.O 0 0 _(D + F)/(zfn)
wpn 0 0 (C4(D = 3F) +2v2DS;)/(2V/3f,)
wpr 0 0 (—=2V2DCy + (D = 3F)Sp)/ (2v/3f4)
pprd 0 0 —(D+F)/(2fx)
¢pn 0 0 (Cy(D =3F) +2vV2DSy)/(2V/3f )
dpr 0 0 (—2v2DCy + (D = 3F)Sy)/(2V3fx)
Cyvoyp
VBV’ np/nN** n'p Cpy—p np/n'p
KTtk —(Cp +2v285)/V6 (2v2C; = $y)/V6 -1
K* 30K+t —(Cp +2V28,)/V6 (2V2Cy - Sp)/ V6 -1/V2
Kt AK* —(Cy+2v28;)/V6 (2v2C5 - S;)/V6 -V/3/2
P°pp° (V2Cy —254)/V3 (2C; +V28;)/V3 1/v2
P pw 0 0 3/V2
P'pe 0 0 0
ptnpt (V2Cy - 255)/V3 (2Cp +V28p)/V3 !
wpp” 0 0 1/v2
wp® (V2Cy —254)/V3 (2C; +V285)/V3 3/V2
wpp 0 0 0
dpp° 0 0 1/V2
Ppw 0 0 3/V2
oo ~2(\/2C; + 55)/V3 2(Cy = V28)/V3 0
vr = {|A?,2Re(A,A%), 2Re(A,A%), 2Re(AA%), 2Re(A,A}), 2Re(A,A}), |A5|%, 2Re(A3A3),

2Re(A3A%), 2Re(A3A%), 2Re(A3A%), |A4|7, 2Re(A4AS), 2Re(A4A3), 2Re(A447), |52,
2Re(A;A3%), 2Re(A;4}), |A5]*, 2Re(A3A7), [A4[*},
vy = {|B|>,2Re(B, B}), 2Re(B, B}), 2Re(B, B}), 2Re(B, B%), | B,|*, 2Re(B, B}), 2Re(B, B},
2Re(B,B:), |B3|*, 2Re(B3B;), 2Re(B3B%), |B4|?, 2Re(B,4BY), |Bs|*},
v, = {A\B},A|B;,A\B;, A\ B}, A B%, A3 B}, A3 BS, A3 B3, A3 B}, A3 B, AyBT, A,B3, AyBS, AyB), A4BL, A, B}, A B3,
A1B5, A1B;, A1B%, A3 BT, A3 B, AsBY, AsB)y, AsBS, AyBY, AyBS, AyBS, AyB, AyBLY,
v, = {|C5%, 2Re(C5Cy), 2Re(C5C3), |Cy?, 2Re(C4.C3), | G5 P},
vy = {|D1[*,2Re(D, D3), 2Re(D; D3), 2Re(D, D;), | D1|*, 2Re(D, Dj), 2Re(D, D}), | D3|*, 2Re(D3D}), | Dy},
vy = {C3D}, C3D}, C3D3, C3D}, C4D}, CyD5, C4D3, C4 D}y, C;D}, C1D%, C;D5, C1D} Y.
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0 .0

In the following, we give some of the elements of the vectors ¢, ¢/, ...

’cN

32 16
= {—?mﬂ (mp, — mB’)m%w?(mB’ = 2mp )mp,myp, _g’"%’
32 16
) = {3 = g =20, )L
32(mg —mp)  16mgm3, 16
2 B P, B
= {_ Sy amp 3 M e = 2mp o 2m
) 32 16[m3 + mpmy —2(m} +m)]  16(my —4mp)
c - - ) - s ]
F 3mp, 3mp, 3mp,
W fg 32 32
F ’ Sm%gs k) 3m%J ’ )
32 32
) = {0,0,0,0,0,0,—2,2, }
3mp  3mp,
32 16 16
cif) = {gmpxm%’(mlaf - mP,.)vgm%’.\m%’(mB’ - mP,-)*?m%’sm;” }
c(l) _ 327’)1%), 16m%\m§)/ 16mp‘\_m%,,(m31 - mpl\_)
H 3 > 3 ’ 3 ’ 9
c(z) _J_ 32(}’}13/ — mP.‘) _ 16mpl\ (mB/ - mpl\) _ 16m%/
" 3mp. 3 o3 )
o [ 3 16 160 =mp)
" 3mp " 3 3mp, 7
16
cly) = {o,o,o,o,o,o,o,o,o,?, }
(0) 321’}’11) m%,/(me - mBl> 16 3 2 2 4
& =1- 3 3y = )
32m3, 16mj my, 16
csl) - { 3 P ) ;’S P 3 _?mP\.m%’(mPl\. - mB/)’ "'}’
2) 32(7)13/ - mp)_) 16 16 2
c; = ——3mPS 7_?mP5(mB’_me)’_?mP”"‘ )
=1 32 _& ——16(’“3/ _mP")
J Sm%gs ) 3 5 3mPl‘ ) )
32 16
054): 070307090’—2’_"" )
3mp 3
c(()) _ 8mpsm;/(mps - mR) 8m%xm;‘)/ SmPSm;‘)/
L 3 9 3 9 3 9 0 9
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8m, _8mp iy (mp +mg) 8
! ,——my(mp +mp), ...,
{ 3 3 3 P ( P R)
2 2
LB (g
3 l’l’lpY L 3 ’ 3mpl‘ ’ ’
N Sm%,/ 8 mPS + mR) S(mps + mR)
3m%x b mPY K 3m%x PR 9
©) 32mp mp, —|—mR)mP, 16m%xm%,(mps +mpg) 16mp my,
M - ) , .
3 3
( N {32’7[1_)/ 16mP 16mpxm%)/(mps + mR) }
M - ) ’ 3 IEERN )
(2) . 32 mp —+ mR 16mpé_(mps —+ mR) _ 16m12[,/
M ’ 3 s 3 EECKRY ’
e — 16 16(mp, + mg)
u = 3 3 3mp, T
16
= {0,0 0,0,0,0,0,— },
37
16 8 b 8mpm? -
( . mP/mp mP’mP mp/mp (mp mR)
N 3 > 3 LA ’
0 16mP, mp + mg) Sm%,mﬁ,s(mpx + mpg) Sm‘;,,mpy
N = s s DR
3 3
( - 16mP1 Smp/mp 8m%/(3m13§ - mR)
N - 3’/’1})Y 3 ) 3 > . )
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