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MATEMATICA E FINANGAS

Prof Claudio Possani

O objetivo destas notas é servir de introdugdo ao estudo de Finangas, via
modelagem matemética. 0 texto serve de apoio ao minicurso "Matematica e

Finangas” oferecido na Semana da Licenciatura do IME-USP.

0 tema destas aulas ndo deve ser confundido com aquilo que usuaimente
chamamos de “Matematica Financeira”. Embora nao haja uma fronteira clara
entre um aspecto e outro, podemos dizer que 0s problemas abordados sob o

tema "Matematica Financeira” n3o envolvem modelagem.

O primeiro de nossos exemplos & uma questdo tipica de “Matematica
Financeira”.

Exemplo 1. Para manter uma agdo de cardfer social uma ONG necessita de um
orcamento anual de RS 1.000.000,00. Sabe-se que € possivel realizar aplicacdes
rie mercado financeiro obtendo-se rendimentos de 0.9% de juros ao més (além da
inflacdo). Que capital a ONG deveria ter para garantir o financiamento da agdo
sem necessidade de novos aportes financeires?

Na resolucio deste exercicio ndo ha necessidade de se criar modelos ou
fazer hipdteses simplificadoras do problema considerade. O problema pode ser
perfeitamente traduzido em linguagem matematica e apos alguns célculos
chegaremos a uma solucdo exata. Em resumo, trata-se de um problema exato
com uma sclugio exata.

O papel da modelagem matemdtica em financas aparece num contexto bem

mais amplo. Nio se trata de resolver problemas exatos e ndo se trata de



encontrar solucdes exatas para os problemas levantados. Pedemos entender
melhor esse contexto atentando para os elementos expostos abaixo.

1. Problema Exato ou Real: trata-se de um problema "real” ou "concreto”,
fregiientemente dificil de ser respondido. Por exempla, prever o valor de
uma aco ou de um ativo financeiro no dia de amanhd ou ap6s um periodo
pré-estabelecido (no mercado de opcdes ou mercado futuro, esse periodo
chega a ser de varios meses).

2. Solucdo Aproximada: na verdade estamos interessados em solugdes

aproximadas, ja que muitas vezes & impossivel obter a solucdo exata do
problema proposto. Dependendo da questao a ser respondida, conhecer
uma resposta com 1% ou 0,5% de margem de erro pode ser bastante

satisfatorio.

3. Problema Aproximado: como o problema real é muitas vezes complicado
demais, fazemos hipdteses simplificadoras que o tomam mais simples e

passivel de um tratamento matemdtico. E fundamentat ter em mente que
as hipoteses adicionais devem simplificar o problema original sem,
contudo, descaracteriza-lo.

4. Solucho Exata: se o problema aproximado for suficientemente simples e
dispusermas do ferramental adequado, podemos eventualmente obter uma

solucdo exata para o problema simplificado.

Uma questdo central é determinar em que medida a "sclugdo exata do
problema aproximado™ € uma boa "solucao aproximada do problema exato”.

Mas, no € a mesma coisa?

Pausa para refiexao...



Nosso proximo exemplo ilustra bem a discussao acima.

Exemplo 2. Modelo de Propagacdo ({ou modelo de Propagacdo de Bootos).
Imaginemos que num certo instante parte de uma populacde recebe uma
informacdo estratégica. Transcorridas t unidades de tempo, que proporcdo da
populacdo estd de posse da informacdo?

Observe que a questdo estd colocada de forma um tanto vaga e que a situagdo
descrita € bastante complexa.

Varmos chamar de plt) a porcentagem da populagdo que conhece a informagdo
no instante . Entdo p(t)é um nomero entre 0 e 1; escrever plt,)=04 significa

que 40% da populacdo conhece a informacdo no instante 1, .

E razodvel supor (hipotese simplificadora) que a taxa de variagio de p(t) é
proporcional a duas quantidades: p{t) e 1- plt) . Note que a taxa de variagdo de

plt) é a derivada p'{t}, ou seja, é a "velocidade” da propagagdo da informacdo.

Supor que p'(t)é proporcional a plt)é supor que "quanto maior for o porcentual
da populacde que conhece a informacdo, maior serd a velocidade de
propagacdo”. Supor que p'(t)é proporcional a 1- p(t)é supor que “quanto maior
for o porcentual da populacdo que desconhece a informagdo, maior serd a
velocidade de propagagdoc”. Isso porgue se restam poucas pessoas

desinformadas, pouce cresce o porcentual da pepulagdo que recebe a informagdo

{isto &, a velocidade de propagagdo é lenta).



Assim simplificado, o problema original pode ser modelado pela equagdo
diferenciat

P )= kple)1 - ple)

cuja solucdo é

1
l+age*

plt)=

com amm—l, onde p(0)é a proporgGo da populagdo que foi informada

inicia{mente.

A velocidade da propagacdo da informacdo estd expressa pela constante de
proporcionalidade, K, e varia com e populecdo considerada, o tipo de
informacdo, os meios de comunicagdo disponiveis, etc...

Exercicios:

1. Calcule lim p(z).
2. Determine d—p(t).
dt

3. Mostre que %"-:—(t) é maxima quando p(f)=0,5. A tradugdo desta Ultima

afirmacao pode ser "a velocidade de propagacao de um boato & maxima
quando metade da populagdo esta a par e a outra metade desconhece a
informacao”. Compare a afirmagdo acima com a hipotese que fizemos
anteriormente "a taxa de variacho de p(t} é proporcional a duas

quantidades: pl(r) e 1—p(t)”.



4. Eshoce o grafico de p(r) supondo a=10,K =05 e t medido em horas.
Faga uma estimativa grafica do tempo que serad necessario par que 80% da
populagéo obtenha a informacgéo.

5. Em Economia, usamos a palavra "marginal” para indicar a taxa de variagao

de uma grandeza. Assim, se C(x) indica o custo, em reais, na produgio de

x unidades de um certo produto, entéc o custo marginal, %, éataxade

varia¢ao do custo em relagdo ao nimero de unidades produzidas.

i. Escreva uma equacac que relacione os custos de producao, a
receita de vendas e o lucro em fun¢do do numero de unidades
produzidas de um certo produto.

ii. Demonstre que o lucro é maximo quando a receita marginal e o

custo marginal sao iguais.

ifl,  Suponha que a receita é dada por R(x)=9x e o custo por
C(x)=x"-6x" +15x. Encontre o nimero de unidades produzidas

que maximiza o lucro.

6. 0 modelo de propagacio de boatos do Exemplo 2 também é aplicado no
estudoe do crescimento de populacdes. Se P(t)é o total da populagdo de
uma espécie no instante ¢, modelamos a taxa de cresciments da

populacdo por

ii_f(t) =K Pt} (L - P(t)),



onde L & uma constante que representa a "populacdo de equilibrio”. A
equacdo diferencial acima significa que a taxa de variacio da populacdo é
proporcional & populacdo atual e & diferenca entre a populagio de

equilibrio e a poputagdo atual.

i Resolva a equagao diferencial acima.
ii. Esboce os graficos de algumas solugdes para diferentes valores
nictais.

iii.  Calcule }imP(r).

Exemplo 3. Modelo de Cobb-Douglos pgra a produgdo. O modelo que
estudaremos agora foi crigdo em 1928 por Charles Cobb e Paul Douglas que
tinham por objetivo modelar a produgdo global da economia americana. Desde
entdo tem se revelado razoavelmente eficiente para predizer a produgdo de

bens, seja em escala nacienal ou em empresas grandes e pequendas.

Vamos indicar por P a produgdo total de um sisterna econdmico (que pode ser
um pais ou ema empresa) e vamos supor que P € funcdo de duas varidveis

independentes K e L.
K representa o capital investido (mdquinas, equipamentos, instalacées, etc...).
L representa o total de trabalho envolvido na produc¢éo, medido em horas.

Nosso objetivo é determinar a fungdo P=P(K,L). As hipiteses simplificadoras

s4o;

a. Se K=0 ou L=0 entde P=0, Isto é, sem capital ou sem trabalho néo hd

produgdo.



b. A producdo marginal em relagGo ao trabatho € proporcional & produgdo
por unidade de trabalho. Isto é, fixando a varidvel K (capital), a taxa de

variagdo da producdo em relagdo ao trabatho, —2%, € proporcional a

preducdo por unidade de trabalho, §, Isto parece razodvel jd que se %

& grande, isso significa que poucas horas de trabalho influem muito no
total produzido; portanto, variando as horas de trabatho, espera-se uma
grande variacdo no total produzido,

¢. A produgdo marginal em relagdo ao capital ¢ proporcional & produgdo por
unidade de capital. E a mesma suposicdo que fizemos no item anterior,
trocando trabatho por capital.

Denotando per « a constante de proporcionalidade mencionada no item b. e
por @ a constante de proporcionalidade mencionada no item a., das nossas

hipéteses podemos agora canstruir nosso modelo matematico.

A hipotese b. implica que, mantido K = K, constante, temos

Com a resolucdo dessa equagde diferencial (para @ qual precisamos da hipbtese
a.) obtemos

P(L’Ku)zcl(Ko)La’ ()

onde C, é uma funcdo de K.



A hipétese c. implica que, mantido L= I, constante, temos

EE(L«DK )=ﬁ P(LD’K) .

Novamente usando a., solucienamos a equagdo diferencial e obtemos
P(L,.K)=C, (L, )K", (i)
onde C, é uma func@o de L.
Finaimente, considerando (1) e (il), concluimos que
P(LE)=bI°K".
Uma quarta hipotese simplificadora foi considerada por Cobb e Douglas:

d. Se houver um incremento no trabolho e no capital de um fator m,
também haverd um incremento do mesmo fator m na producdo.

Em termos matemdticos temos entdo: P(mL,mK)=mP{L,K).

Mas
PlmL,mK)=b{mLY (mKY e mP{L.K)=mbL‘K*.

Logo, com esta hipétese adicicnal, concluimos que m™* =m, ou seja, o+ =1.

Nossa funcdo producdo assume entdo a forma:

P(L,K)=bI*K"™.



Existem adaptaces deste modelo para qualquer nimero de variaveis. Por
exemplo, uma empresa produz 5 produtos diferentes e quer estimar o total de
sua produgao tendo como variaveis o nlimero de artigos produzidos de cada um
dos 5 tipos. {Jsando o modelo de Cohb-Douglas, obteremos uma funcéo producao
do tipo

_ a A _r . b _ 4
P(xi,xz,xl,x4,x5)—b K Xy Ky Xy X

com a+fB+y+5+A=1.

Agora, uma observacio de carater mais geral. Repare que a escolha das
hipoteses simplificadoras determinou a fun¢do obtida. Como saber gue as
hipoteses escolhidas estdo razoaveis e servirdo de fato para a construcio de um
modelo que "traduza” o problema real? O mais indicado & certamente testar o
modelo no maior nimero de casos possiveis. O artigo de Cobb e Douglas que
apresentou esse modelo pela primeira vez mostrava uma tabela com os totais
anuais da producio americana nos Ultimos 20 anos e a mesma produgao estimada
peta funcio apresentada acima. A pouca discrepancia entre os dois nGmeros era
a "prova” de que ¢ modelo parecia adequado.

Exercicios:

7. Mostre que a funcio de Cobb-Douglas, P(L,.K)=bI"KFf, satisfaz a
equacao diferencial

oP or
—_—t K —= P.
LBL+ K (a+ﬁ)



B. No seu modelo para a producdo total da economia americana, Cobb e
Douglas, usaram o método dos minimos quadrados para estimar os
pardmetros be «, obtendo 5=101 e a=025. Use estes dados para
estimar a producdo americana no anc de 1922, sabendo que, neste ano,
K =431 e L=161. Compare o niimero obtido com & produgdo real que, no
ano de 1922 fof de 240. Observamos que os nimeros mencionados s8o os
dados reais apos uma padronizagao que permite um tratamento mais facit
para o problema matematico.

9. Esboce as curvas de nivel 100, 180 e 220 para a fungao de Cobb-Douglas

utilizada no exercicio anterior.

Exemplo 4. Modelo de Transporte. Neste exemplo vamos examinar um modelo
que se aplica a varias situagdes conhecidas sob a designagdo genérica de
"transporte™: fluxo de veiculos, movimentagdo de elementos numa cadeia de

producdo, escoamento ou deslocamento de pessoas, elc...

Uma situacdo & qual estamos familiarizados é a do fluxo de veiculos numa
estrada, que poderé ajudar na compreensde da dedugdo da equagfo do
transporte. Imaginemos entdo uma estrada retilinea e com trdfego intenso de
veiculos. Na estrada tomamos um referencial e o cada ponto associamos um
numero real x que € a distdncia do ponte ao marco zero. Introduzimos os
seguintes conceitos:

- @(x,2): fluxo de veiculos no ponto x, no instante t, medido em namero de

veiculos por hora.
- plx.1): densidade de veiculos no ponto x, no instante t, medido em vejculos

por quildmetro.
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- N(x,,x,,t): nimero de veiculos na estrada, no instante t, entre os pontos x, e

Xa
Hipéteses simplificadoras para o modelo:

1. A velocidade de cada veiculo € funcdo apenas de sua posicdo x e do
instante t, isto &, a velocidade € dada por uma funcdo v(x,z).
Observe que esta hipétese implica que ndo existem ultrapassagens, o que €

razoavel numa estrada com trdfego intenso. Assim teremos:

olx.t) = plx.6)vxt).

2. Existe uma retag@o funcional (simples!) entre a velocidade dos carros e a
densidade, isto é,

v=7r(p}.

Como conseqgiiéncia de 1. e 2. temos

plx,t} = plxt) fplx,)). (i)

Comn os conceitos que jé foram definidos e as hipoteses simplificadoras, podemos

deduzir a equagdo do transporte.
oF 6N X2 6
Sabemos que N(x,x,.t)=[ plx.t)dx e, portanto, —é;—(xl,xz,t)=jxl %(x,r)dx.

Por outro lado, a variagdo do ndmero de veiculos no trecho enfre x, € x, é igual
a quantidade de veiculos que entra no trecho em x, menos os que saem em x,

Logo, concluimos que

11



N
a_(x]9x23r}= @(x] :t)"‘?’(xz st)
t
Por outro lado, temos também
2 O
olx.0)- xzvt)__j q} t,
e deduzimos que

i ap{x, )+a—¢1x.wdx 0.

Como a iqualdade acima vale para quaisquer x, e x,, segue que
(x,t)+ (x,t} 0.
Finatmente, utilizando a equacdio (1il), ocbtemos
2 {xsrolpler) L (x.)=0,
ot ox

com o(p)= f(p)+p f'(p), que é a equacdo do transporte.
Exercicio.
10. Suponha que numa estrada a velocidade de escoamento ¢ inversamente

proporcional ao gquadrado da densidade de veiculos. Determine o fluxe do
trafego, em cada ponto, em cada instante.

12
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