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MATEMÁTICA E FINANÇAS 

Prof Claudio Possani 

O objetivo destas notas é servir de introdução ao estudo de Finanças, via 

modelagem matemática. O texto serve de apoio ao minicurso "Matemática e 

Finanças" oferecido na Semana da Licenciatura do IME-USP. 

O tema destas aulas não deve ser confundido com aquilo que usualmente 

chamamos de "Matemática Financeira". Embora não haja uma fronteira clara 

entre um aspecto e outro, podemos dizer que os problemas abordados sob o 

tema "Matemática Financeira" não envolvem modelagem. 

O primeiro de nossos exemplos é uma questão tipica de "Matemática 

Financeira". 

Exemplo 1. Para manter uma ação de caráter social uma ONG necessita de um 

orçamento anual de RS 1.000.000,00. Sabe-se que é possível realizar aplicações 

no mercado financeiro obtendo-se rendimentos de O. 9% de juros ao mês (além da 

inflação). Que capital a ONG deveria ter para garantir o financiamento da ação 

sem necessidade de novos aportes financeiros? 

Na resolução deste exercício não há necessidade de se criar modelos ou 

fazer hipóteses simplificadoras do problema considerado. O problema pode ser 

perfeitamente traduzido em linguagem matemática e após alguns cálculos 

chegaremos a uma solução exata. Em resumo, trata-se de um problema exato 

com uma solução exata. 

O papel da modelasem matemática em finanças aparece num contexto bem 

mais amplo. Não se trata de resolver problemas exatos e não se trata de 



encontrar soluções exatas para os problemas levantados. Podemos entender 

melhor esse contexto atentando para os elementos expostos abaixo. 

1. Problema Exato ou Real: trata-se de um problema "real" ou "concreto", 

freqüentemente difícil de ser respondido. Por exemplo, prever o valor de 

uma ação ou de um ativo financeiro no dia de amanhã ou após um período 

pré-estabelecido (no mercado de opções ou mercado futuro, esse período 

chega a ser de vários meses). 

2. Solução Aproximada: na verdade estamos interessados em soluções 

aproximadas, já que muitas vezes é impossível obter a solução exata do 

problema proposto. Dependendo da questão a ser respondida, conhecer 

uma resposta com 1% ou 0,5% de margem de erro pode ser bastante 

satisfatório. 

3. Problema Aproximado: como o problema real é muitas vezes complicado 

demais, fazemos hipóteses simplificadoras que o tornam mais simples e 

passível de um tratamento matemático. Ê fundamental ter em mente que 

as hipóteses adicionais devem simplificar o problema original sem, 

contudo, descaracterizá-lo. 

4. Solução Exata: se o problema aproximado for suficientemente simples e 

dispusermos do ferramental adequado, podemos eventualmente obter uma 

solução exata para o problema simplificado. 

Uma questão central é determinar em que medida a "solução exata do 

problema aproximado" é uma boa "solução aproximada do problema exato". 

Mas, não é a mesma coisa? 

Pausa para reflexão ... 
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Nosso próximo exemplo ilustra bem a discussão acima. 

Exemplo 2. Modelo de Propagação (ou modelo de Propagação de Boatos). 

Imaginemos que num certo instante parte de uma população recebe uma 

informação estratégica. Transcorridas t unidades de tempo, que proporção da 

população está de posse da informação? 

Observe que a questão está colocada de forma um tanto vaga e que a situação 

descrita é bastante complexa. 

Vamos chamar de p(t) a porcentagem da população que conhece a informação 

no instante t. Então p(t) é um número entre O e 1; escrever p(ti)= 0,4 significa 

que 40% da população conhece a informação no instante t1 • 

É razoável supor (hipótese simplificadora) que a taxa de variação de p(t) é 

proporcional a duas quantidades: p(t) e 1- p(t) . Note que a taxa de variação de 

p(t) é a derivada p'(t) , ou seja, é a "velocidade" da propagaçéio da informação. 

Supor que p'(t)é proporcional a p(t)é supor que "quanto maior for o porcentual 

da população que conhece a informação, maior será a velocidade de 

propagação". Supor que p'(t )é proporcional a 1-p(t)é supor que "quanto maior 

for o percentual da população que desconhece a informação, maior será a 

velocidade de propagação". Isso porque se restam poucas pessoas 

desinformadas, pouco cresce o percentual da população que recebe a informação 

(jsto é, a velocidade de propagação é lenta). 
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Assim simplificado, o problema original pode ser modelado pelo equação 

diferencial 

cuja solução é 

dp (t ) = Kp(tXl- p(t)\ 
dr 

l 
p(t) = l - Kt, 

+ae 

com 
1 

a = p(O) - 1, onde p(O) é a proporção da população que foi informada 

inicialmente. 

A velocidade da propagação da informação está expressa pela constante de 

proporcionalidade, K, e varia com a população considerada, o tipo de 

informação, os meios de comunicação disponíveis, etc ... 

Exercícios: 

1 . Calcule lim p(t) . ,...,,, 

2. Determine dp (t). 
dt 

3. Mostre que dp (t) é máxima quando p(t) = o,s . A tradução desta última 
dt 

afirmação pode ser "a velocidade de propagação de um boato é máxima 

quando metade da população está a par e a outra metade desconhece a 

informação". Compare a afirmação acima com a hipótese que fizemos 

anteriormente "a taxa de variação de p(t) é proporcional a duas 

quantidades: p(t) e 1- p(t) ". 
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4. Esboce o gráfico de p (t) supondo a "' 10, K = 0,5 e t medido em horas. 

Faça uma estimativa gráfica do tempo que será necessário par que 80% da 

população obtenha a informação. 

5. Em Economia, usamos a palavra "marginal" para indicar a taxa de variação 

de uma grandeza. Assim, se C(x) indica o custo, em reais, na produção de 

x unidades de um certo produto, então o custo marginal, de , é a taxa de 
dx 

variação do custo em relação ao número de unidades produzidas. 

i. Escreva uma equação que relacione os custos de produção, a 

receita de vendas e o lucro em função do número de unidades 

produzidas de um certo produto. 

ii. Demonstre que o lucro é máximo quando a receita marginal e o 

custo marginal são iguais. 

iii. Suponha que a receita é dada por R(x) = 9x e o custo por 

C(x) = x3-6x2 +15x. Encontre o número de unidades produzidas 

que maximiza o lucro. 

6. O modelo de propagação de boatos do Exemplo Z também é aplicado no 

estudo do crescimento de populações. Se P(t) é o total da população de 

uma espécie no instante t, modelamos a taxa de crescimento da 

população por 

dP (t)=K P(t)(L-P(t)), 
dt 
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onde L é uma constante que representa a "população de equilíbrio". A 

equação diferencial acima significa que a taxa de variação da população é 

proporcional à população atual e à diferença entre a população de 

equilíbrio e a população atual. 

i. Resolva a equação diferencial acima. 

ii. Esboce os gráficos de algumas soluções para diferentes valores 

iniciais. 

iií. Calcule limP(t). 
J➔oo 

Exemplo 3. Modelo de Cobb-Doug(as para a produção. O modelo que 

estudaremos agora foi criado em 1928 por Charles Cobb e Paul Douglas que 

tinham por objetivo modelar a produção global da economia americana. Desde 

então tem se revelado razoavelmente eficiente para predizer a produção de 

bens, seja em escala nacional ou em empresas grandes e pequenas. 

Vamos indicar por P a produção total de um sistema econômico (que pode ser 

um pais ou ema empresa) e vamos supor que P é função de duas variáveis 

independentes K e L . 

K representa o capital investido (máquinas, equipamentos, instalações, etc ... ). 

L representa o total de trabalho envolvido na produção, medido em horas. 

Nosso objetivo é determinar a função P=P(K,L). As hipóteses simplificadoras 

são: 

a. Se K = o ou L = o então P =O. Isto é, sem capital ou sem trabalho não há 

produção. 
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b. A produção marginal em relação ao trabalho é proporcional à produção 

por unidade de trabalho. Isto é, fixando a variável K (capital), a taxa de 

variação da produção em relação ao trabalho, ôP , é proporcional à 
ôL 

produção por unidade de trabalho, !.. . Isto parece razoável já que se !.. 
L L 

é grande, isso significa que poucas horas de trabalho influem muito no 

total produzido; portanto, variando as horas de trabalho, espera-se uma 

grande variação no total produzido,. 

c. A produção marginal em relação ao capital é proporcional à produção por 

unidade de capital. É a mesma suposição que fizemos no ítem anterior, 

trocando trabalho por capital. 

Denotando por a a constante de proporcionalidade mencionada no item b. e 

por /J a constante de proporcionalidade mencionada no item a., das nossas 

hipóteses podemos agora construir nosso modelo matemático. 

A hipótese b. implica que, mantido K = K0 constante, temos 

Com a resolução dessa equação diferencial (para a qual precisamos da hipótese 

a.) obtemos 

(/) 

onde e, é uma função de K. 
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A hipótese e. implica que, mantido L = Lo constante, temos 

Novamente usando a., solucionamos a equação diferencial e obtemos 

(li) 

onde C2 é uma função de L . 

Finalmente, considerando(/) e (li), concluímos que 

Uma quarta hipótese simplificadora foi considerada por Cobb e Douglas: 

d. Se houver um incremento no trabalho e no capital de um fator m, 

também haverá um incremento do mesmo fator m na produção. 

Em termos matemáticos temos então: P{mL,mK) = mP(L,K). 

Mas 

Logo, com esta hipótese adicional, concluímos que mª•P = m, ou seja, a+ fJ = 1 . 

Nossa função produção assume então a forma: 
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Existem adaptações deste modelo para qualquer número de variáveis. Por 

exemplo, uma empresa produz 5 produtos diferentes e quer estimar o total de 

sua produção tendo como variáveis o número de artigos produzidos de cada um 

dos 5 tipos. Usando o modelo de Cobb-Douglas, obteremos urna função produção 

do tipo 

com a+p+y+ô+Ã.=1. 

Agora, uma observação de caráter mais geral. Repare que a escolha das 

hipóteses simplificadoras determinou a função obtida. Como saber que as 

hipóteses escolhidas estão razoáveis e servirão de fato para a construção de um 

modelo que "traduza" o problema real? O mais indicado é certamente testar o 

modelo no maior número de casos possíveis. O artigo de Cobb e Douglas que 

apresentou esse modelo pela primeira vez mostrava uma tabela com os totais 

anuais da produção americana nos últimos 20 anos e a mesma produção estimada 

pela função apresentada acima. A pouca discrepância entre os dois números era 

a "prova" de que o modelo parecia adequado. 

Exercfclos: 

7. Mostre que a função de Cobb-Douglas, P(L,K)= bLª K 11 , satisfaz a 

equação diferencial 

âP õP 
L-+K-= (a+,B)P. 

àL àK 
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8. No seu modelo para a produção total da economia americana, Cobb e 

Douglas, usaram o método dos mínimos quadrados para estimar os 

parâmetros b e a, obtendo b = 1,01 e a= 0,25. Use estes dados para 

estimar a produção americana no ano de 1922, sabendo que, neste ano, 

K = 431 e L = 161 . Compare o número obtido com a produção real que, no 

ano de 1922 foi de 240. Observamos que os números mencionados são os 

dados reais após uma padronização que permite um tratamento mais fácil 

para o problema matemático. 

9. Esboce as curvas de nível 100, 180 e 220 para a função de Cobb-Douglas 

utilizada no exercício anterior. 

Exemplo 4. Modelo de Transporte. Neste exemplo vamos examinar um modelo 

que se aplica a varias situações conhecidas sob a designação genérica de 

"transporte": fluxo de veículos, movimentação de elementos numa cadeia de 

produção, escoamento ou deslocamento de pessoas, etc ... 

Uma situação à qual estamos familiarizados é a do fluxo de veículos numa 

estrada, que poderá ajudar na compreensão da dedução da equação do 

transporte. Imaginemos então uma estrada retilínea e com tráfego intenso de 

veículos. Na estrada tomamos um referencial e a cada ponto associamos um 

número real x que é a distância do ponto ao marco zero. Introduzimos os 

seguintes conceitos: 

• q,(x,t): fluxo de veículos no ponto x, no instante t, medido em número de 

veículos por hora. 

• p(x,t): densidade de veículos no ponto x, no instante t, medido em veículos 

por quilômetro. 
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- N(x1,x2 ,1) : número de veículos na estrada, no instante t, entre os pontos x1 e 

Hipóteses simplificadoras para o modelo: 

1. A velocidade de cada veículo é função apenas de sua posição x e do 

instante t, isto é, a velocidade é dada por uma função v(x,t) . 

Observe que esta hipótese implica que não existem ultrapassagens, o que é 

razoável numa estrada com tráfego intenso. Assim teremos: 

rp(x,t) = p(x, t) v(x,t) . 

2. Existe uma relação funcional (simples!) entre a velocidade dos carros e a 

densidade, isto é, 

v=f(p). 

Como conseqüência de 1. e 2. temos 

rp(x,t) = p(x,t) J(p(x,t )) . (Ili) 

Com os conceitos que já foram definidos e as hipóteses simplificadoras, podemos 

deduzir a equação do transporte. 

Por outro lado, a variação do número de veículos no trecho entre x1 e x2 é igual 

a quantidade de veículos que entra no trecho em x1 menos os que saem em X2 

Logo, concluímos que 
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Por outro lado, temos também 

e deduzimos que 

Como a igualdade acfma vale para quaisquer .t; e x2 , segue que 

Bp (x,t)+ ôq, (x,t )= O. 
at àx 

Finalmente, utilizando a equação (Ili) , obtemos 

8:: (x,t)+ o-(p(x,t)) : (x,t)= O, 

com o-(p) = f(p ) + p f' (p), que é a equação do transporte. 

Exercício. 

10. Suponha que numa estrada a velocidade de escoamento é inversamente 

proporcional ao quadrado da densidade de veículos. Determine o fluxo do 

tráfego, em cada ponto, em cada instante. 
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