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Resumo

Vamos considerar uma classe de equagoes diferenciais funcionais com retardamento e im-
pulsos em tempo varidvel e investigar a limitagio uniforme das solugdes dessas equagdes
através da teoria das equagdes diferenciais ordindrias generalizadas usando funcionais de
Lyapunov.
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ABSTRACT, In this paper, we give sufficient conditions for. the uniform boundedness and -
uniform ultimate boundedness of solutions of a class of retarded functional differential equa-:
tions’ with impulse effects acting on variable times. We employ the theory of genera.llzed

ordinary differential equations to obtain our results. As an example, we investigate the

boundedness of the solution of a circulating fuel nuclear reactor model.

1. INTRODUCTION

Impulsive differential equations are an important tool to describe the evolution of
systems where the contihuous development of a process is intertrupted by abrupt changes of
state. These equations are modelled by both differential equations, which describe the period
of continuous variation of state, and additional conditions, which describe the discontinu-
ities of first kind of a solution or of its derivatives at the moments of impulse. For example,
the problem of stabilizing the solutions by imposing proper impulse controls.has been used
in many fields such as physics, pharmacokinetics, biotechnology, economics, chemical tech-
nology, population dynamics among others. On the other hand, there are a few results on
the boundedness of solutions of impulsive retarded functional differential equations (we write
impulsive RFDEs, for short) See [4, 10, 16] for 1nstance In particular, RFDEs with variable
impulse effécts have been much less studied.

In [16], 1. Stamova proved several criteria for the boundedness of retarded solutions of a
class of RFDEs with variable impulsive perturbations by Lyapunov’s direct method. How-
ever, these criteria are valid under the assumption that the integral curves of the correspond-
ing systems meet successively each one of the hypersurfaces exactly once.

In the present paper, we prove the same fact assuming weaker conditions. We consider
that the function on the righthand side of the RFDE is Lebesgue integrable and hence not
necessarily piecewise continuous. Furthermore we assume that the integral.curves of the
differential system meet successively each one of the hypersurfaces a finite number, of times.
Therefore our results encompass those from {16].

In order to get the main results, we embed our impulsive RFDE in a class of generahzed
ordinary differential equations (we write gereralized ODEs, for short) and we develop the
theory of boundedness of solutions in this setting. Then, by means of Lyapunov. functionals

satisfying weak Krasovekil-type conditions, we get the desired results.
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We consider generalized ODEs with solutions taking values in the space of regulated
functions.

Let- X':be'a Banach space and - 'c ‘R be any 1nterva1 of the ‘real lme We denote by

G~(1,X) the_space of left continuous regula.ted functlons I T X, that.i is, G (I X) is the
set of all futictions f : T < X" such that, for every compact 1nterva,l [a,8] C I f (t—) = f(t)
for each t € (a,b] and the right limit f(t+) exists for each ¢ € [a,b), where

flt=)= lim f(t+p) and f(t+)= lm f(t+ p).
p—0~ p—0*
The space G~{[a, 4], X) is a Banach space when endowed with the usual supremum norm.

We write C(/, X) to denote the space of continuous functions f : I — X and’ we consider
the Banach space C([a, ], X) equlpped with the norm induced by G- ([a, b] X )

2. IMPULSIVE RFDEs

Let tg > 0 and » > 0. Given a function y € G~ (fto — 7, +oo) ]R"), we consider
v € G~([-r,0],R™) defined, as usual, by
(@) =y(t+9), 6¢cl-n 0] t € [to, +00).
Cons1der the RFDE with: 1mpu1se action S |
(O =ft),  tERGO), t2t.
{ Ay()=I(y (@), t=nly), k=12,..., - i @

subject to-the initial condition®

where ¢ € G=([-r,0], lR“) We assume that f maps ea.ch paar (ga,t) € G ([ r, 0] R™} x
[to, +00) to R" for k=1,2,..., I, maps R" to itself and 7 maps R” to (to, +oo) Moreover

Ay.(t)‘-.:-..y(t+)- y(t-) =y (-t+)-y(-t),»» :

for any t > tj. 2 ' L
-+ Assumne that 7o(z) = to,’ for a.ll ze ]R" and for eachi k = 1;2,. déﬁhé‘ the ft";et"' o

Sy = {(t a:) E [to, +00) X xR : ¢ =17y a:)}

By m(Tk) we denote the number of times at which- the 1ntegral curves of system’(1)+(2)
meet the hypersurface Si, k = 1,2,.... By t{ we denote the i** moment of time at-which
the integral curves of system: (1)-(2) meet the hypersurfa.ce Sk, with 2 = 1,. ,m('rk) and
k=12,.

Throughout' this paper, we shall consider the following conditions:
' (Cl)Tk EC(R", (tCh +°°)): k = 1: .21.' sy

(C2) to <ni(z) <m(z) <..., foreach z € RY

(C3) 7k(z) — +0c0 as k — +oo uniformly on z € R™;
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(C4) The integral curves of system (1)-(2) meet successively each hypersurface Sy, 87, ..
a finite number of times;
(C5) & < it i =1,, ..,m('rk) ~1,forall k=1,2,. |
Let PCl C G~([to — r,+00), IR") be an open set (m the topology of locally uniform
convergence in G~ ({ty — r, +00), IR")) w1th the followmg property: if y is an element of PCy
and t € [tg, +00), then ¥ given by

_ y(t), o—r <t <7,
7= { y(@), { <t < +oo,

is also an element of PC), In particular, any open ball in. G~ ([ty — r, +00),R”) has this

property.
- We assume that f : G~([~r,0],R™) x [to, +00) — R" is such that for every y € G~ ([tg ~
7,+00), R}, t — f (11, t) is locally Lebesgue integrable on ¢ € [to, +0c0) and moreover:

(A) There is a locally Lebesgue integrable function M : [to, 4+00) — R such that for all
“z€ PCy and-all u1,uy € [to, +00), R

/.:2 [z, 8)ds| < /:2 M'(s).ds;

(B} There is a locally Lebesgue integrable function L : [tg, +00) — R such that for all
z,y € PCy and all ug, u; € [ty, +o0),

[Trena-sreoas [Tk -ule
For the impulse operators I;, : R®* — R™ k= 1,2,..., we assume the following conditions:
(A') There is a constant Ky > 0 such that for all k =1,2,,,. and all z'€ R";
[u(2}] < Ky
(B') There is a constant X > 0 such that for all k= 1,2,... and all z,y € R™,
| () - Wl S Kalo =9l
We recall the deﬁmtxon of a solution of the initial value problem (1) (2)

Deﬁmtlon 2.1. Consider system {1)-(2), where f : G~{[—r0};R") x [ta, '+'oo') — R™ is
such that, for every y € G~ ([to — r,+00),R™), t — f (w,t) is locally Lebesgue integrable on
t € [to,+00). If there i3 a function y € G~({ty — r, +00), R") satisfying
(@) 9(t) = f (. 1), for almost every t € [to, +00) \ {t t= fk(y(t)) k=1, 2 .k
(19) y(t+) =y (&) + L (y (1)), t =m(y(2)), k=1,2,.
(ii1) e, = @, . . .
then y is called a solution of (1)- (2) on [ty — 7, +oo) wzth zmtml condztzon (¢,tg)
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3. GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS .
Let X be a Banach space and consider the set 2 = O X [to, +00), where O C X is an
open set. Assume that G : Q@ — X is a given X-valued function defined for all (z,t) € Q2.

Havmg the concept of Kurzweil integrability in mind (see, e.g., [8]; [12] or the Appendlx)
we present the concept of generalized ordinary differential equatlon

Definition 3.1. A function x : [o, 8] — X i5 called a solution of the genera.hzed ordlnary
differential equation

d_ = DG(z, ) (3)
in the interval [, 8] C [to, +00), 'if (z(t),t) € Q for all t € [c, B] and if the equalzty |
() - 2() = fDGx(f v

holds for every Y, v € [e, B], where the integral is in Kurzweil's sense.

In particular, a function z : [a, 8] — X is a solution of the generalized: ordmary dzﬁ'erentzal
equatwn (3) with the initial condition z(to) = Z, on the interval {a,f) C {to,+00), if t €
[, 8], (z(t),t) € Q for all ¢t € [e, A} and if the equality

o(0) -5 = JRCOTE B

holds for every v € [, ]
Now we define a special class of functions G : {2 — X for which we can denve interesting
properties of the solutions of (3).

Definition 3.2. A function G : Q - X belongs to the class F(, h), if there ezists a
nondecreasing function h : [to, +00) — R such that =

|G(, s2) — Gz, 81)[| < [h(s2) — h(s1)] (6)
for all (a:,.s;), (z,51) € Q and | | o C o
1G(, 52) — Gl 51) = Gy, 82) + Glw, 1) < llz — ylllAls2) = Als)l (7}

fO'f' G“ (3132): (ﬂ'.', sl)! (ya 32)3 (yv 31) € Q' .

By Definition 3.1 and by the definition of the Kurzweil integral (see (8], [12] or the Ap-
pendix, for instance), if: G : Q@ — X satisfies.(6) and z: o, 8} — X is a solution of :(3) with
[, 6] C.[t0, +00), then the inequality -- o

() = sl S (ss) = h(s)l 0 (8)
holds for every 1,8y € [a B). See [12], Lemma 3.10 for a’ ‘proof of this fact Bes1des, if

varf(z) denotes the variation of a function z : [@,8] — X on the interval (@, 8], then it
follows from (8) that z is of bounded variation on [e, 5] and

var? z < h(8) = k() < +co.
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Then it is clear that every point in [, f] at which the function A is continuous is a continuity
point of the solution z : [, 8] — X.

Now'we present a result on the existence of the Kurzweil 1ntegra.1 1nvolved in the definition
of a solutiorn of the genera.hzed ODE (3) (see Definition 3.1). This result is a particular case
of Corollary 3: 16 from [12]. ' - S

Proposmon 3.1. Let G € .7-'(9 h}. Suppose [a, (] C [tg,+oo) and z : |o,f] = X is
a function of bounded variation on [a,8) and (z(s),s) € Q for every s € [o,0). Then
the integral | f DG(z(r),t) exists and the function s — [° DG(z(r),t) € X is of bounded
variation.

The next result can be found in [12|, Lemma 3.12. It describes the descontmultles of a
solution of (3), provided G satisfies (6). : :

Proposition 3.2, If [a, 8] C [te, +00) and z : [a, ] — X is a solution of (3) and G : 0 — X
satisfies condition (6), then

z(o+) ~ z{0) = G(z(0),0+) - G(z(0), o), 'fo'f ¢ € [, )

and
z(o) — z(o~) = G(z(0),0) ~ G(z(0),0~), for o € (e, f],
where . .
Glz,04) = al_igl_'_ G(z,s), foro €la, 8)
and

G(z,0~) = lim G{z,s), foro € (a,f].
f——
The next result concerns existence of a solution of (3). Uniqueness is obtained provided
an initial condition is given. See [3], Theorem 2.15, for a proof.

Theorem 3.1 (Local existence and uniqueness). Let G € F(Q, h), where the function h is
non-decreasing and left continuous. If for every (Z,ty) € Q such that for T, = ZT+G(Z to+)—
G(Z, to) we have (T4, to) € Q, then-there exists A > 0 such-that there exists a unigue solution
z: [to,t0 + A] = X of the generalized ODE (3) for which z(to) = 7.

The assumption that the function h is left continuous in Theorem 3.1 implies, by (8), that
the solutions of (3) are also left continuous. Given a solution z of (8), the limit z(o—) exists
for every o in the domain of z. This foilows again by (8). Moreover, by Proposition 3.2, we
have the relation * a

2(0) = 2(0-) + G(2(0),0) — G(a(0),0=)

which describes the discontinuity of a given solution z of (3).
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4. BOUNDEDNESS OF SOLUTIONS OF GENERALIZED ODEs-

The main results of this section concern the boundedness of the unique solution of an
initial value problem for a generalized ODE whose nghthand side belongs to F (2,h).

Let X be 2 Banach space and set £ = O x [ts, +00), where O C X is an open set. We
assume that G € F(Q,h), where h : [to, +00) — R is a non-decreasing and 1eft contlnuous
function. : ' :

Consider the generalized ODE

== T 0
= = DG(z.1) )

subject to the initial condition
' z(to) =20, S (10)

where £o > 0 and zp € O. Let z(t) = z(t, to, ) be the solitior of (9)-(10) defined on the
interval [to, +00). , .
Definition 4.1. The solution z(t) = z(t, to, 2) of system (9)-(10) is said to be
(i) Uniformly bounded, if for every a > 0, there ezists M = M(x) > 0 such that if
20l < @,
then
=&l < M, forall t2t.
(#) Quasi-uniformly ultimately bounded, if there exists a constant B > 0 such that for
every o > 0, there exists a constant T = T(a) > 0 such that if
ll20l} < e,
then _
lz(tHl < B, forall t=>ty+T.
(#ii) Uniformly ultimately bounded, if it is umfonnly bounded and quasz—umfomly ulti-
mately bounded.

In the sequel, we use Lyapunov functionals to obtain boundedness results. But before that,
we mention an auxiliary result whose proof follows by straightforward adaptation of the proof
of Lemma 10.12 from [12] with obvious adaptations. to:Banach-space valued.functions.
Lemma 4.1. Let G € F(,K). Suppose V : [t, +o0) X X — R is such that V(,z) :
[to, +o0) — R is left continuous on (o, +00) for z € X and satisfies

|Vt 2) - (t W<sK|z-y|, znyeX te [tg,+oo)

where K > 0 is a constant. Suppose in addition, that there is a function <I> X — ]R such
that for every solution z : [a,b] — X of (9) with [a,b] C [to, +00), we have

V(t,2(t)) = lim sup LT3 D) = VEIO) < a(ete), telatl
n—0t
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Iz v — X, ty <4 <v < +00 is left continuous on (vsv]. and of bounded variation on
[v,v], then

V(u,Z(v)) = V(7. Z(7)) < K var) ( (s) - f 'DG(E(T),f‘)) +Mv <),
LA g
where M = sup ®(Z(t)).
t€ [y:v]
‘Theorem 4.1. Let V' : [to,+00) X X — R be such that V(-,2) : [tg, +00) — R is left
continuous on (to, +00)} for € X and the following conditions hold: ,
(i) V(£,0) =0, for each t € [to, +00);
(i) For each a > 0, there is a constant K, > O such that
‘V(t,Z) - (t:y)l < Ka”z - y[l: te [tﬂa +OO), ¥,z € Ba..:
where B, = {z € X : ||z| < a};

(lii) There is a monotone.increasing function b 'Ry — Ry, satisfying b(0) = 0 and
b(s) — 400 as s — +00, such that I

V(t,2) > b(lz]), ¢ < [to,+00) and z € X;

(iv) The mght derivative of V dlong every solutzon T [y,v] X of (9) whem ['y,u] C
" [toy; +00), is non-positive, that is,
V(t+n5(t+7) - VI, £(t))
n

<0

V(t, a:(t)) = hm sup
for each t € [v,v)]. _ . R
Then the solution z(t) = ©(t, o, 20) of initial vakue problem (9)-(10) is uniformly bounded,

Proof. Let z : [tg,+00) — X be the solution of (9)-(10): We assert that V(t,z(t)) <

V(to,z(to)) for-all t > to. In fact, take t.> to and a = 28Up,¢(ey [|2(s)]|. Note that z is left

continuous on (to, +00) and of bounded variation on [to, ] by (8 S SR
By ltem (u) there exists K, > 0 such that

Vi(§2) - V(&) L K IIZ—yll
for all E € [tg, t] and all z,y € B,. Thus, by Lemma 4.1, we have

(t z(t)) < < V(tg,a:(tg)) + K varg, (:z:(s) - DG(:L‘(T) t))
On the other hand, since z is a solution of (9), it follows from Definition 3 that
var}, (w(s) DG(:B(T) t)) (11)

Thus V(t,ﬁ:(t)) < V(to,z(to)) and, since ¢ is arbitrary, _ L
V(t,z(t)) £ V(to,z(to)), forall &2t (12)

to
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Now; let ¢i'> 0 be such that

()il < e (13)
Since zp = z(ty) € Ba, by (¢) and (z’i),? we have =
V(to, z(to)) < 1V (fo, (k)] £ Kallz(to) |- (9
Also, since b(s) — +c0 as s — +00, we can choose & positive number M = M (a) such that
S Koo < b(M). . (18)
Then, by (12), (14), (13) and (15); we obtain S
V(o) <b(M), forall t2t. (16

Now, we need to prove that
lz(@®)|| < M, for t2to.

Suppose the contrary, that is, assume that there exists t* > to.such that |l:c(t"‘)|| >'M.Then
item (24¢) implies

v(t',z(t")) = b({l=)I) Z_'-b(M ),
which contradicts (16). Hence ||z(t)|| < M for all t > 2o and the result follows. [}

The next result provides sufficient conditions for the unique.solution-of system- (9) (10)
to be uniformly ultimately bounded.

Theorem 4.2. Assume that V : [ig,400) x X — R satisfies conditions (3), (ii) and (1)
from Theorem 4.1. Suppose there is a continuous function ® : X — R, with (0} =0 and
(z) > 0 for z # 0, such that for every sclution x : [v,v] = X of (9), where [y,v] C
[to,+oo) we have

S - V@,a(t) < —2(2(®), -t € b, vl ' o (17)
Then the solutwn z(t) = z(t, to; zo) of initial value pr‘ablem (9)-(10) s umfomiy ultzmately
bounded.

Proof. By (17), V (¢, z(£)) < 0. Thus Theorem 4.1 implies that the solution x(t) = z{t, to, Zo)
of (9)-(10) defined on the interval [t5, +00) is uniformly bounded. Therefore it remains to
prove that z(¢, ¢, zp) is quasi-uniformly ultimately bounded. :

Since the solution z(t) of (9)-(10) is uniformly bounded, given o > 0, there exists a pos1t1ve
number M = M(a) such that if :
lzoll <, | (18)
then ' |

[lz(t)|| < M, forall ¢>t. . (19)

Let [f,4+00) C [to,4+00) and define y : [f,+00) — X by y(t) = z(t) for all ¢ € (i, +00).

Note that if ||y(Z)|| < p, where p > 0, then there exists' B > p such that

ly@®)]l < B, forell t2>1%, (20)
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since (19) holds. :
Consider p, o and B as above and take A = mm{a p} Let a= 2|[:c(to)|] and define
N i=sup{-(u): A< Juw] < B} <0
and -
-2K,o
7 >0 (21)

We want to prove that ||z(t)]| < B, for all t > #, + T(a). In order to do that, we
first assert that there exists £* € [to+ I—gﬂ,to +T (a)]_such that ||z(t*)| < A. Indeed.

T(a) =

Suppose the contrary, that is, [[z(s)]| > A, for every s € [to + z%?l,to+T(d)] - Taking
d = sup s tort TS 0+ 7(a)] l|z(s)]], we know that there exists Ka- > 0 such that

V(ty) -V (t2) < K—Ilz—yll,

forall t € [to + -U- ,Eo +T(a)] and all 2,y € Bz. Then, by Lernma 4 1, equatxon (11},
conditions (3 ), (u) and (m) from Theorem 4.1 and also by (18) and (21), we have

V(to + T(a), (to+T( B3

V(t + T(;) (tu-i- T(a ))) +Kcvart°+7;(%°3 (w(s) [o . DG(z(7),. )) +

+ Ta )sup{—<1>(a:(t)): to+z:-£29—-)- StSto+T(‘1)}

IA

T
V(to,a(to) + ——(g-lsup{-é(w) A<l < B}
On the other hand, by condition (m) from Theorem 4.1,

V(to +T(a),z(to + T(e))) 2 b{lla(to + T(aDl) 2 b(/\) > 0

1A

whxch is a contradlctlon and-hence the assertion holds. - Thus: lla:( W < B, for t-2>t* since
{20) holds for = t*. Also, ||z(t)]] < B, for £ >ty + T'(c), sinte-t* € [to + ._Ll Tty +T(a)]

Therefore the solution z(t) = z(¢, to,zo) of (9)- (10) is quasi-uniformly- ultlm_ately bounded
and the proof is complete, o o= g

5 BOUNDEDNESS OF SOLUTIONS OF IMPULSIVE RETARDED SYSTEMS

Now we turn our a.ttentlon to impulsive retarded functlona.l dlfferentlal equatlons We
will esta.bhsh results on the boundedness of solutions of these-equations. by the theory of
generalized ODEs. SRR SRR
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Let to > 0 and r > 0. CGiven y € PC, and t € [tp, +00), we define
c o 0, to—r <9<t
F(y,t) (9)= Lo f (s, 8)ds, tg <9<t <00, (22)
i f (e e)ds, to <t <P < oo,

and
400 m(Tk)

Ju,)®) =Y > HiOHLO) (), - (23)
k=1 i=1 '
where 9 e [to -7, +oo) and H} denotes the left contmuous Heavyside function concentra.ted
at ti, thatis, :

. 0, for tp <t <,
H(t) = -7
(1) {1 fort>t‘

Takmg F(y,t) and J (y,t) given by (22) and (23), we define

Gl H)(9) = F(u,£)(9) + J(3,£)(9), RN ¢7)

for y € PCi, t € [to, +00) and ¥ € [to — 7,—00). Clearly the values of G(y,t) belong to
G~ ([to — r, +0o0), R™), that is,

G : PC; X [to, +00) = G~ ([tg — r, +00), R™).

Moreover, for s, sz € [to, +00) and z,y € PC: we have -

|Gz, 52) = Glz, 51} < |h(s3) — h{s1)] @)
and ) | .
G (z, 52) — G(=, 1) — Gy, 82) — Gy, 1)|| < llz —ylllAlsz) —h(s)ly - (26)
where |
+o0 m(7e) _ . _
h(t) = [M (s) + L{s))ds + max{Ky1, K2} 3 S THL(E), t€ [t +o0)
k=1 i=1

is & nondecreasmg real functlon.whlch is continuous from the left at eVery point, continuous
at t # ti and h(ti+) exists for k= 1,2,... and i = 1,2,... . For details; see'(3]. :

According to (25) and (26), the functlon G defined by (24) belongs to the class:F (Q h),
where 2 = PCj X [to, +00).

Consider the generalized ordinary dlfferentlel equation

d = DG (z,t), . (27)

where G is given by (24). The next result gives a one-to-one rele,txon between the solution of
the impulsive RFDE (1) and the solution of the generalized ODE (27), with initial condition
depending on the initial condition-of (1). A proof of this fact can be carried out by following
the ideas of Theorems 3.4 and 3.5 from (3].
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Theorem 5.1 (Correspondence of equations).

(i) Conszder system (1)-(2), where f : G~([~7,0],R") X [to, +00) — R™, for each y €

Gf[to — r,+00),R™), t = f(y:,t) is locally Lebesgue integrable over [ty, +00) and

condztwns (A), (B), (A’) , (B') are fulfilled. Lety : [to—7, +00) — ]R" be the solution
of the impulsive RFDE (1) on the interval [tg, +00). Givent € [to, +oo) let

] y(@), to—r <9<,
x(t)(ﬁ),—{y(t) t <9< +00.

Then z(t) € G" ([ta'~ T, +00),R™) and  is the solutzon of (27) on[t, +oo), with G
given by (24).

(ii)} Reciprocally, let & be the solution of (27, wzth G given by (24) on the interval
[to,+oo) satisfying the initial condition '

o ={ S s
For every 9 € [tg — 1, +00), define
2 (o) (8), to—T <9 < to,
v = { 2 (8)(8), to < B < oo,
| Théﬁ_ E [to. -7, +oo) —.R™ is a solution of (1)-(2) on .[tg - T, +oo)
By Theorem 3.1, for T € PCthe conditicn
4+ =F+GF to+) - CGE ) € PC,,

is needed, since it assures that the solution of the initial value problem for the generalized
ODE (27) does not jump out of the set PC, immediately after the moment fo. In our setting,
where G is given by (24), we have G(Z,t}) - G(Z,ty) =0, since ty < tL,i = 1,...,m(r); k=
1,2,..., that is, ¢, is not a moment of impulse.

Let ¥ [to -7, -{-oo) — [R"™ be the solution of the initial: value problem (1)-(2). We write

Definition 5.1. The solution y(t) = y(t, ty, $) of system (1)-(2) is said to be
(1) Uniformly bounded, if for every o > 0, there exists M = M{a) > 0 such that if
¢l < e, |

then -
ly(&)] < M, t 2t

(1) Quasi-uniformly ultimately bounded, zf there exists a constant B > 0 such ‘that for
every o > 0, there erists a constant T = T(a) > 0 such that if

gl < e,
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then
lyt) < B, t2te+T(a).

- (did) Umformly ultimately” bounded zf it w uniformly bounded and quasz umfo'rmly ulti-
o mately bounded S -

We w111 apply Theorem 5.1 together with Theorems 4. 1 and 4 2 to obtam results on the
boundedness of the solution of problem (1)-(2).

Given t > to and a function ¥ € G~([—r,0],R™), consider equation (1) with initial condi-
tion ¥ = v. This initial value problem admits a unique local solution y : [t—r,v] — R® with
{t—r,v] C [t~r, +o0) (see {2], Theorem 2.1), Then, by Theorem 5.1(i), we can find & solution

z : {t,v) = G~ ([t, v], R™).of the generalized ODE (27), with initial condition (t) = %, where

( T) = qb(r —t),t—r <7 <t, and Z(r) = ¥(0), 7 > 0. Then z(¢)(t + 6) = y(t + 0) for all

8 € [-r,0] and, hence, (z(t)); = . In this case, we write Yion = Yr4n(t, %) for every n > 0.
Then for U : [ty, +00) x G~([-7,0],R") — R, we define -

Ut + 7, yean(t, %)) = UL, (. %))

DYU(t,) = limsup t >t
n—0+ n
On the other hand, given t > to, if & € G=([t — r, +00), R™) is such that Z(r} = (1 — 1),
t—r <1 <t and Z{r) = ¢(0), T > t, then there exists a unique solution z : [t,7] —

G~([t,v],R") of the generalized ODE (27) such that () = Z, with [t,7] C [tg,+o0). By

Theorem 5.1(i5), we can find a solution y : |t — r,7] = R™ of (1) which satisfies y, = ¢,

and is described in terms of z. Then, we write zy(t) instead of z(t) -and we have y(t,¥) =

(z4(t)): = . Consequently, (t,zy(t)) = (t,3:(t,%)) is a one-to-one mapping and we can
define a function V : [to, +oo) x G~ ([to — r,+o0),R*) = R by

o V(L) = Ut wnte). _[ B C..)
Hence - o
D*U(t, y) = limsup V(t+?7,:v¢(t+::)) Vs, x,,,(t)) b2t @)

Lemma 5.1. Let U : [tg, +00) X G~([—r,0],R*) — R and assume that the followmg condi-
tions hold: . o o

(i) Ut,0)=0, foralit € [to,+oo),
(ii) For each a > 0, there is a constant K, > 0 such tha,t

|U(t’¢) - (t:¢)| S Ka”"lb - 1Ml! te [t0:+°°)1 "101E € Ba-

where B, = {¢p € G~([-7,0,,R"™) : |i¢|| < a}.. Then the function V defined by .(28) satisfies
V(t,0) = 0 for all t € [tg,+00), and

V(t,@) - V(5,3 < Kallo — 3,
for allt > to and all ,T € B,, where B, = {¢ € G~([to — r,-+00), R") : ||9f| < a}.
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Proof. Given t > g, let y,y, dE - +oo) — R" be solutions of equation (1) with initial
conditions y; = ¢, J, = ¥ and § = 0. Suppose z,%,7T are solutions on [t,+00) of the
generalized ODE (27) given by Theorem 5.1(i) and correspondlng toyFand ¥ y respectwely
Then (2(t))=w =19, @) =T, =V and F®))e =5 =0.
Notice that since f satisfies (A) and (B) and I satisfies- (A") and (B').fork =1,2,.
the function G in equation (27) belongs to (0, k).
Let'V : to, +00) X G~ ([to ~ 7, +00), R") - R be given by (28) By condltxon ( ) we have

0 = U(t,0) = U(t, u(t,0)) = V(t,5(t)) = V(£,0),
since z(t) is such that Z(t)(r) = 0 for all  (see Theorem 5.1(3)), that is, (t) = 0. By
condition (), for & = 2max{||¢||, |||}, we have
V{t,zu(8)) - VEZ5@) = Utu(t,¥) - UGG, 9
U(t,9) - Ut, 9)]
S Kol — 4l = Kallzy(t) — T,

where we applied Theorem 5,1(3) to obtain the last equality. Then it is clear that given
t 2t and 2,%Z € B,, there exist solutions = and T of the generalized ODE (27) and functions

$,¥ € G([~r,01,R") such that z = z,(t), (24(t))e = w(t,¥), Z.= T5(t) and (F5(t): =
7.(t,¥). Since S

11 = Nlge(t, 9 = llzw @Il = N2l < @

and _
11l = 176, 9) = iZg@)]l = 12l < a,
then
[Vt 2) = V(t,%)| < K|z - Z|, 2,Z€ B,.
Finally, since ¢ is arbitrary, the result follows. ' T I R

With the previous notation, we now are able to prove the next two results concerning the
boundedness of the solution of (1)-(2), provided (A), (B), (A"), (B') are fulfilled.

Theorem 5.2. -Consider- system (1)<(2) and suppose conditions (A), (B), -(A"), (B’) are
Julfilled. Let U : [ty, +00) X'G~([-7,0],R") —R be left continuous on (ty, +00) and assume
that U satisfies the following conditions: - :

(i) U(t,0) =0, t € [to, +00);

(ii) For each a > 0, there is a constant K > 0 such that

U, %) - Ut D) S Kallp = Bll, L€ [to,+00), %,P € B.;

(it} Them 18 a monotone increasing function b : Ry — Ry, such that b(0) = 0, b(s) — +oo
as s — +oo and Coe e

Ut 9) > b(Iel),
for allt > to and for all p € G~([-r, 0],R");
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(iv) The z‘ner’;uality'
D*U (t,4) <0
* holds fort > to cmd P e G- ([—-r, 0] R™).
Then the solution y(t) = y(t,to, ) of system (1)-(2) is uniformly bounded
Proof. Notice that, since f satisfies (A) and (B) and Ik satisfies (A’) and (B’ ) for k = 1 2

the function G from equation (27) belongs to F(, h).
Considering the function V : [tp, +o0)} x G~ {[ta T, +o00), R*) — R given by (28), we have

V(t,0) =0 for t € [ty,+00)
and | .
V(t,z) - V(t,Z)| £ Kallz - Z|
for t € [to, +00) and z,T € B, (see Lemma 5.1).
By condltlon (r.u) we ha.ve . |
bl = D) SUE) = Ukt ) = V& x,p(t)) |
for a solution y of (1) which satisfies y; = ¢, where t > to.
On the other hand,

lev®ll = _sup_les(@(r)l = swp_ ()= sup (®) =,

t—r<r<+o0 t—rer<

where we applied Theorem 5.1’('1') to obtain the second equality. Hence
V(¢ zy(t)) 2 b (llz ()

and by previous arguments (see Lemma 5.1); we have -

for every z € G~ ([tg — r, +00), R™).
Thus the function V satisﬁes conditions (%), (i) and (i%) from: Theorem 4.1.
Assume that z : [t, +00) — G~ ([t; +00}, R*)} is a solution of - (27) such that. (E(t))g =

where t € [t0,+oo) By (29}, we have -

(t zy(t)) = DYU(¢,4) < 0.

This implies that condition (iv) from Theorem 4.1 is satisfied,

Now, let y : [to — 7, +00) — R™ be the solution of system (1)-(2) and let = be the solution
on [tg,+00) of the generalized ODE ‘(27) given by Theorem 5. l(z), satisfying the initial
condition z(tg) = 2g, where

wo-{fes
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Thus z can be written as . =

e 7, to—r<T<s, -
() (r) = { yrh T @)
for s 2 t,. :
Let @ > 0 be such that -
ol <e (3
Note that : i
l|zoll = W lzo(r)= llll, (33)
by (30). Therefore (32) and (33) imply
2ol < o CE
By Theorem 4.1, z i uniformly bounded. Hence there emsts M>0 such that
lz@®)|| < M, for any t 2 to. | S - (35)

'I‘hus |[:n(t)|| < M, for all. t € [to,b], where b is any element..of [to,+oo) Irll-r__pa..rti-cular,
lz(b)]l < M. But (31) implies that for any ¢ € [to, b], e

Ol < lwll = _sup [+l sup ()]
-r<i< to—r<r< (36)
= _sup |z (b)(r = Ilw(b)ll <M. _
0=T%
Thus the solution y(t) = y(¢, to, ) of (1)- (2) is umformly bounded and we ﬁmshed the
proof. _ O

’I‘he next theorem concerns the umform ultlmate boundedness of the umque solution of
(1-(2). '

Theorem 5.3. Consider system (1)-(2), where (A) ( ) (A’) (B") are futﬁlled Assume
that U : [tg, +-00) X G=([-r,0],R™) — R saiisfies conditions (i) to (iii) from Theorem §5.2.
Suppose there is a continuous function A : R* — R* satisfying A(0) = 0 and Az) > 0 4f
z # 0, such that for every ¢ € G~ ([~,0],R*), we have |

DU y) < -A(I9l),  t2to. e 3D

Then the solution y(t) = y(t,to, @) of (1)-(2) is uniformly uitimately bounded.

Proof. We assume the notation of the previous theorem.
Suppose V : [t, +o0) x G~ ([to — 7, +00), R"*) — R is given by (28). Then the-hypotheses
of Theorem 4.1 are fulfilled.
- Let $: G ([to — r, +00),R™*} — R be defined by
o o(2) = Al\zll), z € G{{to — 7, +00),R").
Then @ is contmuous, $(0) = 0 and tI)(z) >0, for z # 0.
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Assume that  : [, +00) — G~([t —r,+00),R") is a solution of (27) such that (z(t))y = ¥,
where t € [to,-+00), and suppose y : [t — r,+00) — R™ is the solution of (1), with 3, = ¥,
given by Theorem 22(ii). By (28) and (37), we have '

V(t,24(8)) = D*U(t, %) = DU, 9) < —A(l#l) = -—‘A(Ilytll)-

However
lwll = sup |y(t+8) = sup_ I(T)I
—r<8<0 t—r<7r<
= sup Iw¢(t)(f)l— sup  |zy(t)(7)]
t-r€<r< terSr<+oo
= llx¢(t)|l-
Therefore

L Vi) S ~Allwel) = —Alzo (D) = —2(zu(2)),
and the hypotheses of Theorem 4.2 are satisfled.
Now, consider ¥ : [to — 7, +00) — R" as the solution of system (1)-(2) and let z be the
solution on [tg,+00) of the generalized ODE (27), given by Theorem 5.1(i ) satisfying the
initial condition z(tg) = zo, where o

. ¢(T"'t0) tg—T‘ST.S_to, .
t0(r) = { AR (38)
Thus, for s > ¢, = can be wntten as
| ’ hh—r<T7<s,
£(5) (1) = { y(r), fo—r<7<s (39)
y(s), 728

Hence « is umformly u1t1mately bounded ‘and this means that there ex1sts B > 0 such that
for every o > 0 there exists T T(a) > 0 such that, 1f

,_ llzo]| < e N ()
then : - : o ‘
lz(®))| < B, foramyt>to+T(x). " (4)
Assume that Co .
ol <. e W
We have to prove that. _ _ o .
WOl < B, forany t2te+T(@. . (#3)

But this is immediate by the proof of Theorem 5.2. By (42), we obta.m (40) as in (33).
Finally (43) holds, since we have (36) as in Theorem 5.2 and because of (41) The proof is
complete. (!
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6. .EXAMPLE

In [1], the author studies the equation

y'(t) = "/t_t p(t — s)g{y(s))ds . (44)

in the theory of a circulating fuel nuclear reactor. In such model, y is the neutron density.
It is well-known that this is a good model in one-dunensmnal viscoelasticity in which y is
the strain and p is the relaxation furiction.

We consider equation (44) with an impulse condition and, consequently, we obtain bound-
edness of the solution. Thus, consider the impulsive RFDE .

= = [ p(t = 9)gly(s))ds, t#m(®), t20, (45)
Ay(t) =dy, ' t = n(y(?)), ‘k-=_ LZ,...,
subject to the initial condition | o .- . . o
. o e B )

where » > 0, ¢ € G~ ([~r,0),R"), p: R =~ R+ is a Lebesgue integrable functmn such that
p(u) < Bforallue R, g: R — Ry is such that |g(z) — ()| € K|z —y| forall y € R and
there exits a function m : R — R Lebesgue mtegrable such that -y

| 9(y(s))ds < [ m(s)ds,

for all 5,52 € R, for k = 1,2,..., {di} is a sequence of non-positive constants which is
bounded from below, 7, maps R to (0, +00) and 74 satisfies (Cy) = {Cs).

Consider Ay (t) = y(t+) —y(t~) = y(@+) —y(t), for any t > 0. It is easy to check
that the function [ : R® — R® given by I.{y} = di, for y € R", satisfies (4’)-4nd (B'), for
k=1,2,...

For each' t > 0, let f(ws,t) = ,_:'—, f:_; p(t = s)g(y(s))ds. We will show ‘that- f satisfies
conditions (A) “and (B). '

(A) Given y € PC; and ul,u,2 e [0 +00), we have |

./u1 Fys, 8)ds| = /‘:"(—ja; o(s —ujg(y(u))du) ds| <
< [ (L - ”)é(y(”)"d“) <[] [ stutnan
<Bf (f uldu)ds_f M(s ds,: |

where M(s) = B [, m(u)du. Thus condition (A) holds.

ds:< .-
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) Given z,y € PC, and uy,uz € [0, +00), ‘we have

ffz,,  stungas| =] [ (= [ plo - wlotelu) - st 5 <

/ U Ipls= “)l’cllm(u) - y(u)udu) 4| =

([ lotodictiats =) =ute= _T)udf) E

/ ’CII% Ys|| (f Ip 1‘)|d1') ds-<

< f Blcfllz.,—ysudﬂ f L(3>llws<yaildsa..f

where L(s) = BKr. Thus f satisfies (B).

Define a function W : R — R by W(y) = "—- and let y(2) be a solutxon of (45)
For t # ti, we have

D‘“W( ( ) = Wy &) =y (t)y () = —y¥( t) L_, p(t - S)Q(y(S))ds <0,

since p and g are non-negative functions. : o S

Note that W(y(ti+)) = W(y(tl) + de) < W(y(t})); since W is an increasing function
and dy < 0. Then, for 7 > 0 sufficiently small, we have W (y(th +n)) < W(y(tL)), by the
contmmty of W. Thus, for t = ti, we have

<

D*W(y(t) = limsup W(y(t+n)7)7—'W(y(t))' 5_0__,':,",
Lm0t

Now, define a function U~ [0 +oo) x G~([-r,0],R") - Ry by -
1 1 1, .1
Ut = sup W) =1 s v@ =3 (s v0) =3P
—r<d<0 3 _r<h< 3 \—r<o< 3
We will show that the function U satisfies the conditions from Theopem 5.2.

(i) By the definition of U, it is clear that U(t,0) = 0 for all £ > 0.
(#1) Let ¢, € B, = {¥ € G~ ([-r,0],R*) : ||¥|| < p}. Then

V) - Ute)l < 5 3 el = Nl [l + II<PIIII¢II +lel*] < A*lle — ¢l

for all ¢ >270. '
(i#) Givent > 0 and a func’clon '¢l € G~([-r,0],R"), we have

Ut 9) = 319l° = (),

where b(s) = %
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(iv) Given t > 0 and a function ¥ € G~{|-r, 0], R"), by considering the solution y. of (45)
defined on [t — r, +00) such that y, = %, we have _ SN

U(t’ w) = U(t,y,) = -f:lt?m W(yt(a))-é W(yt"(ad))';" P

We want to show that D*U(t,1) < 0. We consider two cases: when 6 = 0 and
otherwise. At first, we assume that é; == 0. In this case,

D*U(t,p) = D*W(y(t)) < 0.
Now, we considet —r < 6y < 0. Since sup W(y(6)) = W(w(f)), for 7 > 0

~r<0<0
sufficiently small, we have

_Sup Wlien(0)) = _sup W(u:(0)).

~ Consequently, | C o
sup W(yt+n(9)) =~ sup - W(ﬂt( )

- DYU(t, ) = lim sup Z25850 S ='o.
) = lim sup = - =0

Then Theorem 5.2 1mphes the solutlon y(t) = y(t,0, é) of (45) (46) is: umformly bounded

: 7. APPENDIX _ _ o
In this p;art of our paper, we present the concept of integrdbility..-:i{uréwe.il.' S
A tagged.division of a compact interval [a,b] C R is a finite -'colflﬂgrl:bionr» | e
{(rlsnsd) =120k}, ';;;
whete g = = 50 < 81 < ... < 8 = bis a division of [a, b] and T e [s,,_.l, s,], ; = 1 2 k

A gauge on [a,b] is any function 8 [a, 8] = (0, +00). Given. a gauge g on [a b] A tagged
division d = (7, [8i-1, s.]) of [a, b] is 8-fine if, for every i, - :

Asensdc{telods bonl <@},

Let' X be & Banach space. Now, we define the type of integratiofi which belongs to J arosla,v
Kurzweil. o ,

Definition 7.1. A function U (1,%) : [a,}] X [q, b = X is Kurzwell 1ntegrab1e over [a b, if
there is a unique element I € X such that given >0, there is a gauge §. of [, b] such that
for every d-fine tagged division d = (7, [si_1,s:]) of la,b], we have o

s ~1l<e, ;

where § (U, d) Z V()= U (135 80-1)]. “In this cdse, we wmte I f DU (, t) cmd use
the conventzonf DU (r,8) = -7 DU (n,¢), ‘whenever b< a. o



20 © 7" 8. AFONSO, E. BONOTTO, M. FEDERSON, AND L. GIMENES ~

The Kurzweil integral was described extenswely in Chapter T of [12] for the case X =R"

(see Definition 1.2 in [12]).
For some basic facts-of the Kurzweil integpp,tion' theory and of the theory of genera.lized
ODEs, see [12]. '

REFERENCES

(1] Ergen, W. K. Kinetics of the. cu-culatmg fuel nuclear reactor. J. Appl. Phys. 25(1954), 702-711.

[2] Federson, M. and Godoy, J.B., New continuous dependence results for impulsive functional dxﬁ'erentml
equations, preprint.

[3] Federson, M. and Schwabik, 5., Generalized ODEs approach to impulsive retarded differential equations.
Differential and Integral Equations, 19 (2008), na. 11, 1201-1234.

[4] Fu, Xilin and Zhang, Ligin,”On boundedness of solutions of impulsive integro-differential systems with
fixed moments of impulse effects. Acta Math. Sei. 17 (1997), no. 2, 219-229.

[5] Hale, J. K. end Lurel, 8. M. Verduyn, Introduction to Functlona.l D1fferent1al Equations. Apphed Math-
ematicalSeiences, 99. Springer-Verlag, New York, 1993.

[6] Jiao, Jian-jun; Chen, Lan-sun and Cai, Shao-hong, Impulsive control strategy of & pest management SI
model with nonlinear incidence rate. Appl. Math. Model, 33 (2009), no. 1, 555-563.

[7] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics. Mathematzcs in
Science and ‘Engineering, 191. Academic Press, Inc., Boston, M4, 1993.

[8] Kurzweil, J., Generalized ordinary differential equations and continuous dependence -on & parameter,
Czechoslovak Math. J. 7(82) (1957), 418-448,

{9] Liu, Xinzhi and Ballinger, G., ‘Boundedness for impulsive delay differential equations and applications
to population growth models. Nonlinear Analysis, 53 (2003), 1041-1062.

[10] Liu, Xinzhi and Wang, Qing, Boundedness of solutions of functional differential equations with state-
dependent imptlses. ‘Differential and “difference equntwns and ‘applications, 699-710, Hindawi Publ
Corp., New York, 2006.

[11} Politikos, D. V. and Tzanetis, D. E., Population dynamics of the Mediterranean monk seal in the
National Marine Park of Alonissos, Greece, Math, and Computer Maodelling. 49 (2009), 505-515.

(12] Schwabilk, S Generalized Ordinary Differentiol Equations, World Scientific, Singapore, Series in Real
Anal., vol. 5, 1992. '

[13] Schwabik, 8., Variational stability for generalized ordinary differential eqnatmns. C‘aaopzs Pést. Mat.

109 (1984), no. 4, 389-420. .
[14] Shen, J. H., Razumikhin techniques in impulsive functional-differential equations. Nonlmear Anal 36
(1099, nio. 1, Ser. A: Theory Methods, 119-130.

[15] Shen, Jianhua and Yan, Jurang, Razumikhin type stability theorems for impulsive functional-differential
equations. Nonlinear Anal. 33 (1998), no. 5, 519-531.

[16] Stamova, I. M., Boundedness of impulsive functional differential equations with variable impulsive
perturbations.Bull. Austral. Math. Soc. 77 (2008), no. 2, 331-345.

[17] Sun, Ye; Michel, A. N. and Zhai, Guisheng, Stability of discontinuous retarded func‘tlona.l differential
equetions with applications. IEEE Trans. Autornat. Control. 50 (2005), no. 8, 1090-1105.



BOUNDEDNESS OF SOLUTIONS OF IMFULSIVE RETARDED SYSTEMS i

(S. Afonso) INSTITUTO DE CIENCIAS MATEMATICAS E DE COMPUTAQAO, UNIVERSIDADE DE SA0
PauLo-CamMPUS DE 8A0 CARLOS, CAIXA POSTAL 668, 13560-970, SAo CARLOS SP, BRAZIL
E-mail address: suzmaria®@icmc.usp.br

(E. Bonotto) INSTITUTO DE CIENCIAS MATEMATICAS E DE COMPUTAQAO, UNIVERSIDADE DE SA0
PAuLo-CaMPUs DE SA0 CarLos, CA1xA PosTAL 668, 13560-970, SAo CARLOS SP, BRaAZIL
E-mail address: ebonotto@icmc.usp.br

(M. Federson) INSTITUTO DE CIENCIAS MATEMATICAS E DE COMPUTAGAO, UNIVERSIDADE DE SA0
PauLo-CAMPUS DE SA0 CARLOS, CAIXA POSTAL 668, 13560-970, SAo CARLOS SP, BRAzIL
E-mail address: federson@icmc.usp.br

(L. Gimenes) DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE ESTADUAL DE MARINGA, 87020-900,
MARINGA-PR, BRAZIL
E-mail address: 1pgarantesCuen,br



NOTAS DO ICMC

SERIE MATEMATICA

ARAGAO-GOSTA E. R CARABALLO T.; OARVALHO A N.: : LANGA
J.A. - Stabillity of grad:ent semigroups under perturbations,

334/10

33210  CARVALHO, AN.; CHOLEWA, J.W.; DLOTKO, T. — Equi-exponental
- attraction and Rate of convergence of attractors for singularly perturbed
evolution equations.

330110  MORGADO, M. F. Z; SAIA, M. J. - L& numbers of pham-Brieskom
arrangements.

AHMED, L RUAS MA S - Invanants of relative nght and contact
equivalences.

326/10 FEDERSON, M.; GODOY, J.B. — Averaging for retarded functional
differential equations.






