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A B S T R A C T

A polarized social network is modeled as a system of interacting marked point processes with
memory of variable length. Each point process indicates the successive times in which a social
actor expresses a ‘‘favorable’’ or ‘‘contrary’’ opinion. After expressing an opinion, the social
pressure on the actor is reset to 0, waiting for the group’s reaction. The orientation and the
rate at which an actor expresses an opinion is influenced by the social pressure exerted on it,
modulated by a polarization coefficient. We prove that the network reaches an instantaneous
but metastable consensus, when the polarization coefficient diverges.

1. Introduction

Huge discrepancies between the results of electoral intentions carried out a few days before the actual voting and the electoral
poll results during the first rounds of the 2018 and 2022 presidential elections in Brazil were striking (see for instance [9,23,35,38]).

It was conjectured that these discrepancies in the Brazilian elections were due to campaigns in support of a group of candidates
launched on social media a few days before the elections (see for instance [8,32,33]). This conjecture raises a question: is social
media campaigning enough to change in a quite short period of time the voting intention of a significant portion of voters?

To address this question, we introduce a new stochastic model that mimics some important features of real world social networks.
This model can be informally described as follows.

1. The model is a system with interacting marked point processes.
2. Each point process indicates the successive times in which a social actor expresses either a ‘‘favorable’’ (+1) or ‘‘contrary’’

(−1) opinion on a certain topic.
3. When an actor expresses an opinion, social pressure on it is reset to 0, and simultaneously, social pressures on all the other

actors change by one unit in the direction of the opinion that was just expressed.
4. The orientation and the rate at which an actor expresses an opinion is influenced by the social pressure exerted on it,

modulated by a polarization coefficient. The greater the value of the polarization coefficient, the greater the speed in which
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actors express opinions and the greater the tendency of each actor to express opinions in the same direction of its social
pressure.

In this model, the actors listen to and influence each other. Thus, after expressing an opinion, each actor waits for the group’s
eaction to the opinion it has just expressed. It is this reaction that will guide the actor’s next manifestation. This is the content of
he third point presented above. The resetting of the social pressure on the actor every time it expresses an opinion makes the point
rocesses describing the activity of the actor to have a memory of variable length. In addition, the fact that each actor is always
illing to accept the opinion of the other actors makes our social network model a kind of ‘‘consensus building machine’’. We will

ome back to this last point in the Discussion Section at the end of this article.
Starting with the classical voter model, introduced by [28], several articles addressed issues associated to opinion dynamics in a

ocial network. See [1,12,39] for a general review on this subject. However, to the best of our knowledge, a model with the features
ntroduced here was not considered yet in the literature of social networks.

The model introduced here belongs to the same class of systems of interacting point processes with memory of variable length
hat was introduced in discrete time by [24] and in continuous time by [15] to model systems of spiking neurons. For a self-contained
nd neurobiological motivated presentation of this class of variable length memory models for systems of spiking neurons, both in
iscrete and continuous time, we refer the reader to [25].

Several questions have been studied for models in this class, including metastability [2–4,30,31,41], phase transition [10,21,34],
ydrodynamic limits and propagation of chaos [15,19,22], time evolution and stationary states [13,18], replica-mean-field limits [5–
,26], existence and perfect simulation [24,40] and statistical inference of the graph of interaction between neurons [16,17].
owever, none of these articles addressed the consensus issue considered here.

A main difference between the model considered in the present article and the models considered in the articles mentioned
bove is the fact that in our case we consider marked point processes, each mark indicating whether the expressed opinion is
avorable or contrary on a certain topic. A second important difference lies in the presence of a polarization coefficient tuning the
ocial influence on the opinion expressed by each actor. These specific characteristics make it possible to study the constitution of
onsensus situations. Our model, results and proofs are new and original.

Let us now informally present our results. Our model is described by the time evolution of the list containing the social pressures
f the actors. The existence of the process and the uniqueness of its invariant probability measure is the content of Theorem 1.

When the polarization coefficient diverges, the invariant probability measure concentrates on a subset of the set of consensus
ists and the time the system needs to get there goes to zero. Here by a consensus list, we mean any list in which all the social
ressures push in the same direction. This is the content of Theorem 2, which gives a mathematical rigorous meaning of the informal
escription of a social network as a ‘‘consensus building machine’’.

In the social network, the consensus has a metastable behavior. This means that the direction of the social pressures on the actors
lobally changes after a long and unpredictable random time. This is the content of Theorem 3.

The notion of metastability considered here is inspired by the so called pathwise approach to metastability introduced by [11].
or more references and an introduction to the topic, we refer the reader to [20,27,36].

The original motivation of this article was to provide a mathematical framework to model global changes of the voting intention.
he model with the four features informally described above accounts for the fast constitution of consensus in our model of social
etwork. But something is missing in the model, namely the effect of an external influencer campaigning to push the global
rientation of the social network in a certain direction. This can be done by adding the following fifth feature to the model.

5. A robot may be present in the system. A robot behaves as an actor who always expresses the same opinion with the same time
rate. This time rate increases exponentially with the polarization coefficient and with a strictly positive parameter describing
the ‘‘strength’’ of the robot.

For the model of social network with external influence, let us suppose that the strength of the robot is sufficiently big. Then, as
he polarization coefficient diverges, the invariant probability measure of the system concentrates on a subset of the set of consensus
ists oriented in the direction in which the robot campaigns. Moreover, the system reaches this subset very fast. This is the content
f Theorem 4.

This article is organized as follows. In Section 2 we define the model of a social network without external influence and state
he main results for this model. In Section 3 we define the model of a social network with a robot and state the theorem describing
ow the robot affects the behavior of the social network. In Section 4 we introduce some extra notation and prove two auxiliary
ropositions. In Sections Section 5, 6, 7, and 8, we prove Theorems 1, 2, 3, and 4 respectively.

. Definitions, notation and main results

Let  = {1, 2,… , 𝑁} be the set of social actors, with 𝑁 ≥ 3, and let  = {−1,+1} be the set of opinions that an actor can express,
here +1 (respectively, −1) represents a favorable opinion (respectively, a contrary opinion).

Let 𝛽 ≥ 0 be the polarization coefficient of this network. The polarization coefficient of the network parametrizes the tendency
f each actor 𝑎 ∈  to follow the social pressure that the actors belonging to  ⧵ {𝑎} exert on 𝑎.

A list of social pressures 𝑢 = (𝑢(𝑎) ∶ 𝑎 ∈ ) is a list in which 𝑢(𝑎) is an integer number indicating the social pressure of actor
𝑎 ∈ . To describe the time evolution of the social network we introduce a family of maps on the set of lists of social pressures.
2
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For any actor 𝑎 ∈ , for any opinion o ∈  and for any list of social pressures 𝑢 = (𝑢(𝑎) ∶ 𝑎 ∈ ), we define the new list 𝜋𝑎,o(𝑢) as
follows. For all 𝑏 ∈ ,

𝜋𝑎,o(𝑢)(𝑏) ∶=

{

𝑢(𝑏) + o, if 𝑏 ≠ 𝑎,
0, if 𝑏 = 𝑎.

The time evolution of the social network can be described as follows.

• Assume that at time 0, the list of social pressures exerted on the actors is 𝑢 = (𝑢(𝑎) ∶ 𝑎 ∈ ).
• Independent exponential random times with parameters exp (𝛽o𝑢(𝑎)) are associated to each actor 𝑎 ∈  and each opinion o ∈ .
• Denote (𝐴1, 𝑂1) the pair (actor, opinion) associated to the exponential random time that occurs first.
• At this random time, the list of social pressures changes from 𝑢 to 𝜋𝐴1 ,𝑂1 (𝑢).
• At the new list of social pressures 𝜋𝐴1 ,𝑂1 (𝑢), independent exponential random times with parameters exp

(

𝛽o𝜋𝐴1 ,𝑂1 (𝑢)(𝑎)
)

are
associated to each actor 𝑎 ∈  and opinion o ∈ .

• Denote (𝐴2, 𝑂2) the pair (actor, opinion) associated to the exponential random time that occurs first, and so on.

Note that for any 𝛽 > 0 and 𝑢(𝑎) ≠ 0, exp (𝛽o𝑢(𝑎)) > 1 when the signs of o and 𝑢(𝑎) are equal and exp (𝛽o𝑢(𝑎)) < 1 in the opposite
case. When 𝛽 = 0, the social network is a system with independent components in which actors express either opinion +1 or −1
with equal probabilities (each actor waits an exponential random time with rate 2 to express an opinion) regardless of the social
pressure exerted on them.

Let (𝑇𝑛 ∶ 𝑛 ≥ 1) be the cumulative sums of the successive random times realizing the successive minima and let ((𝐴𝑛, 𝑂𝑛) ∶ 𝑛 ≥ 1)
be the sequence of pairs (actor, opinion) associated to them. For each 𝑛 ≥ 1, 𝑇𝑛 is the sum of 𝑛 exponentially distributed random
variables. Let also (𝑈𝛽,𝑢

𝑡 )𝑡∈[0,+∞) be the time evolution of the list containing the social pressure of the actors, starting with the list 𝑢,
defined as follows

𝑈𝛽,𝑢
𝑡 ∶= 𝑢, if 0 ≤ 𝑡 < 𝑇1,

and for any 𝑡 ≥ 𝑇1,

𝑈𝛽,𝑢
𝑡 ∶= 𝜋𝐴𝑚 ,𝑂𝑚 (𝑈𝛽,𝑢

𝑇𝑚−1
), if 𝑇𝑚 ≤ 𝑡 < 𝑇𝑚+1,

where 𝑇0 = 0.
So defined, the time evolution of the list of social pressures (𝑈𝛽,𝑢

𝑡 )𝑡∈[0,+∞) is a Markov jump process taking values in the set

 ∶= {𝑢 = (𝑢(𝑎) ∶ 𝑎 ∈ ) ∈ Z𝑁 ∶ min{|𝑢(𝑎)| ∶ 𝑎 ∈ } = 0}

for any initial list 𝑢 ∈  and with infinitesimal generator defined as follows

𝑓 (𝑢) ∶=
∑

o∈

∑

𝑏∈
exp (𝛽o𝑢(𝑏))

[

𝑓 (𝜋𝑏,o(𝑢)) − 𝑓 (𝑢)
]

, (1)

for any bounded function 𝑓 ∶  → R. Note that 𝑈𝛽,𝑢
𝑡 ∈  for any 𝑡 ≥ 0 and for any initial list 𝑢 ∈  since the actor that expressed

an opinion most recently at each instant has null social pressure.
The opinion dynamics of the social network is described either by the system of interacting marked point processes ((𝑇𝑛, (𝐴𝑛, 𝑂𝑛)) ∶

𝑛 ≥ 1) together with the initial list of social pressures 𝑈𝛽,𝑢
0 = 𝑢, or by the time evolution of the list of social pressures (𝑈𝛽,𝑢

𝑡 )𝑡∈[0,+∞).
The process (𝑈𝛽,𝑢

𝑡 )𝑡∈[0,+∞) is well defined for any 𝑡 ∈ [0, sup{𝑇𝑚 ∶ 𝑚 ≥ 1}). The unique thing that must yet be clarified is whether
this process is defined for any positive time 𝑡, i.e. if sup{𝑇𝑚 ∶ 𝑚 ≥ 1} = +∞ or not. This is part of the content of the first theorem.

Theorem 1. For any 𝛽 ≥ 0 and for any starting list 𝑢 ∈ , the following holds.

1. The sequence (𝑇𝑚 ∶ 𝑚 ≥ 1) of jumping times of the process (𝑈𝛽,𝑢
𝑡 )𝑡∈[0,+∞) satisfies

P(sup{𝑇𝑚 ∶ 𝑚 ≥ 1} = +∞) = 1,

which assures the existence of the process for all time 𝑡 ∈ [0,+∞).
2. The process (𝑈𝛽,𝑢

𝑡 )𝑡∈[0,+∞) has a unique invariant probability measure 𝜇𝛽 .

We define the set of positive (respectively negative) consensus lists as

+ ∶= {𝑢 ∈  ∶ 𝑢 ≠ 0⃗, 𝑢(𝑎) ≥ 0, for all 𝑎 ∈ }

and

− ∶= {𝑢 ∈  ∶ 𝑢 ≠ 0⃗, 𝑢(𝑎) ≤ 0, for all 𝑎 ∈ },

where 0⃗ ∈  is the null list. Consider also the set of positive and negative ladder lists
+

3

 ∶= {𝑢 ∈  ∶ {𝑢(1),… , 𝑢(𝑁)} = {0, 1,… , 𝑁 − 1}}
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and

− ∶= {𝑢 ∈  ∶ {𝑢(1),… , 𝑢(𝑁)} = {0,−1,… ,−(𝑁 − 1)}}.

he set of ladder lists is given by  ∶= + ∪ −.
To state the next theorems, we define for any 𝑢 ∈  and for any 𝐵 ⊂ , the hitting time 𝑅𝛽,𝑢(𝐵) as follows

𝑅𝛽,𝑢(𝐵) ∶= inf{𝑡 > 0 ∶ 𝑈𝛽,𝑢
𝑡 ∈ 𝐵}.

heorem 2 states that the invariant measure gets concentrated in the set of the ladder lists as the polarization coefficient diverges.
oreover, for any non-null initial list, the time it takes for the process to reach the set of ladder lists goes to 0, as the polarization

oefficient diverges. Corollary 13 in Section 6 presents an equivalent result when the initial list is the null list. In this case, after
he first jump time, which is exponentially distributed, the time it takes for the process to reach the set of ladder lists goes to 0, as
he polarization coefficient diverges.

heorem 2.

1. There exists a constant 𝐶 = 𝐶(𝑁) > 0, such that for any 𝛽 ≥ 0 the invariant probability measure 𝜇𝛽 satisfies

𝜇𝛽 () ≥ 1 − 𝐶𝑒−𝛽 .

2. For any fixed 𝛿 > 0

sup
𝑢∈⧵{0⃗}

P
(

𝑅𝛽,𝑢() > 𝑒−𝛽(1−𝛿)
)

→ 0, as 𝛽 → +∞.

Theorem 3 states that a highly polarized social network has a metastable behavior.

heorem 3. For any 𝑣 ∈ +,

𝑅𝛽,𝑣(−)
E[𝑅𝛽,𝑣(−)]

→ Exp(1) in distribution, as 𝛽 → +∞,

where Exp(1) denotes the mean 1 exponential distribution.

. The social network under the influence of a robot

Theorems 1–3 describe the behavior of the social network without any external influence. To model the effect of an external
nfluencer campaigning to push the global orientation of the social network in a certain direction, we add an extra feature to the
odel, namely the presence of a ‘‘robot’’ in the social network. Informally speaking, a robot behaves as an actor who is not influenced

y the other actors and always expresses the same opinion. To simplify the presentation, we assume that the robot will campaign
or the ‘‘favorable’’ opinion.

Formally speaking, to describe the effect of the robot campaigning for the ‘‘favorable’’ opinion we consider an extra map 𝜋∗,+1

defined as follows. For any list of social pressures 𝑢 = (𝑢(𝑎) ∶ 𝑎 ∈ ), the new list 𝜋∗,+1(𝑢) satisfies

𝜋∗,+1(𝑢)(𝑏) ∶= 𝑢(𝑏) + 1, for all 𝑏 ∈ .

Let

𝑈̂𝛽,𝑢
𝑡 = (𝑈̂𝛽,𝑢

𝑡 (𝑎) ∶ 𝑎 ∈ )

be the list of social pressures on the actors of the social network under the influence of the robot at time 𝑡 ≥ 0. The time evolution
of this list (𝑈̂𝛽,𝑢

𝑡 )𝑡∈[0,+∞) is a Markov jump process taking values in ̂ ∶= Z𝑁 with infinitesimal generator defined as follows

̂𝑓 (𝑢) ∶=
∑

o∈

∑

𝑏∈
exp (𝛽o𝑢(𝑏))

[

𝑓 (𝜋𝑏,o(𝑢)) − 𝑓 (𝑢)
]

+ exp (𝛽𝛼)
[

𝑓 (𝜋∗,+1(𝑢)) − 𝑓 (𝑢)
]

, (2)

for any bounded function 𝑓 ∶ ̂ → R. In the above formula 𝛼 > 0 is a strictly positive parameter describing the ‘‘strength’’ of the
robot.

The robot campaign for the ‘‘favorable’’ opinion with rate exp(𝛽𝛼), regardless of the social pressure exerted on the actors. Each
time the robot campaign for the ‘‘favorable’’ opinion the social pressures on all the actors increase by one unit. Note that the robot
is not an element of .

For any 𝛽 ≥ 0, for any 𝛼 > 0 and for any initial list 𝑢 ∈ ̂, the process (𝑈̂𝛽,𝑢
𝑡 )𝑡∈[0,+∞) exists and has a unique invariant probability

measure 𝜈𝛽,𝛼 . The proof of this statement is similar to the proof of Theorem 1.
For any 𝛼 ≥ 𝑁 − 1, we define ̂+,𝛼 as the set of lists in which all actors have different social pressures and the social pressure of

each actor is non negative and smaller than or equal to ⌊𝛼⌋ + 1

̂+,𝛼 ∶=

{

𝑢 ∈ ̂ ∶
⋂ ⋂

{𝑢(𝑎) ≠ 𝑢(𝑏)} and 0 ≤ 𝑢(𝑎) ≤ ⌊𝛼⌋ + 1, for all 𝑎 ∈ 

}

.

4

𝑎∈ 𝑏≠𝑎
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Observe that the definition of ̂+,𝛼 only makes sense when 𝛼 ≥ 𝑁 − 1. Note also that for any 𝑢 ∈ ̂+,𝛼 , there exists 𝑙 ∈ + such that
𝑢(𝑎) ≥ 𝑙(𝑎) for all 𝑎 ∈ . In the case of a social network with a robot campaigning for the favorable opinion, the set ̂+,𝛼 will play
the same role as the set of ladder lists  in a social network without external influence. This is the content of the next Theorem 4.

Theorem 4 describes the behavior of the system with a robot pushing in the +1 direction. If the strength of the robot 𝛼 is greater
than 𝑁 − 1, then, as the coefficient polarization diverges, the system reaches very fast the set ̂+,𝛼 in which all the social pressures
are positive. Moreover, in this case the invariant measure of the system of social pressures gets concentrated exponentially fast in
the set ̂+,𝛼 as 𝛽 → +∞.

To state Theorem 4, we define for any 𝑢 ∈ ̂ and for any 𝐵 ⊂ ̂, the hitting time 𝑅̂𝛽,𝑢(𝐵) as follows

𝑅̂𝛽,𝑢(𝐵) ∶= inf{𝑡 > 0 ∶ 𝑈̂𝛽,𝑢
𝑡 ∈ 𝐵}.

Theorem 4. For the model of social network with a robot with time evolution described by (2), if 𝛼 > 𝑁 − 1, then the following holds.

1. There exists a constant 𝐶̂ = 𝐶̂(𝑁) > 0, such that for any 𝛽 ≥ 0 the invariant probability measure 𝜈𝛽,𝛼 of the system satisfies

𝜈𝛽,𝛼(̂+,𝛼) ≥ 1 − 𝐶̂𝑒−𝛽 .

2. For any fixed 𝛿 > 0,

sup
𝑢∈̂

P
(

𝑅̂𝛽,𝑢(̂+,𝛼) > 𝑒−𝛽𝛼(1−𝛿)
)

→ 0, as 𝛽 → +∞.

4. Auxiliary notation and results

In this section we will prove some auxiliary results that will be used to prove Theorems 1–3. To do this, we need to extend the
notation introduced before.

Extra notation

• The Markov chain embedded in the process (𝑈𝛽,𝑢
𝑡 )𝑡∈[0,+∞) will be denoted (𝑈̃𝛽,𝑢

𝑛 )𝑛≥0. In other terms,

𝑈̃𝛽,𝑢
0 = 𝑢 and 𝑈̃𝛽,𝑢

𝑛 = 𝑈𝛽,𝑢
𝑇𝑛

, for any 𝑛 ≥ 1.

• (𝑈̃𝛽,𝑢
𝑛 )𝑛≥0 is a positive-recurrent Markov chain (see the proof of Part 2 of Theorem 1). Its invariant probability measure will be

denoted 𝜇̃𝛽 .
• For any list 𝑢 ∈ , the first return time of the embedded Markov chain (𝑈̃𝛽,𝑢

𝑛 )𝑛≥0 to 𝑢 will be denoted

𝑅̃𝛽,𝑢(𝑢) ∶= inf{𝑛 ≥ 1 ∶ 𝑈̃𝛽,𝑢
𝑛 = 𝑢}.

• For any 𝑢 ∈ , the opposite list −𝑢 ∈  is given by

(−𝑢)(𝑎) = −𝑢(𝑎), for all 𝑎 ∈ .

• Let 𝜎 ∶  →  be a bijective map. For any 𝑢 ∈ , the permuted list 𝜎(𝑢) ∈  is given by

𝜎(𝑢)(𝑎) = 𝑢(𝜎(𝑎)), for all 𝑎 ∈ .

• The following event will appear several times in what follows. For any initial list 𝑢 ∈  and for any 𝑛 ≥ 1,

𝑀𝑢
𝑛 ∶= {𝐴𝑛 ∈ argmax{|𝑈̃𝛽,𝑢

𝑛−1(𝑎)| ∶ 𝑎 ∈ } and 𝑂𝑛𝑈̃
𝛽,𝑢
𝑛−1(𝐴𝑛) ≥ 0}.

𝑀𝑢
𝑛 is the event in which the 𝑛th opinion expressed in the process with initial list 𝑢 is expressed by one the actors with greatest

social pressure in absolute value and in the same direction of its social pressure. Note that this is the most likely choice of the
pair (actor, opinion).

In Part 1 of Proposition 5 we show that the probability of the event 𝑀𝑢
𝑛 for all 𝑛 = 1,… , 𝑚, i.e., the sequentially occurrence of the

most likely choice of the pair (actor, opinion) in the process, is lower bounded for any initial list and this lower bound approaches
1 as 𝛽 → +∞. In Part 2 of Proposition 5 we show that the occurrence of the event 𝑀𝑢

𝑛 for all 𝑛 = 1,… , 3(𝑁 − 1) implies that
𝑈̃𝛽,𝑢
3(𝑁−1) ∈ .

Proposition 5.

1. For any 𝑢 ∈  and for any 𝑚 ≥ 1,

P

( 𝑚
⋂

𝑗=1
𝑀𝑢

𝑗

)

≥ (𝜁𝛽 )𝑚,

where

𝜁𝛽 ∶= 𝑒𝛽
→ 1, as 𝛽 → +∞.
5

𝑒𝛽 + 𝑒−𝛽 + 2(𝑁 − 1)
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2. For any 𝑢 ∈ ,

P

(

𝑈̃𝛽,𝑢
3(𝑁−1) ∈  |

|

|

3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)

= 1.

We will first prove Part 1 of Proposition 5.

Proof. To prove Part 1 of Proposition 5, we first observe that by the Markov property,

P

( 𝑚
⋂

𝑗=1
𝑀𝑢

𝑗

)

=
∑

𝑣∈
P

(𝑚−1
⋂

𝑗=1
𝑀𝑢

𝑗 , 𝑈̃
𝛽,𝑢
𝑚−1 = 𝑣

)

P(𝑀𝑣
1 ). (3)

To obtain a lower bound for (3) we will obtain a lower bound for P(𝑀𝑢
1 ). Note that in the case 𝑢 = 0⃗, the probability P(𝑀𝑢

1 ) is
maximized. For any 𝑢 ∈  ⧵ {0⃗},

P(𝑀𝑢
1 ) =

|𝑌 (𝑢)|𝑒𝛽𝑦(𝑢)

|𝑌 (𝑢)|(𝑒𝛽𝑦(𝑢) + 𝑒−𝛽𝑦(𝑢)) +
∑

𝑏∉𝑌 (𝑢)
(𝑒𝛽𝑢(𝑏) + 𝑒−𝛽𝑢(𝑏))

,

where 𝑦(𝑢) = max{|𝑢(𝑎)| ∶ 𝑎 ∈ } and 𝑌 (𝑢) = {𝑎 ∈  ∶ |𝑢(𝑎)| = 𝑦(𝑢)}. By rearranging the terms of the equation above, we have that

P(𝑀𝑢
1 ) =

1

(1 + 𝑒−2𝛽𝑦(𝑢)) + 1
|𝑌 (𝑢)|

∑

𝑏∉𝑌 (𝑢)
(𝑒𝛽(𝑢(𝑏)−𝑦(𝑢)) + 𝑒−𝛽(𝑢(𝑏)+𝑦(𝑢)))

.

Since 𝑦(𝑢) − |𝑢(𝑏)| ≥ 1, for any 𝑏 ∉ 𝑌 (𝑢), we have that (𝑒𝛽(𝑢(𝑏)−𝑦(𝑢)) + 𝑒−𝛽(𝑢(𝑏)+𝑦(𝑢))) ≤ 2𝑒−𝛽 , for any 𝑏 ∉ 𝑌 (𝑢). This implies that,

P(𝑀𝑢
1 ) ≥

1

(1 + 𝑒−2𝛽𝑦(𝑢)) +
𝑁 − |𝑌 (𝑢)|

|𝑌 (𝑢)|
2𝑒−𝛽

≥ 𝜁𝛽 ,

where in the last inequality we use the fact that for any 𝑢 ≠ 0⃗, |𝑌 (𝑢)| ≥ 1 and 𝑦(𝑢) ≥ 1. Applying this lower bound 𝑚 times in Eq. (3),
we conclude the proof of Part 1. □

The proof of Part 2 of Proposition 5 is based on two Lemmas. Before proving Lemmas 6 and 7, let us introduce some extra
notation.

Let 𝐼𝑛 ∶= {1,… , 𝑛}, for each 𝑛 ≥ 1. For any 𝑢 ∈ , let

𝑛+(𝑢) ∶= inf{𝑛 ≥ 1 ∶ 𝐼𝑛 ⊂ {𝑢(𝑎) ∶ 𝑎 ∈ } and min{𝑢(𝑎) ∶ 𝑎 ∈ } ≥ −(𝑛 − 1)},

𝑛−(𝑢) ∶= inf{𝑛 ≥ 1 ∶ 𝐼𝑛 ⊂ {−𝑢(𝑎) ∶ 𝑎 ∈ } and max{𝑢(𝑎) ∶ 𝑎 ∈ } ≤ (𝑛 − 1)},

𝑛(𝑢) ∶= max{𝑛−(𝑢), 𝑛+(𝑢)},

with the convention inf{∅} = 0. Note that min{𝑛+(𝑢), 𝑛−(𝑢)} = 0, by definition.
Let + ∶= {𝑢 ∈  ∶ 𝑛+(𝑢) ≥ 1} and − ∶= {𝑢 ∈  ∶ 𝑛−(𝑢) ≥ 1}. In other words, + is the set of lists 𝑢 ∈  such that there exists

𝑛 ∈ {1,… , 𝑁 − 1} and a sequence of 𝑛 different actors 𝑎1(𝑢),… , 𝑎𝑛(𝑢) satisfying

𝑢(𝑎𝑗 (𝑢)) = 𝑗, for 𝑗 = 1,… , 𝑛 and 𝑢(𝑎) ≥ −(𝑛 − 1), for all 𝑎 ∈ .

𝑛+(𝑢) is the smallest 𝑛 such that the above conditions are satisfied. − and 𝑛−(𝑢) are described in an analogous way.
For any initial list 𝑢 ∈ , let

𝜏(𝑢) ∶= inf{𝑛 ≥ 1 ∶ 𝐴𝑛 ∈ {𝐴1,… , 𝐴𝑛−1} ∪ {𝑎 ∈  ∶ 𝑢(𝑎) = 0}}

be the number of times in which an actor expressed an opinion in the process until the first instant in which either one actor with
null initial social pressure expresses an opinion or an actor expresses an opinion for the second time. Since we have 𝑁 actors and
at least one actor has null social pressure, it follows that 𝜏(𝑢) ≤ 𝑁 .

To prove Part 2 of Proposition 5 we first prove that the occurrence of the event 𝑀𝑢
𝜏(𝑢) implies that 𝑈̃𝛽,𝑢

𝜏(𝑢) ∈ + ∪ −. This is

he content of Lemma 6. Furthermore, for any 𝑢 ∈ + ∪ −, the occurrence of the event 𝑀𝑢
𝑛 for all 𝑛 = 1,… , 𝑛(𝑢) − 1 implies that

𝑈̃𝛽,𝑢
(𝑛(𝑢)−1) ∈ + ∪ −. This is the content of Lemma 7. Putting all this together we are able to prove Part 2 of Proposition 5.

Lemma 6. For any initial list 𝑢 ∈ , we have

P
(

𝑈̃𝛽,𝑢 ∈ + ∪ − |

| 𝑀𝑢
)

= 1.
6

𝜏(𝑢)
|

𝜏(𝑢)
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Fig. 1. An example showing that either {0, 1,… , 𝑚} or {0,−1,… ,−𝑚} is a subset of {𝑈̃ 𝛽,𝑢

𝜏(𝑢)−1(𝑎) ∶ 𝑎 = 𝑎0 ,… , 𝐴𝜏−1}, where 𝑚 = max{|𝑈̃ 𝛽,𝑢
𝜏(𝑢)−1(𝑎)| ∶ 𝑎 = 𝑎0 ,… , 𝐴𝜏−1}.

he figure in the left shows the initial list of social pressures 𝑢. In this example 𝑁 = 11, 𝜏 = 10, {𝑎0} = {𝑏 ∈  ∶ 𝑢(𝑏) = 0} and {𝑎} = {𝑏 ∈  ∶ 𝑢(𝑏) ≠ 0 and 𝑏 ≠
𝐴𝑗 , 𝑗 = 1,… , 𝜏(𝑢) − 1}. The figure in the right shows 𝑈̃ 𝛽,𝑢

𝜏(𝑢)−1(𝑎), for 𝑎 = 𝑎0 , 𝐴1 ,… , 𝐴𝜏−1. In this example, (𝑂1 ,… , 𝑂𝜏(𝑢)−1) = (+1,−1,−1,+1,+1,+1,+1,+1,−1) and
𝑚 = 4. The red line represents this maximum social pressure. By the definition of 𝜏, it follows that 𝑎0 ,… , 𝐴𝜏−1 are different actors. As a consequence of (4) and
(5), the absolute value of the difference between the social pressures of the subsequent actors on the figure in the right is 1. In this example, this implies that
{0, 1,… , 𝑚} ⊂ {𝑈̃ 𝛽,𝑢

𝜏(𝑢)−1(𝑎) ∶ 𝑎 = 𝑎0 ,… , 𝐴𝜏−1}. In fact, {𝐴7 , 𝐴6 , 𝐴5 , 𝐴2 , 𝐴3} = {0, 1,… , 4}. This is represented by the red dashed circles. Note that the figure in the
right remains the same if we change 𝑢 but keep the same values of (𝑂1 ,… , 𝑂𝜏(𝑢)−1) and 𝜏(𝑢). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Proof. By definition, the event {𝜏(𝑢) = 1} implies that 𝐴1 ∈ {𝑎 ∈  ∶ 𝑢(𝑎) = 0}. Therefore, {𝜏(𝑢) = 1} ∩𝑀𝑢
1 is only possible if 𝑢 = 0⃗.

In this case, we have that 𝑈̃𝛽,𝑢
1 ∈ + ∪ − and then, the lemma holds when {𝜏(𝑢) = 1}.

Assume that 𝜏(𝑢) ≥ 2. At instant 𝜏(𝑢) − 1, we have that 𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝐴𝜏(𝑢)−1) = 0 and since 𝐴𝑗 ≠ 𝐴𝑘, for each 1 ≤ 𝑗 < 𝑘 ≤ 𝜏(𝑢) − 1, we

have that for any 𝑗 = 1,… , 𝜏(𝑢) − 2,

𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝐴𝑗 ) = 𝑂𝑗+1 +⋯ + 𝑂𝜏(𝑢)−1,

which implies that

|𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝐴𝑗 ) − 𝑈̃𝛽,𝑢

𝜏(𝑢)−1(𝐴𝑗−1)| = |𝑂𝑗 | = 1. (4)

Moreover, for any 𝑎 ∈  such that 𝑢(𝑎) = 0, by the definition of 𝜏(𝑢) we have that 𝑎 ∉ {𝐴1,… , 𝐴𝜏(𝑢)−1}. This implies that

𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝑎) = 𝑂1 +⋯ + 𝑂𝜏(𝑢)−1,

and then,

|𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝐴1) − 𝑈̃𝛽,𝑢

𝜏(𝑢)−1(𝑎)| = 1. (5)

Let

𝑚 ∶= max{|𝑂𝜏(𝑢)−1|, |𝑂𝜏(𝑢)−2 + 𝑂𝜏(𝑢)−1|,… , |𝑂1 +⋯ + 𝑂𝜏(𝑢)−1|}.

It follows from (4) and (5) (see Fig. 1) that there exists a set with 𝑚 + 1 actors

{𝑎0, 𝑎1,… , 𝑎𝑚} ⊂ {𝐴1,… , 𝐴𝜏(𝑢)−1} ∪ {𝑎 ∈  ∶ 𝑢(𝑎) = 0},

such that either

{𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝑎𝑗 ) ∶ 𝑗 = 0, 1,… , 𝑚} = {0, 1,… , 𝑚}

or

{𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝑎𝑗 ) ∶ 𝑗 = 0, 1,… , 𝑚} = {0,−1,… ,−𝑚}.

By assumption,

𝐴𝜏(𝑢) ∈ argmax{|𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝑎)| ∶ 𝑎 ∈ } and 𝑂𝜏(𝑢)𝑈̃

𝛽,𝑢
𝜏(𝑢)−1(𝐴𝜏(𝑢)) ≥ 0.

This together with the definition of 𝜏(𝑢) implies that

|𝑈̃𝛽,𝑢
𝜏(𝑢)−1(𝐴𝜏(𝑢))| = 𝑚 ≥ |𝑈̃𝛽,𝑢

𝜏(𝑢)−1(𝑎)|, for all 𝑎 ∈ ,

and therefore, either

{𝑈̃𝛽,𝑢
𝜏(𝑢)(𝑎𝑗 ) ∶ 𝑗 = 0, 1,… , 𝑚 − 1} = {1,… , 𝑚} and 𝑈̃𝛽,𝑢

𝜏(𝑢)(𝑎) ≥ −(𝑚 − 1), for all 𝑎 ∈ ,

or

{𝑈̃𝛽,𝑢
𝜏(𝑢)(𝑎𝑗 ) ∶ 𝑗 = 0, 1,… , 𝑚 − 1} = {−1,… ,−𝑚} and 𝑈̃𝛽,𝑢

𝜏(𝑢)(𝑎) ≤ 𝑚 − 1, for all 𝑎 ∈ .

This concludes the proof of Lemma 6. □
7



Stochastic Processes and their Applications 177 (2024) 104459A. Galves and K. Laxa

a

S

T

C

P

Lemma 7. For any 𝑢 ∈ +, we have

P

(

𝑈̃𝛽,𝑢
𝑛(𝑢)−1 ∈ + |

|

|

𝑛(𝑢)−1
⋂

𝑗=1
𝑀𝑢

𝑗

)

= 1.

Proof. Note that {𝑢 ∈ + ∶ 𝑛(𝑢) = 1} ⊂ +. This implies that the lemma holds when 𝑛(𝑢) = 1.
Assume that 𝑢 ∈ + and 𝑛(𝑢) ≥ 2. By the definition of +, if 𝑀𝑢

1 occurs, then

𝑈̃𝛽,𝑢
0 (𝐴1) = max{|𝑢(𝑎)| ∶ 𝑎 ∈ } and 𝑂1 = +1.

Moreover, for any 𝑗 = 0,… , 𝑛(𝑢) − 1 there exists an actor 𝑎𝑗 (𝑢) ∈  such that 𝑈̃𝛽,𝑢
0 (𝑎𝑗 (𝑢)) = 𝑢(𝑎𝑗 (𝑢)) = 𝑗. Therefore,

𝑈̃𝛽,𝑢
1 (𝑎𝑗 (𝑢)) = 𝑢(𝑎𝑗 (𝑢)) + 1 = 𝑗 + 1.

As a consequence,

{1,… , 𝑛(𝑢)} ⊂ {𝑈̃𝛽,𝑢
1 (𝑎) ∶ 𝑎 ∈ } and 𝑈̃𝛽,𝑢

1 (𝑎) ≥ −(𝑛(𝑢) − 2), for all 𝑎 ∈ .

In general, for any 𝑘 = 1,… , 𝑛(𝑢) − 1, if ⋂𝑘
𝑗=1 𝑀

𝑢
𝑗 occurs, then there exists a sequence of actors 𝑎0(𝑈̃

𝛽,𝑢
𝑘−1), …, 𝑎𝑛(𝑢)(𝑈̃

𝛽,𝑢
𝑘−1) such that

for any 𝑗 = 0,… , 𝑛(𝑢) − 1, we have that

𝑈̃𝛽,𝑢
𝑘 (𝑎𝑗 (𝑈̃

𝛽,𝑢
𝑘−1)) = 𝑗 + 1,

and therefore,

{1,… , 𝑛(𝑢)} ⊂ {𝑈̃𝛽,𝑢
𝑘 (𝑎) ∶ 𝑎 ∈ } and 𝑈̃𝛽,𝑢

𝑘 (𝑎) ≥ −(𝑛(𝑢) − (𝑘 + 1)), for all 𝑎 ∈ .

We conclude the proof of Lemma 7 by taking 𝑘 = 𝑛(𝑢) − 1. □

Proof. To prove Part 2 of Proposition 5, we first observe that for any 𝑢 ∈ , 𝜏(𝑢) ≤ 𝑁 and for any 𝑢 ∈ + ∪ −, 𝑛(𝑢) ≤ 𝑁 − 1, by
definition. Therefore, the Markov property implies the following inequality

P

(

𝑈̃𝛽,𝑢
3(𝑁−1) ∈  |

|

|

3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)

≥ P

(

𝑈̃𝛽,𝑢
𝜏(𝑢) ∈ + ∪ − |

|

|

𝜏(𝑢)
⋂

𝑗=1
𝑀𝑢

𝑗

)

×

P

(

𝑈̃𝛽,𝑢
𝜏(𝑢)+𝑛(𝑢)−1 ∈ + ∪ − |

|

|

𝑈̃𝛽,𝑢
𝜏(𝑢) ∈ + ∪ − ,

𝜏(𝑢)+𝑛(𝑢)−1
⋂

𝑗=𝜏(𝑢)+1
𝑀𝑢

𝑗

)

×

P

(

𝑈̃𝛽,𝑢
3(𝑁−1) ∈  |

|

|

𝑈̃𝛽,𝑢
𝜏(𝑢)+𝑛(𝑢)−1 ∈ + ∪ − ,

3(𝑁−1)
⋂

𝑗=𝜏(𝑢)+𝑛(𝑢)
𝑀𝑢

𝑗

)

.

By Lemmas 6, 7 and the symmetric properties of the process, the two first terms of the right-hand side of the above equation
re equal to 1.

Note that, by definition, for any 𝑚 ≥ (𝑁 − 1) and for any 𝑣 ∈ +,

P

(

𝑈̃𝛽,𝑣
𝑚 ∈ + |

|

|

𝑚
⋂

𝑗=1
𝑀𝑣

𝑗

)

= 1.

ince 𝜏(𝑢) + 𝑛(𝑢) − 1 ≤ 2(𝑁 − 1), this together with the symmetric properties of the process implies that

P

(

𝑈̃𝛽,𝑢
3(𝑁−1) ∈  |

|

|

𝑈̃𝛽,𝑣
𝜏(𝑢)+𝑛(𝑢)−1 ∈ + ∪ − ,

3(𝑁−1)
⋂

𝑗=𝜏(𝑢)+𝑛(𝑢)
𝑀𝑢

𝑗

)

= 1.

his concludes the proof of Part 2 of Proposition 5. □

orollary 8. For any 𝑢 ∉  and for any 𝑚 ≥ 1,

P

(

𝑈̃𝛽,𝑢
𝑚 = 𝑢 |

|

|

𝑚
⋂

𝑗=1
𝑀𝑢

𝑗

)

= 0.

roof. It follows directly by Part 2 of Proposition 5, by contradiction. □

For any fixed 𝑙 ∈ +, let 𝑐𝛽,𝑙 be the positive real number such that

P(𝑅𝛽,𝑙(−) > 𝑐𝛽,𝑙) = 𝑒−1. (6)

Due to the symmetric properties of the process, it is clear that 𝑐𝛽,𝑙 = 𝑐𝛽,𝑙′ , for any pair of lists 𝑙 and 𝑙′ belonging to +. Therefore,
in what follows we will omit to indicate 𝑙 in the notation of 𝑐 . The next proposition gives a lower bound to 𝑐 .
8
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Proposition 9. There exists 𝐶1 > 0 such that for any 𝛽 ≥ 0,

𝑐𝛽 ≥ 𝐶1𝑒
𝛽 .

Proof. For any fixed 𝑙 ∈ +, let

𝜏(1)− ∶= inf{𝑇𝑛 ∶ 𝑂𝑛 = −1, 𝑈𝛽,𝑙
𝑇𝑛−1

(𝐴𝑛) > 0}

be the first time in which an actor with positive social pressure expresses an opinion −1. Consider also

𝜏(2)− ∶= inf{𝑇𝑛 ∶ 𝐸−
𝑛 ∩ (𝐸−

𝑛−1 ∪ 𝐸−
𝑛−2)},

where 𝐸−
𝑛 ∶= {𝑂𝑛 = −1, 𝑈𝛽,𝑙

𝑇𝑛−1
(𝐴𝑛) = 0}, for 𝑛 ≥ 1. 𝜏(2)− is the first time in which two opinions −1 are expressed in the network by

actors with null social pressure with at most one positive opinion expressed between them. We define for convention 𝐸−
0 = ∅.

Note that, starting from 𝑙 ∈ +, there are three ways to exit the set of positive consensus lists:

• an actor with positive social pressure expresses an opinion −1;
• two opinions −1 are expressed in the network sequentially by actors with null social pressure;
• the alternation of opinions +1 and −1, which can lead the process to the null list.

Therefore,

𝑅𝛽,𝑙( ⧵ +) ≥ min{𝜏(1)− , 𝜏(2)− }. (7)

The rate in which the process has an actor with positive social pressure expressing the opinion −1 is bounded above by (𝑁−1)𝑒−𝛽 .
This implies that, for any 𝑡 > 0,

P(𝜏(1)− > 𝑡) ≥ P(Exp((𝑁 − 1)𝑒−𝛽 ) > 𝑡),

where Exp((𝑁 − 1)𝑒−𝛽 ) is a random variable exponentially distributed with mean 𝑒𝛽∕(𝑁 − 1).
Let 𝑛−0 ∶= 0 and for 𝑗 ≥ 1,

𝑛−𝑗 ∶= inf{𝑛 > 𝑛−𝑗−1 ∶ 𝑂𝑛 = −1, 𝑈𝛽,𝑙
𝑇𝑛−1

(𝐴𝑛) = 0}.

e have that

𝜏(2)− =
𝐽
∑

𝑗=1
(𝑇𝑛−𝑗 − 𝑇𝑛−𝑗−1 ),

here 𝐽 ∶= inf{𝑗 ≥ 1 ∶ 𝑛−𝑗 = 𝑛−𝑗−1 + 1 or 𝑛−𝑗 = 𝑛−𝑗−1 + 2}.
The rate in which the process has an actor with null social pressure expressing the opinion −1 is bounded above by 𝑁 . This

mplies that, for any 𝑗 ≥ 1 and for any 𝑡 > 0,

P(𝑇𝑛−𝑗 − 𝑇𝑛−𝑗−1 > 𝑡) ≥ P(𝐸𝑗 > 𝑡),

where (𝐸𝑗 )𝑗≥1 is a sequence of i.i.d. random variables exponentially distributed with mean 𝑁 . Moreover,

P({𝑂𝑛+2 = −1} ∪ {𝑂𝑛+1 = −1} | 𝑈̃𝛽,𝑙
𝑛 ∈ +) ≤ 2 ×

(𝑁 − 1)
(𝑁 − 1) + 𝑒𝛽

. (8)

ote that if (𝑋𝑛)𝑛≥1 is a sequence of random variables assuming values in {0, 1} with P(𝑋1 = 1) ≤ 𝑝 ∈ (0, 1) and P(𝑋𝑛+1 = 1|𝑋𝑛 =
= 𝑋1 = 0) ≤ 𝑝, for 𝑛 ≥ 1, then for any 𝑘 ≥ 1,

P(inf{𝑛 ≥ 1 ∶ 𝑋𝑛 = 1} ≥ 𝑘) =
𝑘−1
∏

𝑛=1
P

(

𝑋𝑛 = 0 |

|

|

𝑛−1
⋂

𝑗=1
{𝑋𝑗 = 0}

)

≥ (1 − 𝑝)𝑘−1.

utting this inequality together with (7) and (8), we conclude that

P(𝐽 ≥ 𝑘 | 𝜏(1)− > 𝑇𝑛−𝑘−1 ) = P

(𝑘−1
⋂

𝑗=1

{

𝑛−𝑗 ∉ {𝑛−𝑗−1 + 1, 𝑛−𝑗−1 + 2}
}

|

|

|

𝜏(1)− > 𝑇𝑛−𝑘

)

≥ (1 − 𝜆𝛽 )𝑘−1,

where

𝜆𝛽 ∶= 2 ×
(𝑁 − 1)

(𝑁 − 1) + 𝑒𝛽
.

Therefore, for any 𝑡 > 0,

P(𝜏(2)− > 𝑡|𝜏(1)− > 𝑡) ≥ P

( 𝐺
∑

𝐸𝑗 > 𝑡

)

,

9

𝑗=1
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where 𝐺 is random variable independent from (𝐸𝑗 )𝑗≥1 with Geometric distribution assuming values in {1, 2,…} with parameter 𝜆𝛽 .
This implies that for any 𝑡 > 0,

P(𝜏(2)− > 𝑡|𝜏(1)− > 𝑡) ≥ P
(

Exp(𝑁 × 𝜆𝛽 ) > 𝑡
)

,

where Exp(𝑁 × 𝜆𝛽 ) is a random variable exponentially distributed with mean 1∕(𝑁 × 𝜆𝛽 ).
Therefore, for any 𝑡 > 0,

P(𝑅𝛽,𝑙( ⧵ +) > 𝑡) ≥ P[Exp((𝑁 − 1)𝑒−𝛽 ) > 𝑡]P[Exp(𝑁 × 𝜆𝛽 ) > 𝑡].

This implies that

𝑒−1 = P(𝑅𝛽,𝑙(−) > 𝑐𝛽 ) ≥ P(𝑅𝛽,𝑙( ⧵ +) > 𝑐𝛽 ) ≥ 𝑒−𝑐𝛽
(

(𝑁−1)𝑒−𝛽+𝑁×𝜆𝛽
)

,

and therefore

𝑐𝛽 ≥
(

(𝑁 − 1)𝑒−𝛽 +𝑁 × 𝜆𝛽
)−1 .

With this we concluded the proof of Proposition 9. □

5. Proof of Theorem 1

To prove Part 1 of Theorem 1 we study the first time in which the process has an opinion being expressed by an actor with
social pressure in absolute value smaller than 𝑁 (recall that 𝑁 is the number of actors in the system). We prove that starting from
any initial list 𝑢 ∈ , this occurs in the first 𝑁 jump times of the process. This is the content of Lemma 10. With this Lemma we
are able to prove Part 1 of Theorem 1.

Lemma 10. For any list 𝑢 ∈ ,

inf
{

𝑛 ≥ 1 ∶ |𝑈𝛽,𝑢
𝑇𝑛−1

(𝐴𝑛)| < 𝑁
}

≤ 𝑁.

Proof. The initial list of social pressures 𝑢 belongs to . Therefore, there exists 𝑎0 ∈  such that 𝑢(𝑎0) = 0. By definition, for any
𝑚 ≥ 1,

|𝑈𝛽,𝑢
𝑇𝑚

(𝑎0)| ≤
|

|

|

|

|

|

𝑚
∑

𝑗=1
𝑂𝑗

|

|

|

|

|

|

≤
𝑚
∑

𝑗=1

|

|

|

𝑂𝑗
|

|

|

= 𝑚.

More generally, if 𝐴𝑛 = 𝑎 then for any 𝑚 ≥ 1,

|𝑈𝛽,𝑢
𝑇𝑛+𝑚

(𝑎)| ≤
|

|

|

|

|

|

𝑚
∑

𝑗=1
𝑂𝑛+𝑗

|

|

|

|

|

|

≤
𝑚
∑

𝑗=1

|

|

|

𝑂𝑛+𝑗
|

|

|

= 𝑚.

Therefore, if

|{𝑎0, 𝐴1,… , 𝐴𝑁−1}| = 𝑁,

then

|𝑈𝛽,𝑢
𝑇𝑁−1

(𝐴𝑁 )| ≤ max
{

|𝑈𝛽,𝑢
𝑇𝑁−1

(𝑎0)|, |𝑈
𝛽,𝑢
𝑇𝑁−1

(𝐴1)|,… , |𝑈𝛽,𝑢
𝑇𝑁−1

(𝐴𝑁−1)|
}

≤

max{𝑁 − 1, 𝑁 − 2,… , 0} = 𝑁 − 1.

In other words, if on the first 𝑁 −1 steps of the process we have 𝑁 −1 different actors expressing opinions, with all these actors
being different from 𝑎0, then the absolute value of the social pressure on the actor expressing an opinion at instant 𝑇𝑁 is smaller
than 𝑁 . This implies that

inf
{

𝑛 ≥ 1 ∶ |𝑈𝛽,𝑢
𝑇𝑛−1

(𝐴𝑛)| < 𝑁
}

≤ 𝑁.

Now, if

|{𝑎0, 𝐴1,… , 𝐴𝑁−1}| ≤ 𝑁 − 1,

there exists 𝑚 ∈ {1,… , 𝑁 − 1} such that

𝐴𝑚 ∈ {𝑎0, 𝐴1,… , 𝐴𝑚−1}.

This implies that

|𝑈𝛽,𝑢
𝑇𝑚−1

(𝐴𝑚)| ≤ 𝑚 ≤ 𝑁 − 1,

and therefore,

inf
{

𝑛 ≥ 1 ∶ |𝑈𝛽,𝑢 (𝐴 )| < 𝑁
}

≤ 𝑚 < 𝑁. □
10

𝑇𝑛−1 𝑛
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Define 𝑇 <
0 = 𝑇 >

0 = 0 and for any 𝑘 ≥ 1,

𝑇 <
𝑘 ∶= inf{𝑇𝑛 > 𝑇 <

𝑘−1 ∶ |𝑈𝛽,𝑢
𝑇𝑛−1

(𝐴𝑛)| < 𝑁},

𝑇 >
𝑘 ∶= inf{𝑇𝑛 > 𝑇 >

𝑘−1 ∶ |𝑈𝛽,𝑢
𝑇𝑛−1

(𝐴𝑛)| ≥ 𝑁}.

Lemma 10 implies that 𝑇 <
𝑘 is well defined for any 𝑘 ≥ 1. Now we can prove Part 1 of Theorem 1.

Proof. To prove Part 1 of Theorem 1, we will construct the process (𝑈𝛽,𝑢
𝑡 )𝑡∈[0,+∞) with jump times {𝑇𝑛 ∶ 𝑛 ≥ 1} as the superposition

of two process with jump times {𝑇 <
𝑘 ∶ 𝑘 ≥ 1} and {𝑇 >

𝑘 ∶ 𝑘 ≥ 1} in the following way. For any 𝑣 ∈ , the jump rates of these two
processes are

𝑞<(𝑣) ∶=
∑

𝑎∈𝐴
𝟏{|𝑣(𝑎)| < 𝑁}(𝑒𝛽𝑣(𝑎) + 𝑒−𝛽𝑣(𝑎))

nd

𝑞>(𝑣) ∶=
∑

𝑎∈𝐴
𝟏{|𝑣(𝑎)| ≥ 𝑁}(𝑒𝛽𝑣(𝑎) + 𝑒−𝛽𝑣(𝑎)).

or any list 𝑣 ∈ , we have that

2 ≤ 𝑞<(𝑣) ≤ 𝜆,

ith

𝜆 ∶= 𝑁(𝑒𝛽(𝑁−1) + 𝑒−𝛽(𝑁−1)).

For any 𝑣 ∈ , we define the functions 𝛷<,−
𝑣 , 𝛷<,+

𝑣 , 𝛷>,−
𝑣 , 𝛷>,+

𝑣 ∶ {0} ∪ → [0,∞) inductively as follows. First, we have that

𝛷<,−
𝑣 (0) ∶= 0, 𝛷<,+

𝑣 (0) ∶= 0, 𝛷>,−
𝑣 (0) ∶= 𝜆 and 𝛷>,+

𝑣 (0) ∶= 𝜆.

For any 𝑎 ∈ , define

𝛷<,−
𝑣 (𝑎) ∶= 𝛷<,+

𝑣 (𝑎 − 1) + 𝟏{|𝑣(𝑎)| < 𝑁}𝑒−𝛽𝑣(𝑎),

𝛷<,+
𝑣 (𝑎) ∶= 𝛷<,−

𝑣 (𝑎) + 𝟏{|𝑣(𝑎)| < 𝑁}𝑒+𝛽𝑣(𝑎),

𝛷>,−
𝑣 (𝑎) ∶= 𝛷>,+

𝑣 (𝑎 − 1) + 𝟏{|𝑣(𝑎)| ≥ 𝑁}𝑒−𝛽𝑣(𝑎),

𝛷>,+
𝑣 (𝑎) ∶= 𝛷>,−

𝑣 (𝑎) + 𝟏{|𝑣(𝑎)| ≥ 𝑁}𝑒+𝛽𝑣(𝑎).

Note that for any 𝑣 ∈ , we have that

0 = 𝛷<,−
𝑣 (0) = 𝛷<,+

𝑣 (0) ≤ 𝛷<,−
𝑣 (1) ≤ 𝛷<,+

𝑣 (1) ≤ ⋯

≤ 𝛷<,−
𝑣 (𝑁 − 1) ≤ 𝛷<,+

𝑣 (𝑁 − 1) ≤ 𝛷<,−
𝑣 (𝑁) ≤ 𝛷<,+

𝑣 (𝑁) = 𝑞<(𝑣) ≤ 𝜆.

Moreover,

𝜆 = 𝛷>,−
𝑣 (0) = 𝛷>,+

𝑣 (0) ≤ 𝛷>,−
𝑣 (1) ≤ 𝛷>,+

𝑣 (1) ≤ ⋯

≤ 𝛷>,−
𝑣 (𝑁 − 1) ≤ 𝛷>,+

𝑣 (𝑁 − 1) ≤ 𝛷>,−
𝑣 (𝑁) ≤ 𝛷>,+

𝑣 (𝑁) = 𝜆 + 𝑞>(𝑣).

Therefore, for any 𝑣 ∈ , {𝛷<,−
𝑣 (𝑏), 𝛷<,+

𝑣 (𝑏) ∶ 𝑏 ∈ {0} ∪} is a partition of the interval [0, 𝑞<(𝑣)) in which for any 𝑎 ∈  such that
𝑣(𝑎) < 𝑁 , the length of [𝛷<,+

𝑣 (𝑎 − 1), 𝛷<,−
𝑣 (𝑎)) is 𝑒−𝛽𝑣(𝑎) (exactly the rate in which the actor 𝑎 expresses an opinion −1 associated to

the list 𝑣) and the length of [𝛷<,−
𝑣 (𝑎), 𝛷<,+

𝑣 (𝑎)) is 𝑒𝛽𝑣(𝑎) (exactly the rate in which the actor 𝑎 expresses an opinion +1 associated to
the list 𝑣). Similarly, {𝛷>,−

𝑣 (𝑏), 𝛷>,+
𝑣 (𝑏) ∶ 𝑏 ∈ {0} ∪ } is a partition of the interval [𝜆, 𝜆 + 𝑞>(𝑣)) in which for any 𝑎 ∈  such that

𝑣(𝑎) ≥ 𝑁 , the length of [𝛷>,+
𝑣 (𝑎 − 1), 𝛷>,−

𝑣 (𝑎)) is 𝑒−𝛽𝑣(𝑎) and the length of [𝛷>,−
𝑣 (𝑎), 𝛷>,+

𝑣 (𝑎)) is 𝑒𝛽𝑣(𝑎).
Using these partitions indexed by  (see Fig. 2), we now construct the process (𝑈𝛽,𝑢

𝑡 )𝑡∈[0,+∞) as follows. Consider a homogeneous
rate 1 Poisson point process in the plane [0,+∞)2. Call  the counting measure of this process. Given the initial list 𝑢 ∈ , define

𝑇1 = inf
{

𝑡 > 0 ∶ 
(

(0, 𝑡] ×
{

[0, 𝑞<(𝑢)) ∪ [𝜆, 𝜆 + 𝑞>(𝑢))
}

)

= 1
}

.

Denoting 𝑅1 as the second coordinate of the mark (𝑇1, 𝑅1) of  , we have

𝐴1 = 𝑏, 𝑂1 = −1, if 𝑅1 ∈ [𝛷<,+
𝑢 (𝑏 − 1), 𝛷<,−

𝑢 (𝑏)) ∪ [𝛷>,+
𝑢 (𝑏 − 1), 𝛷>,−

𝑢 (𝑏)),

𝐴1 = 𝑏, 𝑂1 = +1, if 𝑅1 ∈ [𝛷<,−
𝑢 (𝑏), 𝛷<,+

𝑢 (𝑏)) ∪ [𝛷>,−
𝑢 (𝑏), 𝛷>,+

𝑢 (𝑏)).
𝛽,𝑢 𝐴1 ,𝑂1
11

At time 𝑇1, we have 𝑈𝑇1
= 𝜋 (𝑢).
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Fig. 2. This figure represents the regions of [0,∞)×[0, 𝜆+𝑞>(𝑢)] and the marks of the Poisson point process  in [0,∞)2 considered on the construction of 𝑇1. In
this example, 𝑁 = 6 and the list 𝑢 ∈ , satisfies 𝑢(𝑎) < 𝑁 for 𝑎 = 1, 3, 6 and 𝑢(𝑎) ≥ 𝑁 for 𝑎 = 2, 4, 5. The height of each orange sub-region of the figure is exactly
the rate in which one of the actors with social pressure smaller than 𝑁 (actors 1,3 and 6) expresses one of the possible opinions (+1 and −1). The height of
each blue sub-region of the figure is exactly the rate in which one of the actors with social pressure greater or equal than 𝑁 (actors 2,4 and 5) expresses one of
the possible opinions. The points in the figure are the marks of  in this region. 𝑇1 is the time of the first mark of the Poisson point process inside the orange
or blue area. Note that the marks of  higher than 𝜆 + 𝑞>(𝑢) or in [0,∞] × [𝑞<(𝑢), 𝜆) (the yellow region) are not considered to define 𝑇1. In this example, the
osition of the mark at time 𝑇1 (between 𝛷>,−

𝑢 (2) and 𝛷>,+
𝑢 (2)) indicates that 𝐴1 = 2 and 𝑂1 = +1. (For interpretation of the references to color in this figure

egend, the reader is referred to the web version of this article.)

Fig. 3. The regions of the plane (𝑇𝑛 , 𝑇𝑛+1) × [0, 𝑞<(𝑈 𝛽,𝑢
𝑇𝑛

)] and (𝑇𝑛 , 𝑇𝑛+1) × [𝜆, 𝜆 + 𝑞>(𝑈 𝛽,𝑢
𝑇𝑛

)], for 𝑛 = 0, 1, 2,….

More generally, for 𝑛 ≥ 1, we have

𝑇𝑛 = inf
{

𝑡 > 𝑇𝑛−1 ∶ 
(

(𝑇𝑛−1, 𝑡] ×
{

[0, 𝑞<(𝑈𝛽,𝑢
𝑇𝑛−1

)) ∪ [𝜆, 𝜆 + 𝑞>(𝑈𝛽,𝑢
𝑇𝑛−1

))
})

= 1
}

.

enoting 𝑅𝑛 as the second coordinate of the mark (𝑇𝑛, 𝑅𝑛) of  , we have

𝐴𝑛 = 𝑏, 𝑂𝑛 = −1, if 𝑅𝑛 ∈

[

𝛷<,+
𝑈𝛽,𝑢
𝑇𝑛−1

(𝑏 − 1), 𝛷<,−
𝑈𝛽,𝑢
𝑇𝑛−1

(𝑏)

)

∪

[

𝛷>,+
𝑈𝛽,𝑢
𝑇𝑛−1

(𝑏 − 1), 𝛷>,−
𝑈𝛽,𝑢
𝑇𝑛−1

(𝑏)

)

,

𝐴𝑛 = 𝑏, 𝑂𝑛 = +1, if 𝑅𝑛 ∈

[

𝛷<,−
𝑈𝛽,𝑢
𝑇𝑛−1

(𝑏), 𝛷<,+
𝑈𝛽,𝑢
𝑇𝑛−1

(𝑏)

)

∪

[

𝛷>,−
𝑈𝛽,𝑢
𝑇𝑛−1

(𝑏), 𝛷>,+
𝑈𝛽,𝑢
𝑇𝑛−1

(𝑏)

)

.

t time 𝑇 , we have 𝑈𝛽,𝑢 = 𝜋𝐴𝑛 ,𝑂𝑛 (𝑈𝛽,𝑢 ) (see Fig. 3).
12

𝑛 𝑇𝑛 𝑇𝑛−1
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For any 𝑛 ≥ 1, we have that

𝑇 <
𝑛 = inf

{

𝑇𝑚 > 𝑇 <
𝑛−1 ∶ 𝑅𝑚 ∈

[

0, 𝑞<(𝑈𝛽,𝑢
𝑇𝑚−1

)
)

}

,

𝑇 >
𝑛 = inf

{

𝑇𝑚 > 𝑇 >
𝑛−1 ∶ 𝑅𝑚 ∈

[

𝜆, 𝜆 + 𝑞>(𝑈𝛽,𝑢
𝑇𝑚−1

)
)

}

.

efine 𝑇 𝜆
0 ∶= 0 and for any 𝑛 ≥ 1,

𝑇 𝜆
𝑛 ∶= inf

{

𝑡 > 𝑇 𝜆
𝑛−1 ∶ 

(

(𝑇 𝜆
𝑛−1, 𝑡] × [0, 𝜆)

)

= 1
}

.

By construction, {𝑇 <
𝑛 ∶ 𝑛 ≥ 1} ⊂ {𝑇 𝜆

𝑛 ∶ 𝑛 ≥ 1}. Also, {𝑇 𝜆
𝑛 ∶ 𝑛 ≥ 1} are the marks of a homogeneous Poisson point process with rate

. Since P(sup{𝑇 𝜆
𝑛 ∶ 𝑛 ≥ 1} = +∞) = 1, we have that P(sup{𝑇 <

𝑛 ∶ 𝑛 ≥ 1} = +∞) = 1. By Lemma 10, the event sup{𝑇 <
𝑛 ∶ 𝑛 ≥ 1} = +∞

mplies that ∑+∞
𝑛=1 𝟏{𝑇

>
𝑛 ≤ 𝑡} < ∞, for any 𝑡 > 0. {𝑇𝑛 ∶ 𝑛 ≥ 1} is the superposition of {𝑇 <

𝑛 ∶ 𝑛 ≥ 1} and {𝑇 >
𝑛 ∶ 𝑛 ≥ 1}, and then, we

onclude that P(sup{𝑇𝑛 ∶ 𝑛 ≥ 1} = +∞) = 1. □

To prove Part 2 of Theorem 1, we first show that starting from any initial list, the process has a positive and bounded probability
o reach a fixed ladder list after 2𝑁 jumps of the process. With this, we are able to prove that (𝑈𝛽,𝑢

𝑡 )𝑡∈[0,+∞] is an ergodic Markov
rocess.

roof. To prove Part 2 of Theorem 1, let 𝑙 ∈ + satisfies 𝑙(𝑎) = 𝑎 − 1, for all 𝑎 ∈ . For any 𝑢 ∈ , we have that

𝑙 = 𝜋1,+1◦𝜋2,+1◦… ◦𝜋𝑁,+1(𝑢),

nd then, if the event ⋂𝑁
𝑗=1{𝐴𝑗 = 𝑁 − 𝑗 + 1, 𝑂𝑗 = +1} occurs, then 𝑈̃𝛽,𝑢

𝑁 = 𝑙. This implies that for any 𝑢 ∈ ,

P
(

𝑈̃𝛽,𝑢
𝑁 = 𝑙

)

> 0. (9)

For any 𝑢′ ∈ ,

P
(

𝑈̃𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||

|

𝑈̃𝛽,𝑢
𝑛 = 𝑢′

)

≥

P

(

⋂

𝑎∈
{|𝑈̃𝛽,𝑢

𝑛+𝑁 (𝑎)| < 𝑁}||
|

𝑈̃𝛽,𝑢
𝑛 = 𝑢′

)

P

(

𝑈̃𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||

|

⋂

𝑎∈
{|𝑈̃𝛽,𝑢

𝑛+𝑁 (𝑎)| < 𝑁}

)

.

For any 𝑢 ∈ , note that

P

(

⋂

𝑎∈
{|𝑈̃𝛽,𝑢

𝑁 (𝑎)| < 𝑁} |

|

|

𝑁
⋂

𝑗=1
𝑀𝑢

𝑗

)

= 1.

This together with Proposition 5 implies that

P

(

⋂

𝑎∈
{|𝑈̃𝛽,𝑢

𝑁 (𝑎)| < 𝑁}

)

≥ P

( 𝑁
⋂

𝑗=1
𝑀𝑢

𝑗

)

≥ 𝜁𝑁𝛽 .

Also, there exists 𝜖∗ > 0 such that

P

(

𝑈̃𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||

|

⋂

𝑎∈
{|𝑈̃𝛽,𝑢

𝑛+𝑁 (𝑎)| < 𝑁}

)

≥

min

{

P
(

𝑈̃𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||

|

𝑈̃𝛽,𝑢
𝑛+𝑁 = 𝑣

)

∶ 𝑣 ∈  ,
⋂

𝑎∈
{|𝑣(𝑎)| < 𝑁}

}

= 𝜖∗.

Note that 𝜖∗ > 0 since it is the minimum of a finite set of positive numbers, by (9). Therefore, for any 𝑢′ ∈ ,

P
(

𝑈̃𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||

|

𝑈̃𝛽,𝑢
𝑛 = 𝑢′

)

≥ 𝜁𝑁𝛽 𝜖∗.

Recall that 𝑅̃𝛽,𝑙(𝑙) = inf{𝑛 ≥ 1 ∶ 𝑈̃𝛽,𝑙
𝑛 = 𝑙}. The last inequality implies that for any 𝑡 > 0,

P(𝑅̃𝛽,𝑙(𝑙) > 𝑡) ≤ P(2𝑁 × Geom(𝜁𝑁𝛽 𝜖∗) > 𝑡),

where Geom(𝑟) denotes a random variable with geometric distribution assuming values in {1, 2,…} and with parameter 𝑟 ∈ (0, 1).
his implies that E(𝑅̃𝛽,𝑙(𝑙)) < +∞ and then, (𝑈̃𝛽,𝑢

𝑛 )𝑛≥0 is a positive-recurrent Markov chain.
The jump rate of the process (𝑈𝛽,𝑢

𝑡 )𝑡∈[0,+∞) satisfies
∑

𝑎∈
(𝑒𝛽𝑣(𝑎) + 𝑒−𝛽𝑣(𝑎)) ≥ 2𝑁,

𝛽,𝑢
13

or any 𝑣 ∈ . Putting all this together we conclude that (𝑈𝑡 )𝑡∈[0,+∞) is ergodic. □
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6. Proof of Theorem 2

To prove Part 1 of Theorem 2, we first study the invariant probability measure of the embedded process (𝑈̃𝛽,𝑢
𝑛 )𝑛≥0. We prove

that the invariant measure of a list 𝑢 ∉  such that max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁 is small, decreasing when 𝛽 increases. We use the fact
that, starting from 𝑢, the embedded process quickly reaches the set of ladder lists, taking a long time to return to the initial list 𝑢.
This is the content of Proposition 11. With this we are able to prove Part 1 of Theorem 2, using the relation between the invariant
probability measure of (𝑈̃𝛽,𝑢

𝑛 )𝑛≥0 and (𝑈𝛽,𝑢
𝑡 )𝑡∈[0,+∞).

Proposition 11. For any 𝛽 ≥ 0 and 𝑢 ∉  such that max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁 we have that

𝜇̃𝛽 (𝑢) ≤ 𝐶 ′𝑒−𝛽(𝑁−1),

here 𝐶 ′ = 𝐶 ′(𝑁) > 0.

roof. First, we have that

E(𝑅̃𝛽,𝑢(𝑢)) =
+∞
∑

𝑚=1
P(𝑅̃𝛽,𝑢(𝑢) ≥ 𝑚) ≥

+∞
∑

𝑚=3(𝑁−1)
P(𝑅̃𝛽,𝑢(𝑢) ≥ 𝑚). (10)

For any 𝑢 ∉  such that max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁 , by Proposition 5 and Corollary 8,

P
(

{𝑈̃𝛽,𝑢
𝑛 ≠ 𝑢, for 𝑛 = 1, 2,… , 3(𝑁 − 1)} ∩ {𝑈̃𝛽,𝑢

3(𝑁−1) ∈ }
)

≥ P

(3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)

. (11)

Note that if

𝑣 ∈ {𝑢 ∈  ∶ 0 ≤ 𝑢(𝑎1) < 𝑢(𝑎2) < ⋯ < 𝑢(𝑎𝑁 ), for {𝑎1,… , 𝑎𝑁} = }

and 𝑂1 = +1, then

𝑈̃𝛽,𝑣
1 ∈ {𝑢 ∈  ∶ 0 ≤ 𝑢(𝑎1) < 𝑢(𝑎2) < ⋯ < 𝑢(𝑎𝑁 ), for {𝑎1,… , 𝑎𝑁} = }. (12)

Moreover, note that

+ ⊂ {𝑢 ∈  ∶ 0 ≤ 𝑢(𝑎1) < 𝑢(𝑎2) < ⋯ < 𝑢(𝑎𝑁 ), for {𝑎1,… , 𝑎𝑁} = }

and note that if

𝑣 ∈ {𝑢 ∈  ∶ 0 ≤ 𝑢(𝑎1) < 𝑢(𝑎2) < ⋯ < 𝑢(𝑎𝑁 ), for {𝑎1,… , 𝑎𝑁} = } ⧵ +,

then max{|𝑣(𝑎)| ∶ 𝑎 ∈ } ≥ 𝑁 . By the symmetric properties of the process, this implies that for any 𝑙 ∈  and for any 𝑚 ≥ 1, if
𝑚
⋂

𝑗=1
{𝑂𝑗 𝑈̃

𝛽,𝑙
𝑗−1(𝐴𝑗 ) > 0}

occurs, then

𝑈̃𝛽,𝑙
𝑗 ∈  ∪ {𝑢 ∈  ∶ max{|𝑢(𝑎)| ∶ 𝑎 ∈ } ≥ 𝑁}

for all 𝑗 = 1,… , 𝑚.
In other words, starting from a ladder list, if the process has a sequence of opinions expressed by actors with non-null social

pressure and in the same direction of their social pressure, then either the process is in a ladder list or there is at least one actor
with social pressure greater than or equal to 𝑁 . Since 𝑢 ∉  and max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁 , for any 𝑙 ∈  and for any 𝑚 ≥ 1, we have
that

P
(

{𝑈̃𝛽,𝑙
𝑛 ≠ 𝑢, for 𝑛 = 1, 2,… , 𝑚}

)

≥ P

( 𝑚
⋂

𝑗=1
{𝑂𝑗 𝑈̃

𝛽,𝑙
𝑗−1(𝐴𝑗 ) > 0}

)

. (13)

Therefore, for any 𝑚 ≥ 1, putting together (11), (13) and the Markov property, we have that

P(𝑅̃𝛽,𝑢(𝑢) ≥ 3(𝑁 − 1) + 𝑚) ≥ P

(3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)

P

( 𝑚
⋂

𝑗=1
{𝑂𝑗 𝑈̃

𝛽,𝑙
𝑗−1(𝐴𝑗 ) > 0}

)

. (14)

Note that for any

𝑣 ∈ {𝑢 ∈  ∶ 0 ≤ 𝑢(𝑎1) < 𝑢(𝑎2) < ⋯ < 𝑢(𝑎𝑁 ), for {𝑎1,… , 𝑎𝑁} = },

we have that

P
(

{𝑂 𝑈̃𝛽,𝑣(𝐴 ) > 0}
)

≥ 𝜂,
14

1 0 1
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where

𝜂 ∶=

𝑁−1
∑

𝑗=1
𝑒𝛽𝑗

𝑁−1
∑

𝑗=0
(𝑒𝛽𝑗 + 𝑒−𝛽𝑗 )

.

Therefore, for any 𝑙 ∈ , putting together (12), the Markov property and the symmetric properties of the process, we have that

P

( 𝑚
⋂

𝑗=1
{𝑂𝑗 𝑈̃

𝛽,𝑙
𝑗−1(𝐴𝑗 ) > 0}

)

≥ 𝜂𝑚. (15)

By Proposition 5 and Eqs. (10), (14) and (15), it follows that

E(𝑅̃𝛽,𝑢(𝑢)) ≥ P

(3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)(

1 +
∞
∑

𝑚=1
𝜂𝑚

)

≥ (2𝑁)−3(𝑁−1)

1 − 𝜂
.

rom the classical Kac’s Lemma (see [29]), we conclude that

𝜇̃𝛽 (𝑢) ≤ 𝐶 ′𝑒−𝛽(𝑁−1),

here 𝐶 ′ = (𝑁 + 1)(2𝑁)3(𝑁−1). □

orollary 12. 𝜇̃𝛽 (0⃗) < 𝐶 ′
1𝑒

−𝑁𝛽 for all 𝛽 ≥ 0, where 𝐶 ′
1 = 𝐶 ′

1(𝑁) > 0.

roof. Let 𝑣 ∈  be the list in which 𝑣(1) = 0 and 𝑣(𝑎) = 1, for 𝑎 ∈  ⧵ {1}. We have that

{𝑢 ∈  ∶ P(𝑈̃𝛽,𝑢
1 = 0⃗) > 0} = {𝜎(𝑣),−𝜎(𝑣) ∈  such that 𝜎 ∶  →  is a bijective map}.

Therefore, by the symmetric properties of the process, we have that

𝜇̃𝛽 (0⃗) =
∑

𝑢∈
P(𝑈̃𝛽,𝑢

1 = 0⃗)𝜇̃𝛽 (𝑢) = 2𝑁P(𝑈̃𝛽,𝑣
1 = 0⃗)𝜇̃𝛽 (𝑣).

Since

P(𝑈̃𝛽,𝑣
1 = 0⃗) = 1

2 + (𝑁 − 1)(𝑒+𝛽 + 𝑒−𝛽 )
≤ 𝑒−𝛽 ,

from Proposition 11 we conclude that

𝜇̃𝛽 (0⃗) ≤ (𝑁 + 1)(2𝑁)3(𝑁−1)𝑒−𝛽(𝑁−1)(2𝑁)𝑒−𝛽 = 𝐶 ′
1𝑒

−𝛽𝑁 . □

Now we can prove the Part 1 of Theorem 2.

Proof. To prove Part 1 of Theorem 2, first note that for any 𝑢 ∈ , the invariant measure 𝜇𝛽 satisfies

𝜇𝛽 (𝑢) =
𝜇̃𝛽 (𝑢)
𝑞𝛽 (𝑢)

(

∑

𝑢′∈

𝜇̃𝛽 (𝑢′)
𝑞𝛽 (𝑢′)

)−1

,

here for any 𝑣 ∈ ,

𝑞𝛽 (𝑣) ∶=
∑

𝑎∈
(𝑒𝛽𝑣(𝑎) + 𝑒−𝛽𝑣(𝑎))

is the jump rate of (𝑈𝛽,𝑢
𝑡 )𝑡∈[0,+∞) at list 𝑣. Note that for any 𝑙 ∈ ,

𝑞𝛽 (𝑙) =
𝑁−1
∑

𝑗=0
(𝑒𝛽𝑗 + 𝑒−𝛽𝑗 ).

herefore,

𝜇𝛽 () =
∑

𝑢∈

𝜇̃𝛽 (𝑢)
𝑞𝛽 (𝑢)

(

∑

𝑢′∈

𝜇̃𝛽 (𝑢′)
𝑞𝛽 (𝑢′)

)−1

= 1

1 +

∑𝑁−1
𝑗=0 (𝑒𝛽𝑗 + 𝑒−𝛽𝑗 )

𝜇̃𝛽 ()
∑

𝑢′∉

𝜇̃𝛽 (𝑢′)
𝑞𝛽 (𝑢′)

.

By Proposition 5, we have that

𝜇̃𝛽 () =
∑

𝜇̃𝛽 (𝑢)P(𝑈̃𝛽,𝑢
3(𝑁−1) ∈ ) ≥ (2𝑁)−3(𝑁−1).
15

𝑢∈
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We also have that
𝑁−1
∑

𝑗=0
(𝑒𝛽𝑗 + 𝑒−𝛽𝑗 ) ≤ 2𝑁𝑒𝛽(𝑁−1),

and then,

𝜇𝛽 () ≥ 1

1 + (2𝑁)3(𝑁−1)+1𝑒𝛽(𝑁−1)
∑

𝑢′∉

𝜇̃𝛽 (𝑢′)
𝑞𝛽 (𝑢′)

.

For any 𝑢 ∈  such that max{|𝑢(𝑎)| ∶ 𝑎 ∈ } ≥ 𝑁 , we have that 𝑞𝛽 (𝑢) ≥ 𝑒𝛽𝑁 , and then

𝜇̃𝛽 (𝑢)
𝑞𝛽 (𝑢)

≤ 𝜇̃𝛽 (𝑢)𝑒−𝛽𝑁 .

bserve that for any 𝑢 ≠ 0⃗, 𝑞𝛽 (𝑢) ≥ 𝑒𝛽 . Therefore, by Proposition 11 and Corollary 12, it follows that for any 𝑢 ∉  such that
ax{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁 , we have that

𝜇̃𝛽 (𝑢)
𝑞𝛽 (𝑢)

≤ 𝐶 ′
1𝑒

−𝛽𝑁 .

oreover, |{𝑢 ∉  ∶ max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁}| ≤ 𝑁(2𝑁 − 1)𝑁−1. Putting all this together, we have that

∑

𝑢′∉

𝜇̃𝛽 (𝑢′)
𝑞𝛽 (𝑢′)

≤ 𝑒−𝛽𝑁 +𝑁(2𝑁 − 1)𝑁−1𝐶 ′
1𝑒

−𝛽𝑁 .

We conclude that

𝜇𝛽 () ≥ 1
1 + 𝐶𝑒−𝛽

≥ 1 − 𝐶𝑒−𝛽 ,

here

𝐶 = (2𝑁)3(𝑁−1)+1[1 + 𝐶 ′
1𝑁(2𝑁 − 1)𝑁−1]. □

To prove Part 2 of Theorem 2 we use the fact that the embedded process quickly reaches the set of ladder lists and the exit rate
f any non-null list is bigger than 𝑒𝛽 .

roof. To prove Part 2 of Theorem 2, we first note that for any 𝑢 ∈  ⧵ {0⃗}, we have that

P
(

𝑅𝛽,𝑢() > 𝑡
)

≤ P

(

𝑅𝛽,𝑢() > 𝑡 ,
3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)

+ P

(3(𝑁−1)
⋃

𝑗=1
(𝑀𝑢

𝑗 )
𝑐

)

. (16)

art 2 of Proposition 5 implies that the right-hand side of Eq. (16) is bounded above by

P

(

𝑇3(𝑁−1) > 𝑡 ,
3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)

+ P

(3(𝑁−1)
⋃

𝑗=1
(𝑀𝑢

𝑗 )
𝑐

)

.

By Part 1 of Proposition 5, we have that

P

(3(𝑁−1)
⋃

𝑗=1
(𝑀𝑢

𝑗 )
𝑐

)

≤ 1 −
(

𝑒𝛽

𝑒𝛽 + 𝑒−𝛽 + 2(𝑁 − 1)

)3(𝑁−1)
. (17)

Note that the exit rate of any list different from the null list is always bigger than 𝑒𝛽 . Note also that for any 𝑢 ≠ 0⃗, the event 𝑀𝑢
1

implies that 𝑈𝛽,𝑢
𝑇1

≠ 0⃗. Therefore,

P

(

𝑇3(𝑁−1) > 𝑡 ,
3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)

≤ P

(3(𝑁−1)
∑

𝑛=1
𝐸𝑛 > 𝑡

)

, (18)

where (𝐸𝑛)𝑛≥1 is an i.i.d. sequence of exponentially distributed random variables with mean 1∕𝑒𝛽 . It follows that

P

(3(𝑁−1)
∑

𝑛=1
𝐸𝑛 > 𝑡

)

≤ P

(3(𝑁−1)
⋃

𝑛=1

{

𝐸𝑛 >
𝑡

3(𝑁 − 1)

}

)

≤ 3(𝑁 − 1)𝑒−𝑒
𝛽 𝑡∕(3(𝑁−1)).

−𝛽(1−𝛿)
16

We conclude the proof by taking 𝑡 = 𝑒 and noting that the bounds in (17) and (18) do not depend on 𝑢. □
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The next corollary presents an equivalent result of Theorem 2 when the initial list is the null list.

orollary 13. For any fixed 𝛿 > 0,

P
(

𝑅𝛽,0⃗() > 𝜏 + 𝑒−𝛽(1−𝛿)
)

→ 0 as 𝛽 → ∞,

here 𝜏 exponentially distributed random time with mean 1∕2𝑁 independent from (𝑈𝛽,0⃗
𝑡 )𝑡∈[0,+∞).

roof. Corollary 13 follows directly from Part 2 of Theorem 2 and the fact that given the initial list 0⃗, the first jump time 𝑇1 is an
xponentially distributed random time with mean 1∕2𝑁 . □

emark 14. Following the same steps of the proof of Part 2 of Theorem 2, it follows that for any fixed 𝛿 > 0

inf
𝑢∈+

P
(

𝑅𝛽,𝑢(+) < min{𝑒−𝛽(1−𝛿), 𝑅𝛽,𝑢(−)}
)

→ 1, as 𝛽 → +∞.

. Proof of Theorem 3

Recall that in Section 4, for any 𝑙 ∈ + and for any 𝛽 ≥ 0 we considered 𝑐𝛽 as the positive real number such that

P(𝑅𝛽,𝑙(−) > 𝑐𝛽 ) = 𝑒−1.

To prove Theorem 3, we prove in Proposition 15 that for 𝑙 ∈ +,

𝑅𝛽,𝑙(−)
𝑐𝛽

→ Exp(1), as 𝛽 → +∞,

here Exp(1) is a random variable exponentially distributed with mean 1. We will prove that the limiting distribution satisfies the
emoryless property, which characterizes the exponential distribution. For this, we use the fact that 𝑐𝛽 → +∞ as 𝛽 → +∞, which is

he content of Proposition 9. Lemmas 18 and 19 give the necessary conditions to replace 𝑐𝛽 by E[𝑅𝛽,𝑙(−)] in Proposition 15. Using
he fact that the process starting in + will quickly reaches +, as 𝛽 → +∞, we finish the proof of Theorem 3.

roposition 15. For any 𝑙 ∈ +

𝑅𝛽,𝑙(−)
𝑐𝛽

→ Exp(1), in distribution as 𝛽 → +∞,

where Exp(1) is a random variable exponentially distributed with mean 1.

To prove Proposition 15, we will first prove the following lemma.

Lemma 16. For any 𝛽 ≥ 0, for any 𝑙 ∈  and for any 𝑠 > 0,

P(𝑈𝛽,𝑙
𝑠 ∈  ⧵ ) ≤ 1 − 𝜇𝛽 ()

𝜇𝛽 ()
.

Proof. For any 𝑠 > 0, by definition,

𝜇𝛽 () =
∑

𝑢∈
𝜇𝛽 (𝑢)P(𝑈𝛽,𝑢

𝑠 ∈ ) +
∑

𝑢∈⧵
𝜇𝛽 (𝑢)P(𝑈𝛽,𝑢

𝑠 ∈ ).

By the symmetric properties of the process, it follows that for any 𝑙, 𝑙′ ∈ ,

P(𝑈𝛽,𝑙
𝑠 ∈ ) = P(𝑈𝛽,𝑙′

𝑠 ∈ ).

Moreover,
∑

𝑢∈⧵
𝜇𝛽 (𝑢)P(𝑈𝛽,𝑢

𝑠 ∈ ) ≤ 1 − 𝜇𝛽 ().

Putting all this together we have that

𝜇𝛽 () ≤ 𝜇𝛽 ()P(𝑈𝛽,𝑙
𝑠 ∈ ) + (1 − 𝜇𝛽 ()).

We conclude the proof of Lemma 16 by rearranging the terms of this last inequality. □

Proof. We will now prove Proposition 15. First of all, we will prove that for any 𝑙 ∈ + and for any pair of positive real numbers
𝑠, 𝑡 ≥ 0, the following holds

lim
|

|

|P
(

𝑅𝛽,𝑙(−)
> 𝑠 + 𝑡

)

− P
(

𝑅𝛽,𝑙(−)
> 𝑠

)

P
(

𝑅𝛽,𝑙(−)
> 𝑡

)

|

|

| = 0. (19)
17

𝛽→+∞ |

|

𝑐𝛽 𝑐𝛽 𝑐𝛽 |

|
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To simplify the presentation of the proof, we will use the shorthand notation 𝑅𝛽,𝑢 instead of 𝑅𝛽,𝑢(−), for any 𝑢 ∉ −.
Indeed, for a fixed 𝑙 ∈ +, by the Markov property and the triangle inequality,

|

|

|

|

|

P
(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑠 + 𝑡

)

− P
(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑠

)

P
(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡

)

|

|

|

|

|

=

|

|

|

|

|

|

∑

𝑢∈⧵−
P
(

𝑈𝛽,𝑙
𝑐𝛽 𝑠

= 𝑢, 𝑅
𝛽,𝑙

𝑐𝛽
> 𝑠 + 𝑡

)

− P
(

𝑈𝛽,𝑙
𝑐𝛽 𝑠

= 𝑢, 𝑅
𝛽,𝑙

𝑐𝛽
> 𝑠

)

P
(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡

)|

|

|

|

|

|

≤

∑

𝑢∈⧵−
P
(

𝑈𝛽,𝑙
𝑐𝛽 𝑠

= 𝑢, 𝑅
𝛽,𝑙

𝑐𝛽
> 𝑠

)

|

|

|

|

|

P
(

𝑅𝛽,𝑢

𝑐𝛽
> 𝑡

)

− P
(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡

)

|

|

|

|

|

. (20)

By the symmetric properties of the process, for any 𝑢 ∈ +,

P
(

𝑅𝛽,𝑢

𝑐𝛽
> 𝑡

)

= P
(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡

)

.

Therefore, the right-hand side of Eq. (20) is bounded above by

∑

𝑢∈⧵
P
(

𝑈𝛽,𝑙
𝑐𝛽 𝑠

= 𝑢, 𝑅
𝛽,𝑙

𝑐𝛽
> 𝑠

)

|

|

|

|

|

P
(

𝑅𝛽,𝑢

𝑐𝛽
> 𝑡

)

− P
(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡

)

|

|

|

|

|

≤ P
(

𝑈𝛽,𝑙
𝑐𝛽 𝑠

∈  ⧵ 
)

. (21)

By Lemma 16, Eq. (21) and Theorem 2 implies (19).
By definition,

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 1
)

= 𝑒−1.

terating (19) with 𝑡 = 𝑠 = 2−𝑛, for 𝑛 = 1, 2,…, we have that

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 2−𝑛
)

→ 𝑒−2
−𝑛
, as 𝛽 → +∞.

More generally, this iteration implies that for any

𝑡 ∈

{ 𝑚
∑

𝑛=1
𝑏(𝑛)2−𝑛 ∶ 𝑏(𝑛) ∈ {0, 1}, 𝑛 = 1,… , 𝑚, 𝑚 ≥ 1

}

is valid that

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡
)

→ 𝑒−𝑡, as 𝛽 → +∞. (22)

Any real number 𝑟 ∈ (0, 1) has a binary representation

𝑟 =
+∞
∑

𝑛=1
𝑏(𝑛)2−𝑛,

where for any 𝑛 ≥ 1, 𝑏(𝑛) ∈ {0, 1}. Therefore, the monotonicity of

𝑡 → P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡
)

mplies that the convergence in (22) is valid for any 𝑡 ∈ (0, 1). Moreover, for any positive integer 𝑛 ≥ 1, Eq. (19) implies that

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑛
)

→ 𝑒−𝑛, as 𝛽 → +∞.

utting all this together, we conclude that (22) is valid for any 𝑡 > 0. □

emark 17. For any 𝑙 ∈ + and for any 𝛽 ≥ 0, the function 𝑓𝛽 ∶ [0,+∞) → [0, 1] given by

𝑓𝛽 (𝑡) = P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡
)

s monotonic. Also, by Proposition 15, it converges pointwise as 𝛽 → +∞ to a continuous function. Therefore, given 𝜖𝛽 > 0 such
that lim𝛽→+∞ 𝜖𝛽 = 0, for any 𝑡 > 0 we have that

lim
𝛽→+∞

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡 + 𝜖𝛽

)

= lim
𝛽→+∞

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡 − 𝜖𝛽

)

= 𝑒−𝑡.

To prove Theorem 3, we will first prove the two following lemmas.
18
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Lemma 18. For any 𝑢 ∈ , let

𝜌𝑢 ∶= P

(

𝑅𝛽,𝑢(+) < 𝑅𝛽,𝑢(−)||
|

3(𝑁−1)
⋂

𝑗=1
𝑀𝑢

𝑗

)

.

Then, for any 𝑡 > 0,

lim
𝛽→+∞

sup
𝑢∈⧵−

|

|

|

|

|

P
(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡
)

− 𝑒−𝑡𝜌𝑢
|

|

|

|

|

= 0.

roof. Denoting 𝐸𝛽,𝑢 = {𝑅𝛽,𝑢() < 𝑒𝛽∕2,
⋂3(𝑁−1)

𝑗=1 𝑀𝑢
𝑗 }, we have that for any 𝑢 ∉ ,

P
(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡
)

= P
(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡, 𝐸𝛽,𝑢, 𝑅
𝛽,𝑢(+) < 𝑅𝛽,𝑢(−)

)

+ (23)

P
(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡, 𝐸𝛽,𝑢, 𝑅
𝛽,𝑢(−) < 𝑅𝛽,𝑢(+)

)

+ P
(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡, 𝐸𝑐
𝛽,𝑢

)

.

By Proposition 9, there exists 𝛽𝑡 > 0 such that for any 𝛽 > 𝛽𝑡, 𝑐𝛽 𝑡 > 𝑒𝛽∕2. By the definition of 𝐸𝛽,𝑢, this implies that, for any 𝛽 > 𝛽𝑡,

P
(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡, 𝐸𝛽,𝑢, 𝑅
𝛽,𝑢(−) < 𝑅𝛽,𝑢(+)

)

≤ P(𝑐𝛽 𝑡 < 𝑅𝛽,𝑢(−) < 𝑒𝛽∕2) = 0.

Note that the first term on the right-hand side of Eq. (23) is equal

P
(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡 | 𝐸𝛽,𝑢, 𝑅
𝛽,𝑢(+) < 𝑅𝛽,𝑢(−)

)

× 𝜌𝑢 × P(𝐸𝛽,𝑢).

Considering 𝑙 ∈ +, by the Markov property it follows that the term above is bounded below by

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡
)

𝜌𝑢[1 − P(𝐸𝑐
𝛽,𝑢)] (24)

and bounded above by

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡 − 𝑒𝛽∕2

𝑐𝛽

)

𝜌𝑢.

Therefore, considering 𝑙 ∈ +, for any 𝑢 ∈  ⧵− and for all 𝛽 > 𝛽𝑡, the left-hand side of Eq. (23) is bounded below by (24) and
ounded above by

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡 − 𝑒𝛽∕2

𝑐𝛽

)

𝜌𝑢 + P(𝐸𝑐
𝛽,𝑢). (25)

By Theorem 2 and Corollary 13,

lim
𝛽→+∞

sup
𝑢∈⧵−

P
(

𝐸𝑐
𝛽,𝑢

)

= 0.

By Proposition 9, it follows that lim𝛽→+∞ 𝑒𝛽∕2∕𝑐𝛽 = 0. Therefore, by Remark 17 we have that

lim
𝛽→+∞

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡
)

= lim
𝛽→+∞

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡 − 𝑒𝛽∕2

𝑐𝛽

)

= 𝑒−𝑡.

e conclude the proof by noting that the limits in the last equation do not depend on 𝑢. □

Lemma 19. There exists 𝛾 ∈ (0, 1) and 𝛽𝛾 > 0 such that for any 𝛽 > 𝛽𝛾 and any 𝑙 ∈ +, the following upperbound holds

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑛
)

≤ 𝛾𝑛,

for any positive integer 𝑛 ≥ 1.

Proof. Taking 𝑡 = 1 on Lemma 18, we have that for any fixed 𝛾 ∈ (𝑒−1, 1), there exists 𝛽𝛾 such that for all 𝛽 > 𝛽𝛾 and for any 𝑢 ∉ −,

P
(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 1
)

≤ 𝛾 < 1. (26)

For any 𝑙 ∈ + and for any 𝑛 ∈ {2, 3,…}, by Markov property,

P
(

𝑅𝛽,𝑙(−)
𝑐

> 𝑛
)

=
∑

P
(

𝑅𝛽,𝑙(−)
𝑐

> 𝑛 − 1, 𝑈𝛽,𝑙
𝑐𝛽 (𝑛−1)

= 𝑢
)

P
(

𝑅𝛽,𝑢(−)
𝑐

> 1
)

.

19

𝛽 𝑢∈⧵− 𝛽 𝛽
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Eq. (26) implies that for any 𝛽 > 𝛽𝛾 ,

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑛
)

≤ 𝛾P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑛 − 1
)

. (27)

We finish the proof by iterating (27). □

Proof. We will now prove Theorem 3.
First of all, we will prove that for any 𝑙 ∈ +, the following holds

𝑅𝛽,𝑙(−)
E[𝑅𝛽,𝑙(−)]

→ Exp(1) in distribution, as 𝛽 → +∞. (28)

Considering Proposition 15, we only need to show that

lim
𝛽→+∞

E[𝑅𝛽,𝑙(−)]
𝑐𝛽

= 1.

ctually,

lim
𝛽→+∞

E[𝑅𝛽,𝑙(−)]
𝑐𝛽

= lim
𝛽→+∞∫

+∞

0
P(𝑅𝛽,𝑙(−) > 𝑐𝛽𝑠)𝑑𝑠.

By Lemma 19, for any 𝛽 > 𝛽𝛾 ,

∫

+∞

0
P(𝑅𝛽,𝑙(−) > 𝑐𝛽𝑠)𝑑𝑠 ≤

+∞
∑

𝑛=0
P(𝑅𝛽,𝑙(−) > 𝑐𝛽𝑛) ≤

+∞
∑

𝑛=0
𝛾𝑛 < +∞.

Therefore, the Dominated Convergence Theorem allow us to put the limit inside the integral as follows

lim
𝛽→+∞∫

+∞

0
P(𝑅𝛽,𝑙(−) > 𝑐𝛽𝑠)𝑑𝑠 = ∫

+∞

0
lim

𝛽→+∞
P(𝑅𝛽,𝑙(−) > 𝑐𝛽𝑠)𝑑𝑠 = ∫

+∞

0
𝑒−𝑠𝑑𝑠 = 1.

This and Proposition 15 imply (28).
For any 𝛽 ≥ 0, for any 𝑢 ∈ + and for any 𝑠 > 0,

P(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠) = P(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠, 𝐸𝛽,𝑢) + P(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠, 𝐸
𝑐
𝛽,𝑢),

where

𝐸𝛽,𝑢 = {𝑅𝛽,𝑢(+) < min{1, 𝑅𝛽,𝑢(−)}, 𝑅𝛽,𝑢(−) < 𝑅𝛽,𝑢(−) + 1}.

Note that the event 𝐸𝛽,𝑢 implies that

|𝑅𝛽,𝑢(−) − (inf{𝑡 > 𝑅𝛽,𝑢(+) ∶ 𝑈𝛽,𝑢
𝑡 ∈ −} − 𝑅𝛽,𝑢(+))| ≤ 1.

Therefore, by Markov property and by the symmetric properties of the process, for any 𝑙 ∈ +, we have that

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

≥ 𝑠 + 1
𝑐𝛽

)

P
(

𝐸𝛽,𝑢
)

≤ P(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠, 𝐸𝛽,𝑢) ≤ P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

≥ 𝑠 − 1
𝑐𝛽

)

P
(

𝐸𝛽,𝑢
)

. (29)

By Theorem 2 and Remark 14, for any 𝑢 ∈ +,

lim
𝛽→+∞

P(𝐸𝛽,𝑢) = 1,

and then,

lim
𝛽→+∞

P(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠, 𝐸𝛽,𝑢) = lim
𝛽→+∞

P(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠).

By Proposition 9, lim𝛽→+∞ 𝑐−1𝛽 = 0. Therefore, Remark 17 implies that

lim
𝛽→+∞

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

≥ 𝑠 + 1
𝑐𝛽

)

= lim
𝛽→+∞

P
(

𝑅𝛽,𝑙(−)
𝑐𝛽

≥ 𝑠 − 1
𝑐𝛽

)

= 𝑒−𝑠.

utting this together with (29), we conclude that for any 𝑢 ∈ +,

𝑅𝛽,𝑢(−)
𝑐𝛽

→ Exp(1) in distribution, as 𝛽 → +∞.

o finish the proof, just note that the Dominated Convergence Theorem allow us to replace 𝑐𝛽 by E[𝑅𝛽,𝑢(−)] as we did to prove
hat Eq. (28) holds. □

emark 20. Since for any 𝑢 ∈ +

lim
E[𝑅𝛽,𝑢(−)]

= 1,
20

𝛽→+∞ 𝑐𝛽
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Proposition 9 implies that

lim
𝛽→+∞

E[𝑅𝛽,𝑢(−)]
𝐶1𝑒𝛽

≥ 1.

n particular, this implies that lim𝛽→∞ E[𝑅𝛽,𝑢(−)] = +∞.

8. Proof of Theorem 4

The proof of Theorem 4 uses the same strategy already used to prove Theorem 2. Let (𝑇̂𝑛 ∶ 𝑛 ≥ 1) be the jumping times of the
process (𝑈̂𝛽,𝑢

𝑡 )𝑡∈[0,+∞) and let ((𝐴̂𝑛, 𝑂̂𝑛) ∶ 𝑛 ≥ 1) be the sequence of pairs associated to them. As for the case without robot, 𝑂̂𝑛 is the
opinion expressed at time 𝑇̂𝑛, but 𝐴̂𝑛 can be either an actor belonging to  or the robot, i.e., 𝐴̂𝑛 ∈  ∪ {∗}.

For any initial list 𝑢 ∈ ̂ and for any 𝑛 ≥ 1, we define the event

𝑀̂𝑢
𝑛 ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐻𝑛

(

𝑈̂𝛽,𝑢
𝑇̂𝑛−1

)

, if max{|𝑈̂𝛽,𝑢
𝑇̂𝑛−1

(𝑎)| ∶ 𝑎 ∈ } > 𝛼,

𝐻𝑛

(

𝑈̂𝛽,𝑢
𝑇̂𝑛−1

)

∪ {𝐴̂𝑛 =∗, 𝑂̂𝑛 = +1} , if max{|𝑈̂𝛽,𝑢
𝑇̂𝑛−1

(𝑎)| ∶ 𝑎 ∈ } = 𝛼,

{𝐴̂𝑛 =∗, 𝑂̂𝑛 = +1} , if max{|𝑈̂𝛽,𝑢
𝑇̂𝑛−1

(𝑎)| ∶ 𝑎 ∈ } < 𝛼,

where

𝐻𝑛

(

𝑈̂𝛽,𝑢
𝑇̂𝑛−1

)

∶=
{

𝐴̂𝑛 ∈ argmax{|𝑈̂𝛽,𝑢
𝑇̂𝑛−1

(𝑎)| ∶ 𝑎 ∈ } and 𝑂̂𝑛𝑈̂
𝛽,𝑢
𝑇̂𝑛−1

(𝐴̂𝑛) ≥ 0
}

.

𝑀̂𝑛 is the event in which the most likely choice of the pair (𝐴𝑛, 𝑂𝑛) occurs.
For any 𝛽 ≥ 0 and for any 𝛼 > 0, the invariant probability measure of the embedded process (𝑈̂𝛽,𝑢

𝑇̂𝑛
)𝑛≥0 will be denoted 𝜈̃𝛽,𝛼 . For

any initial list 𝑢 ∈ ̂, let

𝜏(𝑢) ∶= inf{𝑛 ≥ 1 ∶ 𝐴̂𝑛 ∈ {𝐴̂1,… , 𝐴̂𝑛−1} ∪ {𝑎 ∈  ∶ 𝑢(𝑎) = 0} ∪ {∗}}.

Proposition 21 is a version of Proposition 5 for the model with a robot.

Proposition 21.

1. For any 𝛽 ≥ 0, for any 𝛼 > 0, for any initial list 𝑢 ∈ ̂ and for any 𝑚 ≥ 1,

P

( 𝑚
⋂

𝑗=1
𝑀̂𝑢

𝑗

)

≥ (𝜁𝛽 )𝑚,

where

𝜁𝛽 ∶= 𝑒𝛽(1−𝛾)

𝑒𝛽(1−𝛾) + 𝑒−𝛽(1−𝛾) + 2𝑁
,

with 𝛾 = max{⌈𝛼⌉ − 𝛼, 𝛼 − ⌊𝛼⌋}.
2. If 𝛼 > 𝑁 − 1, for any 𝑢 ∈ ̂,

P

(

𝑈̂𝛽,𝑢
𝑇̂2⌊𝛼⌋+3𝑁+2

∈ ̂+,𝛼 |

|

|

2⌊𝛼⌋+3𝑁+2
⋂

𝑗=1
𝑀̂𝑢

𝑗

)

= 1.

Proof. The proof of Part 1 of Proposition 21 can be done exactly as we did to prove Part 1 of Proposition 5 in Section 4.
To prove Part 2 of Proposition 21 we first observe that 𝜏(𝑢) ≤ 𝑁 + 1, by definition. Therefore, the Markov property implies the

ollowing inequality

P

(

𝑈̂𝛽,𝑢
𝑇̂2⌊𝛼⌋+3𝑁+2

∈ ̂+,𝛼 |

|

|

2⌊𝛼⌋+3𝑁+2
⋂

𝑗=1
𝑀̂𝑢

𝑗

)

≥ P

(

⋂

𝑎∈
{𝑈̂𝛽,𝑢

𝑇̂𝜏(𝑢)
(𝑎) > −𝛼} |

|

|

𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗

)

×

P

(

𝑈̂𝛽,𝑢
𝑇̂3⌊𝛼⌋+2𝑁+2

∈ ̂+,𝛼 |

|

|

3⌊𝛼⌋+2𝑁+2
⋂

𝑗=𝜏(𝑢)+1
𝑀̂𝑢

𝑗 ∩
⋂

𝑎∈
{𝑈̂𝛽,𝑢

𝑇̂𝜏(𝑢)
(𝑎) > −𝛼}

)

.

We will show that the two terms on the right-hand side of the equation above are equal to 1.
Note that

𝜏(𝑢)
⋂

𝑀̂𝑢
𝑗 ∩ {𝐴̂𝜏(𝑢) ≠∗} ⊂ {|𝑈̂𝛽,𝑢

𝑇𝜏(𝑢)−1
(𝐴̂𝜏(𝑢))| ≥ 𝛼}.
21

𝑗=1
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At the same time, following the arguments of Lemma 6, we conclude that

𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗 ∩ {𝐴̂𝜏(𝑢) ≠∗} ⊂ {|𝑈̂𝛽,𝑢
𝑇𝜏(𝑢)−1

(𝐴̂𝜏(𝑢))| ≤ 𝑁 − 1}. (30)

herefore, if 𝛼 > 𝑁 − 1, then
𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗 ∩ {𝐴̂𝜏(𝑢) ≠∗} ⊂ {|𝑈̂𝛽,𝑢
𝑇𝜏(𝑢)−1

(𝐴̂𝜏(𝑢))| ≤ 𝑁 − 1} ∩ {|𝑈̂𝛽,𝑢
𝑇𝜏(𝑢)−1

(𝐴̂𝜏(𝑢))| ≥ 𝛼} = ∅.

s a consequence,

𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗 =
𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗 ∩ {𝐴̂𝜏(𝑢) =∗}.

Therefore,

P

(

⋂

𝑎∈
{𝑈̂𝛽,𝑢

𝑇̂𝜏(𝑢)
(𝑎) > −𝛼} |

|

|

𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗

)

=

P

(

⋂

𝑎∈
{𝑈̂𝛽,𝑢

𝑇̂𝜏(𝑢)
(𝑎) > −𝛼} |

|

|

𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗 ∩ {𝐴̂𝜏(𝑢) =∗}

)

.

By definition,

𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗 ∩ {𝐴̂𝜏(𝑢) =∗} ⊂
⋂

𝑎∈
{−𝛼 ≤ 𝑈̂𝛽,𝑢

𝑇̂𝜏(𝑢)−1
(𝑎) ≤ 𝛼}.

utting it together with the fact that 𝐴̂𝜏(𝑢) =∗ implies that 𝑂̂𝜏(𝑢) = +1, we conclude that

P

(

⋂

𝑎∈
{𝑈̂𝛽,𝑢

𝑇̂𝜏(𝑢)
(𝑎) > −𝛼} |

|

|

𝜏(𝑢)
⋂

𝑗=1
𝑀̂𝑢

𝑗 ∩ {𝐴̂𝜏(𝑢) =∗}

)

= 1.

With arguments similar to those used to prove Proposition 5, we prove that

P

(

𝑈̂𝛽,𝑢
𝑇̂𝜏(𝑢)+2⌊𝛼⌋+2𝑁+1

∈ ̂+,𝛼 |

|

|

2⌊𝛼⌋+2𝑁+1
⋂

𝑗=1
𝑀̂𝑢

𝑗 ∩
⋂

𝑎∈
{𝑈̂𝛽,𝑢

𝑇̂𝜏(𝑢)
(𝑎) > −𝛼}

)

= 1.

This concludes the proof of Part 2 of Proposition 21. □

Now, we prove Theorem 4.

Proof. Using the same strategy used to prove Theorem 2, we first observe that

𝜈𝛽,𝛼(̂+,𝛼) ≥ 1

1 +
(2𝑁 + 1)𝑒𝛽(⌊𝛼⌋+1)

𝜈̃𝛽,𝛼(̂+,𝛼)

∑

𝑢′∉̂+,𝛼

𝜈̃𝛽,𝛼(𝑢′)
𝑞𝛽 (𝑢′)

,

where for any 𝑢 ∈ ̂,

𝑞𝛽 (𝑢) ∶=
∑

𝑎∈
(𝑒𝛽𝑢(𝑎) + 𝑒−𝛽𝑢(𝑎)) + 𝑒𝛽𝛼 .

If max{|𝑢(𝑎)| ∶ 𝑎 ∈ } ≥ ⌊𝛼⌋ + 2, then 𝑞𝛽 (𝑢) ≥ 𝑒𝛽(⌊𝛼⌋+2), and therefore,

𝜈̃𝛽,𝛼(𝑢)
𝑞𝛽 (𝑢)

≤ 𝜈̃𝛽,𝛼(𝑢)𝑒−𝛽(⌊𝛼⌋+2).

In the case 𝑢 ∉ ̂+,𝛼 and max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < ⌊𝛼⌋ + 2, using Proposition 21 we can prove that there exists 𝐶̂ ′ = 𝐶̂ ′(𝑁) > 0 such
that 𝜈̃𝛽,𝛼(𝑢) ≤ 𝐶̂ ′𝑒−𝛽𝛼 exactly as we did to prove Proposition 11 in Section 6. In this case, it follows that

𝜈̃𝛽,𝛼(𝑢)
𝑞𝛽 (𝑢)

≤ 𝐶̂ ′𝑒−𝛽(⌊𝛼⌋+2).

rom this point on, the proof of Part 2.1 of Theorem 4 can be done exactly as we did to prove Part 1 of Theorem 2.
Considering Proposition 21, the proof of Part 2.2 of Theorem 4 can be done similarly as we did to prove Part 2 of Theorem 2. □
22
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9. Discussion

Our model describes the time evolution of a ‘‘social bubble’’. By this we mean a group of highly connected social actors and
isconnected from the actors outside the group. Theorems 2–4 rigorously analyze the behavior of such a system of interacting social
ctors in a highly polarized situation.

One of the main features of our model is the disposition of each actor to always take into account the opinion of the other actors
n the network. We conjecture that this is a typical feature of a social network in which all the actors have similar psychographic
rofiles. In a highly polarized situation, this feature makes our model a kind of ‘‘consensus building machine’’.

The high polarization in our model of social network is compatible with the ‘‘filter bubble’’ hypothesis introduced by [37]. In a
utshell, this hypothesis links network polarization with algorithmic filtering of ideas and opinions. This creates ‘‘echo chambers’’,
mplifying opinions within the network [14].

The Brazilian 2018 and 2022 elections served as an inspiration for our model and suggested the following question: is social
edia campaigning enough to change in a quite short period of time the voting intention of a significant portion of voters?

The results described by Theorems 2,3 and 4 seem to reproduce qualitatively the fast modification of the voting intentions
bserved before the first rounds of the 2018 and 2022 presidential elections in Brazil. However, a more detailed statistical analysis
ust be done to support the conjecture that our model offers an adequate explanation for the recent Brazilian electoral dynamics.
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