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Dedicated to the memory of Antonio Galves A polarized social network is modeled as a system of interacting marked point processes with

memory of variable length. Each point process indicates the successive times in which a social

IGVfJSIfS:S actor expresses a “favorable” or “contrary” opinion. After expressing an opinion, the social
60G55 pressure on the actor is reset to 0, waiting for the group’s reaction. The orientation and the
91D30 rate at which an actor expresses an opinion is influenced by the social pressure exerted on it,

modulated by a polarization coefficient. We prove that the network reaches an instantaneous
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1. Introduction

Huge discrepancies between the results of electoral intentions carried out a few days before the actual voting and the electoral
poll results during the first rounds of the 2018 and 2022 presidential elections in Brazil were striking (see for instance [9,23,35,38]).

It was conjectured that these discrepancies in the Brazilian elections were due to campaigns in support of a group of candidates
launched on social media a few days before the elections (see for instance [8,32,33]). This conjecture raises a question: is social
media campaigning enough to change in a quite short period of time the voting intention of a significant portion of voters?

To address this question, we introduce a new stochastic model that mimics some important features of real world social networks.
This model can be informally described as follows.

1. The model is a system with interacting marked point processes.

2. Each point process indicates the successive times in which a social actor expresses either a “favorable” (+1) or “contrary”
(1) opinion on a certain topic.

3. When an actor expresses an opinion, social pressure on it is reset to 0, and simultaneously, social pressures on all the other
actors change by one unit in the direction of the opinion that was just expressed.

4. The orientation and the rate at which an actor expresses an opinion is influenced by the social pressure exerted on it,
modulated by a polarization coefficient. The greater the value of the polarization coefficient, the greater the speed in which
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actors express opinions and the greater the tendency of each actor to express opinions in the same direction of its social
pressure.

In this model, the actors listen to and influence each other. Thus, after expressing an opinion, each actor waits for the group’s
reaction to the opinion it has just expressed. It is this reaction that will guide the actor’s next manifestation. This is the content of
the third point presented above. The resetting of the social pressure on the actor every time it expresses an opinion makes the point
processes describing the activity of the actor to have a memory of variable length. In addition, the fact that each actor is always
willing to accept the opinion of the other actors makes our social network model a kind of “consensus building machine”. We will
come back to this last point in the Discussion Section at the end of this article.

Starting with the classical voter model, introduced by [28], several articles addressed issues associated to opinion dynamics in a
social network. See [1,12,39] for a general review on this subject. However, to the best of our knowledge, a model with the features
introduced here was not considered yet in the literature of social networks.

The model introduced here belongs to the same class of systems of interacting point processes with memory of variable length
that was introduced in discrete time by [24] and in continuous time by [15] to model systems of spiking neurons. For a self-contained
and neurobiological motivated presentation of this class of variable length memory models for systems of spiking neurons, both in
discrete and continuous time, we refer the reader to [25].

Several questions have been studied for models in this class, including metastability [2-4,30,31,41], phase transition [10,21,34],
hydrodynamic limits and propagation of chaos [15,19,22], time evolution and stationary states [13,18], replica-mean-field limits [5—
7,26], existence and perfect simulation [24,40] and statistical inference of the graph of interaction between neurons [16,17].
However, none of these articles addressed the consensus issue considered here.

A main difference between the model considered in the present article and the models considered in the articles mentioned
above is the fact that in our case we consider marked point processes, each mark indicating whether the expressed opinion is
favorable or contrary on a certain topic. A second important difference lies in the presence of a polarization coefficient tuning the
social influence on the opinion expressed by each actor. These specific characteristics make it possible to study the constitution of
consensus situations. Our model, results and proofs are new and original.

Let us now informally present our results. Our model is described by the time evolution of the list containing the social pressures
of the actors. The existence of the process and the uniqueness of its invariant probability measure is the content of Theorem 1.

When the polarization coefficient diverges, the invariant probability measure concentrates on a subset of the set of consensus
lists and the time the system needs to get there goes to zero. Here by a consensus list, we mean any list in which all the social
pressures push in the same direction. This is the content of Theorem 2, which gives a mathematical rigorous meaning of the informal
description of a social network as a “consensus building machine”.

In the social network, the consensus has a metastable behavior. This means that the direction of the social pressures on the actors
globally changes after a long and unpredictable random time. This is the content of Theorem 3.

The notion of metastability considered here is inspired by the so called pathwise approach to metastability introduced by [11].
For more references and an introduction to the topic, we refer the reader to [20,27,36].

The original motivation of this article was to provide a mathematical framework to model global changes of the voting intention.
The model with the four features informally described above accounts for the fast constitution of consensus in our model of social
network. But something is missing in the model, namely the effect of an external influencer campaigning to push the global
orientation of the social network in a certain direction. This can be done by adding the following fifth feature to the model.

5. A robot may be present in the system. A robot behaves as an actor who always expresses the same opinion with the same time
rate. This time rate increases exponentially with the polarization coefficient and with a strictly positive parameter describing
the “strength” of the robot.

For the model of social network with external influence, let us suppose that the strength of the robot is sufficiently big. Then, as
the polarization coefficient diverges, the invariant probability measure of the system concentrates on a subset of the set of consensus
lists oriented in the direction in which the robot campaigns. Moreover, the system reaches this subset very fast. This is the content
of Theorem 4.

This article is organized as follows. In Section 2 we define the model of a social network without external influence and state
the main results for this model. In Section 3 we define the model of a social network with a robot and state the theorem describing
how the robot affects the behavior of the social network. In Section 4 we introduce some extra notation and prove two auxiliary
propositions. In Sections Section 5, 6, 7, and 8, we prove Theorems 1, 2, 3, and 4 respectively.

2. Definitions, notation and main results

Let A = {1,2,..., N} be the set of social actors, with N > 3, and let @ = {—1,+1} be the set of opinions that an actor can express,
where +1 (respectively, —1) represents a favorable opinion (respectively, a contrary opinion).

Let # > 0 be the polarization coefficient of this network. The polarization coefficient of the network parametrizes the tendency
of each actor a € A to follow the social pressure that the actors belonging to A \ {a} exert on a.

A list of social pressures u = (u(a) : a € A) is a list in which u(a) is an integer number indicating the social pressure of actor
a € A. To describe the time evolution of the social network we introduce a family of maps on the set of lists of social pressures.
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For any actor a € A, for any opinion o € O and for any list of social pressures u = (u(a) : a € A), we define the new list z%°(u) as
follows. For all b € A,

b ,if b S
290 )b 1= u(b)+o, ifb#a
0, ifb=a.
The time evolution of the social network can be described as follows.

+ Assume that at time 0, the list of social pressures exerted on the actors is u = (u(a) : a € A).

+ Independent exponential random times with parameters exp (fou(a)) are associated to each actor a € A and each opinion o € O.

* Denote (4;, O,) the pair (actor, opinion) associated to the exponential random time that occurs first.

+ At this random time, the list of social pressures changes from u to z41-91 (x).

+ At the new list of social pressures z41-91(u), independent exponential random times with parameters exp (foz1%1(u)(a)) are
associated to each actor a € A and opinion o € O.

+ Denote (4,, O,) the pair (actor, opinion) associated to the exponential random time that occurs first, and so on.

Note that for any g > 0 and u(a) # 0, exp (fou(a)) > 1 when the signs of o and u(a) are equal and exp (fou(a)) < 1 in the opposite
case. When g = 0, the social network is a system with independent components in which actors express either opinion +1 or —1
with equal probabilities (each actor waits an exponential random time with rate 2 to express an opinion) regardless of the social
pressure exerted on them.

Let (T, : n > 1) be the cumulative sums of the successive random times realizing the successive minima and let ((4,,0,) : n > 1)
be the sequence of pairs (actor, opinion) associated to them. For each n > 1, T, is the sum of n exponentially distributed random
variables. Let also (Uf ’"),E[O, +o0) De the time evolution of the list containing the social pressure of the actors, starting with the list u,
defined as follows

U,”’“ =u, if0<t<Ty,
and for any r > T},
Ur/i.u - ”Am,om(UTIi:_ P if T, <t <T,,

where T, = 0.
So defined, the time evolution of the list of social pressures (U,ﬂ ")ie0.+00) is @ Markov jump process taking values in the set

S :={u= () :a€ A)eZ" : min{lua)| : a € A} =0)
for any initial list » € S and with infinitesimal generator defined as follows

Cf@) =Y 3 exp(Boulb)) [f(x"w) - fw)], ¢))

0€0 beA

for any bounded function f : S — R. Note that Utﬁ “ € S for any ¢ > 0 and for any initial list u € S since the actor that expressed
an opinion most recently at each instant has null social pressure.

The opinion dynamics of the social network is described either by the system of interacting marked point processes (T, (4,,,0,)) :
n > 1) together with the initial list of social pressures Ug *“ = u, or by the time evolution of the list of social pressures (Utﬂ ) iel0400)-

The process (U,ﬂ “)ie0+e0) is Well defined for any ¢ € [0,sup{T,, : m > 1}). The unique thing that must yet be clarified is whether
this process is defined for any positive time ¢, i.e. if sup{7,, : m > 1} = +o0 or not. This is part of the content of the first theorem.

Theorem 1. For any f > 0 and for any starting list u € S, the following holds.
1. The sequence (T,, : m > 1) of jumping times of the process (U,ﬂ “ref0,+00) Satisfies
P(sup{T,, : m>1} =+x) =1,

which assures the existence of the process for all time t € [0, +o0).
2. The process (Utﬂ “)iel0.+00) NGS @ unique invariant probability measure y”.

We define the set of positive (respectively negative) consensus lists as
Cti={ueS:u+0,ua) >0, forallaec A)
and
CC:={ueS:u #6,14((1) <0, forallae A},
where 0 € S is the null list. Consider also the set of positive and negative ladder lists

cri=weS: {ul),...,uN)} ={0,1,...,N —1}}
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and
£oi=weS: (wd),...,u(N)} = {0,-1,...,—(N = D}}.

The set of ladder lists is given by £ := £t u L™
To state the next theorems, we define for any u € S and for any B C S, the hitting time R?#(B) as follows

RP(B) :=inf{r >0 : U™ € B}.

Theorem 2 states that the invariant measure gets concentrated in the set of the ladder lists as the polarization coefficient diverges.
Moreover, for any non-null initial list, the time it takes for the process to reach the set of ladder lists goes to 0, as the polarization
coefficient diverges. Corollary 13 in Section 6 presents an equivalent result when the initial list is the null list. In this case, after
the first jump time, which is exponentially distributed, the time it takes for the process to reach the set of ladder lists goes to 0, as
the polarization coefficient diverges.

Theorem 2.
1. There exists a constant C = C(N) > 0, such that for any f > 0 the invariant probability measure u” satisfies
WLy >1-ce?P.
2. For any fixed 6 > 0

sup IP’(Rﬂ‘”(E) > e_ﬁ(l_‘s)) -0, as f > +o.
ueS\{0}

Theorem 3 states that a highly polarized social network has a metastable behavior.

Theorem 3. For any v € C*,
RPO(C™)

E[RFv(CT)]

where Exp(1) denotes the mean 1 exponential distribution.

— Exp(1) in distribution, as f — +oo,

3. The social network under the influence of a robot

Theorems 1-3 describe the behavior of the social network without any external influence. To model the effect of an external
influencer campaigning to push the global orientation of the social network in a certain direction, we add an extra feature to the
model, namely the presence of a “robot” in the social network. Informally speaking, a robot behaves as an actor who is not influenced
by the other actors and always expresses the same opinion. To simplify the presentation, we assume that the robot will campaign
for the “favorable” opinion.

Formally speaking, to describe the effect of the robot campaigning for the “favorable” opinion we consider an extra map z**!
defined as follows. For any list of social pressures u = (u(a) : a € A), the new list 7% (u) satisfies

7 w(b) 1= u(b) + 1. for all b€ A,
Let
0 = 0@) : a e A)

be the list of social pressures on the actors of the social network under the influence of the robot at time ¢ > 0. The time evolution
of this list (Utﬂ “)iel0.+00) 1S @ Markov jump process taking values in S :=ZN with infinitesimal generator defined as follows

Cf) = Z Z exp (Pou(b)) [f(ﬂb’ﬂ(u)) - f@)] +exp (B) [f (=" W) - fW)] )
0€0 be A
for any bounded function f : $ — R. In the above formula « > 0 is a strictly positive parameter describing the “strength” of the
robot.

The robot campaign for the “favorable” opinion with rate exp(f«a), regardless of the social pressure exerted on the actors. Each
time the robot campaign for the “favorable” opinion the social pressures on all the actors increase by one unit. Note that the robot
is not an element of A.

For any # > 0, for any a > 0 and for any initial list u € S, the process (Utﬂ ")iel0.+00) €Xists and has a unique invariant probability
measure v/%. The proof of this statement is similar to the proof of Theorem 1.

For any a > N — 1, we define £+ as the set of lists in which all actors have different social pressures and the social pressure of
each actor is non negative and smaller than or equal to |a] + 1

L= {ueé : ﬂ m{u(a);éu(b)} and 0 < u(a) < |a] + 1, for all aeA}.

a€A b#a
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Observe that the definition of £ only makes sense when a > N — 1. Note also that for any u € £¢, there exists / € £* such that
u(a) > I(a) for all a € A. In the case of a social network with a robot campaigning for the favorable opinion, the set £+* will play
the same role as the set of ladder lists £ in a social network without external influence. This is the content of the next Theorem 4.

Theorem 4 describes the behavior of the system with a robot pushing in the +1 direction. If the strength of the robot « is greater
than N — 1, then, as the coefficient polarization diverges, the system reaches very fast the set £+ in which all the social pressures
are positive. Moreover, in this case the invariant measure of the system of social pressures gets concentrated exponentially fast in
the set £+ as f — +co.

To state Theorem 4, we define for any u € $ and for any B c S, the hitting time R?*(B) as follows

RP(B) :=inf{t >0 : 0" € B).

Theorem 4. For the model of social network with a robot with time evolution described by (2), if « > N — 1, then the following holds.
1. There exists a constant C = C(N) > 0, such that for any f > 0 the invariant probability measure v*® of the system satisfies
VPe(Lrey > 1 - Ce.
2. For any fixed § > 0,

sup ]P’(ﬁﬂ’"(ﬁJr’“) > e’ﬂ“(l’ﬁ)) -0, as f - +oo.
ues

4. Auxiliary notation and results
In this section we will prove some auxiliary results that will be used to prove Theorems 1-3. To do this, we need to extend the

notation introduced before.
Extra notation

» The Markov chain embedded in the process (Utﬁ ")ie0.4+00) Will be denoted (Uf “Yuso- In other terms,
Frhu _ 7P — P
Uy“=u and U”“—UTn , for any n > 1.
. (Uf “)us0 18 a positive-recurrent Markov chain (see the proof of Part 2 of Theorem 1). Its invariant probability measure will be

denoted ji’.
For any list u € S, the first return time of the embedded Markov chain (T “Yus0 to u will be denoted

RPUu) :=inf(n2>1: UP* =u).

For any u € S, the opposite list —u € S is given by

(—u)(a) = —u(a), for all a € A.

Let 6 : A —> A be a bijective map. For any u € S, the permuted list 6(u) € S is given by

o(u)(a) = u(c(a)), for all a € A.

The following event will appear several times in what follows. For any initial list u € S and for any n > 1,
M!" := (A, € argmax{|0”" (a)| : a€ A} and 0,07 (4,) > 0}.

M, is the event in which the nth opinion expressed in the process with initial list u is expressed by one the actors with greatest
social pressure in absolute value and in the same direction of its social pressure. Note that this is the most likely choice of the
pair (actor, opinion).

In Part 1 of Proposition 5 we show that the probability of the event M} for all n = 1, ..., m, i.e., the sequentially occurrence of the
most likely choice of the pair (actor, opinion) in the process, is lower bounded for any initial list and this lower bound approaches
1 as f — +4oo. In Part 2 of Proposition 5 we show that the occurrence of the event M) for all » = 1,...,3(N — 1) implies that
Uf{zﬁnn eL.

Proposition 5.

1. For any u € S and for any m > 1,
m
]P’< Mj“> > ("
j=1

¢ = il
P " eftef+2(N—1)

where

-1, as f - +oo.
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2. Foranyu e S,
3(N-1)
FrB.u | _
]P’<U3(N_l)e£| ﬂl M;>_1.
j=

We will first prove Part 1 of Proposition 5.

Proof. To prove Part 1 of Proposition 5, we first observe that by the Markov property,

m m—1
P<ﬂ M;) = Zp(ﬂ My oM = u> P(M?). 3)
j=1

veS Jj=1

To obtain a lower bound for (3) we will obtain a lower bound for P(M{). Note that in the case u = 6, the probability P(M}) is
maximized. For any u € S \ {0},
Y ()] Py

[Y ()| (ePY@ + e=Pyw)) 4 z (D) 4 o=Pu®)y’
b&Y (u)

P(M!) =

where y(u) = max{|u(a)| : a € A} and Y(u) = {a € A : |u(a)| = y(u)}. By rearranging the terms of the equation above, we have that
1

(+emwy L 3 (PUB-3W) 4 =) +yw))
Y@l &%

P(M!) =

Since y(u) — |u(b)| > 1, for any b ¢ Y (1), we have that (eP“®)—ywW) 4 o=pub)+y))y < 2,=F for any b ¢ Y (u). This implies that,

1

N —|Y(w)] 2e~P
[Y ()

P(MY) > > ¢,

(1 +e2Pyw) +

where in the last inequality we use the fact that for any u # 0, |Y(w)| > 1 and y(u) > 1. Applying this lower bound m times in Eq. (3),
we conclude the proof of Part 1. []

The proof of Part 2 of Proposition 5 is based on two Lemmas. Before proving Lemmas 6 and 7, let us introduce some extra
notation.
Let I, :={1,...,n}, for each n > 1. For any u € S, let

nt() :=inf{n>1:1I, C {u(a) : a€ A} and min{u(a) : a € A} > —(n— 1)},
n~(u) :=inf{n>1: I, C {—u(a) : a € A} and max{u(a) : a € A} < (n— 1)},

n(u) 1= max{n~w),n" W)},

with the convention inf {#}} = 0. Note that min{n*(u), n~(«)} = 0, by definition.
Let ST :={ue S :nt(w)>1} and S~ :={u € S : n~(u) > 1}. In other words, S* is the set of lists u € S such that there exists
ne€ {l,...,N —1} and a sequence of n different actors a,(u), ..., a,(u) satisfying

ua;w)=j, forj=1,....,n and u(a)2-(n-1), forallae A.

n*(u) is the smallest n such that the above conditions are satisfied. S~ and n~(u) are described in an analogous way.
For any initial list u € S, let

t(w) :=inf{n>1:A4,€{A,...,A,_1}U{ae A :u()=0}}

be the number of times in which an actor expressed an opinion in the process until the first instant in which either one actor with
null initial social pressure expresses an opinion or an actor expresses an opinion for the second time. Since we have N actors and
at least one actor has null social pressure, it follows that z(u) < N.

To prove Part 2 of Proposition 5 we first prove that the occurrence of the event M;‘(u) implies that U f(lf) € ST u S™. This is
the content of Lemma 6. Furthermore, for any u € S* U S~, the occurrence of the event M* for all n = 1,...,n(u) — 1 implies that

U(/:: ’&H) € CtuC~. This is the content of Lemma 7. Putting all this together we are able to prove Part 2 of Proposition 5.

Lemma 6. For any initial list u € S, we have

P(U”"‘ estus ‘ M ): 1.
T(u) 7(u)
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4 e o 4p-------=-- R e T L
3 o o 3 . o .
2 . ° 2 o \'.4\
1 1 \")
o Ay Ay Az Ay A5 Ag Ay AgA; 1@ Go Ay Ay Az Ay As Ag A7 AgA,
—1 o o o o —1 °
Fig. 1. An example showing that either {0,1,...,m} or {0,—1,...,—m} is a subset of {U”‘() (@ a=ay,..,A,_}, where m= max{lUﬂ:) (@l ta=ay, ..., A}

The figure in the left shows the initial list of social pressures u. In this example N =11, 7 =10, {ay} = {b€ A : u(b) =0} and {a} ={b€ A : u(b) # 0 and b #
A j=1,.,tw—1}. The figure in the right shows Uﬁ; (@), for a = ay, A,,...,A,_;. In this example, O, O0pgyy) = (F1, =1L, =L +1,+1,+1,+1,+1,-1) and
m = 4. The red line represents this maximum social pressure. By the definition of z, it follows that a,..., A,_, are different actors. As a consequence of (4) and
(5), the absolute value of the difference between the social pressures of the subsequent actors on the figure in the right is 1. In this example, this implies that
{0,1,...,m} C (Uﬁu") (@ a=ay....,A_;}. In fact, {A;, Ag, As, A5, A3} = {0, 1,...,4}. This is represented by the red dashed circles. Note that the figure in the
right remains the same if we change u but keep the same values of (O,,...,0,_,) and z(u). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Proof. By definition, the event {r(u) = 1} implies that A; € {a € A : u(a) = 0}. Therefore, {z(u) =1} N M | is only possible if u = 0
In this case, we have that U b e s+ U S~ and then, the lemrna holds when {z(u) = 1}.
Assume that z(u) > 2. At instant z(u) — 1, we have that o (A;@-1) = 0 and since A; # Ay, foreach 1 < j <k <t(u)—1, we

() 1
have that for any j =1, ..., 7(u) — 2 o

Uﬁ:) (A =0, + =+ Oy
which implies that
B, _ —
|U,(u) (A4 - Ur(:) ((A;2Dl =101 =1 4)
Moreover, for any a € A such that u(a) = 0, by the definition of z(«) we have that a & {A,..., A, }. This implies that

ot (@)= 01+ + Opy-1s

T(u)—1
and then,
ol (ap =08 (@] =1. (5)
Let

m = max{lOT(u)_ll, |OT(M)_2 + OT(M)_I [.oos O] + -+ Or(u)—ll}'

It follows from (4) and (5) (see Fig. 1) that there exists a set with m + 1 actors
{ag.aj,....a,} C{A}, ..., A1} U{a € A u(a) =0},

such that either

(08 @) j=0.1,,m) ={0,1,....m)
or

(0% (@)1 j=0,1,...,m} ={0,~1,...,=m}.

By assumption,

A € argmax{|U?* (a)| : a€ A} and O,(u)

(u)—1 (Ar(u>) 2 0.

r(u) 1
This together with the definition of 7(u) implies that

|ghe (Al =m > |Uf(:) @), for all a € A,

and therefore, either

{ f(;‘)(a) j=01,....m=1}={1,...,m} and U’j (@2 —(m—1), foralla € A4,

or

{Uf(::)(aj):j=0,1,,,.,m—1}={—1,. ,—m} and U (a)<m—1 for all a € A.

This concludes the proof of Lemma 6. []
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Lemma 7. For any u € S*, we have

n(u)—1
7B + —
P <Un(u)—l ec ) n Mlu> =L

Jj=1

Proof. Note that {u € S* : n(u) = 1} c C*. This implies that the lemma holds when n(x) = 1.
Assume that u € S* and n(u) > 2. By the definition of S*, if M | occurs, then

U0%(A,) = max{|u(a)| : a € A} and O, = +1.

Moreover, for any j =0, ...,n(u) — 1 there exists an actor a (u) € A such that Ug “(a (W) = u(a;w) = j. Therefore,
U (a; ) = u(a;) + 1 =j + 1.

As a consequence,
{l.....n@} c{0"(@ :ae A} and U7(a)>—(n(w)-2), forallae A.

In general, for any k = 1,...,n(u) — 1, if ﬂle M j" occurs, then there exists a sequence of actors aO(U,f’_“l), e a,,(u)(U,f’_“l) such that
for any j =0,...,n(u) — 1, we have that

Ui “a, @) = + 1.
and therefore,
{1.....nw} c {U/"(a) : a€ A} and 0}"(a) > ~(n(u) - (k + 1)), for all a € A.

We conclude the proof of Lemma 7 by taking k = n(u) — 1. [J

Proof. To prove Part 2 of Proposition 5, we first observe that for any u € S, 7(u) < N and for any u € St U S, n(u) < N — 1, by
definition. Therefore, the Markov property implies the following inequality

3(N=1) 7(u)
7B u FrBau + - u
]P’<U3(N_1)e£‘ N Mj.)z]P’(UT(u)eS uSs |QMj>x
j=

Jj=1
T(u)+n(u)—1
23 + — | FrBu + - u
IP’(UT(M)M(M)_I ectuc ‘ ortestusT, () Mj)x
Jj=r(u)+1
3(N=1)
7 Bu 7 Bu + - u
P (U3(N—1) €L ‘ Ur(u)+n(u)—1 ecruc, ﬂ Mj > ’
Jj=r(u)+n(u)

By Lemmas 6, 7 and the symmetric properties of the process, the two first terms of the right-hand side of the above equation
are equal to 1.
Note that, by definition, for any m > (N — 1) and for any v € C*,

IP><U£~" et | ﬁMj.”) =1L

Jj=

Since 7(u) + n(u) — 1 <2(N — 1), this together with the symmetric properties of the process implies that

3(N-1)

rrB.u 7B + - u | _

1P’<U3(N1)e£ Ol e €CTUCT . N Mj)_l.
Jj=r(u)+n(u)

This concludes the proof of Part 2 of Proposition 5. []

Corollary 8. For any u ¢ £ and for any m > 1,
1P><[/,5~" =u| ﬂM}'.‘) =o.
j=1

Proof. It follows directly by Part 2 of Proposition 5, by contradiction. []
For any fixed / € L*, let ¢z, be the positive real number such that
P(RM(LT) > ¢p) =" (6)

Due to the symmetric properties of the process, it is clear that c;; = ¢4/, for any pair of lists / and /" belonging to L£*. Therefore,
in what follows we will omit to indicate / in the notation of cz. The next proposition gives a lower bound to c;.

8
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Proposition 9. There exists C; > 0 such that for any g > 0,

cp = Cleﬂ.

Proof. For any fixed I € L7, let
D = inf(T, : O, = —1,Uﬁ;’_l(An) > 0}

be the first time in which an actor with positive social pressure expresses an opinion —1. Consider also
@ =inf{T, : E; n(E, [ UE )}

where E; := {0, = -1, Uﬁ” (A,) = 0}, for n > 1. 7 is the first time in which two opinions —1 are expressed in the network by
.
actors with null social pressure with at most one positive opinion expressed between them. We define for convention Ej = §.
Note that, starting from / € £*, there are three ways to exit the set of positive consensus lists:

+ an actor with positive social pressure expresses an opinion —1;
 two opinions —1 are expressed in the network sequentially by actors with null social pressure;
« the alternation of opinions +1 and —1, which can lead the process to the null list.

Therefore,
RS\ €*) = min{zD, @}, (7)

The rate in which the process has an actor with positive social pressure expressing the opinion —1 is bounded above by (N —1)e".
This implies that, for any ¢ > 0,

PO > 1) > PExp((N — De™?) > 1),

where Exp((N — 1)e~#) is a random variable exponentially distributed with mean ef /(N — 1).
Let ny :=0 and for j > 1,

ny=inf{n>ny 00, =-1LUp" (4,) =0}

We have that
J

2) — _
T —'}:(7}; 7};4%

j=1
where J :=inf{j > 1 : ny =+ 1 or ny =, +2}.

The rate in which the process has an actor with null social pressure expressing the opinion —1 is bounded above by N. This
implies that, for any j > 1 and for any ¢ > 0,

[P’(Tn; - T",-il >0 2PE; >,

where (E));,, is a sequence of i.i.d. random variables exponentially distributed with mean N. Moreover,
(N-1)

(N-1D+ef’

Note that if (X)), is a sequence of random variables assuming values in {0,1} with P(X; = 1) < p € (0,1) and P(X,,; = 1|X,, =

-+ =X, =0)<p, for n> 1, then for any k > 1,

P({O0,y = -1} U {0, =-1} | UF e ct) <2 x ®

k—1 n—1
P(inf{n>1: X, =1) zk):H]P’(X,, =0 ) ﬂ{xj =0}> > (1-pFL.
j=1

n=1 J

Putting this inequality together with (7) and (8), we conclude that

k—1
PU > k| 0> Tn;_l):IP<ﬂ {nj_ & (n + 1L, +2}} ( MRS Tn;>
j=1

(- ﬂﬁ)k_l,
where
Ag 1=2X% _W-D .
(N=1+ef

Therefore, for any ¢ > 0,

G
Pe@ > 17D > ) > P (z E; > t> ,

Jj=1



A. Galves and K. Laxa Stochastic Processes and their Applications 177 (2024) 104459

where G is random variable independent from (E));,, with Geometric distribution assuming values in {1,2, ...} with parameter 4;.
This implies that for any 7 > 0,

P? > 1]cY > 1) > P (Exp(N x 4p) > 1),

where Exp(N X ;) is a random variable exponentially distributed with mean 1/(N X Ay).
Therefore, for any ¢ > 0,

PR (S\ €*) > 1) > PIEXp((N — De™) > IP[Exp(N X 45) > 1.

This implies that
T = PRMLT) > ¢p) 2 PRM(S \ ) > ) 2 e (NDeemocly),

and therefore

> (N=De? +Nxiy) ™
With this we concluded the proof of Proposition 9. []
5. Proof of Theorem 1

To prove Part 1 of Theorem 1 we study the first time in which the process has an opinion being expressed by an actor with

social pressure in absolute value smaller than N (recall that N is the number of actors in the system). We prove that starting from

any initial list u € S, this occurs in the first N jump times of the process. This is the content of Lemma 10. With this Lemma we
are able to prove Part 1 of Theorem 1.

Lemma 10. For anylistu € S,

inf{nzl L IUpt (A <N} <N.

Proof. The initial list of social pressures u belongs to S. Therefore, there exists a;, € A such that u(ay) = 0. By definition, for any
m>1,

U} (ag)| <

More generally, if A” = a then for any m > 1,

R

Pu <
U (@l <

ntj )

Therefore, if
[{ag, Ay, ..., Axy_1}| =N
then
U (Al < max {[UZ @l [U (4Dl U Ayl <
Ty N = Ty 070y (AR Iy (AN =

max{N —1,N-2,...,0} =N —1.

In other words, if on the first N — 1 steps of the process we have N — 1 different actors expressing opinions, with all these actors
being different from a,, then the absolute value of the social pressure on the actor expressing an opinion at instant Ty, is smaller
than N. This implies that

inf {n 210 U (Al < N} <N.
Now, if
[{ag, Ay,... ;L AN} S N =1,
there exists m € {1,..., N — 1} such that
A, €{ag Ay, ..., A,y ).
This implies that
U Al Sm<N -1,
and therefore,

inf{nzl : |Uﬁ"‘l(An)|<N}§m<N. O

10
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Define T = T = 0 and for any k > 1,

TS :=inf{T, > TS : |U7‘3:](A,,)| <N},

e -
T, :=inf(T, > T : |UT”:(A,,)| > N}

Lemma 10 implies that Tk< is well defined for any k > 1. Now we can prove Part 1 of Theorem 1.

Proof. To prove Part 1 of Theorem 1, we will construct the process (Utp “)iel0.4+00) With jump times {T,, : n > 1} as the superposition
of two process with jump times {T° : k > 1} and {7 : k > 1} in the following way. For any v € S, the jump rates of these two
processes are

5@ 1= Y 1{Ju(@)] < N} +e7)

a€A

and

7 ©) = Y 1{Ju@] 2 N} + e /),
acA

For any list v € S, we have that
2<q°() <4,
with
A 1= N(PN=D 4 o=FIN=D),
For any v € S, we define the functions @3, @5, ®.~, @, : {0} UA — [0, o0) inductively as follows. First, we have that
@57(0) :=0, @57(0):=0, @7(0):=41 and &;7(0) =4
For any a € A, define

&5 (a) == D (a— 1) + 1{|v(a)| < N}e 7@,
D5 (a) 1= @77 (a) + H{|v(@)] < N}etP@,
&> (a) 1= &7 (a— 1)+ 1{|v@)] = N}e @,

@>*(a) 1= @7 (a) + 1{|v(@)] = N}et@,
Note that for any v € S, we have that
0= (0) = D5 (0) < D5~ (1) S PyH(1) <
SOTT(IN-DLPTT(N-D <O (N) < DTT(N) =¢%(v) < 4.
Moreover,
A=07T(0) =@ (O) <oy () <@y <
SOT(N-1D) SO (N -1 @) (N) S H(N) = 2+ ¢ ().

Therefore, for any v € S, {®@y (), @5t (b) : b € {0} U A} is a partition of the interval [0, ¢<(v)) in which for any a € A such that
v(a) < N, the length of [@; " (a — 1), @ (a)) is e #@ (exactly the rate in which the actor a expresses an opinion —1 associated to
the list v) and the length of [qyj’*(a),@j*(a)) is ¢#Y@ (exactly the rate in which the actor a expresses an opinion +1 associated to
the list v). Similarly, {@,~(b),®,*(b) : b € {0} U A} is a partition of the interval [4, A + ¢”(v)) in which for any a € A such that
v(a) > N, the length of [@" (a — 1), @, (a)) is e 7" and the length of [®] " (a), @, " (a)) is /@,

Using these partitions indexed by S (see Fig. 2), we now construct the process (U,ﬂ “)iel0.+00) 3 follows. Consider a homogeneous
rate 1 Poisson point process in the plane [0, +c0)>. Call N the counting measure of this process. Given the initial list u € S, define

T, = inf {t >0: N((o, 1% {10, 4<@W) U [4, A+ q>(u))}) = 1} .
Denoting R, as the second coordinate of the mark (T}, R;) of N, we have

A =b,0,=-1,if R/ € [d>;’+(b -1), cD:'_(b)) U [d>;’+(b -1, @;'_(b)),

A;=b,0,=+1,if Ry €[DZ(b), D (b)) U@ (b), D> (b)).

At time T, we have Uﬁl‘" =740 w).

11
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T

Fig. 2. This figure represents the regions of [0, c0)X [0, 1+¢” ()] and the marks of the Poisson point process N in [0, ) considered on the construction of T,. In
this example, N =6 and the list u € S, satisfies u(a) < N for a =1,3,6 and u(a) > N for a =2,4,5. The height of each orange sub-region of the figure is exactly
the rate in which one of the actors with social pressure smaller than N (actors 1,3 and 6) expresses one of the possible opinions (+1 and —1). The height of
each blue sub-region of the figure is exactly the rate in which one of the actors with social pressure greater or equal than N (actors 2,4 and 5) expresses one of
the possible opinions. The points in the figure are the marks of N in this region. 7; is the time of the first mark of the Poisson point process inside the orange
or blue area. Note that the marks of N higher than 4+ ¢”(u) or in [0, 00] X [¢<(u), 1) (the yellow region) are not considered to define 7). In this example, the
position of the mark at time 7; (between @;~(2) and @®;-*(2)) indicates that A; =2 and O; = +1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

A+ a7 (UL '

Fig. 3. The regions of the plane (7,.T,,,) x [0,¢(US")] and (T,,.T,,,) X [4, A+ ¢~ (UL, for n=0,1,2,....

More generally, for n > 1, we have
T, = inf {t ST, N((Tn_l,t] x {[0, U DU LA A+ q>(U7’z:il))}> = 1} .
Denoting R, as the second coordinate of the mark (7, R,) of N, we have

— — 3 <+ <,— >+ >,—
A,=b,0,=-1,if R, € [thﬂ’u (b-=1), (DU’“ (b)) U [tb (b-1), dsU’”‘ (b)) s

yhu
Tyt Th-1 Tyt Th-1

A,=b,0,=+1,if R, € [cb;;u (b),d?;‘;fu (b)> U [@Z’ﬂfu (b),di:]‘;fu (b)>.

Tyt Tyt Tyt Tyt

At time T,,, we have Uﬁ”‘ = nAwon(Uﬁ"il) (see Fig. 3).
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For any n > 1, we have that

TS =inf {Tm >T< R, €0, q<(Uﬁil))},

T2 =inf {T,> 77, : Ry € [La+q )" )},
Define TO’1 :=0and for any n > 1,
T/ := inf {z >Th /\/((Tj_l,z]x [o,z)) = 1}.

By construction, {T* : n> 1} C {Tn’1 :n > 1}. Also, {Tn’1 : n > 1} are the marks of a homogeneous Poisson point process with rate
A. Since IF"(sup{T’1 :n>1} = +00) = 1, we have that P(sup{T,° : n > 1} = +o0) = 1. By Lemma 10, the event sup{T, : n > 1} = +o0
implies that Z+°° 1T, <t} < oo, for any ¢ > 0. {T, : n > 1} is the superposition of {T,* : n > 1} and {T, : n > 1}, and then, we
conclude that IF’(sup{T,, tn>1l}=+400)=1.

To prove Part 2 of Theorem 1, we first show that starting from any initial list, the process has a positive and bounded probability
to reach a fixed ladder list after 2N jumps of the process. With this, we are able to prove that (Utﬂ ’”),G[O, +oo) 1S an ergodic Markov
process.

Proof. To prove Part 2 of Theorem 1, let / € £ satisfies /(a) = a — 1, for all a € A. For any u € S, we have that
/= ”1,+10”2,+10 o;rN""l(u),
and then, if the event ﬂj.\':l{Aj =N —j+1,0; = +1} occurs, then Uf,’“ = [. This implies that for any u € S,
b _
P(0%"=1)>0. ©
For any u’ € S,

n+2N

<ﬂ{|U (a)|<N}|l~]f’”=u'> <Uf+“2N_1) ﬂ 1o’ (a)|<N})
acA

For any u € S, note that

<ﬂ{|U’“(a>| <Ny ﬂM>

a€A

(Ol = 1| 0/ =u') 2

This together with Proposition 5 implies that
N
P(ﬂ 103" @] < N}) > P(ﬂ M;) > ¢
acA Jj=1
Also, there exists ¢* > 0 such that

<U5+M2N =1 | ﬂ “UnJrN(a)l < N}>

acA

min {IP(Uﬁ+“2N =1 ( T u) tves il < N}} =

a€EA

Note that e* > 0 since it is the minimum of a finite set of positive numbers, by (9). Therefore, for any «’ € S,

P.u rpu N

(Ol = 1] O =u') 2 e

Recall that R#(I) = inf{n > 1 : U =1}. The last inequality implies that for any ¢ > 0,
PR (1) > 1) < PN x Geom({,’ﬁN ) > 1),

where Geom(r) denotes a random variable with geometric distribution assuming values in {1,2,...} and with parameter r € (0, 1).
This implies that E(RP/ (1)) < +co and then, (U ),,>0 is a positive-recurrent Markov chain.
The jump rate of the process (U “Viel0.400) Satisfies

D (@ 4 @) > 2N,
a€EA

for any v € S. Putting all this together we conclude that (U,ﬁ’u)ze[o.ﬂo) is ergodic. [

13
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6. Proof of Theorem 2

To prove Part 1 of Theorem 2, we first study the invariant probability measure of the embedded process (Uf “)us0- We prove
that the invariant measure of a list u ¢ £ such that max{|u(a)| : @ € A} < N is small, decreasing when f increases. We use the fact
that, starting from u, the embedded process quickly reaches the set of ladder lists, taking a long time to return to the initial list u.
This is the content of Proposition 11. With this we are able to prove Part 1 of Theorem 2, using the relation between the invariant
probability measure of (U/"),9 and (U/*);¢(0.4c0)-

Proposition 11. For any f > 0 and u & L such that max{|u(a)| : a € A} < N we have that
APy < e PND,

where C' = C'(N) > 0.

Proof. First, we have that

+00 +oo
ER W)= Y PRI 2m> Y PR > m). (10)
m=1 m=3(N—-1)

For any u ¢ £ such that max{|u(a)| : a € A} < N, by Proposition 5 and Corollary 8,

3(N-1)
P({Uf’“;ﬁu, forn:1,2,...,3(N—1)}0{03’1‘;_1)e£}>ZIP< N M;>. 11

j=1
Note that if
ve{ue S :0<u(a) <u(ay) < - <ulay), for {a,...,ay} = A}
and O, = +1, then
UM efues:0<ua)<ula) < <uay). for {a,,....ax} = A}. (12)
Moreover, note that
LY c{ue S :0=<u(a) <u(ay) < - <ulay), for {a},...,ay} = A}
and note that if
vE(uES :0=<ula)<ulay) < - <ulay), for {a,...,ay} = A\ LY,

then max{|v(a)| : a € A} > N. By the symmetric properties of the process, this implies that for any / € £ and for any m > 1, if

=

(0,04 >0}

J

occurs, then
0Mecuiues : mx{lu@) : a€ A}z N)

forall j=1,...,m.

In other words, starting from a ladder list, if the process has a sequence of opinions expressed by actors with non-null social
pressure and in the same direction of their social pressure, then either the process is in a ladder list or there is at least one actor
with social pressure greater than or equal to N. Since u ¢ £ and max{|u(a)| : a € A} < N, for any / € £ and for any m > 1, we have
that

P({OP #u, forn=1,2,...,m}) > P (ﬂ{o,Ule(Aj) > 0}> . (13)
j=1
Therefore, for any m > 1, putting together (11), (13) and the Markov property, we have that
3(N-1) m
P(RP*(u) > 3(N = 1)+ m) > ]P’< N MI'.‘) P( ﬂ{oj(/f;’](Aj) > 0}> . 14)
j=1 j=1

Note that for any
ve{uesS :0<ula)) <ul(ay) < - <uay), for {a,...,an} = A},
we have that

P((0,05°A)>0)) 2 m,

14
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where

N-1
ePi

~.

=85

Z (P + e—ﬂj)

Jj=0

Therefore, for any / € £, putting together (12), the Markov property and the symmetric properties of the process, we have that

P(ﬂ{ojﬁf_”lmj)w}) >n". (15)

j=1

By Proposition 5 and Egs. (10), (14) and (15), it follows that

3(N-1) ) _3(N=1)
E(R(u)) > 1P< N M;) <1 +Y n"’) > %

j=1 m=1
From the classical Kac’s Lemma (see [29]), we conclude that
ﬁﬂ(u) < C’e*ﬂ(Nfl)’

where C' = (N + D2N)’N-D, O
Corollary 12. ji#(0) < Cle™? for all p > 0, where C| = C/(N) > 0.

Proof. Let v € S be the list in which v(1) = 0 and v(a) = 1, for a € A\ {1}. We have that
{fue S : P(U]ﬂ’“ = 6) > 0} = {o(v),—0(v) € S such that ¢ : A —> A is a bijective map}.
Therefore, by the symmetric properties of the process, we have that

#0) =Y PO =0 ) = 2NP@}" = 0 (v).

ueS

Since

~ = 1 _
PO =0) = <e™?,
U ) 2+ (N - D)(eth +eh) ~
from Proposition 11 we conclude that
#(0) < (N + D@NYNV-DeAN-D o N)e~F = Cle?N. O

Now we can prove the Part 1 of Theorem 2.
Proof. To prove Part 1 of Theorem 2, first note that for any u € S, the invariant measure u” satisfies
-1
4 T4
# () ')
) = > —

CI;}(”) ies Qp(u )

where for any v € S,

() 1= z(eﬁv(w + e~but@)y
aeA

is the jump rate of (Utﬂ “)ie0.+00) At list v. Note that for any / € L,

N-1
ap)y= Y (" + ),
=0
Therefore,
4 s
bem - M(u)< M(u)) _ 1
wL)= = : - :
uezé qp(u) ug‘s qp’) . Zﬁal(eﬂ/ +e by WP
(L) izt ap)

By Proposition 5, we have that

L) =Y POy, € L)z NN,
ueS

15
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We also have that
N-1
Z (eﬁj + e*ﬂj) <2NePWN-D
J=0

and then,

1

L+ @NYO-DHIN-D 3 )
WL qﬂ(u )

W) >

For any u € S such that max{|u(a)| : a € A} > N, we have that gz(u) > ¢V, and then
i
H (1) ~ﬁ( Ye~ BN
qp ) =

Observe that for any u # 6, qp(w) = ef. Therefore, by Proposition 11 and Corollary 12, it follows that for any u ¢ £ such that
max{|u(a)| : a € A} < N, we have that
AP (w)
qp(u)

<Cle”

Moreover, |{u & L : max{|u(a)| : a € A} < N}| < N2N — 1)V-!, Putting all this together, we have that

D)

S <Ny NN - DVl N,
WEL ‘Iﬂ(u)

We conclude that

beys — L s 1_ce?
# )_1+Ce‘ﬁ_ ¢

where
C=Q@NyNDHn e NeN -V O
To prove Part 2 of Theorem 2 we use the fact that the embedded process quickly reaches the set of ladder lists and the exit rate

of any non-null list is bigger than ef.

Proof. To prove Part 2 of Theorem 2, we first note that for any u € S\ {0}, we have that
3(N-1) 3(N-1)
IP’(R’“‘(E) > z) <P (Rﬁ’“(ﬁ) >1, ﬂl M;) +IP< U1 (MJ‘.‘)”). (16)
j= j=
Part 2 of Proposition 5 implies that the right-hand side of Eq. (16) is bounded above by
3(N-1) 3(N-1)
IP’<T3(N_1) >t, M;) +IP< U (M;y').
j=1 j=1

By Part 1 of Proposition 5, we have that

P <3(NU_])(M'.‘)C> <l- <#>3(N4)4 a7

e J - el +e P +2(N-1)

Note that the exit rate of any list different from the null list is always bigger than ef. Note also that for any u # 0, the event M !
implies that Uﬁl'“ + 0. Therefore,

3(N-1) 3(N-1)
]P’<T3(N1)>t, N M/‘.‘)s]P’( D E,,>t>, (18)
j=1 n=1

where (E,),», is an i.i.d. sequence of exponentially distributed random variables with mean 1/¢”. It follows that

3(N-1) 3(N=1) 5
< < — —e '/(3(N—1)).
]P’< > E,,>t>_]P’< {En>3(N 1)})_3(N e

n=1 n=1

We conclude the proof by taking ¢t = e#1-% and noting that the bounds in (17) and (18) do not depend on u. []

16
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The next corollary presents an equivalent result of Theorem 2 when the initial list is the null list.

Corollary 13. For any fixed § > 0,

P(RIOL) >t 41D~ 0as p— oo,
where t exponentially distributed random time with mean 1/2N independent from (Urﬂ '0)t5[0,+°°).

Proof. Corollary 13 follows directly from Part 2 of Theorem 2 and the fact that given the initial list 0, the first jump time T, is an
exponentially distributed random time with mean 1/2N. []

Remark 14. Following the same steps of the proof of Part 2 of Theorem 2, it follows that for any fixed 6 > 0

ian+]P’(Rﬂ'“(£+) < min{e—ﬂ“—ﬁ),Rﬂv"(c-)}) 1,88 f — +oo.
ue
7. Proof of Theorem 3

Recall that in Section 4, for any / € £* and for any § > 0 we considered c; as the positive real number such that
P(RPN(LT) > ¢y ="
To prove Theorem 3, we prove in Proposition 15 that for I € £+,
RP(L™)
p
where Exp(1) is a random variable exponentially distributed with mean 1. We will prove that the limiting distribution satisfies the
memoryless property, which characterizes the exponential distribution. For this, we use the fact that ¢; — +c0 as § — +oo, which is

the content of Proposition 9. Lemmas 18 and 19 give the necessary conditions to replace c; by E[R?/(£7)] in Proposition 15. Using
the fact that the process starting in C* will quickly reaches £*, as f — +o0, we finish the proof of Theorem 3.

— Exp(1), as f - +oo,

Proposition 15. Forany !l e L*
RP(L7)

p
where Exp(1) is a random variable exponentially distributed with mean 1.

— Exp(l), in distribution as f — +oo,

To prove Proposition 15, we will first prove the following lemma.

Lemma 16. For any f >0, for any I € L and for any s > 0,
1-4b )

PU e s\ L)<
WEe\D =00

Proof. For any s > 0, by definition,

W)=Y Wwrulten)+ ¥ W wWPUMer).
uel ueS\L

By the symmetric properties of the process, it follows that for any /,/’ € L,
PUM € £)=PWH € L)
Moreover,

2, WwPUM e ) <1- 4 L),
ueS\L

Putting all this together we have that
W) < WU € £)+ (1 - WP (L))
We conclude the proof of Lemma 16 by rearranging the terms of this last inequality. []

Proof. We will now prove Proposition 15. First of all, we will prove that for any / € £* and for any pair of positive real numbers
s,t > 0, the following holds

Bl p— Bl p— Bl p—
P<M>3+[>_P<M>S>P<Lﬁ)>t>
p p p

lim
p—+0

=0. 19

17
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To simplify the presentation of the proof, we will use the shorthand notation R instead of R**(L™), for any u & £~.
Indeed, for a fixed / € £+, by the Markov property and the triangle inequality,

bl bl bl
IP’<R—>s+t>—IP’<R—>s>IP’<R—>t>
p p p

pil Bl Bl
z P Uﬂ’I:u’_R >s+t)-P Uﬂ’[=u,—R >s | P L >t <
ps c pS c c
ueS\L- B B B

Bl Bou Bl
Y P(Ucﬂ'l:u,R—>s>’P<R >t>—P<R—>t>. (20)
_ S c c c
uesS\L B p p
By the symmetric properties of the process, for any u € L¥,
B 8.1
]P’<R >t> =]P’<R—>t>.
‘s ‘s
Therefore, the right-hand side of Eq. (20) is bounded above by
Bl pu Bl
Y [P(Uf”‘ =u 2= >s> ‘IP’(R— t> —IP(R— >t> <p(Ues\z). 1)
pS c c c ps
ueS\L B B B
By Lemma 16, Eq. (21) and Theorem 2 implies (19).
By definition,
Bl(p—
P <M > 1> el
s
Iterating (19) with t = s =27", for n = 1,2,..., we have that
Bl (- »
P<w>2_"> S e 2", as f — +oo.
p
More generally, this iteration implies that for any
m
re {Zb(n)Z_" cbm) e (0,1, n=1,...,mm> 1}
n=1
is valid that
Bl p—
P <w > t> — e’ as f - +o0. (22)
c
p

Any real number r € (0, 1) has a binary representation
+oco
r= Z b(n)2™",
n=1
where for any n > 1, b(n) € {0, 1}. Therefore, the monotonicity of
Bl (-
t—> P <w > I)
s
implies that the convergence in (22) is valid for any ¢ € (0, 1). Moreover, for any positive integer n > 1, Eq. (19) implies that
bl p—
P<w>n> —e ", as f - +oo.
‘p
Putting all this together, we conclude that (22) is valid for any > 0. []

Remark 17. For any / € £ and for any g > 0, the function fp * [0,+00) — [0, 1] given by
Blr—
n=r (5 >0)
p

is monotonic. Also, by Proposition 15, it converges pointwise as f — +co to a continuous function. Therefore, given ¢; > 0 such
that limy_, , , €5 = 0, for any 7 > 0 we have that

R (L R (L~
lim IP(L >t+eﬂ> = lim P<# >t—eﬁ> =e
p—+o0 Cﬂ p—+o0 Cﬂ

To prove Theorem 3, we will first prove the two following lemmas.

18
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Lemma 18. Foranyu € S, let

3(N-1)
Pu :=P<Rﬁ’“(£+)<Rﬁ~"(£‘>\ N M?)-

Jj=1

Then, for any t > 0,

lim  sup =0.

Pt yes\L-

RPH(L™
P, ) ey,
p

Proof. Denoting E;, = {RPU(L) < eP/2, ﬂjg_]) Mj‘f}, we have that for any u & £,

Bu( L~ Bu(r—
p <w > z) =P <w > 1, By RO(LY) < Rﬂ’"(ﬁ’)) + (23)
¢p <p '
Bu( L= Bu( L=
P <M > 1, Ep ROULT) < Rﬁ'“([i+)> +P (w >1, E;M> .
Cﬁ ’ C ’
By Proposition 9, there exists §, > 0 such that for any § > f§,, cst > e?/2, By the definition of E;,, this implies that, for any § > §,,
Bu(p—
P <M >1,Eg,, RF(LT) < Rﬂ’“(£+)> <Pyt < RPM(LT) < /Py = 0.
P S
B
Note that the first term on the right-hand side of Eq. (23) is equal
RPH(L
P <¢ >t | Eg,, RF (L) < Rﬂ'“(ﬁ‘)> X p, X P(Ej,).
- g g
B
Considering / € £*, by the Markov property it follows that the term above is bounded below by
RAL(L~
P <# > r> pull = P(E; )] (24)
cp k

and bounded above by
Blp— 8/2
P <M > €_> o
p p
Therefore, considering / € £*, for any u € S\ £~ and for all § > g,, the left-hand side of Eq. (23) is bounded below by (24) and
bounded above by

Blp— p/2
P<w>t—e—>pu+P(Ecu). (25)
p p ’

By Theorem 2 and Corollary 13,

lim  sup ]P’(EC ):0.
potoo e\ Lo =

By Proposition 9, it follows that limy_,,, ¢//2/c, = 0. Therefore, by Remark 17 we have that
RP(L~ RPA(L~ 572
lim P(L >z> = lim ]P’<#>t—e—> =e
oo ¢ J— ¢ ¢

We conclude the proof by noting that the limits in the last equation do not depend on u. []

Lemma 19. There exists y € (0, 1) and p, > 0 such that for any § > p, and any | € L*, the following upperbound holds
blir—

P <M > ,,> <
p

for any positive integer n > 1.

Proof. Taking 7 = 1 on Lemma 18, we have that for any fixed y € (e”!, 1), there exists B, such that for all § >, and for any u & L7,

Bau(r—
P<M>l>$y<l. (26)
p

For any / € £* and for any n € {2,3, ...}, by Markov property,
Bl - Bl - (-
P<M>n>= Z ﬂ»<w>n_1,U”*’ 1=u>p<w>1>.
‘p ueS\L- =D ‘s
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Eq. (26) implies that for any f > f,,
Bl - Blip—
]}D<w>n>5ﬂp<w>n_1>_ @7
‘p ‘p
We finish the proof by iterating (27). [J

Proof. We will now prove Theorem 3.
First of all, we will prove that for any / € L7, the following holds

RI(L) — Exp(1) in distribution, as g — + (28)
_— , 0.
EIRI(C)] P

Considering Proposition 15, we only need to show that
. E[RF(£7)]
lim ——— =1
p—+o0 Cﬂ
Actually,
Bl p— +00
tim REN gy P(RP(L7) > ¢ps)ds.
f—+co 9] p—+o0 Jo

By Lemma 19, for any § > §,,

400 +o0 +0o0
/ P(RA(L7) > ¢ps)ds < Z P(RP(L™) > ¢pn) < Z 7" < 400.
0 n=0 n=0
Therefore, the Dominated Convergence Theorem allow us to put the limit inside the integral as follows
+oo +oo +oo
lim / PR (L7) > cps)ds = / lim P(RM(L£7) > cps)ds = / e~ds=1.
p—+oo f 0 P+ 0

This and Proposition 15 imply (28).
For any # > 0, for any u € C* and for any s > 0,

P(RP(CT) 2 ¢gs) = P(RP(CT) 2 ¢ps, Eg,) + B(RPU(CT) 2 45, Ej ),
where

Ej, = {RP(LY) < min{1, RP(CT)}, RP“(L7) < RP4(CT) + 1).
Note that the event E;, implies that

[RP4(C™) = (inf {1 > RPU(L*) : UM € £7) = RP4(L*)| < 1.

Therefore, by Markov property and by the symmetric properties of the process, for any / € £L*, we have that

RBA (- RBA (-
P (ﬁ > 5+ l) P (Ep,) < PRIUCT) 2 cys, Ep) <P (ﬁ > - l) P (Ep,)- (29)
Cﬂ Cﬂ ’ ’ Cﬂ Cﬂ ’
By Theorem 2 and Remark 14, for any u € C™,
i, P(Ep) = 1.
and then,

i bucy > = li puc™y >
Jlim B(RM(CT) 2 eps, Ep,) = lim B(RP(CT) 2 ¢p5).

By Proposition 9, lim,_, cﬁ‘l = 0. Therefore, Remark 17 implies that

Blp— Blp—
Jim H»(MZHi): Tim p<wzs_i>:e—s_
c
s

f—+c0 ] f—+c0 ] Cp
Putting this together with (29), we conclude that for any u € C*,
RPH(CT)

— Exp(1) in distribution, as f — +co.

c

B
To finish the proof, just note that the Dominated Convergence Theorem allow us to replace c; by E[RP#(C™)] as we did to prove
that Eq. (28) holds. [

Remark 20. Since for any u € C*

. E[RPH(C)]
lim ———— =

p—+o0 Cﬁ

1,

20
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Proposition 9 implies that

Bl -
E[R(CT)] >1
f—=+o0 Cleﬁ

In particular, this implies that limg_, E[RP#(C™)] = 4c0.
8. Proof of Theorem 4

The proof of Theorem 4 uses the same strategy already used to prove Theorem 2. Let (T, : n > 1) be the jumping times of the
process (U )t€ [0.4+c0) and let ((A,,, 1) ,) : n > 1) be the sequence of pairs associated to them. As for the case without robot, O,, is the
opinion expressed at time 7, but A, can be either an actor belonging to A or the robot, i.e., 4, € AU {*}.

For any initial list u € $ and for any n > 1, we define the event

H, <0{”" > , if max{|U?* (@)] : a€ A} > a,
Ty Tyt

M, =1q, <U” ]> U{A, =+0,=+1} ,if max{ll:/flz:](a)l cacA)=a,
(A, =%,0, = +1)  if max{|l7£:1(a)| ta€ A} <a,

where
H, <0£:1> = {A,, 1S argmax{lflﬁ;’il(a)l :a€ A} and Onl?f’f:](,&,,) > O} .

M,, is the event in which the most likely choice of the pair (4,,O,) occurs.
For any § > 0 and for any « > 0, the invariant probability measure of the embedded process (U; “Yuso Will be denoted ##. For
any initial list u € S, let

) :=inf{n>1: A, € {A,...,A,_ |} U{a € A : u(a) =0} U {x}).

Proposition 21 is a version of Proposition 5 for the model with a robot.

Proposition 21.

1. For any p > 0, for any a > 0, for any initial list u € $ and for any m > 1,
m
P (ﬂ M;‘) > G,
j=1

. =D
{p 1= T — ,
eP1=1) 4 e=P1-1) 4 2N
with y = max{[a] — a,a — |a]}.
2. Ifa>N-—1, foranyue S,

2|a]+3N+2
JP><U{”“ e Lt ‘ N M) =1

Tlaj+3N+2 =1 J

where

Proof. The proof of Part 1 of Proposition 21 can be done exactly as we did to prove Part 1 of Proposition 5 in Section 4.

To prove Part 2 of Proposition 21 we first observe that #(u) < N + 1, by definition. Therefore, the Markov property implies the
following inequality

2|a]+3N+2 ()
p( of e Lt M) > P U”” a)> —a e ) x
< M ) (ﬂ{ (> | ()4

a€EA

3[aJ+2N+2
P(U{*” e £t | N Mn ﬂ{Uﬂ“ @ > -a}>

T3|aj42N+2 =t acA
We will show that the two terms on the right-hand side of the equation above are equal to 1.
Note that
#u)
(VM) 0 (Ary #5) € (07 (Agg)] 2 ).
j=1
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At the same time, following the arguments of Lemma 6, we conclude that

MY (Arg #5) € {100

Tf(u)—l(fif(”))l sN-1
1

J
Therefore, if « > N — 1, then

£

=

(30)
u) . . R
MY Ay, #5) € {102

Tf(u)_l(AAf(u))l SN-1}n {|07€;:‘) ](Af(u))l >a} =40
1

~.
I

As a consequence,

) )
() MY =) M0 Ay =*).
j=1 j=1

Therefore,

(u)
B )
P<ﬂ{Uﬁ (@) > —a) ‘ MJ‘.‘>—
aeA 2w j

Jj=1
2(u)
]P’(ﬂ (00" (@ > —a} ‘ (M0 {4y, :*}> )
acd  T® j=1

By definition,

o)

MY ( Ay, =+) C ﬂ {—a < UM
j=1

acA Trw-1

(@) < a}.
Putting it together with the fact that A

T(u
(u)
P < (ol

, =+ implies that O, = +1, we conclude that

2 (@) > ~a) ‘ (M0 {4y, =*}> =1
P j=1

With arguments similar to those used to prove Proposition 5, we prove that

2|a|+2N+1
p( o e LH M'n 0% (@) > —a} ) = 1.
< Ti(uy+2|al+2N +1 ‘ Q J n{ T, @ J

a€A )
This concludes the proof of Part 2 of Proposition 21.

O

Now, we prove Theorem 4.

Proof. Using the same strategy used to prove Theorem 2, we first observe that
S é+,a > 1
e 2 (2N + D)eflel+D
1+ —
f/ﬁ,a( £+,a)

vhew)’

A !
u/¢£+,a qﬂ(u)
where for any u € S,

pu) 1= Y (MO 4 D) 4 oo,
a€eA

If max{|u(a)| : a € A} > |a] +2, then g(u) > e#1*1+?, and therefore,
PEW  opanyehlals),
RO}

In the case u ¢ £ and max{|u(a)|

a € A} < |a] +2, using Proposition 21 we can prove that there exists ¢’
that 7% (u) < C'ePe exactly as we did to prove Proposition 11 in Section 6. In this case, it follows that
W _ e p=pilat )

Gp(u)

=C'(N) > 0 such

From this point on, the proof of Part 2.1 of Theorem 4 can be done exactly as we did to prove Part 1 of Theorem 2.

Considering Proposition 21, the proof of Part 2.2 of Theorem 4 can be done similarly as we did to prove Part 2 of Theorem 2. []
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9. Discussion

Our model describes the time evolution of a “social bubble”. By this we mean a group of highly connected social actors and
disconnected from the actors outside the group. Theorems 2-4 rigorously analyze the behavior of such a system of interacting social
actors in a highly polarized situation.

One of the main features of our model is the disposition of each actor to always take into account the opinion of the other actors
in the network. We conjecture that this is a typical feature of a social network in which all the actors have similar psychographic
profiles. In a highly polarized situation, this feature makes our model a kind of “consensus building machine”.

The high polarization in our model of social network is compatible with the “filter bubble” hypothesis introduced by [37]. In a
nutshell, this hypothesis links network polarization with algorithmic filtering of ideas and opinions. This creates “echo chambers”,
amplifying opinions within the network [14].

The Brazilian 2018 and 2022 elections served as an inspiration for our model and suggested the following question: is social
media campaigning enough to change in a quite short period of time the voting intention of a significant portion of voters?

The results described by Theorems 2,3 and 4 seem to reproduce qualitatively the fast modification of the voting intentions
observed before the first rounds of the 2018 and 2022 presidential elections in Brazil. However, a more detailed statistical analysis
must be done to support the conjecture that our model offers an adequate explanation for the recent Brazilian electoral dynamics.
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