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KEYWORDS

1 | THE VALUE OF FOREST MONITORING

Long-term forest plots are sites where all trees above a specified
diameter are numbered, identified, and measured, and where re-
peated censuses record growth, mortality, and recruitment. Such
plots have become widespread in tropical rain forests, exempli-
fied by networks such as RAINFOR (Amazon Forest Inventory
Network; Malhi et al., 2002), AfriTRON (African Tropical Rainforest
Observation Network; Lewis et al., 2009), T-FORCES (Tropical
Forests in the Changing Earth System; Qie et al., 2017), and CTFS-
forestGEO (Center for Tropical Forest Science-Forest Global Earth
Observatory; Anderson-Teixeira et al., 2014). The RAINFOR,

Societal Impact Statement

Understanding of tropical forests has been revolutionized by monitoring in perma-
nent plots. Data from global plot networks have transformed our knowledge of for-
ests’ diversity, function, contribution to global biogeochemical cycles, and sensitivity
to climate change. Monitoring has thus far been concentrated in rain forests. Despite
increasing appreciation of their threatened status, biodiversity, and importance to the
global carbon cycle, monitoring in tropical dry forests is still in its infancy. We provide
a protocol for permanent monitoring plots in tropical dry forests. Expanding monitor-
ing into dry biomes is critical for overcoming the linked challenges of climate change,

land use change, and the biodiversity crisis.

floristics, long term plots, tropical dry forests, vegetation dynamics, vegetation structure

AfriTRON, and T-FORCES networks collectively comprise > 1,000
1 ha plots across the tropics, where every tree with a stem diam-
eter 2 10 cm is measured. CTFS-forestGEO employs much larger
(often 50 ha) plots where every stem = 1 cm in diameter is measured,
and this more intensive survey means that there are fewer (<100) of
such plots across the tropics.

These long-term tropical rain forest plots have been extremely
successful in achieving their primary aim of improving our knowl-
edge of tropical forest ecology, including, for example: the rela-
tionships of climate with biomass (Alvarez-Davila et al., 2017) and
forest structure (Feldpausch et al., 2012); the role of diversity in car-

bon storage and productivity (Coelho de Silva et al., 2019; Sullivan
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et al.,, 2017); and drivers of monodominance in Amazonia (ter Steege
et al., 2019). In addition, they have helped increase understanding
of community floristic diversity and composition (Baker et al., 2016;
Guevara et al.,, 2016; Levis et al., 2017), continental scale floristic
patterns (Esquivel-Muelbert et al., 2017; ter Steege et al., 2006; ter
Steege, Pitman, Sabatier, Baraloto, & Salomao, 2013), biome delim-
itation, and mapping (Silva-de-Miranda et al., 2018), and even facil-
itated the discovery of species new to science (reviewed by Baker
et al.,, 2017). Repeated censuses of these plots have provided insight
into the role of tropical forests in global cycles of carbon, energy,
and water (Pan et al., 2011; Phillips et al., 1998), long-term trends in
forest dynamics (Brienen et al., 2015), and the impacts of extreme
climatic events (Feldpausch et al., 2016; Phillips et al., 2009). As
such, these international standardized networks are a helpful mac-
roecological tool to study humanity's effect on the Earth system and
the vital role that moist tropical forests play in carbon sequestration
and therefore in mitigating the effects of increasing concentration
of atmospheric CO,. Conversely, they have also demonstrated how
tropical forest destruction and degradation account for an estimated
1.3 Pg carbon emissions (Malhi, 2010) and that, following deforesta-
tion, the recovery of forest species composition can take centuries
(Rozendaal et al., 2019). They may also have critical implications at
national levels too - in Peru, for example, long-term permanent plots
have been used to show that the country's intact rain forests have
helped to remove 86% of the country's emissions from the combus-
tion of fossil fuels (Vicufia-Minafo et al., 2018).

2 | DRY FORESTS: A GLOBAL RESOURCE

Long-term monitoring started in tropical rain forests and has been
concentrated there since. This reflects the importance of such
forests as the largest above-ground terrestrial carbon stock (Pan
et al., 2011) and their unparalleled levels of local (alpha) diversity of

plants and animals (e.g. Bass et al., 2010). However, half of the global

FIGURE 1 Dry forestinEl Coto de
Caza El Angolo, Piura, Peru in the dry
season showing Ceiba trichistandra (A.
Gray) Bakh. Photograph taken by PW.
Moonlight
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tropics are too seasonally dry to support such forests and instead
are home to tropical dry forests (Figure 1) and savannas (Pennington,
Lehmann, & Rowland, 2018). An estimated one-third of the global
population inhabits the seasonally dry tropics (GLP, 2005), and, as
a consequence, these systems have been commonly and severely
altered (e.g., Fajardo et al., 2005; Janzen, 1988; Linares-Palomino,
Kvist, Aguirre-Mendoza, & Gonzales-Inca, 2010; Portillo-Quintero &
Sanchez-Azofeifa, 2010). Because they can be erroneously viewed
as semi-natural, and because of their smaller stature and lower local
diversity than rain forests, tropical dry forests have been under-ap-
preciated by science and conservation. However, new information
suggests that their floristic diversity at continental scale (gamma
diversity) may approach that of rain forests (Flora do Brasil, 2020;
DRYFLOR, 2016), and that they play an essential role in controlling
the interannual variability in the global carbon cycle (Poulter, Frank,
Ciais, Myneni, & Andela, 2014). It is clear that science and society

cannot continue to largely ignore these tropical dry biomes.

3 | PUTTING DRY FORESTS IN THE
SPOTLIGHT

Even thirty years ago tropical dry forests were already considered
the most threatened tropical biome on the planet (Janzen, 1988),
and less than 10% of their original extent remains in many Latin
American countries, which house the largest remaining areas of this
vegetation (Miles et al., 2006; Pennington et al., 2018; Pennington,
Prado, & Pentry, 2000). This high level of loss is not only due to re-
cent conversion but also is a reflection of a long history of defor-
estation and use by early civilizations inhabiting dry forest areas,
especially in Latin America (Murphy & Lugo, 1986).

Landscape modification in tropical dry forest areas has been
exacerbated by their frequently fertile soils, and this also makes

them a continuing focus for agricultural expansion. Although at

local scales plant species richness in tropical dry forests does
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not match that of tropical rain forest, in the Neotropics, at least,

high floristic turnover amongst areas means that at continental
scale their species diversity rivals that of rain forest. For example,
DRYFLOR (Latin American Seasonally Dry Tropical Forest Floristic
Network; 2016) recorded 6,958 woody species from just 1,602
surveys, whereas a current estimate of the number of tree spe-
cies in the moist forests of the Amazon Basin is 6,727 (Cardoso
etal., 2017).

Despite this diversity, tropical dry forests are woefully un-
der-protected. For example, only 1.2% of remaining Brazilian
Caatinga dry forest and 1.4% of Colombian inter-Andean dry
forest are protected (Garcia, Corzo, Isaacs, & Etter, 2014; MMA,
2016), falling massively short of the 17% target set by Aichi bio-
diversity target 11 (CBD, 2011). An integral part of improving the
conservation outlook for tropical dry forests, and of gaining vital
information relevant to their restoration, will come from long-term
ecological monitoring. Such monitoring will be essential to under-
stand how their species grow, reproduce, and recruit, and the
mechanisms behind their mortality, especially in times of climatic
and environmental changes.

The rapid growth of long-term forest monitoring in tropical
rain forests partly reflects internationally agreed, standard proto-
cols for plot establishment. Conversely, the slow adoption of mon-
itoring in dry biomes is a consequence, among other factors, of the
lack of agreed protocols. Such lack of consensus in part reflects
the wide physiognomic spectrum of tropical savannas and dry for-
ests. For dry forests, the focus of this paper, this can vary from tall,
closed forest with a 25-30 m canopy, to more open, low, thorny,
and cactus scrub (Pennington et al., 2000). Protocols designed for
1 ha plots in the moist tropics (e.g. Phillips, 2018) fail to capture
the majority of growth, mortality, or recruitment dynamics in these
systems, primarily because mature individuals of many species do
not reach a minimum diameter at breast height (DBH) of 10 cm.
These smaller trees play an important role when describing struc-
ture and functioning of dry forest vegetation (Torello-Raventos
et al., 2013). We urgently need a standard for systematizing the
way with which the large number of researchers now working in
dry forests can measure and monitor these ecosystems. Only with
such a standard protocol in place can we lay the foundations for
generating a rich legacy of scientific and practical advancement in
ecology across the tropics.

In response to this urgent need we here present an approach in
measuring and monitoring tropical ecosystems, specifically adapted
to meet the challenges of long term monitoring in dry forests.
Our protocol, the DRYFLOR Field Manual for Plot Establishment and
Remeasurement (“DRYFLOR Plot Protocol”; please see the Supporting
Information for English, Portuguese and Spanish versions of the
protocol), is based on wide tropical experience and has received rig-
orous field testing in the dry forests, semi-deciduous forests, and
related dry biomes of Peru, southeast, and northeast Brazil. The pro-
tocol design is modified and expanded from that used by RAINFOR
(The Amazon Forest Inventory Network; Phillips, Baker, Feldpausch,

& Brienen, 2018) across the Americas and beyond with a particular

emphasis on the Amazon Basin. The new DRYFLOR Plot Protocol cap-
tures most dry forest structure and dynamics and is specifically de-
signed to enable a full and detailed comparison with data captured
by humid forest protocols (Phillips et al., 2018) and by savanna and
dry forest protocols (e.g. by measuring stems > 5 cm diameter and at
130 and 30 cm, rather than 210 cm diameter at only 130 cm; in its
provisions for multi stemmed individuals). Physiognomic and dynam-
ics data from the protocol are fully compatible with the ForestPlots
database (Lopez-Gonzalez, Lewis, Burkitt, & Phillips, 2011) and flo-
ristic data with the DRYFLOR database (www.dryflor.info). We be-
lieve it reaches a reasonable compromise between practical field
constraints in terms of time and data captured for the purpose of
estimating species abundances and biomass data, but it also pro-
vides optional modules that can be implemented if a more complete

picture of dry forest dynamics is desired.

4 | CONCLUSIONS AND CHALLENGES
AHEAD

The DRYFLOR Plot Protocol is a product of a large, collaborative net-
work of researchers working across Latin American dry forests and
related dry biomes. It is intended to permit the rapid and efficient
collection of inventory data in the dry tropics and facilitate stud-
ies on the structure and function of forests. The development of
this protocol is indebted to both the RAINFOR and the DRYFLOR
networks and three projects funded from 2011 to 2019 by the UK
Research Councils and the Brazilian Research Foundations FAPESP
and FAPERJ. The uptake of the protocol in new geographic areas and
beyond these networks will be a continuing challenge, but provides
the considerable benefit of standardised data capture. This will en-
able further collaborative research at wider spatial scales that is vital
for addressing questions about the current and future ecology of
tropical forests in a rapidly changing world. The societal relevance
of this research will ultimately depend not simply on the application
of a universal dry forest protocol, but also on the development of
lasting, meaningful relationships with local and regional stakehold-
ers and policymakers.
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