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Abstract: To fulfill the modern concept of sustainable construction, the civil engineering community
has shown increased interest in alternative options to replace natural backfills for engineering
purposes. Since Recycled Construction and Demolition Waste (RCDW) has proven to be attractive
in environmental, economic, and technical aspects, its behavior should be assessed considering
its interaction with other construction materials, such as geosynthetics. Bearing in mind that the
backfill affects the durability of geosynthetic materials, this study aims to assess the damage caused to
geogrids by RCDW dropped by transportation (dump) trucks. Moreover, this study aimed to obtain
an equation to predict the reduction factor caused by the backfill drop process. In an experimental
facility, six RCDW materials (with different grain size distributions) were dropped (using a backhoe
loader) from 1.0 m and 2.0 m heights over three distinct geogrids; the geogrid samples were exhumed
and then tested under tensile loading. The results provided a database subjected to machine learning
(Artificial Neural Network—ANN) to predict the reduction factor caused by the induced damage. The
results demonstrate that the increase in drop height or potential energy cannot be directly associated
with the damage. However, the damage increases as the maximum grain size of uniform gradation
backfill increases, which is different from the results obtained from the fall of continuous gradation
backfill. Moreover, since ANNs do not have any of the traditional constraints that multiple linear
regression has, this method is an attractive solution to predict the geosynthetic reduction factors,
providing relative errors lower than 8% compared to the experimental investigation reported in
the study.

Keywords: sustainable development; recycled aggregates; geosynthetics; artificial neural networks;
durability; grain-size distribution

1. Introduction

The construction industry uses several types of aggregates in different works, such
as concrete production, dams, embankments, and subgrades for railways or highways.
Unfortunately, this massive usage requires significant exploitation of natural resources, and
the effects of such overexploitation on our world and human health have been addressed
by different countries [1-5]. Moreover, the construction industry is also responsible for
generating a great deal of construction and demolition waste (CDW). The generators’
negligence in the management and correct disposal of CDW, added to the lack of public
policies to control this process, has led to other environmental impacts [6—10].
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In this context, the construction industry addresses two needs (a decrease in natu-
ral resource exploitation and correct management of the CDW generated), which have a
common solution: returning residues generated as raw material. However, high physi-
cal and chemical heterogeneity harms are caused by directly reusing CDW, which, as it
is inappropriately disposed of, may be contaminated by other materials (e.g., non-inert
general waste). Nevertheless, adopting a recycling process for CDW provides a material
with less heterogeneity (compared to CDW) that has followed standardized procedures.
As a result, this strategy (recycling): (i) potentially decreases the demand for natural aggre-
gates; (ii) reduces the environmental impacts related to quarry exploration; (iii) minimizes
efforts within CDW disposal; and (iv) provides new raw materials for the construction
industry [6-8,11-15].

In a simplified manner, the recycling process involves several steps: receiving, identify-
ing, depositing (stockpiling) CDW, source separation, crushing (hammer or jaw equipment),
and removing light contaminants (plastic, cork, rubber, wood, foam, etc.) and iron scraps.
Then, the recycled material is sorted by high-frequency vibrating screens into different
gradations [16]. The processed material is called ‘recycled construction and demolition
waste’ (RCDW) and comprises different materials. The Brazilian Standard (NBR 15116 [17])
categorizes RCDW into recycled concrete aggregate (RCA) and mixed recycled aggregate
(MRA) according to its composition. Other countries consider two additional categories:
recycled masonry aggregates (RMA) and recycled asphalt pavement (RAP) [18,19].

To consolidate RCDW as a viable and advantageous alternative for natural aggre-
gates in the market, it must be perceived as such. Designers must also consider essential
parameters for a safe and economical design, strengthening its position as a desirable
alternative [13]. In the past decades, in addition to the research evaluating the environmen-
tal and economic aspects related to using RCDW materials [20-25], several studies have
reported the potential substitution of natural aggregates by RCDW materials in pavement
layers [6,26-33] and backfill material for geosynthetic reinforced structures [8,12,34—42].
However, Delongui et al. [26] emphasized that the RCDW characteristics are valid for the
research’s specific application conditions (e.g., type of CDW generated, recycling process).
Thus, not only should the RCDW materials’ characteristics be accessed, but it is crucial to
assess the effects of their contact/interaction with other materials on site.

Particularly in the case of roads, railways, and reinforced structures, RCDW can be
used as backfill material and be combined with reinforcement materials, such as geosyn-
thetics. In these applications, additional care must be taken in terms of the geosynthetics'
durability. Their physical, mechanical, and hydraulic properties established in the design
must be fulfilled to ensure the structure’s behavior, reliability, and safety. Among the factors
affecting geosynthetics’ durability, installation damage, chemical degradation, and creep be-
havior are pointed out by Allen and Bathurst [43] and FHWA [44] as the most outstanding
factors. Numerically, the reduction factors for installation damage (RF;p) and creep behav-
ior (RFcR) are the most significant strength reduction factors [43]. The immediate reduction
in mechanical properties caused by installation damage leads to an immediate reduction
in the mechanical properties [45] is considered the main factor affecting the geosynthetics’
ultimate tensile strength [46]. Consequently, this study focused on assessing the ultimate
tensile strength design parameter to evaluate the impact of installation damage.

The geosynthetics installation process comprises backfill material handling, trans-
portation, dropping, strewing, and compaction [47]. Cazzuffi et al. [48] highlighted that the
installation damage depends on different factors related to construction activities (especially
the installation procedures and compaction) and the materials used (geosynthetics and
backfilling material). In recent years, several studies (e.g., [49-53]) have investigated the
installation damage on geogrids caused by natural aggregates. Only a few results are avail-
able regarding the investigation of installation damage using recycled aggregates. Santos
et al. [54] reported that polyester (PET) geogrids exhibited RF;p values equal to 1.12 after
lightweight roller compaction and 1.28 for vibratory hammer compaction. Fleury et al. [47]
obtained higher RF|p values with the vibratory hammer compaction (1.11) than with the
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vibratory roller compaction (1.06) and associated the difference with the degree of soil
compaction. The compaction with the vibratory plate used by Vieira and Pereira [55] and
Vieira and Lopes [56] and the static compaction performed by Domiciano et al. [57] did
not affect the geogrids’ mechanical behavior. However, the former study mainly aimed
at investigating the chemical and environmental degradation induced by RCDW on the
tensile behavior of geosynthetics. Therefore, a lightweight compaction process was adopted
to minimize geosynthetic installation damage.

The abovementioned studies investigated the installation damage due to the com-
paction of the backfill material on the geosynthetics and neglected its dropping effect. In
practice, the backfilling material arrives on-site in a dump truck. The material is dropped
(by elevating the dump bed), at least from a height of 1.0 m, over the geosynthetic materials.
Moreover, considering dropping particles near the top of the pile inside the dump truck,
the impact could be with higher energy. Previous studies by Barbosa and Santos [58]
and Fleury et al. [47] investigated the damage caused by the backfill drop material. They
reported reduction factors lower than 1.12 and highlighted that the damage did not increase
with the drop height. Despite these conclusions, these studies have only investigated a
single backfill type. Thus, the damage caused by dropping the backfill material on different
geosynthetics requires further investigations to be better understood.

Since the geosynthetic durability assessment started in the late 1980s, new studies
must be able to predict reduction factors. The technology industry has provided several
computational tools that can help engineers. The basic one is linear regression, which aims
to establish a linear relationship between two variables. This can evolve into multiple linear
regression (MLR), where a dependent variable has a linear relationship with more than
one independent variable. This technique requires some specific criteria (multicollinearity,
homoscedasticity analyses, and normality tests) to validate its use. These criteria may not
be met for more complex databases, requiring other techniques such as machine learning
algorithms based on neuron behavior and synaptic functions, termed ‘Artificial Neural
Networks (ANNs).” The neurons and their bonds comprise a structure (architecture), and a
series of equations and algorithms are dedicated to training it to provide accurate outputs
and minimize the losses of the input parameters. Unlike MLR, ANNs do not require any
criteria to obtain the relationship between independent and dependent variables. Consider-
ing geotechnical engineering, ANNSs have been used to predict: (i) leakage rates through
linear composites [59], (ii) pile’s load settlement curve [60], (iii) soil shear strength [61],
(iv) the settlement of geosynthetic-reinforced soil foundations [62], and the reduction factor
for geotextiles caused by dropping recycled backfill material [63].

This study focuses on assessing and predicting the damage caused by dropping
Recycled Construction and Demolition Waste (RCDW) on geogrids. A comprehensive
experimental investigation was conducted where different RCDW materials were dropped
over three geogrids; the samples were exhumed and tested under short-term tensile loads.
The results created databases that were then subjected to machine learning. The objective
was to predict reduction factor values that should be considered to better estimate the
reduction factor due to installation damage when this damage mechanism (drop height) is
considered crucial in design.

2. Materials and Methods
2.1. Geosynthetics

Geogrids are the most common type of geosynthetics used as reinforcement ele-
ments. Furthermore, the mechanical characteristics of geosynthetics made of polyester
(PET) filaments explain their wide application in Geosynthetic Reinforced Soil (GRS) struc-
tures [64]. This study investigated three geogrids commonly used in Brazilian GRS struc-
tures: two manufactured with PET yarns and one with poly(vinyl) alcohol (PVA) yarns.
The selection criteria were established to evaluate the impact of two factors on the sur-
vivability of geogrids: the ultimate tensile strength (comparison between PET geogrids)
and the constituent polymer (comparison between PET and PVA geogrids with a similar
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ultimate tensile strength). These criteria were utilized to assess the geogrids’ resistance to
induced damage. Table 1 summarizes the geogrids’ properties as provided by the manu-
facturer. For this study, the geogrids were cut into meshes with 2.40 m in the transversal
direction and 1.00 m in the longitudinal direction.

Table 1. Geogrids’ properties—as provided by the manufacturer.

Properties Unit PET-A PET-B PVA
Tensile strength in the machine
direction (MD) kN/m 35 55 3
Deformation at failure in MD % <10 <10 <10
Open area mm 20 x 20 20 x 20 20 x 30
Manufacturing polymer - PET PET PVA

2.2. Recycled Construction and Demolition Waste (RCDW)

As shown in Section 1, the RCDW can be classified according to their composition.
Since the recycling process in Brazil is still incipient and needs government policies and
incentives, recycling plants commonly provide mixed materials. For this study, six different
materials were provided by a recycling plant that processes CDW using double crushing
(jaw crusher). The RCDW characteristics (Table 2 and Figure 1) were evaluated following
the Brazilian Association of Technical Standards (ABNT) [65,66].

Table 2. Characteristics of the RCDW materials investigated in this study.

Classification

Material (ASTM D 2487 [67]) Cc Cu D0y (mm) Shape Index
SA SP 0.80 5.00 6.3 n.a
GA GP 1.59 294 >76.0 1.9
GB GP 1.17 1.78 25.4 2.0
GC GP 3.69 7.27 19.0 2.1
GG1 SP 0.35 90.00 76.0 2.0
GG2 GP 0.82 42.35 254 2.1

Note: GA, gravel A; GB, gravel B; GC, gravel C; SA, sand; GG1, graded gravel one; GG2, graded gravel two; Cc,
coefficient of curvature; Cyy, coefficient of uniformity; GP, poorly graded gravel with sand; SP, poorly graded sand;
n.a, not applicable.
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Figure 1. The grain-size distribution curve of the RCDW materials.
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2.3. Damage Simulation Procedures

The recycling plant's facility caused the damage caused by dropping backfill materials
(RCDW) on geosynthetics (geogrids). The free particles were removed from the surface
(manually, using a hoe), and the geogrid meshes were laid over them in the provided area.
In the following process, each RCDW material was dropped over a geogrid mesh from
1.0 m (H1) and 2.0 m (H2) heights (each drop height in a different mesh) using the recycling
plant’s wheel loader. Before dropping the RCDW materials, the wheel loader’s operator
was always instructed to fill the bucket as much as possible and write down the weight
of the RCDW in the bucket. Table 3 shows the average weight, its respective coefficient
of variation, and the potential energy (E,) resulting from the drop of 1.0 m and 2.0 m
heights. After dropping all RCDW materials over each mesh, the geogrids were exhumed
using a hoe and shovel, avoiding additional damage. The meshes were curled, wrapped in
bubble wrap, and transported to the Geosynthetics Laboratory of the Sao Carlos School
of Engineering to perform tensile strength tests. Overall, this process was similar to the
ones adopted by Fleury et al. [47], Barbosa and Santos [58], and Barbosa et al. [68]. Figure 2
illustrates some stages of the damage simulation procedure.

Table 3. Potential energy involved in the drop of each backfill from 1.0 m and 2.0 m height.

Material Bucket Weight (100% Filled) E, for .0 m E, for 2.0 m
SA 3093 kg (3.55%) 30.31 k] 60.63 k]
GA 3258 kg (4.82%) 31.93 k] 63.86 k]
GB 2140 kg (2.84%) 20.97 k] 41.94 K]
GC 2500 kg (3.86%) 24.50 k] 49.00 kJ

GG1 3473 kg (3.33%) 34.04 K] 68.08 k]
GG2 3330 kg (3.60%) 32.63 K] 65.27 K]

Note: Coefficient of variation (COV) is presented in parentheses. GA, gravel A; GB, gravel B; GC, gravel C; SA,
sand; GG1, graded gravel one; and GG2, graded gravel two.

(a)

Figure 2. Experimental test to simulate the damage of geosynthetics: (a) positioning of the wheel

loader for launching the backfill from 2.0 m height; and (b) configuration after the dropping process
of some scenarios and the start of the geogrids” exhumation.

2.4. Damage Quantification

As recommended by Allen and Bathurst [69], the effects of installation damage on
geosynthetic durability must be assessed in terms of (i) ultimate tensile strength (T};¢),
(ii) strain at failure (¢f), and (iii) secant tensile stiffness (Js.c). These properties of interest
were obtained from tensile tests, following ASTM D 6637 [70], performed in seven (7)
wide-width specimens (1.00 m long per 0.20 m width) at a 10%/min strain rate using a
universal testing machine with a 10 kN load cell. The strains” evolution was measured
by a video-extensometer. The tests were performed on undamaged (as received by the
manufacturer) and damaged (tests performed after the damage procedures) specimens.
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Allen and Bathurst [69] emphasized that monitoring geosynthetic strains is essential
to assessing the material’s tensile strength evolution. Furthermore, Paula et al. [71] and
Huang and Liao [72] considered that geosynthetic tensile stiffness is the best property to
characterize the behavior of polymeric materials. Thus, the damage induced in this study
was quantified in terms of the reduction factor for each property of interest, which means
ultimate tensile strength (RF), strain at failure (RF,), and secant tensile stiffness at 2%
strain (RF).

Before calculating the reduction factors, the properties of interest were evaluated
regarding their retained value. This value was calculated for each scenario according
to Equation (1): the ratio between the property of interest (X) at a given condition (X,;
e.g., damaged) and the mean value of the same property in its undamaged condition (Xy).

RX—XC/XM (1)

To calculate the reduction factors, a statistical tool was used to establish a confidential
interval for each property of interest and validate the damage occurrence. This study
assumed a normal population distribution with an unknown standard deviation. These
criteria justify adopting the Student’s t-distribution. Equation (2) calculates the maximum
and minimum values of the confidential interval.

Xonax 0F Xppin = X £ £5 / N )

Xmax and Xy, represent the confidential interval’s maximum and minimum values for
the X property; s is the standard deviation, and 7 is the sample size. The value of the
Student’s t-distribution variable (t) depends on n and the confidential level (it was set equal
to 95% as it is used to calculate the design tensile strength and provide a value similar to
the subtraction of two times the standard deviation from the geosynthetics ultimate tensile
strength obtained in the laboratory [73]). As the tests were performed on the same number
of speciments, this study adopts t equal to 1.9432.

The reduction factors were calculated using two different methodologies. The first one
is similar to the traditional method adopted in the literature: the ratio between the mean
value of the property of interest in its undamaged condition (X,) and the mean value of the
same property of interest in its damaged condition (X;; Equation (3)). The second method
comprises the mean of the ratio between X,, and each result (specimen) of the property of
interest obtained in the tensile test on damaged conditions (X, ; Equation (4)). To consider
the variability of the undamaged samples, if X,; or X; ; were equal to or higher than X,
it indicates doubt related to the damage occurrence (as the damaged value is inside the
variability of the undamaged materials). In this case, the reduction factor assigned is equal
to 1.00 (Equation (5)).

FRX:XM X7d_>ifX7d<Xmin (3)

FRx =X /[ Xy s = if Xis < Xonin @
X7d > Xmin

FRx =1 — if or &)
Xd_s > Xmin

2.5. Prediction of Reduction Factor Related to the Ultimate Tensile Strength

Two databases were created based on the results obtained in this study to predict the
reduction factors. The first one comprises the reduction factor calculated based on the first
method adopted (Equations (3) and (5)), with 36 values (one for each scenario investigated).
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The second one is based on the second method adopted to calculate the reduction factors. As
seven specimens were tested under damaged conditions, the mean undamaged specimens’
value was divided by the result of each damaged specimen, providing seven pieces of
data (reduction factor values) for each scenario. Thus, this second database comprises a
total of 252 values (data). These databases were created merely for the geogrids’ ultimate
tensile strength.

The backfills’ data were entered into the database according to their classification as
per ASTM D 2487 [67] to provide a more general equation. The data on the databases
were arranged to separate all variables investigated in the study: two drop heights, three
geogrids, and two backfill materials (according to their classification in Table 2), and the
reduction factor related to the combination of the other variables. Thus, the data were
arranged in a dichotomous way, where the presence of a variable in the scenario resulted
in a value equal to 1, and, on the contrary, it was set to 0. This process was applied to
both databases.

2.5.1. Prediction Using Artificial Neural Networks (ANNSs)

Artificial neural networks (ANNSs) were used to predict the reduction factors. In
this case, an open-source software package (RStudio, PBC; Version 2022.07.2) constructed
the ANN algorithms, trained them, and predicted the reduction factor values. Firstly, a
sensitivity analysis was made to assess the most viable architecture (one that provides
good accuracy with as little computational effort as possible). In R Studio, the data were
randomly selected using a routine to split the database into two sets with a desired ratio.
As Raschka and Mirjalili [74] suggested, 70% of the data were dedicated to a training set
and 30% to the testing set—the procedure applied to both databases. Then, the number
of layers in the ANN'’s architecture varied. With a defined architecture, the sensitivity
analyses continued by assessing the most suitable ratio between training and test sets.
Using both databases, the ratio that provided the most suitable relative error was adopted
to predict the reduction factors. The predicted reduction factor results were compared with
the data in both training and testing sets. The accuracy of the reduction factors’ prediction
was also quantified based on the relative error (Equation (6)). Posteriorly, we compared the
predictions made by ANN algorithms, considering the calibration of a traditional technique
(Multiple Linear Regression).

_ |RF, - RF,,\
RE = RE, (6)

where RE is the relative error; RF, is the reduction factor obtained by the experimental
tests performed in this study; and RF) is the predicted reduction factor using the model.

2.5.2. Prediction Using Multiple Linear Regression (MLR)

Multiple linear regression (MLR) was applied to both databases using the Stepwise
model. The software RStudio (PBC; Version 2022.07.2) was used to apply this method.
The use of MLR is justified mainly for methodological validation purposes. We aimed to
observe the advantages of using ANNSs to predict the reduction factor, as this algorithm
has no traditional mathematical constraints. Similar to the ANN’s data division, 70% of the
data was dedicated to a calibration set and 30% to a validation set—the procedure applied
to both databases. The data used for calibration and validation was the same as the one
used in the ANN method (in that case, named training and testing sets). Multicollinearity
analyses assessed the correlation coefficients between the independent variables (drop
height, backfill, and geogrid). Highly correlated variables can make the model sensitive to
small changes and reduce the ability to detect significant variables. In the following stage,
homoscedasticity analyses and normality tests were performed on the residues obtained
by the Stepwise model. Similar to the ANN methodology, the predicted reduction factor
results were compared with the training and testing sets” data. The method’s accuracy was
evaluated based on the relative error (Equation (6)).
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3. Results
3.1. Tensile Tests in an Undamaged Condition

Table 4 summarizes the mean and the COV values of the properties of interest obtained
after the tensile tests performed on the undamaged specimens, which means the ones tested
as received from the manufacturers. The ultimate tensile strength values obtained in the
tests were lower than those in the manufacturer’s specification. It should be mentioned
that the undamaged values of the properties of interest were taken as reference values for
the reduction factors’ calculation. Additionally, the meshes of each geogrid were obtained
from its respective roll. As a result, these results represented the whole roll and did not
affect the study.

Table 4. Results of tensile tests performed on undamaged specimens: mean values, coefficient of
variation, and confidential interval for each property of interest.

Properties of Interest PET-A PET-B PVA
Tt (KN /m) 29.74 44.54 28.34
COV (%) 3.77 6.96 391
Confidential interval (kN /m) 30.78-28.70 47.41-41.68 29.37-27.32
€7 (%) 8.18 7.30 5.02
COV (%) 4.65 8.86 10.27
Confidential interval (%) 8.53-7.82 7.89-6.70 5.54-5.49
Jsee (KN /m) 400.13 704.34 518.23
COV (%) 6.03 5.32 17.23
Confidential interval (kN /m) 422.44-377.82 739.02-669.67 600.82-435.64

As expected, Table 4 shows a slight variability in the geogrids” ultimate tensile strength
(COV values lower than 7.0%). However, significant variability (higher than 10%) was
observed in the PVA-based material for the elongation at break and the secant tensile stiff-
ness. Since the t-Student’s equation was used to set the undamaged property confidential
interval, it became broader as the properties’ variability increased. Thus, the reduction
factor calculation considered the undamaged properties’ variability. Table 4 exhibits the
confidential interval for each property of interest.

3.2. Reduction Factors Obtained after the Damage Procedures
3.2.1. Ultimate Tensile Strength

Figure 3 shows the geogrids’ retained tensile strength (RTS) after the damage proce-
dures. The vertical bars indicate the mean RTS value, and the error bars show the variability
(the maximum and minimum RTS values) among the seven specimens tested. The range
between horizontal lines of the same type (continuous or dashed) represents a geogrid’s
confidential interval. Although the boundary values of the confidential interval of PET-A
and PVA are not the same (Table 4), when their values are presented in terms of RTS values
(Equation (1)), the confidential interval becomes very close, which is the reason why they
look overlapped in Figure 3.

The PET-A geogrid exhibited a significant decrease (RTS value lower than the min-
imum value of the material’s confidential interval for the tensile strength) in its mean
undamaged ultimate tensile strength (T},) for most scenarios evaluated. The drop of GC
from 1.0 m or 2.0 m and GG1 from 1.0 m resulted in a decrease in T, but within the mate-
rial’s confidential interval. Considering the backfill drop with a more uniform grain size
distribution, the damage increased as the maximum grain size increased (GC, GB, and GA,
in this order; see Figure 1). Thus, the backfill with the highest maximum grain size (GA) is
the most aggressive to PET-A geogrid. These results follow other studies [52,53,75-77] that
reported a damage increase as the grain size increased. As expected, the backfill drop is
more aggressive from 2.0 m (9.68% decrease in T,) than when dropped from 1.0 m (7.7%
decrease in T,) for the GA backfill material. The drop of GB and GG1 follows the same
trend: greater damage when dropped from 2.0 m than from 1.0 m. However, the drop of
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SA and GG2 backfills contradicts this assumption. In fact, these materials (SA and GG2)
caused a similar reduction when they dropped from 1.0 m (7.36%) and 2.0 m (5.43%). These
results may indicate that the damage caused by the drop of backfills with continuous grain
size distribution is primarily influenced by their curvature (note that SA and GG2 exhibit
similar values of C,; see Table 2). The maximum grain size can be considered a secondary
factor in this case, as the reduction in T,, value increases with the maximum grain size of the
backfills (reductions equal to 5.11%, 5.75%, and 9.67% for SA, GG2, and GG1, respectively,
when dropped from 2.0 m).

Although the PET-B geogrid is manufactured from the same polymer as the PET-
A geogrid, it has proven to be more resistant to the damage caused by the drop height.
Significant reductions in PET-B’s T, value occurred when GA was dropped (6.63% reduction
for 1.0 m and 8.15% reduction for 2.0 m). Some scenarios have resulted in slight reductions
inside the geogrid’s confidential interval for T,. Comparing the results of PET-made
geogrids, PET-B has a more robust structure (to comprise a greater amount of PET fibers)
than the PET-A geogrid, which leads to higher resistance to the damage induced. Thus,
the damage proves to be more severe when the geogrid structure consists of thinner ribs,
as the stress concentration due to the drop tends to be higher. Lim and McCartney [52]
also reported the effects of the geogrids’ structure on their resistance to damage occurrence.
Notwithstanding, Paula et al. [78] also reported that the geogrids’ resistance to installation
damage increases as the material’s ultimate tensile strength increases.

Figure 3 shows that the PVA geogrid was more affected than the PET-made geogrids.
While handling the PVA geogrid, it was noted that it presents less cover and lower bending
stiffness (not its stiffness under tensile) than the PET geogrids. The lack of cover makes
the fibers more susceptible to damage. The high flexibility of the PVA geogrid impairs
the energy distribution resulting from the drop of the backfill as it occurs on the PET-
made geogrids.
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Figure 3. Residual tensile strength was calculated based on each material’s undamaged mean tensile
strength. [Notes: The vertical bars represent the mean value, the error bars indicate the maximum
and minimum values obtained for the seven specimens tested, and the horizontal lines show the
confidential intervals’ limits of the undamaged tensile strength of each material —PET-A and PVA are
overlapped].
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PVA geogrid was slightly affected when the GG1 material was dropped, causing a
reduction (close to 2.26%) inside the material’s confidential interval for T,, regardless of
the drop height. This milder damage can be associated with two facts: (i) as GG1 exhibits
a very continuous distribution (a wide range of grains in its composition), it leads to less
damage due to better stress distribution, and (ii) the small open area between the geogrid
elements (ribs) promoted a better distribution of the stress compared to the one occurred
with the PET geogrids. Considering the other backfill materials, PVA geogrid has suffered
reductions ranging between 16.24% (SA drop from 1.0 m; scenario SA-H1) and 26.33% (GA
drop from 2.0 m; scenario GA-H2). Similar to the PET-A geogrid, the damage increased
with the maximum grain size (GC, GB, and GA, in this order, regardless of the drop height),
considering the backfills with a more uniform distribution. For the other backfills with
continuous grain-size distribution (SA and GG2), they induced similar reductions in the
geogrid’s T, value when dropped from 1.0 m (16.67%) and 2.0 m (19.90%). This emphasizes
that the damage caused by the drop of continuous backfills is primarily influenced by its
curvature, followed by the backfill’s maximum grain size.

Although this study investigated backfills with different grain-size distributions, it was
not possible to identify a strong relationship between the backfills” grain-size distribution
parameters (Dyuax, Do, D1o, Ce, or Cy,) and the geogrids’ retained tensile strength (RTS).
As the results pointed out, the best relationship was between the maximum grain size
of the backfills with a more uniform gradation (GA, GB, and GC) and the RTS values
(Figure 4a). The coefficients of determination (R?) for the PET geogrids demonstrate a
good relationship (mean R? value equal to 0.79), but for the PVA geogrid, the results do
not reveal such a satisfactory relationship (R? = 0.47). Similarly, an attempt was made
to identify a relationship between the potential energy involved in the dropping process
and the geogrids’ RTS values. However, the data was too vague (Figure 4b), preventing
further conclusions.
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Figure 4. Relationship between the geogrids’ retained tensile strength and (a) the maximum grain
size of the backfill material with a more uniform gradation (GA, GB, and GC), and (b) the potential
energy involved in the drop process.

Regarding the reduction factors related to the ultimate tensile strength, Table 5 shows the
reduction factors calculated by the first method adopted in this study (Equations (3) and (5)).
As previously mentioned, the PVA geogrid was the most affected material and exhibited
reduction factors ranging between 1.11 and 1.36 (excluding scenarios GG1-H1). PET-B geogrid
experienced damage outside its undamaged confidential interval when the GA backfill was
dropped, resulting in reduction factors close to 1.08 regardless of the drop height. The PET-A
geogrid shows reduction factors equal to or higher than those of the PET-B geogrid. Unlike
the results reported by Vieira and Pereira [55], the second method adopted to calculate the
reduction factors (Equations (4) and (5)) proves to be a more conservative approach. This
method resulted in reduction factor values (Table 6), on average, 2.24% higher than the values
calculated using the first method. Overall, the reduction factors related to the backfill drop are
lower than those related to the backfill’s compaction reported in the literature. For instance,
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Huang [75] reported values ranging between 0.95 and 2.01, and Fleury et al. [47] reported
a more comprehensive range, 0.83 to 2.33. It is noteworthy that this study does not aim
to suggest incorporating an additional reduction factor to calculate the geosynthetic design
tensile strength. Rather, the main purpose is to quantify the specific contribution of the drop
process of the backfill material over the geosynthetic to the overall geosynthetic damage
induced during installation in the field. The results elucidate that the backfill drop causes
damage to the geosynthetics. Hence, it must be correctly addressed and considered when it is
considered a critical process at the workstation.

Table 5. Reduction factor, calculated by the first method (Equations (3) and (5)), for damage caused
by dropping the backfilling material related to the ultimate tensile strength.

Drop from 1.0 m Drop from 2.0 m
RCDW

PET-A PET-B PVA PET-A PET-B PVA

SA 1.07 1.00 1.19 1.05 1.00 1.24
GA 1.08 1.07 1.27 1.11 1.09 1.36
GB 1.05 1.00 1.26 1.06 1.00 1.28
GC 1.00 1.00 1.20 1.00 1.00 1.26
GG1 1.11 1.00 1.00 1.00 1.00 1.11
GG2 1.08 1.00 1.21 1.06 1.00 1.26

Table 6. Reduction factor, calculated by the second method (Equations (4) and (5)) for damage caused
by dropping the backfilling material, related to the ultimate tensile strength.

Drop from 1.0 m Drop from 2.0 m
RCDW

PET-A PET-B PVA PET-A PET-B PVA

SA 1.09 1.03 1.20 1.07 1.01 1.25
GA 1.10 1.07 1.28 1.12 1.10 1.37
GB 1.05 1.03 1.27 1.06 1.02 1.29
GC 1.03 1.06 1.20 1.04 1.01 1.29
GG1 1.03 1.01 1.04 1.11 1.03 1.03
GG2 1.09 1.00 1.21 1.08 1.06 1.27

3.2.2. Strain at Failure

Figure 5 shows the geogrids’ retained strain at failure after the damage procedures.
The vertical bars indicate retained strain at the failure mean value. The error bars show
variability (the maximum and minimum retained strain at failure values) among the seven
specimens tested. The range between horizontal lines of the same type (continuous or
dashed) represents a geogrid’s confidential interval. Two particular scenarios resulted in
decreases in the strain at failure below the minimum boundary of the geogrids’ confidential
interval: PET-A-GG1-H2 (4.22% reduction) and PET-B-GG1-H2 (12.45% reduction). Inter-
estingly, this backfill material resulted in the geogrids’ lowest values of retained strain at
failure, indicating that it is the most aggressive material regarding this property. A possi-
ble explanation is that the better stress distribution resulted from its continuous particle
size distribution, which demanded the stretching of the whole mesh. However, this is a
specific result that leads to such speculation. The most relevant impact of these results
is the wide variability of the strain at failure after the damage is induced. The studies
reported by Hsieh and Wu [51] also showed significant variability in the strain at failure
after mechanical damage.

Based on the results reported, most reduction factors (calculated following the first
method described in Section 2.4) exhibit a value equal to unity (Table 7). Once again,
the second method to calculate the reduction factor provides values (Table 8) equal to
or higher than those obtained by the first method. The high variability in the retained
strain at failure can justify this increase in the reduction factor calculated by the second
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method. The reduction factors reported by Hsieh and Wu [51] ranged between 0.88 and
1.41. Thus, although most of the results indicate that the damaged strain at failure has been
maintained inside the geogrids’ confidential interval for this property, significant variability
is associated with the geogrids’ strain at failure after the damage is induced.
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Figure 5. Residual strain at failure is calculated based on each material’s undamaged mean strain
at failure. [Notes: The vertical bars represent the mean value, the error bars indicate the maximum
and minimum values obtained in the seven specimens tested, and the horizontal lines show the
confidential intervals’ limits of the undamaged strain at failure of each material].

Table 7. The reduction factor for damage caused by dropping the backfilling material is related to the
strain at failure calculated by the first method (Equations (3) and (5)).

RCDW Drop from 1.0 m Drop from 2.0 m

PET-A PET-B PVA PET-A PET-B PVA

SA 1.00 1.00 1.00 1.00 1.00 1.00
GA 1.00 1.00 1.00 1.00 1.00 1.00
GB 1.00 1.00 1.00 1.00 1.00 1.00
GC 1.00 1.00 1.00 1.00 1.00 1.00
GG1 1.00 1.00 1.00 1.14 1.04 1.00
GG2 1.00 1.00 1.00 1.00 1.00 1.00

Table 8. The reduction factor for damage caused by dropping the backfilling material is related to the
strain at failure calculated by the second method (Equations (4) and (5)).

RCDW Drop from 1.0 m Drop from 2.0 m
PET-A PET-B PVA PET-A PET-B PVA
SA 1.07 1.00 1.04 1.03 1.00 1.03
GA 1.01 1.00 1.03 1.04 1.00 1.06
GB 1.00 1.00 1.04 1.01 1.00 1.02
GC 1.00 1.00 1.00 1.01 1.00 1.08
GG1 1.06 1.06 1.03 1.06 1.11 1.08

GG2 1.03 1.00 1.06 1.01 1.02 1.10
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3.2.3. Secant Tensile Stiffness at 2% Strain

Similar to Sections 3.2.1 and 3.2.2, Figure 6 shows the geogrids’ retained secant
tensile stiffness (RSTS) at 2% strain after the damage procedures. The vertical bars in-
dicate the RSTS mean value, and the error bars show its variability (the maximum and
minimum RSTS values) among the seven specimens tested. The range between hori-
zontal lines of the same type (continuous or dashed) represents a geogrid’s confidential
interval. Figure 6 shows a significant difference between the geogrids’ confidential
intervals for this property of interest. While the PET geogrids have a similar range,
the PVA geogrid shows a much more comprehensive range resulting from the high
variability (COV = 17.23%; Table 4) of this parameter for the undamaged (as received)
specimens. Another important aspect is the high variability in the results, as reflected
by the range between the maximum and minimum data bars. This high variability
is not associated solely with the materials’ behavior. Fleury et al. [47] pointed out
that the method adopted to monitor strain evolution (only in a single longitudinal rib)
contributes to increased property variability.
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Figure 6. Residual secant tensile stiffness is calculated based on each material’s undamaged mean
secant tensile stiffness at 2% strain. [Notes: The vertical bars represent the mean value, the error
bars indicate the maximum and minimum values obtained in the seven specimens tested, and the
horizontal lines show the confidential intervals’ limits of the undamaged secant tensile stiffness at 2%
strain of each material].

The induced damage significantly affected the secant tensile stiffness of all ge-
ogrids investigated. The PET-A geogrid presented mean values of RSTS lower than
its confidential interval for all scenarios investigated. Similar to the tensile strength
results, the damage caused by the backfill drop with more uniform gradation was
higher for the 2.0 m drop height than the 1.0 m drop height (except for the GA material).
Moreover, the GA and GB materials were the most aggressive concerning this property,
emphasizing that the maximum grain size significantly influences the damage caused
by backfills with uniform gradation. Two backfills with continuous gradation led to
a similar reduction in the secant tensile stiffness regardless of the drop height: 8.2%
for SA and 13.40% for GG2. However, the other material (GG1) shows a considerable
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difference between the reduction caused by the drop from 1.0 m (11.61%) and 2.0 m
(6.61%). Thus, the first impression obtained by assessing the PET-A geogrid’s retained
secant tensile stiffness indicates that the damage caused by the different backfill drops
affects this property differently.

Contrary to the tensile strength and strain at failure results, the secant tensile stiffness
of PET-B geogrid was significantly affected by the backfill drop, especially from the 2.0 m
height. Moreover, the secant tensile stiffness of the PET-B geogrid was more affected
than that of the PET-A geogrid. The results were more scattered for the more uniform
materials (GA, GB, and GC), not indicating a relationship between the damage caused and
the maximum particle size. Furthermore, the drop of GC and GB backfills from 1.0 m height
caused more considerable damage than that caused by the higher drop height (2.0 m). The
opposite behavior can be observed for the materials with continuous gradation: damage
caused by the drop height of 2.0 m is greater than that caused by the 1.0 m drop height.
Furthermore, there is no correlation between the maximum grain size and the geogrid
damage caused by the continuous backfill material.

Similar to the other properties, the PVA geogrid is the most affected by the backfill
drop regarding the secant tensile stiffness. Although the GG2 material induced a high
decrease in this property, the values were inside the PVA’s geogrid confidential interval.
When dropped from 1.0 m height, the backfill materials with uniform gradation induced
a higher decrease in this property than their drop from 2.0 m, contradicting the results
of tensile strength. Considering the continuous backfill materials, the results were even
more scattered.

Overall, the geogrids’ secant tensile stiffness has proven to be the most affected
property with respect to the damage caused by dropping the backfill materials. Al-
though the results did not indicate a standard behavior in the reductions of this prop-
erty, the impact caused by the drop height has induced elastic deformation on the
geogrids that has influenced their stiffness. However, it must be highlighted that this
property exhibited significant variability due to the heterogeneity of the damage that
occurred and the strain measurement method adopted. Thus, this assumption must be
considered cautiously.

Regarding the reduction factor related to the secant tensile stiffness, Table 9 shows
values ranging from 1.00 to 1.39, considering the first calculation method adopted in this
study. These values are above the ones reported by Pinho-Lopes and Lopes [53] (ranging
from 0.99 to 1.07) but lower than the values reported by Hsieh and Wu [51] (0.83 to 1.74).
The second method used to calculate the reduction factor resulted in values (Table 10), on
average, 2.3% higher than those obtained from the first. This emphasizes that this second
method tends to be conservative. It must be highlighted that, for some scenarios, the
difference between the values calculated by the first and second methods reaches 10%. In
such cases, the second method seems even more conservative.

Table 9. The reduction factor for damage caused by dropping the backfilling material is related to the
secant tensile stiffness at 2% strain calculated by the first method (Equations (3) and (5)).

Drop from 1.0 m Drop from 2.0 m
RCDW

PET-A PET-B PVA PET-A PET-B PVA

SA 1.07 1.22 1.24 1.10 1.24 1.32
GA 1.26 1.13 1.39 1.18 1.17 1.27
GB 1.19 1.35 1.32 1.22 1.23 1.30
GC 1.07 1.26 1.36 1.09 1.18 1.20
GG1 1.00 1.00 1.23 1.00 1.00 1.21

GG2 1.15 1.06 1.00 1.16 1.27 1.00
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Table 10. The reduction factor for damage caused by dropping the backfilling is material related to
the secant tensile stiffness at 2% strain calculated by the second method (Equations (4) and (5)).

Drop from 1.0 m Drop from 2.0 m
RCDW

PET-A PET-B PVA PET-A PET-B PVA

SA 1.10 1.29 1.27 1.03 1.25 1.33
GA 1.27 1.14 1.40 1.18 1.18 1.36
GB 1.22 1.38 1.32 1.22 1.24 1.27
GC 1.08 1.29 1.36 1.08 1.19 1.30
GG1 1.00 1.00 1.18 1.00 1.00 1.11
GG2 1.16 1.08 1.05 1.17 1.28 1.10

3.3. Prediction of Reduction Factors
3.3.1. Artificial Neural Networks

Tables 11 and 12 show the sensitivity test results performed to identify the best
architecture of the ANN and the most suitable ratio between training and testing sets.
The increase in nodes in the hidden layers of the ANN (see Figure 7) did not significantly
increase the accuracy of the ANN (Table 11). Furthermore, increasing nodes requires more
computational effort and would result in a more complex equation (as the number of nodes
in the hidden layers increases) to predict the reduction factor values. Table 12 shows that
the ratio 60/40 (60% of data for training and 40% for testing) provides one of the lowest
relative errors (RE), regardless of the database. Based on the results of this sensitivity
analysis (a single hidden layer and a 60/40 ratio), the ANN algorithms were constructed,
as illustrated in Figure 7.

Table 11. The relative error in predicting the reduction factors for different Artificial Neural Network
architectures based on the numeric database with 36 data.

Training Set (%) Test Set (%) Hidden Layers RE (%)
70 30 1 7.37
70 30 2 8.45
70 30 3 7.39
70 30 c(1,1) 7.38
70 30 c(1,2) 7.37
70 30 c(2,1) 7.85
70 30 c(2,2) 5.74
70 30 c(3,1) 6.83

Table 12. The relative error in the prediction of the reduction factors for different ratios between the
training and test sets is based on the dichotomous databases.

. o . o . 36 Data 252 Data
Training Set (%)  Testing Set (%) Hidden Layers Database Database

90 10 1 9.76 7.45

80 20 1 4.64 7.48

70 30 1 5.69 7.52

60 40 1 3.37 7.52

50 50 1 5.09 7.83

40 60 1 423 7.94

30 70 1 8.29 8.20

20 80 1 9.58 8.33

10 90 1 9.23 8.59
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For the ANN shown in Figure 7, the summation function () is given by Equation (7).
The activation function (a) in Equations (8) and (9) shows the reduction factors’ (RF) predic-
tion equation. The weights used in the equation are indicated in Table 13 for both databases.

U =wy + WeGR + Wp + by @)
1

Y T exp(—u) ®

RF = ag-wg + by 9)

where wy, wggr, and wp are weights related to the drop height, geogrid type, and back-
fill material’s classification, respectively; b; and b, are the weights related to the bias
involved in the Artificial Neural Networks; and wg is the weight that multiplies the

activation function.
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Figure 7. The Artificial Neural Network architecture comprises three layers (inputs, hidden, and
outputs) and three mathematical equations (weights, activation, and summation functions).
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Table 13. Weights for reduction factors’ prediction related to dropping the backfill material.

Weights 36 Data Database 252 Data Database
WH
H1 —0.50487 1.49953
H2 —1.08017 —0.65195
WGGR
GGR1 —0.75023 —2.92709
GGR2 —0.57875 0.17595
GGR3 —0.51103 1.38466
wp
SP —0.72347 1.94361
GP —1.23944 0.97083
Weights
by 0.68053 —0.42686
by 0.36379 —0.36104

wg —0.27650 —0.05205
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The weights shown in Table 13 (some with negative values) give an awkward first
impression of the RF’s prediction equation. As the lower reduction factor predicted is
equal to 1.00, it can be expected that the summation function results in a negative value that
provides a positive value when multiplied by the negative values of wg. The final summa-
tion with b results in a positive RF value. These occur because the weights were obtained
based on a series of back and forward propagations in the Artificial Neural Networks that
culminate in weight values for the most accurate prediction. Thus, the prediction equation
combines mathematical equations such as the summation and activation functions. It
provides a very accurate RF prediction, with relative errors equal to 3.57% for the smallest
database (composed of 36 data) and a relative error equal to 7.52 for the broader database
(252 data).

3.3.2. Multiple Linear Regression

Table 14 shows that the coefficients obtained for the drop height parameters were
not significant (coefficients with a p-value > 0.1) in the second database (comprising
252 data). Additionally, the coefficient of determination (R?) decreases with the in-
crease in data in the databases. For a variable to be considered significant, the probabil-
ity of obtaining a result as extreme or more extreme than the observed result, assuming
that the null hypothesis is true, must be less than the p-value. Although the R? values
were small and indicated low representativeness of the model, the p-values for the
model are very close to zero, indicating that the regression model explains/represents
the variation in the RF variable. Some variables show strong correlations due to the
databases’ dichotomous structure (for example, the drop heights H1 and H2 and the
backfill materials GP and SP). This can be observed in Table 14, where the highly
correlated coefficients presented are “NA.”

Table 14. Estimated parameters and R? to predict the reduction factor for the ultimate tensile strength
related to dropping the backfill material by Multiple Linear Regression (MLR).

Variables and Coefficients 36 Data Database 252 Data Database
R? 0.6582 0.422
p-value 1.07 x 1077 2.2 x 10722
H1 —0.02278 —0.02382 *
H2 NA NA
GGR1 0.19 0.19122
GGR2 0.035 0.035 *
GGR3 NA NA
SP —0.04167 —0.04324
GP NA NA

Note: * coefficients with a p-value > 0.1; NA: coefficients of variables in the model have a perfect linear relationship.
Thus, only some regression coefficients in the model can be estimated.

According to the residues’ analysis for the smaller database (36 data; Figure 8), there
is a normal distribution and homoscedasticity. The databases’ residues did not attend
to the normality supposition required in the Shapiro-Wilk test. Moreover, the residues
of both databases have shown homoscedasticity, a condition that does not satisfy the
requirements for applying the Multiple Linear Regression (MLR) methods. Thus, adopting
Artificial Neural Networks (ANNSs) can be seen as an exciting alternative solution to obtain
a prediction equation for the reduction factor since it does not have such mathematical
constraints for its application.
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Figure 8. Residuals analysis for the dichotomous database composed of 36 data: (a) histogram;

(b) Q-Q normal regression chart, and (c) scatter plot.
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4. Conclusions

This present study aimed to investigate the damage caused by dropping backfilling
materials on geogrids and propose a prediction equation for the reduction factors resulting
from this damage. Six different backfills were dropped using a wheel loader from heights
of 1.0 m and 2.0 m over geogrid meshes; the specimens were carefully exhumed and tested
under tensile loading. The results were validated using a statistical tool, and then the
reduction factors were calculated and composed databases submitted to machine learning
to provide the prediction equations. Based on the study results, the following conclusions
can be drawn:

e No strong relationship was observed between the backfills” grain-size distribution
parameters and the reductions caused by the damage induced. Similarly, the potential
energy could not be directly correlated with the damage induced, which indicates
that the increase in the drop height cannot be associated with an increase in damage.
However, it was noted that the damage affected the geogrids’ tensile strength, strain
at failure, and secant tensile stiffness differently.

o The geogrids’ tensile strength is affected differently according to the backfill grain
size distribution. Backfills with a more uniform gradation cause damage to increase
as the maximum grain size of the backfill and the drop height increase. Conversely,
the damage is primarily influenced by the backfill grain size distribution (curvature),
whereas the maximum grain size is taken as a secondary aspect for backfills with
continuous gradation. For these backfills, the tensile strength reduction was very
similar regardless of the drop height and exhibited a slight increase as the maximum
grain size of the backfill increased.

e  The strain at failure was nearly unaffected by the damage induced. However, it was
noted that a significant increase in its variability occurred. On the contrary, secant
tensile stiffness is the most significantly affected property of interest and has shown
a randomized behavior for each geogrid investigated. The results suggest that the
damage induced by the drop height caused elastic deformation in the geogrids, com-
promising their secant tensile stiffness. However, further investigations are required
to validate this assumption.

e  Regarding the reduction factors, the PVA geogrid is the most sensitive to the induced
damage because it is low-coated and exhibits lower bending stiffness than the PET
geogrids. Considering the PET geogrids, the material with the lowest ultimate tensile
strength was more affected in terms of tensile strength; meanwhile, the material with
a higher ultimate tensile strength was more affected concerning the secant tensile
stiffness. Moreover, a second method to calculate the reduction factors was proposed
that proved to be slightly conservative (resulting in a reduction factor, on average,
2.3% higher than those from the traditional method adopted in the literature).

e  The databases obtained from this experimental investigation do not meet the criteria
for using multiple linear regression to predict the reduction factors. However, the
artificial neural network is an interesting alternative that has accurately predicted
the reduction factors with errors lower than 8% compared to those derived from the
experimental investigation.

This study does not try to incorporate a new reduction factor to determine the ge-
ogrids’ characteristic tensile strength (to be adopted in design). The results obtained herein
highlighted that backfill drop material is responsible for causing damage to the geogrids.
Further investigations are required to investigate the effect of the dropping process on
different geosynthetic materials. Moreover, the study proposes that the data obtained
by experimental tests can be used to predict design parameters using machine learning
techniques. Finally, the study encourages the potential application of this technique (or
similar ones) to evaluate the reduction factor’s data already available in the literature to
provide a more comprehensive prediction equation.
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