Manuscript Click here to access/download;Manuscript;template.tex =

Click here to view linked References

Noname manuscript No.
(will be inserted by the editor)

1
2
3
4 .
5 Model-Based Test Case Generation from UML
g Sequence Diagrams using Extended Finite State
8 Machines
9
10 -
11 Mauricio Rocha - Adenilso Simao -
Thiago Sousa
12 g
13
14
15
16
17 Received: date / Accepted: date
18
19
20 Abstract The effectiveness of model-based testing (MBT) is mainly due to
21 its potential for automation. If the model is formal and machine-readable, test
22 cases can be derived automatically. One of the most used formal modeling tech-
23 niques is the interpretation of a system as an extended finite state machine
24 (EFSM). However, formal models are not a common practice in the industry.
gg The Unified Modeling Language (UML) has become the de-facto standard for
software modeling. Nevertheless, due to the lack of formal semantics, its dia-
ég grams can be given ambiguous interpretations and are not suitable for testing
59 automation. This article introduces a systematic procedure for the genera-
30 tion of tests from UML models that uses concepts of model-driven engineering
31 (MDE) for formalizing UML sequence diagrams into extended finite state ma-
32 chines and providing a precise semantics for them. It also applies ModelJUnit
33 and JUnit libraries for an automatic generation of test cases. A case study was
34 conducted in a real software towards the evaluation of its applicability.
35
36
37 Keywords Model-based testing - Model-driven engineering - Sequence
38 diagram - Extended finite state machine - ModelJUnit - JUnit
39
40
j; Mauricio Rocha
Instituto de Ciéncias Matem4dticas e de Computagao (ICMC), USP, Sao Carlos, SP, Brazil
43 E-mail: mauriciormrocha@usp.br
44 Adenilso Simao
45 Instituto de Ciéncias Matem4dticas e de Computagao (ICMC), USP, Sao Carlos, SP, Brazil
46 E-mail: adenilso@icmc.usp.br
47 Thiago Sousa
48 Centro de Tecnologia e Urbanismo (CTU), UESPI, Teresina, PI, Brazil
49 E-mail: thiago@ctu.uespi.br
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

O©CoO~NOOOITA~AWNPE

2 Mauricio Rocha et al.

1 Introduction

Software engineering (SE) aims to discipline software development in order
to make it economically viable. According to [18], its main goal is to provide
methods, tools, and procedures that enable the management of the software
development process and provide a basis for the construction of high-quality
software with high productivity.

SE offers several ways of developing quality software, e.g., software testing
and formal modeling. The former is considered a critical element of software
quality assurance and represents the latest revision of specification, design,
and coding [18]. On the other hand, formal modeling is used in the early
stages of the development process to avoid ambiguities in specifications and
minimizing failures [25]. Both activities have advantages and limitations, and
a high degree of complementarity, which makes their combined use improve
the quality of the software under construction.

A common practice in most software development processes is the use of
abstract models, which represent the essential parts of a system and enable
software engineers to take a conceptual view of several different software per-
spectives. The Unified Modeling Language (UML), a widely used alternative,
enables the modeling of both static and structural aspects, as well as dynamic
or behavioral ones [14]. According to [17], the main problems of using UML are
inconsistencies, transformation problems, and different interpretations, which
are caused by the lack of a formal semantics.

Modeling can increase the productivity of software testing. According to
[29], model-based testing (MBT) promotes the automatic generation of tests
from models and other software artifacts, making it possible to create tests for
the software prior to coding, thus reducing the development costs. Its central
idea is to generate input sequences and their expected outputs from a model
or specification. The input sequences are then applied to the software under
testing and the software outputs are compared to the outputs of the model.
This implies the model must be valid, i.e., that it accurately represents the
requirements.

Using formal models is recommended in MBT, since they can be used as
a basis for the automation of the testing process, thus increasing its efficiency
and effectiveness [9]. Another advantage is that such models reduce ambiguities
generated by natural languages. The various formal modeling techniques based
on state transition machines can specify a test model, and differ from each
other according to the characteristics of an explicit or implicit representation
of certain elements [24].

Extended finite state machines (EFSMs) have been widely used by the
formal methods community, since it enables the representation of the flow of
control and data of complex systems. Moreover, it can be implemented as a
test model by using the ModelJUnit [12] library, designed as an extension of
JUnit and written in Java, which is a popular programming language.

Although the UML is the most popular modeling language, its diagrams
can generate inconsistencies and different interpretations due to the lack of

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 3

formal semantics. Using formal models can minimize such problems, since
they have a precise semantics that accurately represents a system’s behavior,
and the test generation methods from formal models, such as EFSMs, can
be taken as a reference, since they are well-established methods. However, in
practice, formal models are rarely used in the industry, probably due to the
lack of training and familiarity with the mathematical notation by developers.

In this context, we have developed a systematic procedure for the gener-
ation of test cases from a UML model [19]. The idea is to use concepts of
model-driven engineering (MDE) to transform UML sequence diagrams into
EFSMs and automatically generate test cases using the libraries ModelJUnit
and JUnit. The main contributions of our previous study include:

1. A definition of transformation rules for the mapping of elements of the
UML sequence diagram into extended finite state machine constructions
using the Atlas Transformation Language (ATL) [1].

2. The formalization of the UML sequence diagram in terms of EFSMs, which
are semantically accurate models.

3. An automatic source code generation of ModelJUnit and JUnit classes from
EFSMs using Acceleo [5].

4. A systematic procedure that generates Java tests from UML sequence di-
agrams automatically.

However, the approach described in [19] imposes the following limitations:
(I) nested combined fragments cannot be used in sequence diagrams; (II) the
source code that simulates the system under test (SUT), called stubs, is gener-
ated manually; and (IIT) only one example of automatic teller machine (ATM)
was considered to illustrate the applicability of the approach.

Towards overcoming the limitations, we have extended the systematic pro-
cedure to generate tests from UML sequence diagrams. Therefore, the contri-
butions of this study include:

1. A modification in the transformation rules to allow nested combined frag-
ments with five levels of depth.

2. An automatic source code generation of stub classes from UML sequence
diagrams using Acceleo.

3. The application of the test generation procedure in a case study using real
software models.

The remainder of this paper is structured as follows: Section 2 addresses
preliminary definitions of UML sequence diagrams, model-driven transforma-
tion, extended finite state machines, and model-based testing; Section 3 de-
scribes the systematic procedure for the test cases generation, the metamodels
used, the transformation rules from UML sequence diagrams for EFSMs, stubs
generation, and the ModelJUnit and JUnit libraries; Section 4 reports a case
study performed on a real-world software system; Section 5 addresses some
related work; finally, Section 6 provides the conclusions and suggests some
further work.

O©CoO~NOOOITA~AWNPE

4 Mauricio Rocha et al.

2 Background

This section introduces the basic concepts discussed, namely, UML sequence
diagram, model-driven transformation, extended finite state machine, and
model-based testing.

2.1 Sequence Diagram

The dynamic behavioral aspect of an object-oriented software is defined through
the interaction of objects and exchange of messages among them. The main
diagram of the interaction model is the UML sequence diagram, which shows
the interactions between objects in the temporal order of their occurrence.

Basic interaction and combined fragments are the two types of elements
that represent the main interactions and their notations in the UML sequence
diagram [11].

Fig. 1 shows the elements of a basic interaction. Lifelines represent partic-
ipants of the interaction that communicate via messages: such messages may
correspond to an operation call, signal sending, or a return message. Execution
specification is a unit of behavior or action within a lifeline and represents the
time at which an object is active, i.e., the time at which it performs some
operation. Sending and receiving messages are marked with the specification
of a message occurrence.

More complex interactions can be created by combined fragments, which
define control flow in the interaction and comprise one or more operands, zero
or more interaction constraints, and an interaction operator. An operand cor-

sd example 1)
Name nf/'

Interaction a A b:B . C

Execution m2()
Specification 1

Message -
Occurrence
Specification

Asynchronous

Synchronous Call Message

Fig. 1 Elements of a basic interaction. [11]

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 5

responds to a sequence of messages executed only under specific circumstances.
Interaction constraints are also known as guard conditions and represent a con-
ditional expression. Fig. 2 illustrates the main elements of this construction.

sd example 2 J

Interaction
Operator Kind EHA EH0
[[
e m1o |
= !
| |
] i
[akd = 5] 5 |
Combined | m20 ﬂl

Interaction /
Constraint

_____ T___________________
Fragment Interaction [else] |
Operand / m3p ~
Pl
|
|
|
|
|
|
|

Fig. 2 Interactions with a combined fragment. [11]

We used the following three interaction operators to model the main pro-
cedural constructs:

— alt: construction of the if-then-else type. Only one operand is executed;

— opt: construction of the if-then type. It is very similar to the alt operator,
except that only one operand is defined, which may or may not be executed;
and

— loop: a construct that represents a loop where the single operand is exe-
cuted zero or more times.

Other interaction operators defined by UML 2, such as seq, break, par, strict,
critical, neg, assert, ignore and consider and that can be found in OMG !
(Object Management Group) [14] are not in the scope of this research.

2.2 Model-Driven Transformation

Model transformation is a key concept within the scope of model-driven engi-
neering (MDE). MDE aims at supporting the development of complex software

1 International consortium of companies that define and ratify standards in the area of
object orientation.

O©CoO~NOOOITA~AWNPE

6 Mauricio Rocha et al.

that involves different technologies and application domains, focusing on mod-
els and model transformation [10,6,21].

Similarly to models, metamodels play a key role in MDE. A metamodel
produces statements on what can be expressed in valid models of a given
modeling language. Modeling languages must offer formal definitions, so that
transformation tools can automatically transform the models built into those
languages. OMG has created a special language, called Meta Object Facility
(MOF) [15], which is the default metalanguage for all modeling languages.
Therefore, each language is defined by a metamodel using the MOF.

Model transformation is the generation of a target model from a source
model [20]. The process consists of a set of transformation rules that describes
the way the elements of the source model are mapped into elements of the
target model. The transformations can occur in two ways, i.e., Model-To-
Model (M2M) mapping or Model-To-Text (M2T) mapping.

Fig. 3 shows a simple Model-To-Model transformation scheme. In this case,
both models conform to their respective metamodels. The transformation rules
are defined from mapping the elements of the source metamodel to the ele-
ments of the target metamodel. A transformation is performed in concrete
models.

Refers to Refers to
Source Metamodel Transformation Definition Target Metamodel

Y

Confarms to Conforms to

Reads Writ
Source Model res Target Model

Fig. 3 A simple Model-To-Model transformation scheme. [4]

In the Model-To-Text transformation, a source code is generated from a
model. This model transformation can use a template-based technology. In this
context, a template consists of the target text containing metacode to access
variable information [4]. Fig. 4 shows a simple Model-To-Text transformation
scheme.

LY

> <>

Model Your template based on your Source code
own coding rules

Fig. 4 A simple Model-To-Text transformation scheme. [5]

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 7

2.3 Extended Finite State Machine

An extended finite state machine (EFSM) consists of states, predicates, and
assignments related to variables between transitions, so that it can represent
the control and data flow of complex systems.

An EFSM can be formally represented by a 6-tuple (sg, S, V, I, O, T)
[30], where

— S is a finite set of states with initial state sg;
— V is a finite set of context variables;

I is a set of transition inputs;

— O is a set of transition outputs; and

— T is a finite set of transitions.

Each transition tx € T can also be represented formally by a tuple tx =
(si, Sj, Piay Atz, iz, 0iz), Where s;, s; are the origin and target states of
transition tx, and i;; € I represents the input parameters of the beginning
of the transition tx, such as events that can be interpreted as special types
of input parameters, and o, € O denotes the output results at the end of
the transition tx. P, represents the predicate conditions (guards) with their
respective context variables and Ay, denotes the operations (actions) with
their respective current variables.

According to [30], EFSM models can be represented as a directed graph
G(V, E). The elements of V represent the states of an EFSM and E denotes
its transitions, as shown in Fig. 5. Fig. 5 (a) displays an EFSM model of an

Transition State

: Event Guard Action
R Name __Transition
- L S0>S1 card(pin,sb,cb) attemps=0
- pl=pin &&
/@ v S1->S1 pim(p) attemps<3
i
e &} s1>s8 pimip) Elrpi Ao
" attemps==3
T15-T16

T S1-552 pimip) p==pin

s $2553 english() I=e
Ta 6 $2-553 chinese()

7 S3->54 current()
™ s L] $3->56 saving()
9 54553 done()

10 $6->53 done()
T12-T20 T11 54555 balancell) I==c print_clcb)
T12 $4>s5 balance(l) I==¢ print_e(ch)
TI3 S435S5 deposit(d) ch=ch+d
T14 S4->55 withdraw(w) w>0 && wech cb=cb-w
T21-122 T15 S5-354 display(e) I==e receipt{e)
T16 ss>s4 display(c) I==c receipt(c)

T17 S6->57 withdraw(w) w>0 && w<sh sb=sb-w

(a) T18 $6-557 deposit(d) d>0 sh=sh+d
T19 $6->57 balance(l) ==e print_e(sb)
T20 56557 balance(l) ==c print_c(sh)
T21 S7>56 receipt(l) ==e receipt(e)
T22 S7-356 receipt(l) ==c receipt(c)
123 S3>58 exit()

(b)

Fig. 5 (a) An EFSM representing an automated teller machine. (b) Detailed information
on EFSM transitions. [30]

automated teller machine (ATM) with its states and transitions, and Fig. 5
(b) shows the details of the ATM transitions with their events, guards and
actions.

O©CoO~NOOOITA~AWNPE

8 Mauricio Rocha et al.

2.4 Model-Based Testing

A software test executes a system under construction with test data and checks
if its operating behavior conforms to its specification. This implementation
under test is called the System Under Test (SUT).

In MBT, test cases are generated from models, templates, or a combina-
tion of models and templates and then executed in the SUT. Using models is
motivated by the observation that the testing process is traditionally unstruc-
tured, non-reproducible, and undocumented, and depends on the creativity of
software engineers. The idea is that artifacts used in the SUT coding can help
mitigate such problems [29].

In summary, MBT covers the processes and techniques for the automatic
derivation of test cases from abstract software models. Since rigor is required,
[29] defined a generic MBT process divided into the following 5 steps (Fig. 6):

Test (2)
Selection —— Requirements
Criteria

(3) l l (1)

Test Case Model

Specification

w\ /‘4’

Test

Script /

SUT

Fig. 6 Generic process for model-based testing. [29]

— Step 1 - Test model: a model of the SUT is created from the software
requirements. It is called a test model, because its elements are in accor-
dance with the objective of the test. The generation of relevant test cases
depends directly on the test model generated, therefore the test model
must be accurate to represent the system’s requirements;

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 9

— Step 2 - Selection criteria: test selection criteria are chosen and established
for guiding the automatic generation of test cases from the model created
in the previous step;

— Step 3 - Test case specifications: the test selection criteria are transformed
into test case specifications by formalizing the notation of the criteria,
making them operational. For example, the state coverage of an EFSM
can be transformed into a set of test case specifications;

— Step 4 - Generation of test cases: after the test model and test case spec-
ifications have been defined, a set of test cases is generated to meet the
specifications; and

— Step 5 - Execution of the test cases: the test cases are run, manually or
automatically, and yield the result of the execution.

An important point in the MBT process is the choice of the model rep-
resentation format. A widely used format is EFSMs, as described in Section
2.3.

3 Systematic Procedure

This section describes a systematic procedure for test case generation by EF-
SMs extracted from UML sequence diagrams. The procedure starts with the
construction of a sequence diagram and finishes with the generation of test
cases for the scenarios described in the diagram, which are executed in the
stubs.

Fig. 7 illustrates the procedure, which is divided into four main steps, as
detailed below:

(a) Transformation between models. Scenarios are written as a UML se-
quence diagram, which is transformed into an EFSM through the mapping
between their respective metamodels using Atlas Transformation Language
(ATL). The result is a formal software model represented by an EFSM.

(b) Stubs Generation. The stubs source code is generated from the sequence
diagram. Thus, a Model-To-Text (M2T) transformation is performed by
Acceleo, resulting in the stub classes.

(c) Test Case Generation. Test cases are generated by EFSM-based test
generation methods and ModelJUnit / JUnit libraries from a model of the
software represented by EFSM. A Model-To-Text (M2T) transformation is
performed by Acceleo, thus resulting in a set of test cases.

(d) Test Case Execution. The abstract tests generated by ModelJUnit li-
brary are executed in the stubs and action, state and transition coverage
metrics are automatically generated. After the execution, the concrete tests
generated in the JUnit library are executed in the stubs and the verdict is
built.

O©CoO~NOOOITA~AWNPE

10 Mauricio Rocha et al.

ModelJUnit
Sequence (a) EFSM (c) 0.Jﬁnit "
Diagram o
~ O Q S o
4TRANSFORMATION 4 O:. .* < > 4 ey

Code Template General ted Code

(b) Stubs (d)

S
— [0 = [F—fz=]

Code Template Generated Code

Fig. 7 Systematic procedure for test case generation.

For all steps of the procedure, a project has been created and the source
code of the prototype is available at the repository’. In the repository, there
is a README file explaining how to perform each step of the procedure.

3.1 Metamodels

This section focuses on defining the UML sequence diagram metamodel (source)
and extended finite state machine metamodel (target), which were imple-
mented in Ecore by the Eclipse Modeling Framework (EMF) [26].

The complete official UML specification [14] is highly complex, since the
abstract syntax is represented in several separate diagrams, which hampers
the visualization of all connections among the important elements. Moreover,
the specification uses the so-called semantic variation points, i.e., part of the
semantics is not fully specified for enabling the use of UML in several do-
mains. Therefore, the official UML metamodel has been heavily criticized,
since many of its elements are rarely used in practice [22,7]. The metamodel
shown in Fig. 8 is simpler than the one specified by OMG for the sequence
diagram, and does not have constructs which are rarely used in practice. The
application of simplified metamodels has been widely reported in the literature
[8,11,23]. The metamodel contains 11 metaclasses, among whose sequence di-
agram represents a UML sequence diagram model, and provides several life
lines (LifeLine) and fragments (InteractionFragment). A lifeline is represented
by an abstract object (AbstractObject), which can be an Actor or an Object,
and has a start attribute, which indicates the lifeline initiates the process. A
Message or a Combined Fragment can be represented from the Interaction
Fragment abstract metaclass. The Combined Fragment metaclass has an at-
tribute (InteractionOperator) that defines its type (e.g., alt, opt, and loop). A
Combined Fragment is composed of one or more operands, represented by the
InteractionOperand class. Each operand has a guard condition, and can com-
prehend fragments represented by messages or nested combined fragments.

1 https://github.com/TESTSD2EFSM/SQJO.

QOO ~NOURAWNE

OO0 UOOUIOOITUORDBIMBREDIMIMDIADIMDIMDRANOWWWWWWWWWWNNNNNNNNNNRPRERPRERPRPRERRRE
APRPWNRPFPOOO~NOUOPRAWNRPFPOOONOUOPRAWNPFRPOOONOUORAWNPFPOOONOOOAWNRPFRPOOONOOOIAWNEE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 11

- teracti p
H sequenceDisgram| [1+7] fragments Fg interactionFragment

H Combinedfragment

E Operation

o returnVariable : EString
o returnType : EString
o guard : EString

0.%fargs

2 Messagekind

= operation

= signal

~ reply H Message [1..1] source
© name : EString 1..4] target

2 Qperatorkind = type: i [1..1] targ
T _op

= opt

= alt

= (B [0.1] gperation g Uifeline

= name : EString

[0.1] lifeline

O start: EBoolean = false

= name : EString

11.%] lifeLines

H param

= argName : EString
= argType : EString

Fig. 8 Sequence diagram metamodel.

[1..1]

abstractObject

8 AbstractObject
o name : String

[1..*] fragOpds

E InteractionOperand

= guard : EString

= name : String
-, interactionOperator :
T Operatorkind = opt

[1.."] operands

A message is triggered between lifelines and can be of three types, namely
operation, signal, and return.
The metamodel proposed for EFSMs (Fig. 9) is based on the formal defini-
tion of Yang et al. [30], explained in Section 2.3. It consists of ten metaclasses,
and the EFSM entity is comprised of states, transitions and context variables.
Transitions are composed of inputs, outputs, guards, and actions. Events are
a special type of input parameters for transitions, which may or may not be
triggered by these transitions.
Such metamodels implemented in Ecore are available in the SEQUENCE-
DIAGRAM/model and EFSM/model folders of the repositoryl.

H Initiaistate

g Abstractstate

o name : EString

[1..1] initialstate

B EFsM

[0..*] contextVariables

H Contextvariable

& = name: EString [

o name : EString
= type : EString

= type : EString
= class : EString

& = name: EString

Fig. 9 Extended finite state machine metamodel.

[]
[1..*] states
g state J [1..*] transitions
T B Tansition
X = - | = name : String
[1.1] source = name ; EString [0.1] event i
= gutput : EString - = thurn ;F””g
[=] H
[1.1] target o guard : EString e e
= action : EString S
3 [
0..*] args
[1..1] input e
Variable
B B Input
= name : String [0..*] variables

= argName : String

= argType : String

O©CoO~NOOOITA~AWNPE

12 Mauricio Rocha et al.

3.2 Transformation Rules

After defining the metamodel that represents the language of the sequence dia-
gram to which formal semantics are assigned, as well as the EFSM metamodel,
the next step is to define the transformation rules that map the elements of
such metamodels. The rules will have a sequence diagram model as input and
an EFSM model as output.

We have implemented these transformation rules in Atlas Transformation
Language (ATL), one of the packages developed in the AMMA (ATLAS Model
Management Architecture) model engineering platform [1]. ATL rules may be
specified in a declarative (Matched Rules) or imperative (Called Rules) style.
Lazy Rules are types of Matched Rules triggered by other rules.

Before we specifically address the transformation rules, it is important
to note that these rules iteratively add new states to the EFSM and connect
them to previously added states. For this purpose, the rules use three variables
defined in SequenceDiagram2EFSM module: the order variable representing
the state order, preState describing the previous state, and curState expressing
the current state.

The following is a description of the transformation rules defined:

— InitEfsm: An instance of a SequenceDiagram metaclass is mapped directly
to an instance of the EFSM metaclass and is given the same name. More-
over, when a lifeline with the Start attribute equal to true is found, the
initial state SO of the EFSM is created. This rule can be applied only once.
Fig. 10 shows an example of the transformation rule.

— Transition: for all instances of Message of signal (type = si) or operation
(type = op) type, a state is created and added to the EFSM, a transition
that connects the previous state to the state added in EFSM is created,
and an Input instance is created at the EFSM transition, and labeled with
the name of the message. If the message type is operation, instances of
input variables (Variable) are created with the name, type of the operation
argument and class equal to the lifeline class that sent the message. If there
is a return in an operation, the output, guard, and action of this transition
are labeled with the return of the operation. The event is labeled with
the name of the operation, its return, arguments and class equal to the

Sequence Diagram EESM

Frofessor Online J Frofessor Online J

InitEfsm

—

Fig. 10 InitEfsm rule.

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 13

Sequence Diagram EFSM

Frofessor Online J Frofessor Online J

ProfessorQnline
Transition login(String id, String psw)
S0 s1

| login{String id, String psw) : void h'
I Ll
| |

Fig. 11 Transition rule with operation without return.

lifeline that receives the message. Fig. 11 and Fig. 12 show examples of this
transformation rule with an operation without a return and an operation
with a return, respectively.

— ContextVariable: for all instances of Message of operation (type = op)
type with a return other than wvoid, a context variable is created in the
EFSM with the same name and return of the message operation. In Fig.
12, the userOk context variable with boolean type was created in the EFSM.

— Alt and Opt: for all instances of CombinedFragment with alt operator or
opt operator, a new state and a new transition for each operand are cre-
ated in the EFSM. The new transitions link the current state with the new
states. The input of the transitions will be labeled with the message name,

Sequence Diagram

Frofessor Online J

Teacher ProfessorQnline User

| login{String id, String psw) : void

)
Pl Uuser0k = validateUser(String id, String psw) : boolean h'
I

I

|

| ho— o _usOK__ 4
| |

Transition

EFSM

Frofessor Online J

login{String id, String psw)
S0 s1

validatelJser{String id, String psw) /|userCk

Fig. 12 Transition rule with return operation.

O©CoO~NOOOITA~AWNPE

14

Mauricio Rocha et al.

Sequence Diagram

Frofessor Online J

Teacher ProfessorQnline User

| | |
|_login(String id, String psw) : void g |
Lt
I

userQk = validateUser(String id, String psw) : boolean o
™

|
| o usrOk 4
| | |
at || [userOk = trug] | |
|‘ logged() | |
R - |
| [userOk = false] | |
!‘ exit(! |
14 i |

Alt / Opt
EFSM

Frofessor Online J
login{String id, String psw) validatelJser{String id, String psw) / userOk = true

validateUser(String id, String psw) | userOk = false logged

S5 sS4
exit

®

Fig. 13 Alt/Opt rule.

and input variables are created with the name and type of the operation
argument and class equal to the lifeline class that sent the message. The
outputs, guard and action of the transitions are labeled with the guard of
the respective operand. The event is labeled with the name of the opera-
tion, its return, arguments and class equal to the lifeline that receives the
message. Fig. 13 shows an example of this transformation rule.

Loop: for all instances of CombinedFragment with loop interaction oper-
ator, a reply message must be defined as the last message of the operand.
When the process finds an instance of this reply message, a new state and a
new transition that connect the current state to the added state are created
in the EFSM. The input of the transition will be labeled with the name
of the message and the output with the negation of the operator’s guard.
Another transition is created by connecting the previous state to the last
state created prior to the the fragment. The input of this transition will
be labeled with the name of the message, and the output with the guard
of the operator. Fig. 14 shows an example of this transformation rule.

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 15

Sequence Diagram

Frofessor Online J

Teacher ProfessorQnline User

:userOk:faIse [Guard]) : :
| login{String id, String psw) : void

! }-‘J user0 k = validateUser{String id, String psw) : boolean __J

| f ™

|

|

|

loop :

Loop

EFSM

Frofessor Online J

validatelUser{String id, String psw) / userQk = false

login{String id, String psw)

validatelJser{String id, String psw) /|userOk = true

Fig. 14 Loop rule.

The following Lazy Rules were implemented for the feasibility of the trans-

formations:

LrInitialState: it creates initial state S0, increments the order of the
states (order variable), and changes the previous (preState variable) and
current (curState variable) states as the initial state created. The order,
preState, and curState variables are defined in the SequenceDiagram2EFSM
module. Below is the ATL code for this Lazy Rule.

lazy rule LrInitialState {

from

1 : SequenceDiagram!LifeLine
to

i : EFSM!InitialState (name <- ’S0°)
do {

thisModule.order <- thisModule.order + 1;
thisModule.preState <- ij;
thisModule.curState <- ij;
}
}

LrState: it creates a new state, increments the order of states (order vari-
able), the previous state (preState variable) is changed to the current state
(curState variable) and the current state is changed to the newly created

O©CoO~NOOOITA~AWNPE

16

Mauricio Rocha et al.

state. The order, preState, and curState variables are defined in the Se-
quenceDiagram2EFSM module. Below is the ATL code for this Lazy Rule.

lazy rule LrState {

from
m : SequenceDiagram!Message
to
i : EFSM!State(
name <- ’S’+thisModule.order.toString()
)
do {

thisModule.order <- thisModule.order + 1;
thisModule.preState <- thisModule.curState;
thisModule.curState <- ij;
}
}

LrTransition: it creates a transition that connects the source state (source
variable) to the target state (target variable). The transition output, tran-
sition guard, and transition action can be null and depend on the operator
and message type of the sequence diagram. The transition is labeled with
a concatenation of source state, symbol ”—” and target state. The source,
target, output, guard, and action variables are defined in the SequenceDia-
gram2EFSM module. Below is the ATL code for this Lazy Rule.

lazy rule LrTransition {
from
m : SequenceDiagram!Message
to
t : EFSM!Transition(
output <- thisModule.output,
source <- thisModule.source,
target <- thisModule.target,
name <- thisModule.source.name+’->’
+thisModule.target .name,
guard <- thisModule.guard,
action <- thisModule.action

}

LrTransitionInput: it creates transition inputs labeled with the name
of the messages. The inputName variable is defined in the SequenceDia-
gram2EFSM module. Below is the ATL code for this Lazy Rule.

lazy rule LrTransitionInput {
from
t : EFSM!Transition
to
i : EFSM!Input(
name <- thisModule.inputName
)
}

LrTransitionInputVar: it creates input variables with the name, type,
and class of message operation arguments. The inputVarName, inputVar-
Type, and inputVarClass variables are defined in the SequenceDiagram-
2EFSM module. Below is the ATL code for this Lazy Rule.

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 17

1
2

3
!

lazy rule LrTransitionInputVar {
from
t : EFSM!Input
to
i : EFSM!Variable(
name <- thisModule.inputVarName,
type <- thisModule.inputVarType,
class <- thisModule.inputVarClass

}

LrTransitionEvent: it creates an event with the name and return labeled
with message data and class equal to the lifeline class that receives the mes-
sage. The eventName, eventReturn, and eventClass variables are defined
in the SequenceDiagram2EFSM module. Below is the ATL code for this
Lazy Rule.

lazy rule LrTransitionEvent {
from
t : EFSM!Transition
to
i : EFSM!Event (
name <- thisModule.eventName,
return <- thisModule.eventReturn,
class <- thisModule.eventClass

}

LrTransitionEvent Arg: it creates event parameters with name and type
of the message operations arguments. The argName, and arg Type variables
are defined in the SequenceDiagram2FEFSM module. Below is the ATL code
for this Lazy Rule.
lazy rule LrTransitionEventArg {
from
t : EFSM!Event
to
i : EFSM!Param(

argName <- thisModule.argName,
argType <- thisModule.argType

}

LrContext Variable: it creates a context variable with the name and type
labeled with the return variable of the operation and type of the operation,
respectively. The returnVariable, and returnType variables are defined in
the SequenceDiagram2EFSM module. Below is the ATL code for this Lazy
Rule.

lazy rule LrContextVariable {
from
o : SequenceDiagram!0Operation

v : EFSM!ContextVariable (
name <- o.returnVariable,
type <- o.returnType

O©CoO~NOOOITA~AWNPE

18 Mauricio Rocha et al.

As previously mentioned, one of the improvements of this study compared
to the approach described in [19] is the possibility of using combined frag-
ments nested in up to five levels of depth. This was achieved by changing the
main transformation rule called SequenceDiagram2EFSM. In this rule, when
an instance of InteractionFragment is found and this fragment is a combined
fragment, we again check if the next fragment is also a combined fragment.
If this occurs, all transformation rules are considered. This check was imple-
mented at five levels of depth.

All such rules implemented in ATL are available in the SD2EFSM/ Se-
quenceDiagram2EFSM.atl file of the repositoryl.

3.2.1 Complezity of the Transformation

In this section, we discuss how the size of the sequence diagrams influences
the size of the generated EFSMs. The size of the EFSMs is measured in terms
of the number of states and transitions. This counting will be performed by
comparing the elements of the sequence diagrams in regards to the creation of
EFSMs states and transitions.

Table 1 shows the relationship between the elements of the sequence di-
agrams and the number of states and transitions that are generated in the
EFSMs.

Table 1 Impact of the sequence diagrams elements on ESFMs size.

Sequence Diagram Element Number of States Number of Transitions
LifeLine 1 0
start = true

Message 1 1
type = op or type = si
CombinedFragment 0 InteractionOperand quantity
InteractionOperator = opt at the last level 4+ 1
CombinedFragment InteractionOperand | InteractionOperand
InteractionOperator = alt quantity - 1 quantity - 1

+ InteractionOperand quantity
at the last level 4 1

CombinedFragment 0 1
InteractionOperator = loop

If the sequence diagram element is a CombinedFragment with an Opt In-
teractionOperator and there is a Message after the CombinedFragment, the
number of transitions is equal to the number of InteractionOperand at the
last level plus 1.

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 19

If the sequence diagram element is a CombinedFragment with an Alt Inter-
actionOperator, the number of transitions is equal to the number of operands
minus 1. If there is a Message after the CombinedFragment, the number of
InteractionOperand in the last level plus 1 is added. The number of states is
equal to the number of InteractionOperand minus 1.

3.3 Stubs Generation

Our procedure automatically generates stubs towards a full automation of the
testing process. In this step, all stub classes with their respective attributes
and operations are generated from the sequence diagram.

This transformation was automatically generated by the Model-To-Text
(M2T) transformation implemented in Acceleo, a template-based technology
that includes authoring tools for the creation of custom code generators. It
enables the automatic production of any type of source code from any data
source available in EMF format [5]. We have implemented the generateStubs
generator module, whose input is the sequence diagram model created by
the sequence diagram editor implemented in the EMF. The creation of each
element of the stubs is explained as follows:

— Classes: a stub class is created for each LifeLine instance of the sequence
diagram. The class name is the name of the lifeline.

— Attributes: the attributes of the classes are obtained from the parameters
of the message operations with returns other than void. The parameters
are selected in two situations: (1) parameter lifeline name (which indicates
which lifeline inserts parameter argument values - baton pass) equal to
the created class name, or (2) name of the target lifeline of the message
equal to the name of the created class. In these two cases, the attribute
name and its type are obtained, respectively, from the types and argument
names of the message operation of the sequence diagram. Other attributes
are obtained from messages with returns other than void, which are of the
GET type (name beginning with ”get”) and whose target lifeline name is
the same as that of the created class. In this scenario, the name of the
attribute and its type are obtained, respectively, from the return variable
and the return type of the message operation of the sequence diagram.

— Operations: for each attribute created in the class, a GET operation is
created under the same conditions of the creation of the attributes of the
class. The body of the operation will be the return of the attribute defined
in the created class. Other operations are also obtained from messages with
returns other than void, which are of the GET type (name beginning with
"get”), and the destination lifeline name is the same as the created class.
In this scenario, the name of this operation is the same as the message,
the return of the operation is the same type as the return of the message
operation, and the parameters of the operation are the same as those of
the arguments of the message operation. The operation body will be the
return of the message operation return variable. For all messages whose

O©CoO~NOOOITA~AWNPE

20

Mauricio Rocha et al.

target lifeline name is the same as that of the class name, a new operation
is created. The name of this operation is the same as that of the message,
the return of the operation is of the same type as the message operation
and the parameters of the operation are the same as the arguments of the
message operation. If the message operation guard is filled, the operation
body is created with the conditional test of the message operation guard.
If the return of the message operation is a boolean, the conditional test
returns true or false. Otherwise, the return variable will return.

The generator code implemented in Acceleo is available in the Sd2Stubs/src

/Sd2Stubs/main/ folder of the repositoryl.

3.4 Generation of Test Cases

Our procedure uses the ModelJUnit and JUnit libraries for the generation
of test cases, since they are open-source and their uses are simple for Java
programmers. Moreover, ModelJUnit enables the implementation of widely
used formal models (e.g., EFSM) in MBT, and provides a variety of useful test
generation algorithms, model visualization features, model coverage statistics,
and other features [28].

The implementation of an MBT environment in ModelJUnit and Junit

consists of four steps:

1.

The Model: initially, we implemented the FsmModel interface to define
our model in ModelJUnit and defined all possible states of our EFSM in an
enumeration variable (enum State). For each context variable, we defined
a variable in the class, and coded action methods (@Action) for each input
in our model to define the transitions that link the states. We also defined
the getState method in our model that returns the current state and the
reset method that takes the machine to the initial state.

The Adapter: we implemented the Adapter class, which enables our
model to communicate with and control of our stubs. We added a sim-
ilarly named method in the Adapter class for each action method defined
in the model that triggers an event. In our model defined in The Model, we
add the correct adapter method call to each action method. In addition,
in the Adapter class we need to instantiate an object for each class of the
stubs.

Generation of Tests: initially, we must instantiate the model defined in
the first step, and then, we choose the test strategy to be used. ModelJU-
nit offers different strategies, namely GreedyTester, LookaheadTester, and
RandomTester. We used LookaheadTester, since it is a more sophisticated
algorithm and can cover all transitions and states quickly [28]. Lookahead-
Tester is more efficient than the other two strategies mentioned, since it
does not perform random steps like Random Tester and, although it is sim-
ilar to Greedy Tester, it provides more refined options, such as look ahead
depth and several other parameters. Finally, we applied the buildGraph

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 21

method to build the graph and generate the tests. This graph is also used
to calculate coverage metrics for transitions, states, and action.

4. Test Concretization: test cases were implemented in Java, in JUnit li-
brary. Two test cases are generated for all transitions that trigger an event
and actions are performed. One test case for valid values for guard condi-
tion and another for invalid values. The goal is to generate concrete test
cases for all possible paths.

These four steps were automatically generated by Model-To-Text (M2T)
transformation in Acceleo. We implemented the generateClassModel, generate-
ClassAdapter, generateClassTest and generateClassJUnit generators modules,
and their input is the EFSM generated in Step (a) of our procedure.

The code generators implemented in Acceleo are available in the Efsm2-
ModelJUnit/src/Common/ folder of the repositoryl.

3.5 Execution of Test Cases

In this step, using the Eclipse Modeling Framework (EMF), the test cases are
performed from the ClassTest and ClassJUnit classes described in the steps 3
(Generation tests) and 4 (Test Concretization) of the previous section.

In the execution of the abstract test cases, in addition to the test paths,
the ModelJUnit library also generates action, state, and transition coverage
metrics. The following is a brief explanation of these coverage metrics:

— State Coverage: shows the comparison between the number of states
covered by the number of states defined in the model.

— Transition Coverage: shows the comparison between the number of ex-
ecuted transitions by total numbers of transitions defined in the model.

— Action Coverage: shows the comparison between the number of executed
actions by total numbers of actions defined in the model.

In the execution of concrete test cases, the JUnit library generates the
verdicts of the execution of the tests.

4 Case Study

This section describes a case study conducted on real software Teacher Record
Book of the State University of Piaui called Professor Online (sistemas4.uespi.br
/ProfOnline) to evaluate the applicability of our procedure. This system has
the following features:

— User Validation: when the teacher accesses the system, the teacher is
asked for their credentials (id, psw). After validating the credentials, the
teacher can access the other features of the system.

— My Classes: it enables the teacher to choose the class to be updated.
After the choice, all other features are related to this class.

QOO ~NOURAWNE

OO0 UOOUIOOITUORDBIMBREDIMIMDIADIMDIMDRANOWWWWWWWWWWNNNNNNNNNNRPRERPRERPRPRERRRE
APRPWNRPFPOOO~NOUOPRAWNRPFPOOONOUOPRAWNPFRPOOONOUORAWNPFPOOONOOOAWNRPFRPOOONOOOIAWNEE

22 Mauricio Rocha et al.

I ProfessorOniine ” User ” Classes ” Plan ” ClassRecord ” GradeRecord ” Subject |
ks T T T T T T T
T T | | | | |
loop [us¢rOk = false])
i login(id, psw) P validateUser(id, psv) | | | | |
mo] l l I l l
logged() | | | | | |
chooseClass(period, classld) | | | | | |
loop [chdoseClassOk =trus]] gelCIoseP“\anONDemod‘ c\as‘S\d) | ; i ;
k———___ | closePlanOk _y _ _ _ _ _ j | | |
at) | [closePlanOk = false] T T T T T T
requestPlan() | | | | | |
enterPlan(period, classld, contentPlan) ! cléisdid, ! ‘} : : }
¢ p
| closePianok __ | 1 | | |
e e e e e e el e et L S Poseeercne Pozms e o .
[closePlanOk = fruej | | | | | |
enterOption(opt) | | | | | |
1o0p [fopt <> ‘sit]] J J getWorkLd T T N
t t i t t
= AP | ——— U S worboad _ _ _ |___ ____| | E—— j
| o bd, classid) | =I | |
| | _l | |
hoyrs
K o i e I \
at|] [opt="classRecord"and hours < workLoad] | | | | | |
enterClassRecord(period, classid, data, hours, contentClass) insertClassRekord(period, classlb, data, hours, confentClass) ! : }
T T T
S | — — dassRegordOk__ _ _|_ _____ | |
[opt = ‘gradeRecord] | T | r r |
enterGradeRecord(period, classid, studentd, gradet, grade2, grade?) ! | ! | ! !
ord(period| classld, studentid |grade1, grade2, grgde3) |
| td) | |
" ot eloseCiass’ and Rors 2 eriLoad) 77T T T T I TTTmmm o= L /R fremm—— i
enterCloseClass(period, classid) T T — | | |
closedClass() | | | |
+ + t t |
enterOption(opt) | | | | |
t
T e - | | | | |
1 i t ¢ ¢ t
chooseClass(period, classld) 3 validateChooseClags(period, classig)] | | | |
| | | |
chonsec\\assok
****** i | | | |
exit() o T T T 1 T T
logoff() | ! ! } : : }

Fig. 15 ProfessorOnline sequence diagram.

— Program Course: it enables the teacher to complete the Program Course.
All other features are available to the teacher only after the course program
has been closed.

— Lesson Record: it enables the teacher to complete a lesson until the
subject workload is completed.

— Grade Record: it enables the teacher to fill in student grades.

— Class Close: the teacher can close the class only if all information has
been posted. If the class is closed, all other features are unavailable.

The UML sequence diagram in Fig. 15 shows interactions on the Teacher
Record Book system.

4.1 Transformation between Models

Initially, we created the sequence diagram model described in Fig. 15 using the
sequence diagram editor implemented in the EMF. Then, using the transfor-
mation rules implemented in ATL described in Section 3.2, the UML sequence
diagram is converted into an extended finite state machine. At the end of the
execution of the transformation rules we will have an EFSM as shown in Fig.
16. In order to facilitate the understanding of the transitions, we present in

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 23

Fig. 16 ProfessorOnline EFSM.

detailing information of the EFSM transitions in Table 2. This model trans-
formation corresponds to Step (a) of our procedure.

Table3 shows the relationship between the elements of the sequence dia-
gram and the number of states and transitions that are generated in the EFSM
in the case study.

The EFSM model (ProfessorOnline.efsm file) generated is available in the
SD2EFSM/ folder of the repositoryl.

4.2 Stubs Generation

In Step (b), classes (Teacher, ProfessorOnline, User, Class, Plan, ClassRecord,
GradeRecord and Subject) with their respective attributes and operations are
generated automatically from the sequence diagram model described in Fig.
15 by the generator module implemented in Acceleo. Fig. 17 shows an example
of a stub class.

Such source codes generated in Java are available in the Sd2Stubs/Files/
folder of the repositoryl.

O©CoO~NOOOITA~AWNPE

24

Mauricio Rocha et al.

Table 2 Details of EFSM transitions.

Id Name Input Output
T1 S0—S1 login(id, psw)
T2 S1—+S2 validateUser(id, psw) not (userOk = false)
T3 S1—S0 validateUser(id, psw) userOk = false
T4 S2—S3 logged
T5 S3—54 chooseClass(period, classId)
T6 S4—S5 getClosePlanOk(period, classId) closePlanOk = false
T7 S5—S6 requestPlan
T8 S6—S7 enterPlan(period, classld, contentPlan)
T9 S7—S8 insertPlan(period, classId, contentPlan) | closePlanOk
T10 S4—S9 getClosePlanOk(period, classId) closePlanOk = true
T11 | S9—S10 enterOption(opt)
T12 | S10—S11 getWorkLoad (subjectId) workLoad
T13 | S11—S12 getHours(period, classld) opt = “classRecord”
and hours < workLoad
T14 | S12—S13 enterClassRecord(period, classld,
date, hours, contentClass)
T15 | S13—S14 insertClassRecord(period, classld, classRecord Ok
date, hours, contentClass)
T16 | S11—S15 getHours(period, classld) opt = ‘gradeRecord’
T17 | S15—S16 enterGradeRecord(period, classld,
studentld, gradel, grade2,grade3)
T18 | S16—S17 insertGradeRecord(period, classld,
studentld, gradel, grade2,grade3)
T19 | S17—S18 insertedGradeRecord
T20 | S11—S19 getHours(period, classld) opt = “closeClass”
and hours = workLoad
T21 | S19—S20 insertCloseClass(period, classId)
T22 | S20—8S21 updateCloseClass(period, classId)
T23 | S21—S22 closedClass
T24 | S14—S23 enterOption(opt) not (opt <> “exit”)
T25 | S18—S23 enterOption(opt) not (opt <> “exit”)
T26 | S22—S23 enterOption(opt) not (opt <> “exit”)
T27 | S11—S23 enterOption(opt) not (opt <> “exit”)
T28 | S14—S10 enterOption(opt) opt <> “exit”
T29 | S18—S10 enterOption(opt) opt <> “exit”
T30 | S22—S10 enterOption(opt) opt <> “exit”
T31 | S11—S10 enterOption(opt) opt <> “exit”
T32 | S8—S24 chooseClass(period, classId)
T33 | 23—S24 chooseClass(period, classId)
T34 | S24—S25 validateChooseClass(period, classId) not (chooseClassOk = true)
T35 | S24—S4 validateChooseClass(period, classld) chooseClassOk = true
T36 25—S526 exit
T37 26—S27 loggof

4.3 Test Case Generation

In Step (c), test cases are generated from the EFSM extracted in Step (a).
Classes (ProfessorOnlineModel, ProfessorOnlineAdapter, ProfessorOnlineTest
and ProfessorOnlineJUnit) are generated automatically in the generator mod-
ules implemented in Acceleo.

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 25

Table 3 EFSM size of the Case Study.

Sequence Diagram Element | Number of States | Number of Transitions
LifeLine 1 0
start = true
Message 24 24
type = op or type = si
CombinedFragment 3 10
InteractionOperator = alt
CombinedFragment 0 3
InteractionOperator = loop
Total 28 37

ProfessorOnlineModel class is an implementation of the FsmModel inter-
face. An object called adapter instantiated from the ProfessorOnlineAdapter
class, variable enumeration State which represents all states (S0,...,527) of
our EFSM, all EFSM context variables, getState method, reset method, and
@Action annotated methods are defined in this class.

The objects of Teacher, ProfessorOnline, User, Plan, Subject, ClassRecord,
GradeRecord, and Classes type that belong to stubs were instantiated in the
ProfessorOnlineAdapter class, where a method was created for each event
triggered in EFSM transitions. These methods promote the communication of
the model with stubs.

Fig. 17 An example of stub class.

public class User {
private String id = "111";
private String psw = "123";

public String getId() {
return id;

}

public String getPsw() {
return psw;

}

public boolean validateUser(String id, String psw) {
if (this.id.equals(id) && this.psw.equals(psw)){
return true;
}
elsed{
return false;
¥
}
}

O©CoO~NOOOITA~AWNPE

26 Mauricio Rocha et al.

Objects of ProfessorOnlineModel and LookaheadTester type were instan-
tiated in ProfessorOnlineTest. The algorithm was configured for traversing all
transitions and generating a sequence of 70 test steps.

To run the tests we set the attributes of the stub classes to the values
below:

— User: id = “111” and psw = “123”.

— Classes: period = “20192” and classld = “17.

— Plan: period = “20192”, classld = “1”, and closePlanOk = false or close-
PlanOk = true.

— Subject: subjectld = “10” and workLoad = 60.

— ClassRecord: period = “20192”, classld = “1”7, and hours = 30 or hours
= 60.

Our procedure generated test cases to exercise all machine paths, as shown
in Table 4. A test case was generated for each domain. For example, the id
and psw attributes were set to values 111 and 123, respectively. Then, the
procedure generated a test case with id = 111 and psw = 123 values and
another test case with values id = 222 and psw = 246, and both scenarios were
tested. Fig. 18 shows examples of concrete test cases of ProfessorOnlineJUnit
class.

Such Java classes (ProfessorOnlineModel, ProfessorOnlineAdapter, Profes-
sorOnlineTest and ProfessorOnlineJUnit) are available in the Efsm2Model-
JUnit/Files folder of the repositoryl.

Table 4 Test cases generated.

T id psw | period | class close cont. | subj. opt hours | cont.
Id PlanOk | Plan Id Class

1 111 | 123
2 222 | 246
3 111 | 123 20192 1 true
4 111 | 123 20192 2 false
5 111 123 20192 1 false aaa
6 111 | 123 20192 1 false null
7 111 | 123 20192 1 true 10 60
8 111 | 123 20192 1 true 10 30
9 111 123 20192 1 true 10 class 60

Record
10 | 111 | 123 20192 1 true 10 grade 60

Record
11 | 111 123 20192 1 true 10 close 60

Class 60

12 | 111 | 123 20192 1 true 10 exit 60
13 | 111 | 123 20192 1 true 10 class 30

Record aaa
14 | 111 123 20192 2 true 10 class 30

Record null
15 | 111 | 123 20192 1 exit
16 | 111 | 123 20192 2 exit

O©CoO~NOOOITA~AWNPE

16

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs

27

Fig. 18 Examples of test cases concretized in JUnit.

import static org.junit.Assert.*;
import org.junit.Test;

public class ProfessorOnlineJUnit {

QTest
public void testValidateUser01() {
User user = new User();

boolean output = user.validateUser ("111","123");
assertTrue (output) ;

}

QTest

public void testValidateUser02() {
User user = new User();
boolean output = user.validateUser ("222","246");
assertFalse (output);

}

}

4.4 Execution of Test Cases

In this step, using the Eclipse Modeling Framework (EMF), test cases are per-
formed using the ProfessorOnlineTest class and ProfessorOnlineJUnit class.

The algorithm tests all possible actions by running the ProfessorOnlineTest

class. For each test case, action, state, and transition coverage metrics are
generated (see Table 5). The action coverage metric corresponds to the number
of actions that were performed. Since the algorithm used tests all possibilities,

Table 5 Generated coverage metrics.

T Action Coverage | State Coverage | Transition Coverage
1 22/22 4728 3/37
2 22/22 2/28 2/37
3 22/22 6/28 5/37
4 22/22 7/28 6/37
5 22/22 9/28 8/37
6 22/22 9/28 8/37
7 22/22 8/28 7/37
8 22/22 8/28 7/37
9 22/22 9/28 8/37
10 22/22 9/28 8/37
11 22/22 9/28 8/37
12 22/22 14/28 13/37
13 22/22 11/28 10/37
14 22/22 11/28 10/37
15 22/22 11/28 10/37
16 22/22 13/28 12/37
Total 22/22 28/28 37/37

O©CoO~NOOOITA~AWNPE

28 Mauricio Rocha et al.

the action coverage is equal to the number of @Action annotated methods.
The state coverage metric corresponds to the number of states visited, and
the transition coverage metric indicates the number of triggered transitions.
In addition, it is important to note that the execution of all generated test
cases in Table 5 provides the combined coverage of all EFSM actions, states,
and transitions.

The execution of ProfessorOnlineJUnit yielded the expected results for
each subset of the input domain and no fault was found. In order to make
this execution feasible, we implemented a web server with the system’s fea-
tures, adapted the stubs to connect to the server and run the tests on this
implementation.

To execute the test cases, we created a project in the MODELJUNIT folder
of the repositoryl.

5 Related Works

In this section, we will compare our approach taking into consideration four
aspects: used UML diagrams, MDE concepts, use of formal models and con-
cretization of test cases in some programming language.

Applying a model-based testing (MBT) approach, Cartaxo et al. [3] gener-
ated test cases from Labeled Transition Systems(LTS) models translated from
UML sequence diagrams. Although it is similar to our proposal, i.e., it employs
a formal model extracted from the sequence diagram to generate test cases,
it neither uses the resources of the MDE for the transformation between the
models, nor has tool support; and also does not materialize the test cases in a
programming language.

The authors in [2] proposed using overlapping information inherent to mul-
tiple views of UML models for automatic testing. The proposal considers a
subset of the UML State Machine and sequence diagrams modeling only for-
bidden scenarios using only neg fragment in the sequence diagram. The SPIN
2 model checker checked whether a set of state machines fulfilled a safety prop-
erty described as neg fragment of a sequence diagram. The proposal uses UML
models to detect errors, however it differs from our method since it does not
use model-driven transformation, uses only the neg fragment in the sequence
diagram, and does not concretize test cases in a programming language.

The authors in [16] described a systematic test case generation method
performed on model-based testing (MBT) approaches using UML sequence
diagram. The UML sequence diagram is converted into a graph sequence and
the graph is traversed for selecting predicate functions. Then, the predicates
are transformed into an extended finite state machine (EFSM), from which test
cases are generated according to state coverage, transition coverage and action
coverage. The technique is similar to ours, however it is not automatically
generated from the sequence diagram, and does not use some of its important

2 SPIN as a general tool for verifying the correctness of distributed software models in a
rigorous and mostly automated fashion.

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 29

constructions (e.g., combined fragment). Test cases are concretized in the Java
programming language.

The approach introduced in [27] generates test cases using UML activity
and sequence diagrams. It consists of transforming the sequence diagram into
a graph called Sequence Graph, and transforming the activity diagram into
an Activity Graph. The software graph is formed integrating the two graphs
traversed to generate the test suite. The proposal uses UML models for gen-
erating tests, but differs from ours, since it uses neither MDE concepts, nor
formal models for test generation, and does not concretize test cases in a pro-
gramming language.

Muthusamy et al. [13] designed an approach that generates test cases us-
ing UML sequence diagrams. It transforms sequence diagram into a sequence
diagram graph (SDG) and generates test cases from this SDG. The sequence
diagram is built in Object Constraint Language (OCL) and SDG defines ac-
tivities as nodes and interactions as paths. The test cases are generated by
visiting the nodes and edges in the SDG. This proposal uses UML models
to generate tests, but differs from ours since it does not use MDE concepts
or formal models, and test cases are not implemented in any programming
language.

Seo et al. [23] developed a method that generates test cases from sequence
diagrams. This method suggests generating test cases after conducting an in-
termediate transformation from a sequence diagram to an Activity Diagram.
The proposal is similar to ours, since it uses model transformation, however
it does not use a formal model for generating test cases. Moreover, we can
not identify in the work if the transformation of models is carried out using
MDE concepts, because it does not describe the manipulated metamodels in
the process. The approach does not concretize test cases in a programming
language.

Table 6 shows how our approach and related works are related to the four
aspects considered in the comparison, i.e., use of other UML diagrams, tool
support, use of formal models, and concretization of test cases in a program-
ming language.

Table 6 Comparison with related works.

Article | Other Diagrams | MDE Concepts | Formal Model | Concretization
Test Case
3] No No Yes No
2] Yes No No No
[16] No No Yes Yes
[27] Yes No No No
[13] Yes No No No
[23] Yes Yes No No
Our No Yes Yes Yes

O©CoO~NOOOITA~AWNPE

30 Mauricio Rocha et al.

6 Conclusions and Future Work

This paper has presented a systematic procedure for the generation of test
cases from UML sequence diagrams, which uses concepts of model-driven en-
gineering to formalize UML sequence diagrams into EFSMs, and ModelJUnit
and JUnit libraries for the automatic generation of test cases.

One of the strengths of our approach is the automatic model transforma-
tion. As we have developed a prototype to support our method, this task can
be facilitated by the use of MDE concepts. Another advantage is the formu-
lation of a UML model into formal model, since UML has semantic problems
and formal models provide a set of techniques based on precise notation that
can accurately translate the behavior of a system. Since our main objective is
to generate tests, our approach uses JUnit library to concretize the test cases
in Java programming language. On the other hand, a limitation identified is
the use of only one UML diagram.

In Step (a), for the transformation of UML sequence diagram to EFSM, we
perform the mapping of the elements of the respective metamodels through
transformation rules. By doing this, we can provide a precise semantics to a
widely used UML model.

In Step (b), the source code of the stubs is generated from the sequence
diagram. This makes it easier for the tester to work since no line of code is
required.

In Step (c) of the procedure, the formal model can be used as a basis
for automating the testing process, making it more efficient and effective. We
used the ModelJUnit library to provide an interface to implement a formal
test model, an adapter that communicates our model with the stubs and some
test strategies already implemented. In addition, at Step (d) the execution of
the tests is measured by coverage of states, actions, and transitions. We use
the JUnit library to perform tests in the Java programming language.

From the case study, we can observe the applicability of our procedure,
mainly in the generation of functional tests, since the approach starts with
UML sequence diagrams that are important tools to model software scenarios
and we end with test cases materialized in the Java programming language.
Tests were performed and metrics were generated to analyze the behavior of
stubs according to the test model created. Importantly, the case study was per-
formed in real software. The sequence diagram used has complex constructions
with combined fragments nested at various depths.

As future work, new transformation rules that involve other interaction
operators of the sequence diagram defined by OMG and other UML diagrams
can be incorporated into the systematic procedure of generating tests and
applying to controlled experiments. Moreover, the generated EFSM can be
used for formal verifications, such as checking safety, liveness, and fairness
properties.

O©CoO~NOOOITA~AWNPE

Model-Based Test Case Generation from UML Sequence Diagrams using EFSMs 31

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Bézivin, J., Jouault, F., Touzet, D.: An introduction to the atlas model management

architecture (2005)

. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl, M.,

Wimmer, M.: Towards scenario-based testing of UML diagrams. In: A.D. Brucker,
J. Julliand (eds.) Tests and Proofs, pp. 149-155. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

. Cartaxo, E.G., Neto, F.G.O., Machado, P.D.L.: Test case generation by means of

uml sequence diagrams and labeled transition systems. In: 2007 IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pp. 1292-1297 (2007). DOI
10.1109/ICSMC.2007.4414060

Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches.
IBM Systems Journal 45(3), 621-645 (2006)

EMF, E.M.F.: Acceleo (2018). URL https://www.eclipse.org/acceleo/

Favre, J.M.: Towards a basic theory to model model driven engineering. In: 3rd Work-
shop in Software Model Engineering, WiSME, pp. 262-271. Citeseer (2004)
Fondement, F., Muller, P.A., Thiry, L., Wittmann, B., Forestier, G.: Big metamodels
are evil. In: A. Moreira, B. Schétz, J. Gray, A. Vallecillo, P. Clarke (eds.) Model-Driven
Engineering Languages and Systems, pp. 138-153. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

Grgnmo, R., Mgller-Pedersen, B.: From sequence diagrams to state machines by graph
transformation. In: L. Tratt, M. Gogolla (eds.) Theory and Practice of Model Trans-
formations, pp. 93-107. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J.,

Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Liittgen, G., Simons, A.J.H.,
Vilkomir, S., Woodward, M.R., Zedan, H.: Using formal specifications to support test-
ing. ACM Comput. Surv. 41(2), 9:1-9:76 (2009). DOI 10.1145/1459352.1459354. URL
http://doi.acm.org/10.1145/1459352.1459354

Kent, S.: Model driven engineering. In: International Conference on Integrated Formal
Methods, pp. 286-298. Springer (2002)

Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: A survey.
Software & Systems Modeling 10(4), 489-514 (2010). DOI 10.1007/s10270-010-0157-9.
URL https://doi.org/10.1007/510270-010-0157-9

ModelJUnit: The model-based testing tool. (2010). URL https://sourceforge.net/
projects/modeljunit/

Muthusamy, M., Badurudeen, G.: A new approach to derive test cases from sequence
diagram. Journal of Information Technology & Software Engineering 04 (2014). DOI
10.4172/2165-7866.1000128

OMG, O.M.G.: Unified modeling language 2.5 (2015). URL http://www.omg.org/spec/
UML/2.5/

OMG, O.M.G.: MOF - meta object facility (2016). URL http://www.omg.org/spec/
MOF/

Panthi, V., Mohapatra, D.P.: Automatic test case generation using sequence diagram.
In: A. Kumar M., S. R., T.V.S. Kumar (eds.) Proceedings of International Conference
on Advances in Computing, pp. 277-284. Springer India, New Delhi (2012)

Petre, M.: UML in practice. In: Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pp. 722-731. IEEE Press, Piscataway, NJ, USA (2013).
URL http://dl.acm.org/citation.cfm?id=2486788.2486883

Pressman, R.S.: Engenharia de Software, 6 edition edn. Mcgraw-Hill Interamericana,
Rio de Janeiro (2006)

Rocha, M., Simao, A., Sousa, T., Batista, M.: Test case generation by EFSM extracted
from UML sequence diagrams. In: The 31 International Conference on Software Engi-
neering & Knowledge Engineering, pp. 135-140 (2019). DOI 10.18293/SEKE2019-133
Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: Automatic definition of model transfor-
mations at the instance level. pp. 80-81 (2008)

Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer 39(2),
25-31 (2006). DOI 10.1109/MC.2006.58. URL http://dx.doi.org/10.1109/MC.2006.
58

O©CoO~NOOOITA~AWNPE

32

Mauricio Rocha et al.

22.

23.

24.

25.
26.
27.

28.

29.

30.

Sen, S., Moha, N., Baudry, B., Jézéquel, J.M.: Meta-model pruning. In: A. Schiirr,
B. Selic (eds.) Model Driven Engineering Languages and Systems, pp. 32-46. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

Seo, Y., Cheon, E.Y., Kim, J.A., Kim, H.S.: Techniques to generate utp-based test
cases from sequence diagrams using m2m (model-to-model) transformation. In: 2016
IEEE/ACIS 15th International Conference on Computer and Information Science
(ICIS), pp. 1-6 (2016). DOI 10.1109/1CIS.2016.7550832

Simao, A.S.: Teste baseados em modelos. In: M.E. Delamaro, J.C. Maldonado, M. Jino
(eds.) Introducao ao Teste de Software, chap. 3, pp. 39-57. Elsevier Editora Ltd (2016)
Sommerville, I.: Engenharia de Software. Pearson Brasil (2007)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Frame-
work 2.0, 2nd edn. Addison-Wesley Professional (2009)

Tripathy, A., Mitra, A.: Test case generation using activity diagram and sequence di-
agram. In: A. Kumar M., S. R., T.V.S. Kumar (eds.) Proceedings of International
Conference on Advances in Computing, pp. 121-129. Springer India, New Delhi (2013)
Utting, M.: How to design extended finite state machine test models in java. In: J. Zan-
der, 1. Schieferdecker, P.J. Mosterman (eds.) Model-Based Testing for Embedded Sys-
tems, pp. 147-170. CRC Press/Taylor and Francis Group, Boca Raton, FL (2012). URL
https://eprints.qut.edu.au/56821/

Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches.
Softw. Test. Verif. Reliab. 22(5), 297-312 (2012). DOI 10.1002/stvr.456. URL http:
//dx.doi.org/10.1002/stvr.456

Yang, R., Chen, Z., Zhang, Z., Xu, B.: Efsm-based test case generation: Sequence, data,
and oracle. International Journal of Software Engineering and Knowledge Engineering
25(04), 633-667 (2015). DOI 10.1142/S0218194015300018

Author Biographies

Mauricio Rocha is Assistant Professor at the Technology and Urbanim Center
of the State University of Piaui (UESPI), Teresina, Brazil. He received the B.Sc.
degree in Computer Science from the State University of Piaui (UESPI),
Teresina, Brazil, in 2002, and the M.Sc. degree in Electrical Engineering from the
Mackenzie Presbiterian University, Sdo Paulo, Brazil, in 2008. He is Ph.D.
student in computer science from the University of Sdo Paulo (USP), S&o Carlos,
Brazil. His research interests include model-driven engineering (MDE), software
testing and formal models.

Adenilso Simao received the B.Sc. degree in computer science from the State
University of Maringa (UEM), Brazil, in 1998, and the M.Sc. and Ph.D. degrees
in computer science from the University of Sdo Paulo (USP), Séo Carlos, Brazil,
in 2000 and 2004, respectively. Since 2004, he has been a professor of computer
science at the Computer System Department of USP. From August 2008 to July
2010, he has been on a sabbatical leave at Centre de Recherche Informatique
de Montreal (CRIM), Canada. He has received best paper awards in several
important conferences. He has also received distinguishing teacher awards in
many occasions. His research interests include software testing and formal
methods.

Thiago Sousa is Assistant Professor at the Technology and Urbanism Center of
the State University of Piaui (UESPI), Teresina, Brazil. He received the B.Sc. and
the M.Sc. degrees in Computer Science from the University of Sdo Paulo, Sao
Paulo, Brazil, in 2002 and 2007, respectively, and the Ph.D. degree in Electrical
Engineering from the University of Sdo Paulo, Sao Paulo, Brazil, in 2013, with a
doctoral training at the University of Southampton, England, in 2011. He has
experience in formal methods and model checking.

Author Photographs

Mauricio Rocha

/“ S Dl bl

Adenilso Simao

Thiago Sousa

