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Abstract. Nowadays, huge amount of data are being produced by a
large and diverse family of sensors (e.g., remote sensors, biochemical
sensors, wearable devices). These sensors typically measure multiple vari-
ables over time, resulting in data streams that can be profitably organized
as multivariate time-series. In practical scenarios, the speed at which
such information is collected often makes the data labeling a difficult
task. This results in a low-data regime scenario where only a small set of
labeled samples is available and standard supervised learning algorithms
cannot be employed.

To cope with the task of multi-variate time series classification in low-
data regime scenarios, here, we propose a framework that combines con-
volutional neural networks (CNNs) with self-training (pseudo labeling) in
a transductive setting (test data are already available at training time).
Our framework, named ResNet!PL wraps a CNN based classifier into an
iterative procedure that, at each step, enlarges the training set with new
samples and their associated pseudo labels. An experimental evaluation
on several benchmarks, coming from different domains, has demonstrated
the value of the proposed approach and, more generally, the ability of the
deep learning approaches to effectively deal with scenarios characterized
by low-data regimes.

1 Introduction

A vast amount of information is generated by a widespread and diverse family
of sensors like remote sensors, biochemical sensors and wearable devices. They
typically measure multiple variables over time, resulting in data streams that can
be profitably organized as multivariate time-series. Due to the ubiquitous nature
of multivariate time-series, conceiving classification methods especially tailored
for such kind of data is crucial [16]. In a more realistic but challenging scenario,
only a limited set of samples, among the available data, is associated with label
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information resulting in a low-data regime scenario that requires effective semi-
supervised learning methods [2].

Regarding the semi-supervised classification of time series data, [9] introduces
an approach that firstly uses hierarchical clustering to group labeled and unla-
beled data, then propagates label information inside each cluster and, finally,
employs a one nearest neighbors (1NN) classifier with dynamic time warping
(DTW) to perform classification. A similar approach is proposed in [5] where
clustering and a 1NN classifier are combined to perform classification of uni-
variate time series when only a few labeled data are available. [19] recently
introduces a multivariate time series classification based on neural attentional
prototype network to train the feature representation based on their distance to
class prototypes considering low-data regimes. The proposed deep learning based
method works considering both fully supervised and semi-supervised settings.

Another family of semi-supervised methods for time series classification is
based on self-training (or self-labeling) approaches, whose goal is to enlarge the
original labeled set selecting the unlabeled samples with the most confident pre-
dictions [14]. In conjunction with the self-training framework, the INN classifier
is typically used as the base learner, as it has been effective for time series clas-
sification tasks [2].

Recently, [2] evaluated several machine learning based approaches to deal
with the semi-supervised classification of univariate time series. The approach
proposed by the authors is to couple standard classifiers with pseudo labeling and
self-training strategies. The results underline that, among all considered classi-
fiers, INN still exhibits superior performance as base learner. Unfortunately, the
study is limited to univariate time series while multivariate time-series are be-
coming more and more predominant nowadays. Additionally, it totally ignores
the recent advent of deep learning (DL) approaches in the time series commu-
nity [4, 19]. Indeed, despite the recent findings reported in [4] where a DL strategy
(residual-based convolutional neural networks) exhibits superior performance in
standard fully supervised classification tasks, no discussion is reported about the
appropriateness of such approaches when only few labeled time-series data are
available to learn a classification model. This fact indicates that, considering the
classification of time series data in a low-data regime scenario, the use of deep
learning approaches is still an under explored field of research.

We propose, here, a framework that combines deep learning with pseudo la-
beling in a transductive setting, i.e., when test data are already available during
model training. Our approach is motivated by the lack of studies that explore the
application of deep learning to low-data regime scenarios, with a particular em-
phasis on multivariate time series classification tasks. The proposed framework,
referred to as ResNet!PL (ResNet with Incremental Pseudo Labeling), wraps
the deep learning based classifier into an iterative procedure that, at each step,
enlarges the training set with new samples and their associated pseudo labels.
The sample selection stage leverages the classifier prediction on unlabeled data
and chooses those samples that minimize the relative entropy associated to the
model output distribution. To assess the performance of the proposed frame-



work as well as its generality, we conduct an extensive experimental evaluation
on several multivariate time-series benchmarks coming from different domains.

The rest of the manuscript is organized as follows: the ResNet! Pl framework
is introduced in Section 2, experimental settings as well as experimental evalu-
ation are described in Section 3 while Section 4 draws conclusions and possible
follow-ups.

2 Methodology

In this section, we describe our proposed incremental pseudo labeling procedure
for the classification of multi-variate time series data considering a low-data
regime scenario.

The general procedure is depicted in Algorithm 1. Due to the fact that we
are considering a transductive scenario, test samples are available at training
time. The procedure takes as input the set of training samples (X4, ) with the
associated labels (Yi,qin), the test samples X4, the number of iterations of the
incremental procedure (T'), and the number of samples per class added at each
iteration to the training set (k). The output of the procedure is a multi-variate
time series classification model that is trained with both original and pseudo
labeled samples. At the beginning, the classification model (Classifier) is ini-
tialized and then trained on the original labeled samples Xyyqin, Yirain (Line
1-2). Then, the incremental process starts (Line 4-13). At each iteration, the
classification model is applied on the current test data (Xyest) and the class dis-
tribution for each test sample (derived by the softmax layer of the classification
model) is obtained (Line 5). The class distribution, the unlabeled data Xis: and
the k parameter are employed by the sample selection procedure. This procedure
extracts, for each class, k reliable examples according to the class distribution
previously outputted by the classification model. The set of selected samples and
their associated pseudo labels are referred to as X, and pseudol Label, respec-
tively (Line 6). Successively, the training and testing sets are updated according
to the results of the sample selection procedure (Line 7-9). Finally, the classifi-
cation model is initialized again and trained on the new set of training samples
that combines both original and pseudo label information (Line 10-11).

Regarding the general procedure depicted in Algorithm 1, two points must
be defined in order to deploy such strategy: firstly, the choice of the classification
model and, secondly, the implementation of the sample selection procedure.

Concerning the classification model, we base our choice on the findings re-
ported in a recent literature survey [4]. Among several deep learning architec-
tures for time series classification, the Residual Network ResNet model proposed
in [17] exhibits superior behavior. Due to this fact, we choose such architecture
as classification model in our study. The network is composed of three residual
blocks followed by a GAP (Global Average Pooling) layer and a final softmax
classifier whose number of neurons is equal to the number of classes in a dataset.
Each residual block is first composed of three convolutions whose output is added
to the residual block’s input and then fed to the next layer. The number of fil-



Algorithm 1 Incremental Pseudo Labeling procedure

Require: Xtrain, Yirain, Xtest, T k.

Ensure: Classifier.

1: Classifier < initModel()

2: Classifier < TrainModel(Classifier, X¢rain, Yirain)
3:i+0

4: whilei < T do

5: classDistrib < Classify(classifier, Xiest)

6: Xset, pseudoLabel «— SampleSelection(Xyes¢, classDistrib, k)
7 Xirain < Xtrain U Xsel

8 Yirain < Yirain U pseudoLabel

9: Xiest + Xtest — Xsel

10: Classifier < initModel()

11: Classifier < TrainModel(Classifier, X¢rain, Yerain)
12: i+ i+1

13: end while

14: return Classifier

ters for all convolutions is fixed to 64, with the ReLU activation function that is
preceded by a batch normalization operation. In each residual block, the filter’s
length is set to 8, 5 and 3 respectively for the first, second and third convolution.

The second point involves the definition of a sample selection strategy. Such
a strategy is mainly based on the analysis of the class distribution output by
the classification model. More in detail, for each sample x; we exploit the class
distribution pd(z;). pd(z;) is the probability distribution over all possible classes
that corresponds to the softmax output of the classification model regarding the
sample x;. Our strategy selects unlabeled samples on which the classifier has the
highest confidence. To this purpose, we consider as surrogate of the confidence
measure the entropy over the classifier output probability distribution. The en-
tropy measure has already demonstrated its quality in pseudo labeling strategies
to select valuable samples in the context of image analysis and semantic segmen-
tation [10].

In our case, we adopt a normalized version of the entropy measure defined

as follows:
> eec Pde(we) x log(pde(z+))

Hiw) = - log(IC) .

where C is the set of possible classes and pd.(x;) is the probability of sample
x¢ to belong to class ¢ € C. Samples with low entropy values correspond to
time series on which the classifier has high confidence in its prediction. The
SampleSelection() procedure is summarized in Algorithm 2.

The procedure takes as input the set of test samples (Xiest), the class dis-
tribution obtained by the classification model ClassDistrib and the parameter
k corresponding to the number of per-class samples to select. The output of the
procedure is the set of the selected samples (X¢;) with their associated pseudo
labels (pseudol Label).

We can note that the set of selected samples (X,.;) with the associated
pseudo labels (pseudoLabel) is obtained class by class (Line 3-8). For each class
c € C, we select the samples that the classifier judges to belong to that class
(Line 4). Successively, the selected samples (X.) are ranked in ascending order



w.r.t. the entropy measure defined in Equation 1. Finally, the top K samples
(K = {z; | ; € X.,1 < i < k}) are added to the final set along with their
corresponding pseudo labels. [c]* indicates a vector where the class value c is
repeated k times.

Algorithm 2 SampleSelection(X;es:, ClassDistrib, k)

Require: Xi.s¢, ClassDistrib, k.

Ensure: X,.;, pseudoLabel.

1: Xee1 <0

2: pseudoLabel + (

3: for all c € C do

Xc + {z|z € Xtest, [argmax ClassDistrib, (z)] = c}
vel

rank X. in ascending order considering the entropy measure defined in Equation 1

K+ {z;|z; € Xc,1 <i<k}

Xsel +— Xset UK

pseudoLabel <+ pseudoLabel U [c]*

9: end for

10: return X..;, pseudoLabel

3 Experimental Evaluation

In this section we assess the behavior of our framework considering five real world
multivariate time series benchmarks. To evaluate the performance of our pro-
posal, we compare ResNet! "L with several competing and baseline approaches.

3.1 Competitors and method ablations
For the comparative study, we consider the following competitors:

— A one nearest neighbors classifier (INN) coupled with the DTW measure [3].
INN is a well recognized and widely adopted classifier in the time series
classification domain [7,2]. We name such competitor 1IN Npryy .

— A graph-based semi-supervised learning approach since we are considering
a transductive scenario. Among the different available methods, we adopted
the CAMLP (Confidence-Aware Modulated Label Propagation) approach [18]
as a representative one. Since CAMLP requires the construction of a K-
nearest-neighbors graph to perform its propagation process, we chose to set
K equals to 20, according to the study proposed in [11], and construct the
K-nearest-neighbors graph leveraging, also in this case, the DTW similarity
measure. We name this competitor as GBSSLprw .

— The ResNet approach proposed in [4] without the incremental pseudo la-
beling strategy. This competitor can be seen as an ablation of the proposed
framework. We name this baseline as ResNet.

— The recent TapNet approach [19] which introduces a multivariate time series
classification with attentional prototypical deep neural network. Due to the
transductive setting considered in our work, we adopt the semi-supervised
version that exploits unlabelled data during training.



For the ResNet 3 and TapNet models 4, we use their available implementa-
tions.

Furthermore, we couple 1N Npprw and GBSSLpry with the proposed in-
cremental pseudo labeling strategy. These additional competitors are referred to
as 1NN,§1;%V and GBSSLEPTLW, respectively.

ResNet is implemented via the Tensorflow 2 python library ® while the im-
plementation of the remain competitors is based on TSLEAN [13] and SCIKIT-
learn [1] python libraries.

3.2 Data and Experimental Settings

The evaluation has been carried out by performing experiments on five bench-
marks coming from disparate application domains and characterized by con-
trasted features in terms of number of samples, number of attributes (dimen-
sions) and time length. All benchmarks, except Dordogne — which was obtained
contacting the authors of [6], are available online.

Table 1: Benchmarks Characteristics

Dataset |# Samples|# Dims|Min/Max| Avg. |# Classes
Length |Length
Dordogne 9919 6 23/23 23 7
GTZAN 600 33 128/128 128 6
HAR 10299 9 128/128 128 6
JapVowel 640 12 7/29 15 9
SpeechCom| 23682 40 14/32 31 10

The characteristics of the five benchmarks are reported in Table 1. For
each benchmark, we consider different amount of per-class labeled samples. The
amount of per-class labeled samples ranges in the set {10,15,20,25}. This means
that, for instance, considering the value 10, ten samples per class are randomly
chosen and used to compose the initial training set, and the rest of them is con-
sidered as the test set. For all the methods that involve the incremental pseudo
labeling procedure, 10 samples per class are moved, at each round (according
to the strategy specified in Section 2) from the test set to the training set and
associated to the pseudo labels estimated by the specific learning algorithm.
Classification performances are assessed by F-Measure metric [12] considering
the original test set. F-Measure is chosen as metric due to its ability to take into
account possible class imbalance scenarios.

The obtained results are averaged over five different runs for each given
method and benchmark, due to the non deterministic nature of the sample se-
lection. Finally, the average value is reported.

3 https://github.com/hfawaz/dl-4-tsc
4 https://github.com/xuczhang/tapnet
5 Code will be available upon acceptance



3.3 Quantitative results

Tables 2, 3, 4, 5, 6 depict the performance results, in terms of F-Measure (aver-
age and standard deviation), of the different competing approaches varying the
amount of available label data. We can observe that ResNet always outperforms
the competing approaches (INN and GBSSL) considering all the five bench-
marks as well as all the training size. Regarding non deep learning approaches
(INN and GBSSL), we can note that no approach systematically outperforms
the other. Despite GBSSL is not largely adopted by the time series classification
community, it exhibits comparable behavior w.r.t. the commonly adopted 1NN
method. In addition, coupling such competitors with the incremental pseudo
labeling framework always ameliorate the method performances no matter the
training size. Regarding the 1NN approach behavior, this is in line with the
experimental findings reported in [2] for univariate time series.

Table 2: F-Measure results over the Dordogne benchmark varying the amount
of labelled examples per class. We report average and standard deviation. Bold
and underlined text indicate best and second-best results, respectively.
10 15 20 25

INNprw

14.25 £ 1.58

14.99 £ 3.18

16.49 £ 2.43

16.05 £ 1.67

GBSSLprw

60.03 + 1.58

61.82 £+ 2.20

63.00 + 2.30

64.24 £+ 1.40

INNLGE,

58.32 £ 2.07

60.81 + 2.61

61.02 + 1.76

61.71 £+ 1.54

GBSSLITL,

62.57 + 2.50

63.71 + 2.99

64.53 + 2.46

65.24 £ 1.91

TapNet

60.97 £ 1.97

63.78 £ 2.52

65.33 £ 2.17

67.20 £ 1.17

ResNet

64.70 £+ 2.46

66.47 + 2.65

68.94 £ 1.99

70.35 £+ 1.46

ResNet'TE

63.15 £ 2.31

67.11 £ 2.78

68.69 £ 2.64

70.02 £+ 1.35

Table 3: F-Measure results over the GTZAN benchmark varying the amount of
labelled examples per class. We report average and standard deviation. Bold and
underlined text indicate best and second-best results, respectively.

10 15 20 25
INNprw |16.59 £ 2.09]17.02 + 1.66|15.47 &+ 2.09|16.26 &+ 1.59
GBSSLprw|47.77 £ 1.11[49.84 + 2.26 [50.48 + 2.32[51.96 + 1.72
INNF 162.86 +2.24(65.33 £ 2.10[67.23 & 3.05]68.05 & 2.68
GBSSLI%,163.58 £ 1.81[65.74 + 2.15(67.05 + 0.55]69.30 &+ 1.24
TapNet |44.98 + 1.08[45.83 &+ 1.75[47.85 & 1.09 [48.40 £ 1.59
ResNet |64.90 + 1.48[69.18 + 3.06 | 71.59 + 3.72|72.90 + 2.74
ResNet'T |67.25 + 1.98/72.83 + 1.63|74.18 + 0.96/76.65 + 2.20

Regarding the proposed framework, we observe that incremental pseudo la-
beling achieves better performances than its counterpart without pseudo labeling




Table 4: F-Measure results over the HAR varying the amount of labelled exam-
ples per class. We report average and standard deviation. Bold and underlined
text indicate best and second-best results, respectively.
10 15 20

25

INNprw

16.82 £ 2.29

16.92 £ 3.11

15.59 £ 2.40

17.25 £ 3.16

GBSSLprw

60.29 £+ 4.01

65.43 + 3.64

69.13 + 1.98

70.48 £ 1.44

INNLGE,

78.90 £+ 2.12

81.34 £+ 2.11

83.07 £ 1.79

84.45 £+ 1.39

GBSSLD

60.61 + 3.86

65.94 + 3.10

69.67 + 1.61

70.93 £+ 0.96

TapNet

65.41 + 2.24

67.49 £ 2.15

69.53 £ 1.93

70.41 £ 1.78

ResNet

87.87 £ 2.71

89.66 + 2.51

90.96 £+ 0.71

90.26 £+ 0.90

ResNet'TE

88.28 £ 2.13

90.15 £ 1.23

89.10 £ 2.64

88.98 £ 2.14

Table 5: F-Measure results over the JapVowel benchmark varying the amount
of labelled examples per class. We report average and standard deviation. Bold
and underlined text indicate best and second-best results, respectively.

10

15

20

25

INNprw

6.88 £ 1.57

8.68 £ 3.37

7.73 £ 1.65

7.60 £ 2.65

GBSSLprw

88.07 + 1.14

89.14 + 0.58

89.92 + 0.78

89.90 + 0.62

INNLDE,

92.01 £ 0.78

92.65 + 0.78

93.14 + 0.89

93.76 + 0.69

GBSSLDw

90.39 £ 0.87

91.08 &+ 0.84

92.04 + 0.51

93.15 + 0.90

TapNet

76.88 £+ 1.89

82.49 £+ 1.64

84.83 + 1.63

86.89 + 1.29

ResNet

94.08 + 0.46

96.28 + 0.85

97.52 £ 0.26

97.33 £ 1.18

ResNet'TF

97.25 £ 0.61

97.40 £ 0.60

98.03 £ 0.49

98.23 £ 0.61

Table 6: F-Measure results over the SpeechCommand benchmark varying the
amount of labelled examples per class. We report average and standard deviation.
Bold and underlined text indicate best and second-best results, respectively.

10 15 20 25

INNprw | 827 £0.79 [ 8.67 + 0.83 | 9.02 & 0.70 | 9.54 + 0.85
GBSSLprw|11.82 &+ 0.38]12.81 £ 0.35[13.54 & 0.32]14.00 £ 0.29
INNF 128.85 £ 0.93]29.81 + 1.25[29.73 + 0.54[30.30 & 0.57
GBSSLTF,114.42 + 0.54]14.95 £ 0.30 [ 15.39 + 0.36 | 15.62 & 0.31
TapNet |12.86 &= 0.62[13.52 + 0.73[13.70 & 0.46 | 14.28 £ 0.40
ResNet [46.29 + 3.66 [58.51 & 3.05|67.96 + 1.4273.59 &+ 0.57
ResNet'™T [59.29 + 4.42]69.36 + 1.46[74.91 + 1.52(78.37 & 0.67

on three benchmarks (GTZAN, JapWovel and SpeechCom) while on the rest
of the datasets (Dordogne and HAR) the behaviours are comparable. In ad-
dition, we can observe that ResNet!F systematically outperforms the recent
TapNet approach over all the considered benchmark no matter the amount of
labelled samples we consider as initial training set.

Interestingly, we can note that ResNet and ResNe always take ad-
vantage when the quantity of labeled samples increases compared to all the
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other competing approaches. This phenomena is clearly evident considering the
SpeechCom benchmark (Table 6). Here, we can see that ResNet and ResNet!PL
generally ameliorate their behavior when more labeled samples are available.
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Fig. 1: Sensitivity analysis of ResNet!Tlw.r.t. the T parameter, varying the
amount of available training data, on the considered benchmarks: (a) Dordogne
(b) GTZAN (c) HAR (d) JapVowel and (e) SpeechCom.



Figure 1 reports the sensitivity analysis of ResNet!F'L regarding the T pa-
rameter (the number of iterations of the incremental pseudo labeling process).
More in detail, we vary the T parameter in the interval [0, 6], where T" = 0 cor-
responds to the behaviour of ResNet. Consistently with the results reported in
Tables 2, 3, 4, 5, 6, we can observe two different types of behaviors. Regarding
GTZAN, JapWovel and SpeechCom (resp. Figure 1b, Figure 1d and Figure 1e),
we can note that increasing the number of iterations (T") results, in general, in
higher value of F-Measure. This is particularly evident for small training data
(with a number of labeled samples per class equal or lesser than 15). A different
behavior is exhibited by the Dordogne and H AR datasets where the parameter
T of the incremental pseudo labeling procedure does not really influence the
obtained performances in terms of F-Measure.

To sum up the obtained findings, we highlight that, also when extreme low-
data regime scenarios are considered, deep learning approaches still exhibit high
performances for the classification of multi-variate varying-length time series
when compared to standard methods; and, the incremental pseudo labeling strat-
egy clearly ameliorates the results, in terms of F-Measure, considering three
benchmarks over five, while on the remaining test cases the performance are
comparable w.r.t. the ablation variant that does not involve pseudo labeling.

3.4 Visual Inspection

Figure 2 depicts the visualization of the embeddings obtained considering the
model trained on the original training set (Figure 2a) and, successively, by
ResNet!PL for the values 2, 4 and 6 (Figure 2b, Figure 2c, and Figure 2d, re-
spectively) of the T parameter (the number of iterations in the iterative pseudo
labeling process) for the Jap Wovel benchmark.

The original training set involves 10 labeled samples per class. The embed-
dings are obtained considering the output of the last convolutional layer. We
visualize 30 samples per class coming from the test data by means of the two
dimensional projection supplied by the T-SNE method [8]. We underline that
the same set of test samples is considered over the four different cases. Each
colour represents a different class.

We can clearly observe that as the T' parameter increases, the cluster struc-
ture associated to the underlying data distribution emerges. While the visuali-
sation related to the embeddings obtained by the model trained on the original
training set (Figure 2a) exhibits evident confusion among most of the classes,
we can note that, the incremental pseudo labeling procedure allows to reduce
confusions and to recover a clear cluster structure. More in detail, we can see
that, when a value of T' = 4 (Figure 2c) is considered, the majority of confusions
disappear.

4 Conclusion

In this paper, we proposed a framework that combines CNN and self-training
to deal with multi-variate time series classification considering low-data regime
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Fig. 2: T-SNE Feature visualization of the same 30 per-class test samples belong-
ing to the Jap Wovel dataset considering the representation learnt from (a) the
original (10 labelled samples per class) training data (b) the proposed frame-
work with T=2 (c) the proposed framework with T=4 and (d) the proposed
framework with T=6.

scenarios. The proposed framework works in a transductive fashion and it lever-
ages the entropy associated to the classifier prediction to select new samples to
enlarge the training set. The evaluation on real-world benchmarks has demon-
strated the effectiveness of ResNet! Pl w.r.t. recent classification framework and,
more generally, the value of deep learning-based strategies to deal with low-data
regime scenarios in the context of multi-variate time series classification. Possible
follow-ups of our work can be related to the evaluation of recent Transformer [15]
models to replace the ResNet internal classifier as well as the test and deploy-
ment of the proposed framework in an inductive setting where the goal is the
classification of new unseen time series data.

References

1. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-
ulae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. pp. 108—-122 (2013)

Castellanos, M.G., Bergmeir, C., Triguero, 1., Rodriguez, Y., Benitez, J.M.: Self-
labeling techniques for semi-supervised time series classification: an empirical
study. Knowl. Inf. Syst. 55(2), 493-528 (2018)

Chen, Y., Hu, B., Keogh, E.J., Batista, G.E.A.P.A.: DTW-D: time series semi-
supervised learning from a single example. In: KDD. pp. 383-391. ACM (2013)
Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.: Deep learning
for time series classification: a review. Data Min. Knowl. Discov. 33(4), 917-963
(2019)

Frank, J., Mannor, S., Pineau, J., Precup, D.: Time series analysis using geometric
template matching. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 740-754 (2013)
Gbodjo, Y.J.E., Ienco, D., Leroux, L.: Toward spatio-spectral analysis of sentinel-2
time series data for land cover mapping. IEEE Geosci. Remote. Sens. Lett. 17(2),
307-311 (2020)

Geler, Z., Kurbalija, V., Radovanovic, M., Ivanovic, M.: Comparison of different
weighting schemes for the knn classifier on time-series data. Knowl. Inf. Syst. 48(2),
331-378 (2016)

van der Maaten, L., Hinton, G.: Visualizing Data Using t-SNE. Journal of Machine
Learning Research 9, 2579-2605 (2008)

Marussy, K., Buza, K.: SUCCESS: A new approach for semi-supervised classifica-
tion of time-series. In: ICAISC. vol. 7894, pp. 437—447. Springer (2013)

Saporta, A., Vu, T., Cord, M., Pérez, P.: ESL: entropy-guided self-supervised
learning for domain adaptation in semantic segmentation. CoORR abs/2006.08658
(2020)

de Sousa, C.A.R., Rezende, S.O., Batista, G.E.A.P.A.: Influence of graph construc-
tion on semi-supervised learning. In: ECML/PKDD. vol. 8190, pp. 160-175 (2013)
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, (First Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2005)
Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne,
M., Yurchak, R., Ruwurm, M., Kolar, K., Woods, E.: Tslearn, a machine learning
toolkit for time series data. Journal of Machine Learning Research 21(118), 1-6
(2020)

Triguero, 1., Garcia, S., Herrera, F.: Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42(2), 245—
284 (2015)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NIPS. pp. 5998-6008 (2017)
Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.:
Experimental comparison of representation methods and distance measures for
time series data. Data Min. Knowl. Discov. 26(2), 275-309 (2013)

Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep
neural networks: A strong baseline. In: IJCNN. pp. 1578-1585. IEEE (2017)
Yamaguchi, Y., Faloutsos, C., Kitagawa, H.: Camlp: Confidence-aware modulated
label propagation. In: SDM. pp. 513-521. STAM (2016)

Zhang, X., Gao, Y., Lin, J., Lu, C.: Tapnet: Multivariate time series classification
with attentional prototypical network. In: AAAI. pp. 6845-6852 (2020)



