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INDICES OF NEWTON NON-DEGENERATE VECTOR FIELDS
AND A CONJECTURE OF LOEWNER FOR SURFACES IN R%.

CARLOS GUTIERREZ AND MARIA APARECIDA SOARES RUAS

ABSTRACT. We study the index of a vector field in R2, with isolated singularity,
in terms of conditions on the Newton polyhedra associated to its coordinates.
When the vector field is Newton non-degenerate, we show that its index is de-
termined by the principal part of the Newton polyhedra. As a consequence we
can prove that, under very mild conditions, the index of an isolated inflection
point of a locally convex surface generically embedded in R is the same as the
index of an umbilic point of a surface immersed in R3.

REsuMo. O objetivo do trabalho é estudar o indice de uma singularidade iso-
lada de um campo vetorial em R?, em termos de condigdes sobre poliedros de
Newton associados as fungoes coordenadas do campo. Quando o campo veto-
rial é Newton nao degenerado, mostramos que seu ndice é determinado pela
parte principal do poliedro de Newton. Como consequéncia, com pequenas
hipéteses de genericidade, é possvel mostrar que o indice de um ponto de in-
flexao isolado de uma supericie localmente convexa genericamente mergulhada
em R? é igual ao indice de um ponto umbilico de uma superficie imersa em
R3.

1. INTRODUCTION

This article has been motivated by the classical (local) Loewner’s Conjecture
which states that every umbilic of a smooth surface immersed in R® must have
index less than or equal to one. It was shown in [6] that the index of an isolated
inflection point (in the sense of Little [12]) of a locally convex surface generically
embedded in R* is +1/2.

QOur first result, Theorem 1, was inspired in the result of M. Brunella and M.
Miari [3], in which they proved that a Newton non-degenerate vector field in the
plane possessing characteristic orbit, is topologically equivalent to its principal part.
Here we deal with the index of a vector field at an isolated singularity. While our
conditions are also given in terms of Newton Polyhedra, they are different from
those of Brunella and Miari and, we believe, better suited for the case of indices of
vector fields. Also, as it should be, proofs are much shorter.

In our second result we show that, under very mild conditions given in terms
of Newton Polyhedra, the index of an isolated inflection point is the same as the
index of an umbilic point of a surface immersed in R®. It may be possible that
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the Loewner Conjecture can be extended to the case of isolated inflection points of
locally convex surfaces in R%.
Before continuing, we wish to Thank J. Llibre for his very helpful comments.

2. INDEX OF A VECTOR FIELD AT A SINGULARITY

Let &£, be the set of smooth germs g : (R™,0) — R. To g € £, associate its formal
Taylor series expansion at 0: §(z) = Y axz*. Define supp g = {k € Z" : a; # 0}.
Given A C Z", we define gla = Y arzh.

The Newton Polyhedron of g € £, , denoted by I'; (g), is the convex hull in R}
of the set U{k +v : k € supp g, v € R} }. The Newton Diagram of g will be the
union I'(g) of all compact faces of I'(g).

Let X = (f,9) : (R%,0) — (R?,0) be the germ of a vector field in the plane. We
call the pair (['(f),['(g9)) = I'(X) the Newton pair of X.

We denote by Xr = (f ll"(f)’g II‘(g)) the principal part of the vector field X.
The Newton pair ['(X) = (I'(f),[(g)) is Newton non degenerate if for all pair
of paralell faces A; € ['(f) and As € I'(g), the following holds: A, and A, are
compact and the equations f|A; = 0 and g|A2 = 0 have no common solutions in

(R\ 0).

Theorem 2.1. Let X = (f,g) : (R%,0) = (R?,0) be the germ of a vector field in
the plane. If T'(X) is Newton non-degenerate, then, there exists a neighborhood U
of (0,0) such that, V(z,y) € U\ {(0,0)} andVs € [0,1],

0 < [sX(z,y) + (1 —s)Xr(z,y)]
= |s f(z,y) + (1 = ) fle(p) (2, 9)| + s 9(z,y) + (1 = 5) glr(g) (2, 9)]
In particular (0,0) is an isolated singularity of both X and Xr and
Indez (X,0) = Indez (Xr,0)

Proof. Let S} = {(a,b) € R? : a> + b*> = 1,a > 0,b > 0}. Given (a,b) € S} and
h € {f, flr(s)»9,9Ir()}, denote by Ly(a,b) the straight line orthogonal to (a,b)
that meets I'(h) and such that one of the closed half-planes bounded by Lj(a,b)
contains I'y (h). As I';(h) is convex, we obtain:

(1a) Lp(a,b) NTy(h) C I'(h) is either a point or a segment. In the last case it
is a compact fase of I'(h);

(1b) if (mo,n0), (m1,n1) € Ly(a,b) NI'(h), then
(mp,no) - (a,b) = (m1,n1) - (a,b), where “” denotes the usual inner
product of RZ.

(1c) if (mo,no) € Ln(a,b) NT'(h) and I'(h) \ Lr(a,bd) is not empty, then, there
exists €(a, b, h) > 0 such that

(mo,no) - (a, b) +¢€(a,b,h) = inf{(m)n) - (a,b)/(m,n) € T+ (h) \ Lu(a, b)}

This proof is organized as follows: We shall find, for each (a,b) € S1U{(0,1),(1,0)},
a small curved sector of R? having its vertex at the origin and such that X restricted
to this sector satisfies the theorem. By local compacness, we will be able to cover a
neighborhood of (0,0) € R? with finitely many of these sectors. In this way X re-
stricted to this neighborhood of (0, 0) will satisfy the theorem. We shall accomplish
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this by studying, when h € {f, g}, the following cases: (i) L(a,b) NT'4(h) is a com-
pact fase of I'(h) non-reduced to a point (and so, (a,b) € S1); (i) (a,b) € SL
and L(a,b) N Ty (h) is a one point set of I'(h); and (iii) Lx(1,0) N T'+(h) and
Ly(0,1) NIy (h) are one-point-sets.

To simplify matters, we shall continue by assuming that

(2) T4(h) \ Ln(a,b) # 0
Suppose first that Li(a,b) NT'(h) is a segment and let (M,n) and (m, N) be its
endpoints. We shall assume 0 < m < M and 0 < n < N. Let € = €(u,v,h) be
defined in Bs(a,b) = {(u,v) € S} : |(u — a,v — b)| < &} by
€(u,v,h) = inf{(1,v) - (u,0) : (4,v) € Ty () \ Ln(a,b)}
- SUP{(IJ,V) : (U,U) : (l"': V) .= Lh(a1 b) n F(h’)}
If § > 0 is small enough, then €(u,v, h) depends continuously on (u,v) and
(3)
3 5
elu,v,h) € (5 e(a,b,h), 2 e(a, b, W);

This implies that, for all (u,v) € Bs(a,b),
(4)
(3/4) e(a,b,h)+u- M +v-n < e(u,v,h) +u-M+v-n
< e(u,v, h) + sup{(,v) - (v,v) : (p,v) € Lp(a,b)}
= inf{(1,2) - (u,2) : (1,) € T4 (k) \ Ln(a, )}

Therefore, if § > 0 and ¢ > 0 are small enough, there is a continuous function
R(t,u,v, h) defined for all (¢,u,v) € [0,0) x Bs(a,b), such that:

(5)
h(t“,tu) = am,N tu~m+v-N +-tama tu-M+‘u-n
e tu-M+v-n t(l/?)e(a,b,h)R(t7 u,v, h)
Let p = p(u) be defined in {u < a: (u,v) € Bs(a,b)} by the equation

(6) u=uap(u)
Also, let k& = k(t,u,v) be defined in [0,0) x {(u,v) € Bs(a,b) : v < a} by the
equation

(7)

¥ = k(t,u,v) P

As p(u) < 1 and v > b, we obtain that 0 < k(t,u,v) < 1. Therefore, using (1b)-(1c)
and (5)—(7), we obtain that, for all (¢,u,v) € (0,0) x {(u,v) € Bs(a,b) : u < a},

(8)
sh(t*,t°) + (1 — 8) Al (", t°) =
= (sh((t*)*, k (£°)") + (1 = 5) hlowy ((¢9)%, k(7))
= (k™ (t")“'"‘+"'N) (am,N EN-™ 4. bapyn+s t(/Delabh) B¢ 4y v, h)
+ (1 — 5) t/De(@bhlrm) B(t, u, v, hlp(n)))



4 CARLOS GUTIERREZ AND MARIA APARECIDA SOARES RUAS

This last expression shows that, under conditions above (in particular when ¢ > 0
is small),

|s h(*,£") + (1 = 5) hlp(n) (£*, 7))
can only be zero nearby the real roots of the polynomial, in the variable K,
Qm,N KN—m - e M n

Suppose now that Lp(a,b)NT'(h) is a one-point-set. Then, by denoting Ly (a, b)N
I'(h) = {am,~} = {am,n} and proceeding as above we shall obtain the following
relation which corresponds to item (8) above under the same assumptions:

()
sh(t*,t") + (1 — s) Al (2%, 17) =
= (sh((t*)%, k (#7)") + (1 = 3) kbl ((t7)*, k (2°)"))
= (k™ (t°)* ™ N) (aprn + st/D@ERR(E 4 v, h)
+(1-s) t(1/2)e(a,b.h|r‘(h))R(t,u,U’hlr.(h)))
This expression shows us that, if § > 0 and ¢ > 0 are small enouth, then for all
(t,u,v) € (0,0) x {(u,v) € Bs(a,b) : u < a},
ISh(tu7tu) T (1 - S) th(h)(tu7tv)l >0
Therefore, using the fact that X (I') is non-degenerate and by extending the
arguments above to {(u,v) € Bs(a,b) : v < b}, we obtain,
(9) If (a,b) € S}, then there are § > 0 and o > 0 such that, V(u,v) € Bs(a,b)
and V0<t<o,
s F(2*,2") + (1 = s) flo(n) (8%, £9)] + [s g(¢¥, %) + (1 — 5) glr(g) (£¥, £7)| > 0.

Now, if L;(1,0) N T(h) = (0, N), then, it may be seen that there exists p > 0
such that forall 0 < |y| < pand -1 <7 <1,

h(ryN*l,y) = aony™ + yV T R(y,r)

for some continuous real valued function R = R(y,r). It follows that |h| restrited
to a set of the form {(z,y) : 0 < |y| < p,—pN*! <z < pN*1} is positive. .
Proceeding similarly when L;(0,1) N T'(h) = (M,0) and using the fact that
X (T) is non-degenerate, we may conclude that there exists p > 0 such that, for all
s € [0,1], the restriction of |s f+ (1 —s)g| to the set ¥(p), which is the union of

{('-’371/) @ 0< |y| < p, _pN+l <z< PN+1}
and
{(-'L',y) : 0<|:l:|<p, —pM‘H SySpM‘“},

is positive.

Using the fact that {(a,b) € R* : a®> +b*> = 1, a > 0, b > 0} is compact and
assuming that p > 0 is small enough, we may cover a neighborhood of (0,0) in
{(z,y) € R?* : z > 0,y > 0} with the union of (0,0) U £(p) with finitely many
sectors of the form

{(z,y) € R?:z=t%y=t" (u,v) € Bs(a,b),0 < t < g}

and for which (9) is true.
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Similarly, we may cover a neighborhood of (0, 0) in R? with the union of (0,0) U
¥(p) with finitely many sectors of one of the forms

{(z,y) eR®:z=t* , y=t* , (u,v)€Bs(abd), 0<t<o)}
{(z,y) eR?:z=~t* , y=t* , (u,v) €Bs(a,b), 0<t<o}
{(z,y) eR2:z=—t* , y=-t* , (u,v) € Bs(a,b), 0<t<o}
{(zy)eR:z=t* , y=-t* , (u,v) € Bs(a,b), 0<t<o}
and for which the statement that corresponds to (9) is true. The theorem follows
from this. O

3. LOCALLY STRICTLY CONVEX SURFACES OF R%

The asymptotic line fields associated to an embedding f of a surface M in R*
were studied in [6]. A generically embedded surface f(M) always has an open
region at which there are defined two line fields V; and V5 of asymptotic directions.
These two fields eventually collapse onto a unique one over a curve in M. Their
integral lines are called asymptotic lines and their singular points are the inflection
points of the embedding as defined by Little in [12]. The geometry of a generically
embedded surface in the neighborhood of an inflection point was studied in [13].
The differential equation of the asymptotic lines ([6]) of M is the following binary
equation:

fl:z: f2:z: f3:: f4z 0
hy Iy By Jay 0
(31) .flzz fzzz f3za: f4:cz dy2 =0,
fla:y fzzy f3zy f4zy _dxdy
fryy Jayy fayy Jay, do?

where (f1, f2, f3, f4) are the coordinate functions of the embedding,.
In this section we study singular points of this equation when M is locally strictly
convexly embedded in R%.

Definition 3.1. A hyperplane H in R* is a nonsingular support hyperplane to M
at the point p if it is tangent to M at p, M N H = {p} and p is a non-degenerate
critical point of the linear projection 7 : M — Ly, where Ly is the line in R*,
passing through p, orthogonal to H. ‘

Definition 3.2. The embedding f : M — R* is locally strictly convex if every
point admits a nonsingular support hyperplane.

When the embedding f : M — R* is locally strictly convex, the pair of transver-
sal foliations on M induced by the asymptotic lines are -away from a discrete set of
singularities- globally defined ([6]); their singular points are isolated and coincide
with the inflection points of imaginary type.

We shall study the indices of these inflection points with respect to either of
the asymptotic foliations. The index does not depend on the specific foliation A4;
because A; and A, are transversal to each other in the complement of the inflection
points.

This section is motivated by a famous conjecture due to Loewner which states
that -with respect to either of the foliations induced by the principal lines of cur-
vature of an embedded surface in R® - there are no umbilics of index bigger than
one. This Loewner Conjecture has been asserted to be true for analytic surfaces by
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several authors among which H. Hamburger [10], G. Bol [2], T. Klotz [11] and C.
J. Titus [16]. In the following we shall show that under very mild conditions, the
index of an isolated inflection point - with respect to A; - is the same as the index
of an umbilic point of a surface immersed in R3. '

The following lemma gives a useful normal form for M in a neighbourhood of an
isolated inflection point of a strictly convexly embedded surface.

Lemma 3.1. Let M be locally strictly convezly embedded in R* and p € M be an
isolated inflection point. Then, up to a rigid motion of R, it can be assumed that
p=(0,0,0,0) and that M, around p, admits a parametrization of the form

1
a:(z,9) = (5,9, 5 +9°) + F(z,9),G(z,9)),
where J*F(0,0) = J2G(0,0) =0,
Proof. We can assume p = (0,0,0,0) and that the embedding is in Monge’s form

(07 (-'L‘,y) =y (zyy)fl(z)y)7f2($)y)))

where J! f,(0,0) = J* f2(0,0) = 0. Since p is an inflection point of the embedding,
the second fundamental form has rank 1 at p. Hence, the 2-jets of f; and f2 are
linearly dependent at zero. By assumption the embedding is locally strictly convex,
hence by a rigid motion in R*, we can assume that M has the desired normal
form. O

For the parametrization a of Lemma 3.1, the differential equation (3.1) takes
the form

dy> —dzdy  dz?

(3.2) 1+F, F,y 1+F,|=0,
Gz Gazy Gy

This equation may be rewritten as:

(Gzy + A12(F,G))dz® + (Gyy — Gz + Ar3(F,G)dzdy
(3.3) +(=Gay — A23(F, G))dy* =0,
where
A12(F,G) = GeyFrz — GezFay,
A3(F,G) = FpuGyy — GoaFyy,
DNo3(F,G) = GeyFyy —G
Theorem 3.2. Let F,G : R?2,0 = (R,0) be germs of smooth functions such that
J2F(0) = J?G(0) = 0. Let X, X1, X> be germs of vector fields in R%,0 defined by
X(z,y) = (Gazz —Gyy, 2Gay),
Xi1(z,y) = (Gzz — Gyy — A13(F,G), 2Gzy +2A,3(F,Q)),
Xa(z,y) = (Gzz — Gyy — A13(F,G), 2Gzy + 2A23(F,G));

Suppose that T'(X) is Newton non-degenerate and that Xr = (X;)r = (X2)r.
Then

nyzy-
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(i) the index at 0, of (either of the two foliations induced by) equation (8), is the
same as the index at 0 of (either of the two foliations induced by) equation

(34) G:cydzz + (ny - Gzz)dzd'y _— Gzydyz = 0

This common indez is half of the index of X at 0.
(ii) there exists a smooth surface in R® such that the differential equation of
its principal lines of curvature -in a suitable coordinate system- is precisely equa-

tion (3.4).

Proof. By the same argument as that of the Proof of Theorem 2.1, there exists a
neighborhood V' of 0 € R? such that, for all s € [0,1], and -when restricted to V-
the vector fields

X = (G:::c = ny, 2Gzy) )
(3.5) X9 = (G.x—Gyy — Ais(aF, @), 2Gy + 2812(sF,G)),
X = (Gus—Cyy—Ass(aF, @), 2024+ 285(sF, @),
have 0 as the only singularity. Therefore, for all s € [0, 1] and for every point of
v\ {0},
(Gez — Gyy + A13(sF, @))? + (2Gzy + A12(sF, G) )(2Gay + As3(sF,G) ) > 0.

This and Homotopy Theory [8] imply that, given s € [0,1], the index at 0 of
equation

(Gay + A1a(sF, G))d$2 + (Gyy — Gzz + A13(sF,G)dzdy
(3.6) +(—Gay — Aa3(sF,G))dy* =0,

does not depend on s. Taking s = 0, 1, the first statement of item (i) follows. It is
not difficult to check the second statement of (i) (see, for instance, [15]). The proof
of (ii) can be found in [7]. O

In the following corollary we show that the above result always holds when the
germ G is quasi-homogeneous and X is non-degenerate. We recall that the germ
G : R?,0 — R,0 is quasi-homogeneous with weights w = (w;,w>) € N? and quasi-
degree d € N, if G(A"1z, \*2y) = 4G (z,y), for all A > 0.

Corollary 3.3. Let G, j2G(0,0) = 0, be a quasi-homogeneous polynomial defining
the vector field X = (Ggx — Gyy, 2Gyy) which is Newton non degenerate. Then,
the index of equation (3) does not depend on F : R®,0 = R, 0, for any F such that
j2F(0,0) = 0, and it is half of the index of the vector field X at 0 .

Proof. Let us assume that G is quasi-homogeneous with weights («,f), o < 8,
and quasi-degree d. Then, while the function 2G5, is clearly quasi-homogeneous
of type (o, 8;d — a — ), this is not always true for the function G, — G;,. How-
ever, a direct analysis of the possibilities shows that in any case, the remainders
A12(F,G), A13(F,G), Ass(F,G) satisfy the hypothesis of Theorem 3. 0O

REFERENCES

[1] O. Bonnet. Mémoire sur 'emploi d’un nouveau systeme de variables dans I’étude des pro-
priétés des surfaces courbes. J. Liouville, Ser. 2, Vol 5, (1860) 153-266.

[2] G. Bol. Uber Nabelpunkte auf einer Eifliche. Math Z.49 (1943/1944) 389-410.

[3] M. Brunella & Massimo Miari. Topological equivalence of a plane vector field with its principal
part defined through Newton Polyhedra. Jour. Diff. Eq. 85, (1990) pp. 338-366.



8 CARLOS GUTIERREZ AND MARIA APARECIDA SOARES RUAS

[4] F. Dumortier. Singularities of vector fields on the plane. J. of Diff. Eq. 23, 1 (1977) 53-106.

[5] G. Darboux. Sur la forme des lignes de courbure dans la voisinage d’un ombilic. Leons sur
la Theorie des Surfaces, IV, Note 7, Gauthier Villars, Paris, 1896.

[6] R.A. Garcia, D. K. H. Mochida, M. C. Romero & M. A. Ruas. Inflection points and topology
of surfaces in 4—space. Trans. Amer. Math. Soc. 352, (2000), 3029-3043.

[7) C. Gutierrez, F. Mercury and F. Sinchez-Bringas. On a Carathéodory$ Conjecture: analyt-
icity versus smoothness. Ezperimental Mathematics, 5, Number 1 (1996), 33-38.

[8] V. Guillemin and A. Pollack. Differential topology. Englewood Cliffs, N. J., Prentice-Hall
(1974)

[9] C. Gutierrez and J. Sotomayor. Lines of curvature and umbilic points on surfaces. 18°
Coléquio Brasileiro de Matemadtica. Instituto de Matematica Pura e Aplicada. (1993). Rio de
Janeiro.

[10] H. Hamburguer. Beweis einer Carathéodoryschen Vermiitung. Ann. of Math. 41 (1940) 63-68,
11, IT1, Acta Math. 73 (1941) 174-332.

[11] T. Klotz. On Bol’s proof of Carathéodory’s Conjecture. Comm. Pure Appl. Math., 12 (1959)
277-311

[12] J.A.Little. On singularities of submanifolds of higher dimensional euclidean spaces. Ann.
Mat. Pura et Appl. (ser. 4A)83(1969), 261-336.

[13] D. K. H. Mochida, M. C. Romero & M. A. Ruas. The geometry of surfaces in 4-space from
a contact viewpoint. Geometriae Dedicata., 54 (1995), 323-332.

[14) H. Scherbel. A new proof of Hamburger’s Index Theorem on umbilical points. Dissertation
ETH No. 10281.

[15) B. Smyth and F. Xavier A sharp geometric estimate for the index of an umbilic point on a
smooth surface. Bull. Lon. Math. Soc. 24 (1992) 176-180

[16] C. J. Titus. A proof of a conjecture of Loewner and of the conjecture of Carathéodory on
umbilic points. Acta Math. 131 (1973) 43-77.

INSTITUTO DE CIENCIAS MATEMATICAS E DE COMPUTAGAO, UNIVERSIDADE DE SAO PAULO,
DEPARTAMENTO DE MATEMATICA, CAIXA POSTAL 668, 13560-970, SA0 CARLOS, SP, BRAZIL
E-mail address: gutpQ@icmc.sc.usp.br

INSTITUTO DE CIENCIAS MATEMATICAS E DE COMPUTAGAO, UNIVERSIDADE DE SAO0 PAuLO,
DEPARTAMENTO DE MATEMATICA, CAIXA POSTAL 668, 13560-970, SA0 CARLOS, SP, BRAZIL
E-mail address: maasruasQicmc.sc.usp.br



123/2001

122/2001

12172001

120/2001

119/2001

118/2001

117/2001

116/2001

115/2001

114/2001

NOTAS DO ICMC

SERIE MATEMATICA

CARVALHO, A. N.; LOZADA-CRUZ, G. — Patterns in parabolic problems
with nonlinear boundary conditions.

CARVALHO, A. N.; BRUSCHI, S. — Continuity of the attractors for a
singularly perturbed hyperbolic problem.

CARVALHO, A. N.; DLOTKO, T. - Partially dissipative systems in
uniformly local spaces.

BARROS, T.E.; BIASI, C.; SANTOS, E.E.F. — A lusternik-schnirelmann
theorem for general spaces.

SAIA, M.J.; ZUNIGA-GALINDO,W.A. — Local zeta function for curves, non
degeneracy conditions and Newton polygons.

GAMEIRO, M.F.; RODRIGUES, H.M. - Applications of robust
synchronization to communication systems.

LEIVA, H.; RODRIGUES, H.M. — Relative asymptotic equivalence of
evolution equations.

HERNANDEZ M., E. — The nonlocal Cauchy problem for partial neutral
functional differential equations with unbounded delay.

HERNANDEZ M., E. — The second order impulsive Cauchy problem.

HERNANDEZ M., E. — A variation-of-constants formula for partial
functional differential equations with unbounded delay.



