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Abstract
We analyze sequences generated by interior point methods (IPMs) in convex and non-
convex settings. We prove that moving the primal feasibility at the same rate as the
barrier parameter μ ensures the Lagrange multiplier sequence remains bounded, pro-
vided the limit point of the primal sequence has a Lagrange multiplier. This result does
not require constraint qualifications. We also guarantee the IPM finds a solution satis-
fying strict complementarity if one exists. On the other hand, if the primal feasibility is
reduced too slowly, then the algorithm converges to a point of minimal complementar-
ity; if the primal feasibility is reduced too quickly and the set of Lagrange multipliers
is unbounded, then the norm of the Lagrange multiplier tends to infinity. Our theory
has important implications for the design of IPMs. Specifically, we show that IPOPT,
an algorithm that does not carefully control primal feasibility has practical issues with
the dual multipliers values growing to unnecessarily large values. Conversely, the
one-phase IPM of Hinder and Ye (A one-phase interior point method for nonconvex
optimization, 2018. arXiv:1801.03072), an algorithm that controls primal feasibility
as our theory suggests, has no such issue.
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1 Introduction

This paper studies sequences generated by interior pointmethods (IPMs) that converge
to Karush-Kuhn-Tucker (KKT) points of

minimize f (x) (1a)

subject to a(x) + s = 0 (1b)

s ≥ 0, (1c)

where the objective function f : Rn → R and the inequality constraints a : Rn → R
m

are continuously differentiable functions.
The central path generated by sequences of log barrier problems was introduced

by McLinden [31] for convex minimization subject to non-negativity constraints and
generalized to linear inequalities by Sonnevend [39]. Megiddo [32] analyzed the path
of primal-dual IPMs for linear programming and showed this path converges to a
point satisfying strict complementarity. Güler and Ye [22] generalized this result to a
large class of path-following IPMs for linear programming. Finding a strictly comple-
mentary solution is necessary to guarantee the super-linear convergence of IPMs for
quadratic programs [43, Proposition 5.1]. Furthermore, finding a strictly complemen-
tary solution for problems with nonconvex constraints ensures that the critical cone
is reduced to a subspace. This subspace gives an efficient way to verify the second-
order conditions by computing the least eigenvalue of the Hessian of the Lagrangian
restricted to this subspace [11, Theorem 4.4.2]. In the nonlinear context, a strictly
complementary solution may not always exist, but if it does, we would like to obtain
it.

The results mentioned above implicitly avoid the issue of unbounded dual vari-
ables by starting from a strictly feasible point. However, this is rarely done in practice,
as infeasible-start algorithms are often used [29,33]. Mizuno et al. [34] studies the
sequences generated by these infeasible start algorithms for linear programming with-
out assuming the existence of an interior point. They show that moving the constraint
violation at the same rate as the barrier parameterμ guarantees that the dualmultipliers
are bounded. The boundedness of dual multipliers is practically important because the
linear system solved at each iteration of an IPM can become poorly conditioned as the
dual multipliers get large, making the linear systemmore difficult to solve, particularly
using iterative methods [21]. Some of our theoretical contributions can be viewed as
extensions of this work to convex and nonconvex optimization.

One alternative and elegant solution to these issues is the homogeneous algorithm
[3,4,44]. For convex problems, the homogeneous algorithm is guaranteed to produce a
bounded sequence that converges to a maximally complementary solution. For linear
programming, this guarantees that if the problem is feasible the algorithmwill converge
with bounded dual variables. However, it is unknown how to extend the homogeneous
algorithm into nonconvex optimization.
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While many IPMs for general nonconvex optimization problems have been devel-
oped, there is little analysis of the sequences they generate. For example, it is
unclear if IPMs can generate maximal complementarity solutions in the presence
of nonconvexity. Furthermore, results showing that the sequence of dual iterates
are bounded rely on the set of dual multipliers being bounded (which is equiva-
lent to the Mangasarian-Fromovitz constraint qualification [19]). This assumption
may be too restrictive because many practical optimization problems may lack a
strict relative interior and therefore have an unbounded set of dual multipliers. For
instance, we found that this is the case for 64 out of the 95 NETLIB problems (see
“Appendix A”).

Primal and dual sequences generated by nonconvex optimization algorithms such
as IPMs, augmented Lagrangian methods and sequential quadratic programming have
been analyzed in a number of works [5,9,10,23,37]. However, we are only aware
of feasible IPMs being considered. Moreover, these studies have been focused on
determining primal convergence to a KKT point, despite unboundedness of the dual
sequence. Instead, we focus on guaranteeing boundedness and maximal complemen-
tarity of the dual sequence.

Next, we explain the current state of knowledge of primal and dual sequences
generated by IPMs for linear programming. In particular, let f (x) := gTx , with
constraints a(x) + s = 0, s ≥ 0, where a(x) := Mx − p, M is a matrix and g, p are
vectors. Many IPMs for linear programming compute direction (dkx , d

k
y , d

k
s ) at each

iteration k satisfying

MTdky = −ηk(g + MT yk) (2a)

Mdkx + dks = −ηk(Mxk + sk − p) (2b)

Skdky + Y kdks + Sk yk = (1 − ηk)μke, (2c)

where Y k and Sk are the diagonal matrices defined by yk and sk , and e is a vector
of ones. The values μk+1 := (1 − ηk)μk and ηk ∈ (0, 1) are chosen, for example,
using a predictor-corrector technique [33], see also [36, Algorithm 14.3]. The iterates
are updated according to (xk+1, yk+1, sk+1) ← (xk, yk, sk) + αk(dkx , d

k
y , d

k
s ), where

αk ∈ (0, 1] is the step size. Methods that choose their iterates in this way reduce
the primal feasibility and complementarity at approximately the same rate [30,33,44],
which we formalize as follows. Suppose the IPM converges to an optimal solution as
μk → 0. Then a subsequence of iterates satisfy xk → x∗, sk → s∗, and:

a(x∗) + s∗ = 0 (3a)

bμk ≤ ski y
k
i ≤ cμk for all i (3b)

�μk ≤ ai (x
k) + ski ≤ uμk for all i (3c)

‖∇xL(xk, yk)‖ ≤ dμk(‖yk‖1 + 1) (3d)

sk, yk ≥ 0, (3e)
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where μk > 0 is the barrier parameter, 0 < b ≤ c, 0 < � ≤ u, d ≥ 0 are real
constants independent of k, ‖ · ‖p denotes the �p norm, ‖ · ‖ the Euclidean norm, and
the Lagrangian L : Rn × R

m → R is

L(x, y) := f (x) + yT a(x). (4)

Inequality (3b) ensures perturbed complementarity approximately holds. Inequal-
ity (3c) guarantees that primal feasibility is reduced at the same rate as complemen-
tarity. Inequality (3d) ensures that scaled dual feasibility is reduced fast enough. The
set of inequalities (3) has a natural interpretation as a ‘shifted log barrier’: a sequence
of approximate KKT points to the problem,

minimize f (x) − μk
m∑

i=1

log(μkri − ai (x)),

with the vector r satisfying � ≤ ri ≤ u.
The main contribution of Mizuno, Todd, and Ye [34] was to show that IPMs for

linear programming have bounded Lagrange multiplier sequences and satisfy strict
complementaritywhen (3) holds. Hinder andYe [26] show it is also possible to develop
IPMs that satisfy (3) even if f and a are nonlinear. In particular, they give an IPM
where, if the primal variables are bounded and the algorithmdoes not return a certificate
of local primal infeasibility, a subsequence of the iterates satisfy (3). This motivates
us to show given a sequence satisfying (3), even if the objective and constraints are
nonlinear the dual multipliers are still, under general conditions, well-behaved.

1.1 Summary of contributions

Now, assuming conditions (3) and that the problem is convex (or certain sufficient
conditions for local optimality hold) we show:

(a) If there exists a Lagrangemultiplier at the point x∗, then the sequence of Lagrange
multipliers approximations {yk} is bounded (see Theorems 1 and 2 for the convex
and nonconvex case respectively).

(b) If yk → y∗, then among the set of Lagrange multipliers at the point x∗, the point
y∗ is maximally complementary (see Theorems 3 and 4).

Consider the case that (3c) does not hold, i.e., the primal feasibility is not being
reduced at the same rate as complementarity. We argue that this is poor algorithm
design, because if problem (1) is convex then:

(a). If we reduce the primal feasibility faster than the barrier parameter μk and the set
of dualmultipliers at the point x∗ is unbounded, then ‖yk‖ → ∞ (see Theorem5).

(b) If we reduce the primal feasibility slower than the barrier parameter μk and
yk → y∗, then y∗ is a minimally complementary Lagrange multiplier associated
with x∗ (see Theorem 6).

Our central claim is that many implemented interior point methods, especially for
nonlinear optimization, such as IPOPT [42], suffer from the problems described above
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because they fail to control the rate at which they reduce primal feasibility (specifically
IPOPT suffers from deficiency (a)). For linear programs, these methods solve systems
of the form [42, equation (9)]

MTdky = −
(
g + MT yk

)
(5a)

Mdkx + dks = −
(
Mxk + sk − p

)
(5b)

Skdky + Y kdks + Sk yk = μke, (5c)

where the notation follows (2). Equation (5b) aims to reduce the constraint violation
to zero at each iteration. Contrast (5b) with Eq. (2b) that aims to reduce the con-
straint violation by ηk , the same amount by which complementarity is reduced. As we
demonstrate in Sect. 4, a consequence of the implementation choices in IPOPT, pri-
mal feasibility is usually reduced faster than complementarity. Therefore, as our theory
suggests, these IPMs have issues with the Lagrange multipliers sequence diverging.

IPOPT attempts to circumvent this issue by perturbing the original constraint
a(x) ≤ 0 to create an artificial interior as follows:

a(x) ≤ δe, (6)

for some δ > 0 (see Section 3.5 of [42]). While this technically solves the issue as the
theoretical assumptions of [41] are now met, it is not an elegant solution and causes
undesirable behavior. For example, we show in Sect. 4 that the dual variable may still
spike before converging. Furthermore, if δ is selected to be large, the constraints will
be only loosely satisfied at the final solution.

We proceed as follows. Section 1.2 gives a simple example illustrating the phenom-
ena studied. Section 2 shows that reducing the primal feasibility at the same rate as
complementarity ensures the dual multiplier sequence remains bounded and satisfies
maximal complementarity. Section 3 explains that reducing the constraint violation
too quickly causes the dual multiplier sequence to be unbounded, while reducing it too
fast causes the them to tend towards a minimal complementarity solution. Section 4
shows empirically how strategies that reduce the constraint violation too fast, such as
the one employed by IPOPT, can have issues with extremely large dual multipliers.
Section 5 presents our final remarks.

1.2 A simple example demonstrating phenomena

Consider the following simple linear programming problem:

minimize 0 (7a)

subject to x ≤ 1 (7b)

x ≥ 1. (7c)

By adding a feasibility perturbation δ > 0 and a log barrier term μ ≥ 0, we get
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minimize − μ log (x − 1 + δ) − μ log (1 − x + δ) (8a)

subject to x ≥ 1 − δ (8b)

x ≤ 1 + δ. (8c)

The associated KKT system is

y1 − y2 = 0 (9a)

x + s1 = 1 + δ (9b)

x − s2 = 1 − δ (9c)

s1y1 = μ s2y2 = μ (9d)

y1, y2 ≥ 0 s1, s2 ≥ 0. (9e)

Observe that the orignal problem (corresponding to δ = μ = 0) has a unique
optimal primal solution at x∗ := 1 and s∗ := (0, 0), with dual solutions y∗

1 = y∗
2

for any y∗
2 ≥ 0. Therefore the set of dual variables is unbounded. However, for any

δ, μ > 0, the solution to system (9) is

x = 1 s1 = δ s2 = δ y1 = μ

δ
y2 = μ

δ
.

From these equations, we can see that if δ and μ move at the same rate, then both
strict complementarity and boundedness of the dual variables will be achieved. But if δ
reduces faster than μ, i.e., δ/μ → 0+, then the dual variables sequence is unbounded.
Alternatively, if δ moves slower than μ, i.e., δ/μ → ∞, then strict complementarity
will not hold.

Now, if δ > 0 is fixed at a small value as in the IPOPT strategy (6), the dual
sequence will initially grow very fast before stabilizing when the barrier parameter μ

is sufficiently reduced. We confirm this hypothesis by solving the linear programming
problem (7) with perturbations δ > 0 using IPOPT, and we compare it with a well-
behaved IPM [26] that moves complementarity at the same rate as primal feasibility,
that is, satisfies (3a)–(3e). For this experiment, we turn off IPOPT’s native perturbation
strategy (6). In Fig. 1 we plot the maximum dual variables at each iteration, given by
the two methods for different perturbation sizes. While perturbing the linear program
prevents the dual variables of IPOPT from increasing indefinitely, the dual variables
still spike. For example, with δ = 10−8 the maximum dual variable of IPOPT peaks at
104 on iteration 4 before sharply dropping on the next iteration to 9. Picking a smaller
δ, e.g., δ = 10−5, ensures a smaller peak at the cost of solving the problem to a lower
accuracy. On the other hand, the maximum dual variable for the well-behaved IPM
remains below 1.5 irrespective of the perturbation size. Furthermore, with δ = 0.0 the
curve for the well-behaved IPM is essentially flat.

More thorough numerical experiments are given in Sect. 4, but first we establish
our general theory.
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Fig. 1 Comparison of the maximum dual variable value (vertical axis) against iterations (horizontal axis)
using IPOPT and a well-behaved IPM [26] as the perturbation δ is changed

2 Boundedness andmaximal complementarity

In this section, we show that when feasibility is reduced at the same rate as comple-
mentarity, the dual variables are bounded and satisfy maximal complementarity. But
first we establish some basic results for convex problems on the optimality of limit
points of sequences satisfying (3).

Notation. When it is clear from the context, we omit a quantifier “∀k” when
stating properties of every sufficiently large element of a sequence indexed by
k = 1, 2, . . . ,∞. The Euclidean norm is denoted by ‖ · ‖; otherwise the �p-norm
(we only use p = 1,∞) is denoted by ‖ · ‖p.

The following lemma gives a sufficient sequential condition for global optimality
in the convex case. In our setting, the lemma is slightly more general than results found
in the literature, e.g., see [27, Corollary 3.1], [9, Theorem 4.2], [24, Theorem 2.2], and
[20, Theorem 3.2]. Our condition is in fact equivalent to the one from [20] but with a
redundant assumption omitted.

Lemma 1 If f andai for i = 1, . . . ,m are convex functions, and {(xk , yk)} ⊂ R
n×R

m

are such that

1. xk → x∗ with a(x∗) ≤ 0,
2. yk ≥ 0,
3. lim inf a(xk)Tyk ≥ 0,
4. ∇xL(xk, yk) → 0,

then, x∗ is a solution of (1).
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Proof Given x with a(x) ≤ 0, we have

f (x) ≥ L(x, yk) ≥ L(xk, yk) + ∇xL(xk, yk)T(x − xk).

Hence,
a(xk)Tyk ≤ f (x) − f (xk) + ∇xL(xk, yk)T(xk − x). (10)

Thus, for x = x∗, we have lim sup a(xk)Tyk ≤ 0. The assumption gives a(xk)Tyk →
0. Taking the limit in (10) we have f (x) ≥ f (x∗) and the result follows. 
�

The following lemma gives a sufficient condition for verifying the conditions of
Lemma 1 under our slack variable formulation, which suits better our interior point
framework.

Lemma 2 If f and ai for i = 1, . . . ,m are convex functions, and {(xk, yk, sk)} ⊂
R
n × R

m × R
m are such that

1. xk → x∗ with a(x∗) ≤ 0 and sk → −a(x∗),
2. yk ≥ 0 and sk ≥ 0,
3. (yk)Tsk → 0,
4. ai (xk) + ski ≥ 0 for all i : ai (x∗) = 0,
5. ∇xL(xk, yk) → 0,

then, x∗ is a solution of (1).

Proof For i : ai (x∗) = 0, we have ai (xk)yki ≥ −ski y
k
i → 0, while if ai (x∗) < 0, we

have yki → 0. The result follows from Lemma 1. 
�
We note that even in the nonconvex case, the existence of sequences satisfying the

conditions of Lemmas 1 and 2 are necessary at a local solution x∗, without constraint
qualifications. This follows from the necessary existence of sequences xk → x∗, yk ≥
0 with ∇xL(xk, yk) → 0, ai (xk)yki → 0 for all i , when x∗ is a local solution, given
in [9, Theorem 3.3], by defining ski := max{0,−ai (xk)} for all i and all k. See also
[23].

2.1 Boundedness of the dual sequence

The boundedness of the dual sequence is an important property because the algorithm
is otherwise prone to numerical instabilities.

In Theorem 1, we consider problems involving convex functions where the algo-
rithm is converging to a KKT point. We show that if the primal feasibility, (scaled)
dual feasibility and complementarity converge at the same rate, then the dual sequence
{yk} is bounded. We refer to [34, Theorem 4] for a more general result when the func-
tions f and a are linear. This result is extended in Theorem 2 to situations where the
optimization problem may involve nonconvex functions.

We try to present as few assumptions as possible; for example, assumptions are often
placed only on constraints that are active at the limit. However, since in practice the
active constraints are unknown, we advocate using IPMs that satisfy (3). All assump-
tions on the sequence of iterates made on theorems in this section can be subsumed
by (3) ignoring constant factors.
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Theorem 1 Suppose f and ai for i = 1, . . . ,m are convex functions and
{(xk, yk, sk, μk)} ⊂ R

n × R
m × R

m × R with μk > 0 for all k and μk → 0
are such that:

1. xk → x∗ with a(x∗) ≤ 0 and sk → −a(x∗),
2. yk ≥ 0 and sk ≥ 0,
3. for some c ≥ 0, (yk)Tsk ≤ μkc,
4. for some 0 < � ≤ u, μk� ≤ ai (xk) + ski ≤ μku for all i : ai (x∗) = 0,
5. for some d ≥ 0, ‖∇xL(xk, yk)‖ ≤ dμk(‖yk‖1 + 1).

Then, x∗ is a solution of (1). If x∗ is a KKT point, then

lim sup ‖yk‖1 ≤ 2u

�
‖y∗‖1 + 4c

�
m + 2(c + d)

�
,

where y∗ is any Lagrange multiplier associated with x∗, i.e.,∇L(x∗, y∗) = 0, y∗ ≥ 0,
and a(x∗)T y∗ = 0.

Proof We have by convexity of L(x, yk) in x that

f (x∗) ≥ L(x∗, yk) ≥ L(xk, yk) + ∇xL(xk, yk)T(x∗ − xk),

which gives

f (x∗) − f (xk) ≥ a(xk)Tyk + ∇xL(xk, yk)T(x∗ − xk). (11)

Also,

a(xk)Tyk = (a(xk) + sk)Tyk − (sk)Tyk ≥
∑

i :ai (x∗)=0

μk�yki

+
∑

i :ai (x∗)<0

(ai (x
k) + ski )y

k
i − μkc.

Since ski y
k
i ≥ 0 and ai (xk)yki ≥ ai (xk )

ski
μkc ≥ −2μkc for i : ai (x∗) < 0 and suffi-

ciently large k, we have

a(xk)Tyk ≥ �μk
∑

i :ai (x∗)=0

yki −
∑

i :ai (x∗)<0

2cμk − cμk

= �μk‖yk‖1 −
∑

i :ai (x∗)<0

(2c + �yki )μ
k − cμk . (12)

Also, ∇xL(xk, yk)T(x∗ − xk) ≥ −dμk(‖yk‖1 + 1)‖x∗ − xk‖. Hence, substituting
this and (12) back in (11) we get

f (x∗) − f (xk) ≥ �μk‖yk‖1 − dμk(‖yk‖1 + 1)‖x∗ − xk‖
−

∑

i :ai (x∗)<0

(2c + �yki )μ
k − cμk .
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We can take k large enough that �μk‖yk‖1−dμk(‖yk‖1+1)‖x∗−xk‖ ≥ �
2μ

k‖yk‖1−
dμk , so that,

f (x∗) − f (xk) ≥ �

2
μk‖yk‖1 −

∑

i :ai (x∗)<0

(2c + �yki )μ
k − (c + d)μk . (13)

Since � > 0 and yki → 0 for i : ai (x∗) < 0, we have by (13) that μk‖yk‖1 → 0.
This implies that ∇xL(xk, yk) → 0, and we can use Lemma 2 to conclude that x∗ is
a solution.

On the other hand, let y∗ ∈ R
m be a Lagrange multiplier associated with x∗. Then,

f (x∗) = L(x∗, y∗) ≤ L(xk, y∗), which, combining with (13) yields

�

2
μk‖yk‖1−

∑

i :ai (x∗)<0

(2c+�yki )μ
k−(c+d)μk ≤ f (x∗)− f (xk) ≤ a(xk)Ty∗. (14)

But a(xk)Ty∗ = (a(xk)+ sk)Ty∗ − (sk)Ty∗ ≤ μku‖y∗‖1, which implies, by dividing
(14) by �

2μ
k , that

‖yk‖1 ≤ 2u

�
‖y∗‖1 +

∑

i :ai (x∗)<0

(
4c

�
+ 2yki

)
+ 2(c + d)

�
.

Since yki → 0 for i : ai (x∗) < 0, the result follows. 
�
Optimization problems with complementarity constraints are an important class of

nonconvex optimization problems where the Mangasarian-Fromovitz constraint qual-
ification fails. Typically, specialized IPMs for these problems are developed [12,28].
The following corollary focuses on convex programs with complementarity con-
straints. It shows that any general purpose IPM satisfying (3) has a bounded dual
multipliers sequence under general conditions.

Corollary 1 Let {(xk, yk, sk, μk)} ⊂ R
n × R

m × R
m × R with μk > 0 and μk → 0

be such that assumptions 1-5 of Theorem 1 hold. Assume that problem (1) is a convex
program with complementarity constraints, that is:

minimize f (x) (15a)

subject to g(x) ≤ 0 (15b)

xi x j ≤ 0 (i, j) ∈ C (15c)

x ≥ 0, (15d)

where C ⊆ {1, . . . , n} × {1, . . . , n} and gi : Rn → R is convex for i = 1, . . . , p
(p ≤ m). Assume x∗

i + x∗
j > 0 for all (i, j) ∈ C. Under these assumptions, x∗ is a

local minimizer. Furthermore, if x∗ is a KKT point then {yk} is bounded.
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Proof To prove this result, it is sufficient to show that we are implicitly generating
a sequence satisfying the assumptions of Theorem 1, where (1) is replaced by the
convex program

minimize f (x) (16a)

subject to g(x) ≤ 0 (16b)

x∗
i x j ≤ 0 (i, j) ∈ F (16c)

x ≥ 0, (16d)

where F = {(l, k) ∈ C : x∗
l > 0} ∪ {(k, l) : (l, k) ∈ C, x∗

k > 0}. By the strict
complementarity assumption, we deduce that if (i, j) ∈ C then either (i, j) ∈ F or
( j, i) ∈ F; i.e., there is a one-to-one correspondence between constraints in (15) and
(16). Therefore if x̃∗ ∈ {x : ‖x̃∗ − x∗‖∞ ≤ 1

2 min(i, j)∈F x∗
i } is feasible for (15), then

x̃∗ is feasible for (16). We deduce that any minimizer for (16) is a local minimizer

for (15). Now,
|xki xkj−x∗

i x
k
j |

μk = |xki − x∗
i | x

k
j

μk ≤ |xki − x∗
i | u

xki
→ 0 for all (i, j) ∈ F.

Hence, the sequence (xk, yk, sk, μk) satisfies the assumptions of Theorem 1, where
(1) is replaced by (16). 
�

We now present a nonconvex version of Theorem 1. For this, we assume that the
limit point x∗ satisfies a sufficient optimality condition based on the star-convexity
concept described below. This definition is a local version of the one from [35].

Definition 1 Let a function q : Rn → R, a point x∗ ∈ R
n , and a set S ⊆ R

n be given.
We say that q is star-convex around x∗ on S when

q(αx + (1 − α)x∗) ≤ αq(x) + (1 − α)q(x∗) for all α ∈ [0, 1] and x ∈ S.

Theorem 2 Let {(xk, yk, sk, μk)} ⊂ R
n × R

m × R
m × R with μk > 0 and μk → 0

be such that

1. xk → x∗ with a(x∗) ≤ 0 and sk → −a(x∗),
2. yk ≥ 0 and sk ≥ 0,
3. for some c ≥ 0, (yk)Tsk ≤ μkc,
4. for some 0 < � ≤ u, μk� ≤ ai (xk) + ski ≤ μku for all i : ai (x∗) = 0,
5. for some d ≥ 0, ‖∇xL(xk, yk)‖ ≤ dμk(‖yk‖1 + 1),
6. x∗ is a KKT point with Lagrange multiplier y∗,
7. There exist θ ≥ 0 and a neighborhood B of x∗ such that L̂k(x) := L(x, yk) +

θa(x)TY ka(x) for all k and L̂∗(x) := L(x, y∗) + θa(x)TY ∗a(x) are star-convex
around x∗ on B, where Y k = diag(yk) and Y ∗ = diag(y∗).

Then, {yk} is bounded.
Proof From the definition of star-convexity of L̂k , taking limit in α, we have
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f (x∗) + θa(x∗)TY ka(x∗) ≥ L̂k(x
∗) ≥ L̂k(x

k) + ∇x L̂k(x
k)T(x∗ − xk)

= L(xk, yk) + ∇xL(xk, yk)T(x∗ − xk) + θa(xk)TY ka(xk)

+
m∑

i=1

2θ yki ai (x
k)∇ai (x

k)T(x∗ − xk).

Therefore,

f (x∗) − f (xk) ≥ −θa(x∗)TY ka(x∗) + θa(xk)TY ka(xk) + a(xk)Tyk

+∇xL(xk, yk)T(x∗ − xk) +
m∑

i=1

2θ yki ai (x
k)∇ai (x

k)T(x∗ − xk). (17)

We proceed to bound the right-hand side of (17). Note that −θa(x∗)TY ka(x∗) =
−∑

i :ai (x∗)<0 θ yki ai (x
∗)2 ≥ −∑

i :ai (x∗)<0
ai (x∗)2

ski
θcμk ≥ ∑

i :ai (x∗)<0 2ai (x
∗)cθμk ,

while θa(xk)TY ka(xk) ≥ 0.
As in the proof of Theorem 1, we have that (12) holds; that is,

a(xk)Tyk ≥ �μk‖yk‖1 −
∑

i :ai (x∗)<0

(2c + �yki )μ
k − cμk .

Clearly,∇xL(xk, yk)T(x∗−xk) ≥ −dμk‖yk‖1‖x∗−xk‖−dμk when ‖x∗−xk‖ ≤
1. To bound the last term in (17), note that for i : ai (x∗) < 0, −|yki ai (xk)| ≥
ai (xk )
ski

cμk ≥ −2cμk , and for i : ai (x∗) = 0, we have −|ai (xk)yki | ≥ −uμk yki if

ai (xk) ≥ 0 and −|ai (xk)yki | ≥ �μk yki − cμk if ai (xk) < 0. Therefore,

m∑

i=1

2θ yki ai (x
k)∇ai (x

k)T(x∗ − xk)

≥ −2θ
m∑

i=1

|ai (xk)yki |‖∇ai (x
k)‖‖xk − x∗‖

≥
∑

i :ai (x∗)<0

−4θcμk‖∇ai (x
k)‖

+
∑

i :ai (x∗)=0

2θ min{−uμk yki , �μ
k yki − cμk}‖∇ai (x

k)‖‖xk − x∗‖. (18)

Note that min{−uμk yki , �μ
k yki − cμk} is equal to −uμk yki if yki ≥ c

�+u , while it
is bounded by a constant times μk otherwise. Hence, substituting all bounds obtained
back into (17), we get for some constant C ≥ 0 the following:
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f (x∗) − f (xk) ≥ −Cμk + �μk‖yk‖1 − dμk‖yk‖1‖x∗ − xk‖
+

∑

i :yki ≥ c
�+u

−uμk yki ‖∇ai (x
k)‖‖x∗ − xk‖.

Thus, we can take k large enough such that f (x∗) − f (xk) ≥ −Cμk + �
2μ

k‖yk‖1.
Since ∇L̂∗(x∗) = 0 and L̂∗ is star-convex, we have L̂∗(xk) ≥ L̂∗(x∗) = f (x∗),

giving

−Cμk + �

2
μk‖yk‖1 ≤ a(xk)Ty∗ + θa(xk)TY ∗a(xk)

=
∑

i :ai (x∗)=0

(ai (x
k) + θai (x

k)2)y∗
i . (19)

For i : ai (x∗) = 0, we have for k large enough that ai (xk) + θai (xk)2 ≤ 2ai (xk)
if ai (xk) ≥ 0 and ai (xk) + θai (xk)2 ≤ 1

2ai (x
k) if ai (xk) ≤ 0, where ai (xk) ≤

uμk − ski ≤ uμk . It follows that the right-hand side of (19) is bounded by a constant
times μk . Therefore, dividing by μk shows that {yk} is bounded. 
�
Remark 1 Given the bound |ai (xk)yki | ≤ max{uμk yki , cμ

k − �μk yki } obtained in (18)
for i : ai (x∗) = 0, assumptions 1-5 in Theorem 2 together with the assumption
μk‖yk‖1 → 0 imply assumption 6 under weak constraint qualifications [5–8]. Also,
assumption 6 and the star-convexity of L̂∗ in assumption 7 imply that x∗ is a local
solution.

Remark 2 Althoughwe have decided by a clearer presentation, one could get the result
under a weaker assumption than Assumption 7 of Theorem 2. In particular, suppose
that L̂k(x) := L(x, yk)+∑m

i=1 θki ai (x)
2. Further assume θki ≤ Cμk for some C ≥ 0

when ai (x∗) < 0, and one of the following two conditions hold for all i such that
ai (x∗) = 0,

1. θki ≤ θ(yki + ‖yk‖1I[ai ≡ −a j for some j �= i]), where I[·] is the indicator
function, or

2. θki ≤ θ‖yk‖1, under a strict complementarity assumption, namely, that {yki } is
bounded away from zero,

with some θ > 0. Note that by taking θki := θ yki with condition one we subsume
Assumption 7 of Theorem 2. Condition one is useful when an equality constraint
ai (x) = 0 is represented as two inequalities ai (x) ≤ 0 and a j (x) := −ai (x) ≤ 0. In
that case, we may select θki and θkj considerably larger, namely, proportional to the
sum of all dual variables (instead of only the one correspondent to constraint i and j ,
respectively). The second condition says that we may consider this larger θki for all
constraints (proportional to the sum of all dual variables), as long as we have strict
complementarity.

The main modification to the proof of Theorem 2 would be on the bound of
|θki ai (xk)| in (18). For the first condition, with equality constraints split as two inequal-
ities, the bound −|ai (xk)yki | ≥ −uμk yki holds regardless of the sign of ai (xk). For
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the second condition one gets −|θki ai (xk)| ≥ θki min{−uμk, �μk − ski }, and the strict
complementarity assumption would give −ski ≥ −μk u

yki
with u

yki
bounded. The result

would now follow as in the proof of Theorem 2.

Note that functions L̂k , in which we require star-convexity, are closely related to the
sharp Lagrangian function [38], where we replace the �2-norm of a(x) by a weighted
�2-norm squared.

2.2 Maximal complementarity

We now focus our attention on obtaining maximal complementarity of the dual
sequence under a set of algorithmic assumptions more general than the ones described
in (3).

We say that a Lagrange multiplier y∗ associated with x∗ is maximally complemen-
tary if it has the maximum number of non-zero components among all Lagrange
multipliers associated with x∗. Note that a maximally complementary multiplier
always exists, because any convex combination of Lagrange multipliers is also a
Lagrange multiplier. If a maximally complementary Lagrange multiplier y∗ has a
component y∗

i = 0 with ai (x∗) = 0, then the i th component of all Lagrange multi-
pliers associated with x∗ are equal to zero. An interesting property of an algorithm
that finds a maximally complementary Lagrange multiplier y∗ is that if a strictly
complementary Lagrange multiplier exists, then y∗ satisfies strict complementarity.

There are benefits of algorithms with iterates that converge, in a subsequence, to a
point satisfying strict complementarity. In particular, strict complementarity implies
the critical cone is a subspace. One can therefore efficiently check if the second-order
sufficient conditions hold by checking if the matrix ∇2

xL(x∗, y∗) projected onto this
subspace is positive definite. This allows us to confirm strict local optimality. Further-
more, when iterates converge to a point satisfying second-order sufficient conditions,
strict complementarity and Mangasarian-Fromovitz, then the assumptions of Vicente
and Wright [40] hold. Therefore the IPM they studied has superlinear convergence.
Our work complements theirs because they could guarantee the premise of their the-
orems on nonconvex problems unless the optimal dual multipliers were unique, in
which case standard results prove superlinear convergence [18].

In the next theorem, we show that if the constraint violation is reduced quickly
enough relative to complementarity, then the dual sequence will be maximally com-
plementary. To prove this result we assume either the problem is convex, or that the
following “extended” Lagrangian function is locally star-convex

L̃(x, y) := L(x, y) + θ
∑

i :ai (x∗)=0

(∇ai (x
∗)T(x − x∗))2, (20)

and that ‖xk − x∗‖ ≤ C
√

μk for some constant C > 0.
Similar results to Theorem 3 are well known when the functions are convex [22],

and therefore our main contribution is when the functions f and ai for i = 1, . . . ,m
are not convex.

123



On the behavior of Lagrange multipliers in convex and…

Theorem 3 Let {(xk, yk, sk, μk)} ⊂ R
n × R

m × R
m × R with μk > 0 and μk → 0

be such that:

1. xk → x∗ with a(x∗) ≤ 0 and sk → s∗ := −a(x∗),
2. yk ≥ 0 and sk ≥ 0 with yk → y∗ (y∗ is necessarily a Lagrange multiplier

associated with x∗),
3. for some 0 < b ≤ c, μkb ≤ yki s

k
i for all i : ai (x∗) = 0 and (yk)Tsk ≤ μkc,

4. for some u ≥ 0, |ai (xk) + ski | ≤ μku for all i : ai (x∗) = 0,
5. for some d ≥ 0, ‖∇xL(xk, yk)‖ ≤ dμk(‖yk‖1 + 1),
6. the functions f and ai for i = 1, . . . ,m are convex functions, or

• there is a neighborhood S of x∗ and W of y∗ such that for all y ∈ W, the
function L̃(x, y) is star-convex around x∗ on S, and

• there is a constant C ≥ 0 such that ‖xk − x∗‖ ≤ C
√

μk .

Then, y∗ is maximally complementary, i.e., y∗
i > 0 whenever there exists some

Lagrange multiplier ỹ associated with x∗ with ỹi > 0.

Proof First, observe that for any Lagrange multiplier ỹ associated with x∗ we have

∑

i :ai (x∗)=0

ỹi
yki

≤
∑

i :ai (x∗)=0

1

μkb
ski ỹi

=
∑

i :ai (x∗)=0

1

μkb

(
ski (ỹi − yki ) + ski y

k
i

)

=
∑

i :ai (x∗)=0

1

μkb

(
(−ai (x

k))(ỹi −yki )+(ai (x
k)+ski )(ỹi − yki ) + ski y

k
i

)

≤
∑

i :ai (x∗)=0

ai (xk)(yki − ỹi )

μkb
+ u

b
‖yk − ỹ‖1 + c

b
. (21)

If we can show that ai (xk)(yki − ỹi ) is bounded by a constant times μk , then the
boundedness of the expression in (21) would imply that yki can only converge to zero
when ỹi = 0 for all Lagrange multipliers, which gives the result. The remainder of
the proof is dedicated to showing this and separately considers the two cases given in
assumption 6.

First, we consider the case where f and ai for i = 1, . . . ,m are convex functions.
Since ∇xL(x∗, ỹ) = 0, we have L(xk, ỹ) ≥ L(x∗, ỹ), and thus,

(a(xk) − a(x∗))T(yk − ỹ) =
(
L(x∗, ỹ) − L(x∗, yk)

)
+

(
L(xk, yk) − L(xk, ỹ)

)

≤ L(xk, yk) − L(x∗, yk)
≤ ∇xL(xk, yk)T(xk − x∗), (22)
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where the last inequality uses the convexity of L(x, yk) with respect to x . Since

(a(xk)−a(x∗))T(yk− ỹ)=
∑

i :ai (x∗)=0

ai (x
k)(yki − ỹi )+

∑

i :ai (x∗)<0

(ai (x
k) − ai (x

∗))yki

and ai (x∗)yki ≤ 0, we have

∑

i :ai (x∗)=0

ai (x
k)(yki − ỹi ) ≤ ∇xL(xk, yk)T(xk − x∗) −

∑

i :ai (x∗)<0

ai (x
k)yki .

It remains to bound the right-hand sideof theprevious expression. For i : ai (x∗) < 0

we have −ai (xk)yki ≤ −ai (xk )
ski

μkc ≤ 2μkc. Also, ‖∇xL(xk, yk)‖ ≤ dμk(‖yk‖1 +
1) ≤ dμk(‖y∗‖1 + 2). This concludes the proof in the convex case.

On the other hand, let us assume the remaining conditions in assumption 6. We
note first that we can take the Lagrange multiplier ỹ sufficiently close to y∗ without
loss of generality because for any Lagrange multiplier ŷ associated with x∗ we can
take ỹ of the form ỹ := η ŷ + (1 − η)y∗, η ∈ (0, 1), with the property that if ŷi > 0
then ỹi > 0. Now, similarly to (22), from the star-convexity of L̃(x, ỹ) and L̃(x, yk)
we have

(a(xk) − a(x∗))T(yk − ỹ) =
(
L̃(x∗, ỹ) − L̃(x∗, yk)

)
+

(
L̃(xk, yk) − L̃(xk, ỹ)

)

≤ L̃(xk, yk) − L̃(x∗, yk)
≤ ∇x L̃(xk, yk)T(xk − x∗). (23)

Hence,

∑

i :ai (x∗)=0

ai (x
k)(yki − ỹi ) ≤ ∇x L̃(xk, yk)T(xk − x∗) −

∑

i :ai (x∗)<0

ai (x
k)yki .

It remains to bound the right-hand side of the previous expression by a constant times
μk . Note that −ai (xk)yki ≤ 2μkc for i : ai (x∗) < 0 and

‖∇x L̃(xk, yk)‖ ≤ dμk(‖yk‖1 + 1) + 2θ
∑

i :ai (x∗)=0

‖∇ai (x
∗)‖2‖xk − x∗‖.

The result now follows from the bound ‖xk − x∗‖ ≤ C
√

μk . 
�
The next lemma shows that one can guarantee the upper bound on {‖xk − x∗‖}

given in assumption 6 of Theorem 3 by assuming the standard second-order sufficient
condition.

Lemma 3 (Hager and Mico-Umutesi [25]) Let f and a be twice differentiable at
a local minimizer x∗ with a Lagrange multiplier y∗ ∈ R

m satisfying the sufficient
second-order optimality condition:
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dT∇2
xxL(x∗, y∗)d ≥ λ‖d‖2, for all d such that

∇ f (x∗)Td ≤ 0,∇ai (x
∗)Td ≤ 0, i : ai (x∗) = 0, (24)

for some λ > 0. Then, there is a neighborhood B of (x∗, y∗,−a(x∗)) such that if
(x, v, s) ∈ B with v ≥ 0, vi = 0 for i : ai (x∗) < 0 and s ≥ 0, we have

‖x − x∗‖ ≤ C
√
max{‖∇xL(x, v)‖, ‖[a(x) + s]i :ai (x∗)=0‖, vTs}

for some C ≥ 0.

Proof The result follows from [25, Theorem 4.2] because the sufficient optimality
condition is equivalently stated at constraints a(x) ≤ 0 or at the slack variable formu-
lation a(x) + s = 0, s ≥ 0. Inactive constraints are removed from the problem and
equivalence of norms is employed. 
�

Another useful result is the following.

Lemma 4 (Debreu [16]) Let H ∈ R
n×n be a symmetric matrix and A ∈ R

m×n. If
dT Hd > 0 for all d ∈ R

n such that Ad = 0, then there exists θ ≥ 0 such that
H + θ AT A � 0.

Nowwe can replace our nonconvex assumptions in Theorem 3 by the second-order
sufficiency condition as follows.

Theorem 4 Let {(xk, yk, sk, μk)} ⊂ R
n × R

m × R
m × R with μk > 0 and μk → 0

be such that:

1. xk → x∗ with a(x∗) ≤ 0 and sk → s∗ := −a(x∗),
2. yk ≥ 0 and sk ≥ 0 with yk → y∗ (y∗ is necessarily a Lagrange multiplier

associated with x∗),
3. for some 0 < b ≤ c, μkb ≤ yki s

k
i for all i : ai (x∗) = 0 and (yk)Tsk ≤ μkc,

4. for some u ≥ 0, |ai (xk) + ski | ≤ μku for all i : ai (x∗) = 0,
5. for some d ≥ 0, ‖∇xL(xk, yk)‖ ≤ dμk(‖yk‖1 + 1),
6. f and a are twice continuously differentiable and (x∗, y∗) satisfies the sufficient

second-order optimality condition (24).

Then, y∗ is maximally complementary, i.e., y∗
i > 0 whenever there exists some

Lagrange multiplier ỹ associated with x∗ with ỹi > 0.

Proof Since the sufficient second-order optimality condition holds at (x∗, y∗) by
Lemma 4, there exists θ ≥ 0 such that

∇2
x,x L̃(x∗, y∗) = ∇2

x,xL(x∗, y∗) + θ
∑

i :ai (x∗)=0

∇ai (x
∗)T∇ai (x

∗) � 0.

It follows that there exists some neighborhoodB of (x∗, y∗) such that L̃(x, y) is convex
on x for all (x, y) ∈ B.
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Also, for vki := yki if ai (x∗) = 0 and vki := 0 otherwise, we have

‖∇xL(xk, vk)‖ ≤ ‖∇xL(xk, yk)‖ +
∥∥∥∥∥∥

∑

i :ai (x∗)<0

yki ∇ai (x
k)

∥∥∥∥∥∥
,

which is bounded by a non-negative constant times μk . By Lemma 3 we have ‖xk −
x∗‖ ≤ C

√
μk for some constant C ≥ 0. Hence, the result follows by Theorem 3. 
�

From the proof of Theorem 4we can see the term θ
∑

i :ai (x∗)=0(∇ai (x∗)T(x−x∗))2

in (20) is important because it guarantees L̃(x, y∗) is convex if the second-order
sufficient conditions hold. Conversely, even if the second-order sufficient conditions
hold, the Lagrangian L(x, y∗) may not be convex in a neighborhood of this point. For
example, consider the problem min−x2 s.t. x ≥ 0, x ≤ 0 at the point x = 0; the
second-order sufficient conditions are satisfied, but the Lagrangian is not convex in x .
However, as we show in Theorem 4, the second-order sufficient conditions imply the
nonconvex case of assumption 6 of Theorem 3.

Now that Theorem 3 and 4 are proved, we discuss possible extensions. When there
are additional constraints ãi (x) ≤ 0, i = 1, . . . , m̃ that are known to have a strict
interior (for instance, if they represent simple bounds on the variables), a common
implementation choice is to maintain feasibility for these constraints at each iteration,
instead of considering the slow reduction of feasibility suggested by (3c). Note that
assumption 4 of Theorem 3 is weaker than (3c) and includes the possibility of keeping
ãi (xk) + ski = 0, i = 1, . . . , m̃, at each iteration. With respect to the results of
Theorems 1 and 2, one may weaken their assumption 4 in order to consider the case
ãi (xk) + ski = 0, i = 1, . . . , m̃, by strengthening the corresponding assumption 5
by replacing the term ‖yk‖1 on the bound of ‖∇xL(xk, yk)‖ (which includes all dual
multipliers) by the possibly smaller sum of the multipliers associated only with the
original constraints ai (x) ≤ 0.

3 When thingsmay fail

We now limit our results to the convex case, where we explore the possibility of (3c)
not being satisfied (i.e., the constraint violation is not reduced at the same rate as
complementarity).

In the following theorem, we show that controlling the constraint violation rate
is essential for the boundedness of the dual sequence. In fact, we show that if the
constraint violation reduces faster than the barrier parameter μk , the dual sequence is
unbounded whenever the constraints are convex and the set of Lagrange multipliers
is unbounded. We note that a similar result was already known when the functions f
and a are linear [34, Theorem 4].

Theorem 5 Assume that a is convex and the feasible region has empty interior. Let
{(xk, yk, sk, μk)} ⊂ R

n × R
m × R

m × R with μk > 0 for all k and μk → 0 be such
that:
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1. xk → x∗ with a(x∗) ≤ 0 and sk → −a(x∗),
2. yk ≥ 0 and sk ≥ 0,
3. for some b > 0, μkb ≤ yki s

k
i for all i : ai (x∗) = 0,

4.
ai (xk )+ski

μk → 0 for all i : ai (x∗) = 0.

Then {yk} is unbounded.
Proof Note that there is no d ∈ R

n , d �= 0 with ∇ai (x∗)Td < 0 for all i : ai (x∗) = 0,
otherwise, x∗ + td would be interior for t > 0 sufficiently small. By Farkas’s Lemma,
there is some ŷ ∈ R

m with ŷ ≥ 0, ŷ �= 0, a(x∗)T ŷ = 0 and
∑m

i=1 ŷi∇ai (x∗) = 0.
For all i , we have ai (xk) ≥ ai (x∗) + ∇ai (x∗)T(xk − x∗) and hence a(xk)T ŷ ≥
a(x∗)T ŷ + ∑m

i=1 ŷi∇ai (x∗)T(xk − x∗) = 0. Thus,

ŷT(a(xk) + sk) = ŷTa(xk) + ŷTsk ≥ ŷTsk .

Take i such that ŷi > 0 and we have

0 < μkbŷi ≤ yki s
k
i ŷi ≤ yki ŷ

Tsk ≤ yki ŷ
T(a(xk) + sk).

Then, ŷT(a(xk) + sk) > 0 and yki ≥ bŷi
μk

ŷT(a(xk)+sk )
→ +∞. 
�

The next theorem shows that the dual sequence can have a poor quality in terms of
maximal complementarity if constraint violation is not reduced fast enough. We prove
that in this instance the dual sequence limits to a point with minimal complementarity.

Theorem 6 Let f andai for i = 1, . . . ,m beconvex functions and {(xk , yk, sk, μk)} ⊂
R
n × R

m × R
m × R with μk > 0 and μk → 0 be such that:

1. xk → x∗ with a(x∗) ≤ 0 and sk → s∗ := −a(x∗),
2. yk ≥ 0 and sk ≥ 0 with yk → y∗ (y∗ is necessarily a Lagrange multiplier

associated with x∗),
3. for some c ≥ 0, (yk)Tsk ≤ μkc,
4. 0 ≤ ai (xk) + ski for all i : ai (x∗) = 0,
5. for some d ≥ 0, ‖∇xL(xk, yk)‖ ≤ dμk(‖yk‖1 + 1).

Let ỹ ∈ R
m be some Lagrange multiplier associated with x∗ such that for all i :

ai (x∗) = 0,

• ai (xk )+ski
μk → +∞ when ỹi = 0, and

• ai (xk) + ski ≤ uμk or yki ≥ ỹi when ỹi > 0,

for some u ≥ 0. Then, y∗
i = 0 whenever ỹi = 0. In particular, if ỹ is minimally

complementary, that is, it has a minimal number of non-zero elements, then y∗ is also
minimally complementary.

Proof Let ỹ be a Lagrange multiplier associated with x∗. We have

∑

i :ai (x∗)=0

1

μk
(ai (x

k) + ski )(y
k
i − ỹi ) = 1

μk

∑

i :ai (x∗)=0

ski y
k
i + ai (x

k)(yki − ỹi ) − ski ỹi .

123



G. Haeser et al.

Since ski ỹi ≥ 0, (sk)Tyk ≤ μkc and, from the proof of Theorem 3, ai (xk)(yki − ỹi ) ≤
Cμk for some C ≥ 0, we have

∑

i :ai (x∗)=0

ai (xk) + ski
μk

(yki − ỹi ) ≤ c + C,

and the result follows. 
�
If assumption 4 in Theorem 6 is replaced by a similar one with a strict inequality,

and assumption 5 is replaced by ∇L(xk, yk)T(xk − x∗) ≤ dμk for some d ≥ 0, then
we can drop the assumption that {yk} is convergent. It will then follow that {yk} is
bounded, and any limit point y∗ will have the property stated in the theorem.

In the next section we investigate the numerical behavior of the dual sequences
generated by IPOPT on the NETLIB collection.

4 Numerical experiments

In this section, we contrast a well-behaved IPM, the one-phase IPM [26] that satisfies
(3), with IPOPT, an IPM that tends to moves the primal feasibility faster than (3)
would suggest. Empirically, we demonstrate on both linear and nonlinear programs
that IPOPT has issues with the dual multiplier norms exploding, but the one-phase
IPM does not. This demonstrates that our theory has practical implications for the
design of IPMs.

Many IPMcodes, such as IPOPT, keep si yi
μ

bounded below and require an inequality
similar to

‖∇xL(x, y)‖ + ‖a(x) + s‖ + max
i

si yi ≤ μ(1 + ‖y‖)

to hold before μ is decreased [36, Algorithm 19.1]. Hence assumptions 3–5 of The-
orem 4 hold, and it follows that the IPM iterates are likely to converge to a maximal
complementarity solution.

Our tests do not include IPMs that risk not tending to a minimal complementarity
solution, i.e., reduce the constraint violation slower than perturbed complementarity.
However, such IPMs certainly could be artificially created. This phenomenon might
also occur naturally, for example, in dual regularized IPMs [1] or �2-penalty IPMs
[15] if the algorithm is not well-designed.

The code for replicating our results can be found at https://github.com/ohinder/
Lagrange-multipliers-behavior.jl. We test on the NETLIB test set of real linear pro-
grams in Sect. 4.1 and then on three toy nonconvex programs in Sect. 4.2.

4.1 Linear programs

The focus of this section is showing that on the NETLIB test set – of real linear
programming problems – IPMs such as IPOPT, that aggressively reduce the primal
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Fig. 2 Comparison of the iterates of different IPMs on the NETLIB problem ADLITTLE

feasibility, will have unnecessarily large dual iterates. As we discussed in the intro-
duction, the convergence analysis of IPOPT and many other nonlinear optimization
solvers [14,41] assumes that the set of dual multipliers at the convergence point is
bounded to guarantee that the dual multipliers do not diverge. One natural question
is whether these assumptions are valid on a test set like NETLIB. As documented in
Table 4 in the “Appendix”, we find that 64 of the 95 linear programs we tested lack a
strict relative interior, and therefore Mangasarian-Fromovitz constraint qualification
fails to hold. See the “Appendix” for more details on the experiments.

The next natural question is to check if the violation of these assumptions translates
into undesirable behavior on these test problems. Consider Fig. 2 where we plot the
performance of IPOPT on the problem ADLITTLE from the NETLIB collection. As
our theory predicts when the primal feasibility is reduced faster than complementarity,
the dual variables increase substantially. When IPOPT’s default perturbation strategy
is used, while the final dual variable value is only 3×103, the maximum dual variable
value still spikes to 4×107 on iteration 22. This contrasts with the one-phase IPM [26]
that smoothly reduces the constraint violation, dual feasibility, and complementarity;
consequently, the maximum dual variable follows a smooth trajectory.

Next, we show that this phenomenon occurs across the whole NETLIB test set.
We run these IPMs on the NETLIB problems with less than 10, 000 non-zero entries
and record the maximum dual variable value (across all the IPMs iterates). All solvers
successfully terminate, within the maximum number of iterations of 300, on 56 of
the 68 problems. See the “Appendix” for further details. Figure 3 plots an empirical
cumulative distribution over the maximum dual variable for each solver. In particular,
for each solver, it plots the function g : [0, 1] → R where g(θ) is the maximum
dual variable value of the problem, for which, exactly a θ proportion of the problems
have a smaller or equal maximum dual variable value. The plot illustrates that the
maximum dual variable of IPOPT in the last few iterations (either with or without the
default perturbation) is unnecessarily large for most problems that lack a strict relative
interior.
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Fig. 3 Comparison of the maximum dual variable value over the last 20% of iterations for different IPMs
on the NETLIB collection

4.2 Nonconvex programs

This section focuses on nonconvex programs. We test IPOPT and the one-phase IPM
on three toy examples. The results for these examples are given in Table 1, and we
believe validate the utility of our theory. Additional figures displaying the algorithm
trajectories are given in “Appendix A.3”. The first two problemswere chosen to satisfy
the assumptions of our theory. The final problem gives an example, derived from issues
encountered in drinkingwater network optimization, where dualmultipliers exploding
is a practical issue.

Intersection of two circles. This problem is written as

minimize − (x1 − 1)2 + x22 (25a)

subject to x21 + x22 ≤ 1 (25b)

(x1 − 2)2 + x22 ≤ 1. (25c)

The constraints require the solution to lie in the intersection of two circles, and the
objective is a nonconvex quadratic. At the optimal solution (and only feasible solu-
tion) given by x1 = 1, x2 = 0, the Mangasarian-Fromovitz constraint qualification
(MFCQ) does not hold. However, the point is a KKT point. Furthermore, the set of
dual multipliers corresponding to this KKT point, contains both the point (1, 1)which
satisfies strict complementarity and the point (0, 0) which does not satisfy strict com-
plementarity.

As we show next, this problem satisfies the assumptions of Theorem 2 and Theo-
rem 4 at the point x1 = 1, x2 = 0. A picture of this problem is given in Fig. 4. Next,
we verify that the assumptions of Theorem 2 are met. Recall x∗ = (1, 0). Observe,
the Lagrangian, its gradient and its Hessian are
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Table 1 A selection of nonlinear programming problems for testing dual multiplier behavior

Solvers Iterations Max dual Strict complementarity

Intersection of two circles

One phase 6 1.2 1.2

Ipopt w/o perturb 26 6.6 × 109 4.0 × 108

Ipopt w. perturb 19 7.3 × 106 9.1

Linear program with complementarity constraints

One phase 8 1.2 × 101 8.5 × 10−1

Ipopt w/o perturb 28 5.8 × 109 2.0

Ipopt w. perturb 25 3.6 × 105 2.0

Drinking water network optimization

One phase 9 1.7 2.9 × 10−1

Ipopt w/o perturb 6* 1.2 × 104 1.1 × 10−7

Ipopt w. perturb 44* 1.9 × 103 1.2 × 10−6

Suppose the algorithm is generating a sequence of primal iterates xk , slack iterates sk , and dual iterates yk .
‘Max dual’ refers to the value ‖yk‖∞ over the last 20% of iterations. ‘Strict complementarity’ refers to the
minimum value of mini y

k
i + ski over the last 20% of iterations

A * indicates on these problems the ‘dual multiplier calculator in IPOPT failed and therefore the algorithm
terminated unsuccessfully. See Sect.A.3 for plots of IPM trajectories for these problems

Fig. 4 Picture of the circle
intersection problem given in
(25)

L(x, y) = −(x1 − 1)2 + y1(x
2
1 + x22 − 1) + y2((x1 − 2)2 + x22 − 1)

∂L(x, y)

∂x1
= −2(x1 − 1) + 2y1x1 + 2y2(x1 − 2)

∂L(x, y)

∂x2
= 2(y1 + y2)x2

∇2
xxL(x, y) = 2

(
y1 + y2 − 1 0

0 y1 + y2 + 1

)
.

From this we observe assumption 6 holds with y∗ = (1, 1) and ∇xL(x∗, y∗) = 0.
Furthermore, from ∇2

xxL(x, y) we deduce L(x, y) is convex in x if y1 + y2 ≥ 1.
This verifies assumption 7 of Theorem 2 with θ = 0. The remaining assumptions of
Theorem 2 are naturally satisfied by the one-phase IPM.
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Next, we verify the assumptions of Theorem 4. Since yk is bounded, there exists a
convergent subsequence with limit y∗, where y∗ satisfies ∇xL(x∗, y∗) = 0. Further-
more, dT∇2

xxL(x∗, y∗)d ≥ λ‖d‖22 on the null space of the Jacobian of the constraints
(d1 = 0).

Linear programwith complementarity constraints. This problem is written as

minimize 3x1 − 2x2 (26a)

subject to x1 + 3x2 ≤ 2 (26b)

x1x2 ≤ 0 (26c)

x1, x2 ≥ 0. (26d)

At the unique local optima given by x1 = 2 and x2 = 0, MFCQ does not hold.
However, the point is a KKT point. It is straightforward to see that this problem
satisfies the assumptions of Corollary 1 and Theorem 4. The fact that Corollary 1
holds is immediate because linear functions are convex. Theorem 4 requires verifying
the second-order sufficient conditions hold. They do because the null space of the
Jacobian of the constraints evaluated at the solution x1 = 2, x2 = 0 only contains
zero.

Therefore, our theory proves that for the one-phase IPM the dual multipliers remain
bounded and strict complementarity holds for both the ‘intersection of two circles’
and ‘linear program with complementarity constraints’ problems. Table 1 demon-
strates this behavior is seen in practice. Table 1 also shows IPOPT has issues with
the dual multiplier values exploding on these problems. Both solvers maintain strict
complementarity for these problems.

Drinking water network optimization. The final example is a toy drinking water
network optimization problem (see [13] for the formulation of real drinking water
network optimization problems as nonlinear programs). The aim is to choose the
minimum inlet pressure to ensure that minimum node pressures and demand for water
are met. We stumbled across this example when experimenting with our one-phase
IPM [26] on real drinking water networks. A diagram representing the water network
is given in Fig. 5.

minimize h1 (27a)

subject to x1,2 + x1,3 = 2 (27b)

x1,2 + x2,3 = 1 (27c)

x1,3 = 1 (27d)

x1.81,2 = h1 − h2 (27e)

x1.81,3 = h1 − h3 (27f)
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Fig. 5 Picture of the drinking
water network optimization
problem given in (27). Flows
across the edges are given by the
x variables and pressures at
nodes by the h variables

x1.82,3 = h2 − h3 (27g)

h1, h2, h3, x1,2, x1,3, x2,3 ≥ 0 (27h)

Equation (27b) states that 2 units of water are available at node 1. Equation (27c)
and (27d) states that 1 unit of water is demanded at both node 2 and node 3. Finally,
(27e), (27f), (27g) represent the pressure loss in pipes due to friction. Our objective
minimizing the inlet pressure is equivalent to minimizing the shafting speed of a
variable speed pump at node 1.

The optimal solution (and unique local minimizer) occurs at x1,2 = 1, x1,3 =
1, x2,3 = 0, h1 = 0.29, h2 = 0, h3 = 0. At this point, MFCQ fails but nonetheless
the solution is a KKT point. We included this problem because it corresponds to a
‘physically meaningful’ problem where MFCQ fails to hold at the optimal solution.1

Table 1 shows that the one-phase IPM keeps the dual variables bounded but fails to
maintain strict complementarity for this problem. On the other hand, IPOPT seems
to have issues with both the dual multipliers exploding and strict complementarity
failing.

5 Final remarks

We demonstrated that carefully controlling both primal feasibility and the barrier
parameter are important when designing IPMs to ensure the dual multipliers are well-
behaved. In the linear programming community, there was awareness of this issue
[34], and thus, many implemented IPMsmove primal feasibility and complementarity
at the same rate [2,33]. However, in the general nonlinear programming community,
there is a lack of awareness of this issue. Consequently, there are few papers (e.g.,
Hinder and Ye [26]) that consider the relative rate of reduction of primal feasibility
and complementarity.

1 A popular misconception is that when the constraints of a optimization problem are defined by ‘physics’,
MFCQ always holds. This is a nice counter-example.
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A Experimental details

The code for the experiments can be found at https://github.com/ohinder/Lagrange-
multipliers-behavior.

A.1 Solvers

One-phase solver. For the well-behaved interior point solver, given a problem of the
form

minimize f (x)

subject to c(x) = 0

xL ≤ x ≤ xU ,

we can re-write the constraints as

minimize f (x)

subject to c(x) ≤ 0

−c(x) ≤ 0

xL ≤ x ≤ xU .

This gives a problem of the form

minimize f (x)

subject to a(x) + s = 0

s ≥ 0,

which we can pass to the one-phase solver.
The terms in Fig. 2 and Table 1 are given as follows:

– The infinity norm of the primal residual is given by ‖a(x) + s‖∞.
– The infinity norm of the dual residual is measured by ‖∇L(x, y)‖∞.
– The infinity norm of complementarity is given by maxi si yi .
– We measure strict complementarity by mini si + yi .

The optimality termination criterion of the one-phase IPM is

max

{
100

max{‖y‖∞, 100} max{‖∇xL(x, y)‖∞, ‖Sy‖∞}, ‖a(x) + s‖∞
}

≤ 10−6.

For more etails on the one-phase IPM see the paper [26] and code (https://github.com/
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Table 2 Solver options Option Value

IPOPT

Max iter 300

tol 1.0 × 10−6

acceptable_tol 1.0 × 10−6

acceptable_iter 99999

acceptable_compl_inf_tol 1.0 × 10−6

acceptable_constr_viol_tol 1.0 × 10−6

acceptable_constr_viol_tol 1.0 × 10−6

bound_relax_factor 0.0*

One phase

max_it 300

tol 10−6

The * indicates this option was only changed for ‘IPOPT w/o perturb’.
For ‘IPOPT w. perturb’ this was kept at its default value of 10−8

Table 3 NETLIB problems where a solver failed

IPOPT w/o perturb PEROLD, FFFFF800, SCAGR25, SHELL, SHARE1B, AGG3, VTP-BASE (7 total)

IPOPT w. perturb PEROLD, FFFFF800, SCAGR25, SHELL, SHARE1B, VTP-BASE (6 total)

One phase PEROLD, PILOT4, AGG2, PILOT-WE, GROW15, GROW22 (6 total)

ohinder/OnePhase.jl). The linear solver used was the default Julia Cholesky factor-
ization (SuiteSparse).

IPOPT. We use IPOPT 3.12.4 with the linear solver MUMPS. Given any generic
nonlinear problem, IPOPT rewrites it in the form (by adding slacks to inequalities, see
[42])

minimize f (x)

subject to c(x) = 0

xL ≤ x ≤ xU .

For practical reasons related to the interface we use [17], we do this reformulation
ourselves. We then measure

– Primal feasibility by ‖c(x)‖∞.
– Dual feasibility by ‖∇ f (x) + ∇c(x)T λ − zL + zU‖∞, where zL and zU are the
dual multipliers corresponding to the constraint x ≥ l and x ≤ u respectively
(same notation as in [42]).

– Complementarity is given by max{maxi ((zL)i (xi − li )),maxi ((zU )i (xi − ui ))}.
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Table 4 Problems in NETLIB collection with a strict relative interior

Problem name Strict interior Problem name Strict interior

25FV47 True PILOT-JA False

80BAU3B False PILOT-WE False

ADLITTLE False PILOT False

AFIRO True PILOT4 False

AGG False PILOTNOV False

AGG2 False QAP12 Tue

AGG3 False QAP8 True

BANDM False RECIPELP False

BEACONFD False SC105 False

BLEND True SC205 False

BNL1 False SC50A False

BNL2 False SC50B False

BOEING1 False SCAGR25 True

BOEING2 False SCAGR7 True

BORE3D False SCFXM1 False

BRANDY False SCFXM2 False

CAPRI False SCFXM3 False

CYCLE False SCORPION False

CZPROB False SCRS8 False

D2Q06C False SCSD1 True

D6CUBE True SCSD6 True

DEGEN2 False SCSD8 True

DEGEN3 False SCTAP1 True

DFL001 False SCTAP2 True

E226 False SCTAP3 True

ETAMACRO False SEBA False

FFFFF800 False SHARE1B True

FINNIS False SHARE2B True

FIT1D True SHELL False

FIT1P True SHIP04L False

FIT2P True SHIP04S False

FORPLAN False SHIP08L False

GANGES False SHIP08S False

GFRD-PNC False SHIP12L False

GREENBEA False SHIP12S False

GREENBEB False SIERRA False

GROW15 True STAIR False

GROW22 True STANDATA False

GROW7 True STANDGUB False

ISRAEL True STANDMPS False
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Table 4 continued

Problem name Strict interior Problem name Strict interior

KB2 True STOCFOR1 True

LOTFI True STOCFOR2 True

MAROS False TRUSS True

MODSZK1 False VTP-BASE False

NESM False WOOD1P False

PEROLD False WOODW False

QAP15 True

– Wemeasure strict complementarity by min{mini ((zL)i (xi − li )),mini ((zU )i (xi −
li ))}.
The details of this computation can be found in the file ‘src/shared.jl’ in the function

‘add_solver_results!’.
The options chosen for the solvers are given in Table 2. We turn off the accept-

able termination criterion for IPOPT to try to make the termination criterion of the
algorithms as similar as possible.

A.2 NETLIB LP test details

The linear programs in the NETLIB linear programming collection come in the form
min cT x s.t. Ax = b, l ≤ x ≤ u. Table 3 shows which solver failed on which problem.

Table 4 shows when there is a feasible solution according to Gurobi when the
bound constraints are tightened by δ i.e. find a solution to the system Ax = b and
u − δ ≥ x ≥ l + δ. We tried δ = 10−4, 10−6, 10−8 and obtained the same results
with Gurobi’s feasibility tolerance set to 10−9. We found 29 problems with a feasible
solution and 64 without a feasible solution in the NETLIB collection. We used Gurobi
version 7.02.

A.3 Additional figures for nonconvex problems

This section gives plots of solver trajectories for the nonconvex problems of Sect. 4.2.
See Figs. 6, 7 and 8.
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Fig. 6 Comparison on the problem of finding the intersection of two circles

Fig. 7 Comparison on a linear program with complementarity constraints

Fig. 8 Comparison on a toy drinking water network optimization problem
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