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1. Introduction

Despite the fact that multivariate time series (MTS) research has been
ongoing for more than four decades, it is still not as thoroughly investi-
gated as univariate time series. This discrepancy arises partly from the
unique features of MTS, which diverge from traditional statistical princi-
ples. Although classical approaches usually depend on random sampling
and the assumption of independence, MTS are typically marked by
strong correlations [1].

However, the field has garnered attention from Machine Learning
(ML) researchers, motivated by recent achievements in token sequence
modeling, particularly in tasks related to Natural Language Processing
(NLP). Models like the Transformer [2] have generated groundbreak-
ing results in tasks such as question answering and text classification,
thereby prompting the question: Can such successes be replicated in the
context of time series?

For most applications, ML algorithms perform poorly compared to
traditional statistical methods for univariate time series [3]. One of the
main hurdles is that deep learning models, largely responsible for the
ML revolution in NLP, are particularly susceptible to overfitting in uni-
variate scenarios. However, multivariate problems exhibiting complex
interactions are not easily modeled by classical approaches. This makes
it an attractive area for ML research.

This work introduces a cost-effective encoder-decoder architecture
based on recurrent and graph neural networks (RNNs and GNNs), cou-
pled with a time representation capable of forecasting MTS. Moreover,
this proposed model can process data from sensors with differing
sampling rates and missing data profiles without resorting to data im-
putation techniques, which are often unfit for highly irregular MTS
obtained from uncoordinated sensors. Our dataset consists of measured
motion data from Floating Production, Storage, and Offloading units
(FPSOs)—floating sea platforms used for oil extraction. Moored to the
seafloor, FPSOs display intricate oscillatory behavior influenced by en-
vironmental factors such as wind, currents, and waves. Considering the
successes obtained in this complex real-world scenario, we argue that the
proposed architecture can be successful in a wide range of applications.

The key contributions of this work are fourfold.

We propose a definition for MTS and its associated forecasting task
that accounts for irregularities.

Based on this definition, we propose a comprehensive end-to-end
system capable of modeling FPSO hydrodynamic behavior at low
computational costs and without the need for elaborate data prepro-
cessing routines.

We demonstrate that the combination of time encoding and masked
training improves the modeling of complex oscillatory dynamics rep-
resented as time series, especially when large missing data windows
are present.

We provide evidence that RNNs trained with our method exhibit tem-
poral generalization, being able to generate target sequences with
sampling frequencies unseen during training.

In light of the above, this article is organized as follows. Section 2
presents the foundational concepts that underlie this work and provides
a synopsis of how data irregularities can affect common ML architec-
tures. Section 3 outlines the proposed architecture, while Section 4
offers a more detailed description of the dataset and experimental setup.
Sections 5 and 6, respectively, present the experimental results and offer
some conclusions, as well as directions for future work.

2. Background and definitions

A multivariate time series (MTS) M is often defined as a sequence
Z = [z),...,z;] with z, € RX, or equivalently as a matrix Z €
RIXK where L is the number of observations and K the number of
variables [1]. Most works assume a common, constant sampling rate,
replacing the timestamp vector t = [¢,,...,7;] by the trivial grid t =
[1,...,L]. When explicit timestamps are provided, they are treated as
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Fig. 1. Regularizing an irregular MTS may explode the number of inferred val-
ues. In this toy case the observed series has 5 points, yet its grid-aligned version
requires 18. Red circles denote imputed entries.

identical across variables, reducing any irregularity to missing values
on this grid.

To restore a regular grid, practitioners routinely impute missing data
or supply a missing value mask. Classic imputation families include [4]:
mean imputation, linear interpolation, k-nearest neighbors, multiple imputa-
tion, and matrix factorization. While this enables the direct use of RNNs,
Transformers and MLPs on Z [5], the predictive model becomes tightly
coupled to the chosen imputation strategy. Moreover, as Fig. 1 illus-
trates, combining misalignment, variable sampling rates, and sparsity
can inflate the grid dramatically, making full regularization impractical.

An alternative is to let the model reason about missingness explicitly
via a binary mask M € {0, 1}1*X:

0, Z,,missing,
Mt,k = ’
1, Z, observed.

The augmented input [Z, M] € RL*2 K is then fed to the network, allow-
ing it to learn directly from the available entries while being aware of
the gaps [6,71.

2.1. Removing regularity assumptions

Irregularities in MTS data fall into four broad classes:

Irregular sampling — uneven collection frequencies across sensors
or time.

Missing data — partial gaps in individual variables (distinct from
full-sample irregularity).

Time offsets — misalignments that quickly sparsify the implicit grid
(cf. Fig. 1).

Heterogeneous formats — variables may be images, audio, or text
rather than simple scalars.

The early variants of RNN for continuous systems—Phased-
LSTM [8], GRU-D [7], Neural ODE (NODE) [9]—already addressed
uneven timestamps and introduced masks for missing entries, building
on the continuous-time foundations of Ref. [10]. In NODEs, a continu-
ous latent trajectory is modeled by f : 7 — Y c RX, whose dynamics
obey an ODE [11]. Real measurements, however, are discretized approx-
imations; limited temporal resolution can register multiple events at the
same recorded instant, as in particle-physics detectors [12]. Hence f
need not be bijective in practice.

In a more significant relaxation step, each variable can be treated
as an independent sequence or encoded as triplets (¢, z, m), decoupling
their sampling grids [13-15]. We adopt this per-variable view, which
mirrors real sensor networks and highlights the complications of forcing
misaligned data into a single regular grid (Fig. 1).
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Definition 1 (Multivariate Time Series). An MTS is a pair of finite sets

of sequences M = (S, 7). The set S = {Zi}ll,f‘1 contains |S| sequences

7l = [zﬁl,ziz, vz .1, where each measurement zl € X' is associated
L
. ) s . .
with a timestamp ¢ € R. The set 75 = {T" }I|.=|1 contains all non-decreasing
sequences of timestamps T! = [£, ... ,t"L,] associated with S.

Each source i produces a pair (Z/,T') with a consistent format X*
and no internal gaps, but the collection M = {(Z‘ ,T")};.g=l may exhibit
every irregularity introduced above. Splitting the measurements S =
{Z'} from their timestamps 75 = {T'} simplifies the forecasting setup
and unifies previous treatments.

A single (Z/, T') is itself an MTS, one whose only irregularity is un-
even sampling of complete states z! € X'. In Section 3 we encode each
pair with an independent, time-aware RNN; we call the corresponding
data source sensor, although it does not need to correspond to a physical
Sensor.

The domain X’ reflects the data type: for tabular streams X' ¢ RK'
(e.g. wind speed & direction, K’ = 2); for images X' c RE>W'XK' (e.g.
satellite cloud maps). This work focuses on the tabular case.

We term irregularities any property that prevents stacking the se-
quences into a single tensor of shape L xshape(X), such as misalignment,
missing data, or heterogeneous formats. Rather than treating an MTS as
a uniformly sampled trace of a dynamical system D,, we view it as a set
of measurement sequences S with their own timestamp sets 7, sampled,
possibly irregularly, from D,.

2.2. Forecasting multivariate time series

For a given MTS M = (S, 7s), we consider an observer with access to
limited information in the form of a contextual MTS. The observer’s goal
is to estimate the values of the system D, on a set of target timestamps.

Definition 2 (Regression task on MTS). Given a context MTS M,
and a target MTS M, = (S, T s, ), the regression task on MTS consists
of finding a function f such that f(M,, Tsf) =S;.

This definition covers MTS regression for any type of irregularity. In
this work, we are particularly interested in the forecasting task. Given
an observer at time #,, the goal is to forecast the behavior of certain
variables based on the data available at 7.

A subtle aspect of this problem is that the observer, at 7, does not
know when or even if the events in S f will occur. However, the task is
not to predict the occurrence of these events, but rather to predict the
values they would take if they were to occur at predefined timestamps
T 5 In other words, the objective is to predict the state of the underlying
continuous system D, at specific points in time using only the limited
information available in M,. This represents a key distinction between
Temporal Point Processes (TPPs) [16] and MTS forecasting, where the
former focuses on predicting the event occurrence itself.

A general procedure for extracting M, and M, is as follows. Let
14 denote the observer’s time, and define three parameters: Ci, F', and
O' € R, representing the context length, forecast length, and offset time,
respectively:

M, =(S,.Ts) @
S.={zZeS|t,-C' <1<y}, (2)
Ts b S.. ®
My = (S} Ts), )
Sp={zeS|ty<t<ty+F} )
Ts, b Sy ©)

where - represents the mapping between events and their corresponding
timestamps.

Fig. 2 illustrates this process. Reducing C' is often motivated by the
computational cost of processing long context windows, and by the fact

Applied Soft Computing 186 (2026) 114039

; 1 1 1 1
; 2y Pty Pty Pty
VA —O0———0——0O0—0—@ >
|
Cl d
) 1 2
i Ztl i th:
72 . | ] =
02 2 F2
3 s 3 .3
5 Ztl E Ztg Ztg zt4
7 —e— O—O—O—+—& % >
G L =
o ] LA
03 i F3

tg  [J: Context MTS - M,
[]: Target MTS - Mf

Fig. 2. An efficient method to extract context and forecast window pairs from an
MTS involves defining C' and F'. In this example, sensor 3 has an empty context
window due to missing data, and sensor 1 is only used for context, i.e., F! =0.

that in many systems, the autocorrelation between states diminishes
over time. Note that no event must occur precisely at 7.

This approach differs from traditional formulations, where MTS is
treated as a grid-like structure. In such cases, t, € Z represents the step
from which forecasting begins, and the last C steps are used to predict
the next F steps. As detailed above, this approach is inadequate for irreg-
ular MTS, while our method embraces the complexities of asynchronous
data, offering a more flexible solution to the forecasting task.

2.3. RNNs and GNN s as restrictions on F

In supervised learning we approximate f by f, €F, the architecture-
defined function class parameterised by 6 € ®; suitable parameterisation
ensures universal approximation [17]. Many neural architectures can be
viewed as symmetry-restricted optimisers: CNNs encode translation, gated
RNNs and Transformers encode temporal or attentional symmetries,
etc. [18].

For time series, strong temporal correlations and noise mean an
unconstrained 7 (e.g. an MLP) overfits quickly [1]. We attribute the
poor long-horizon performance of Transformers relative to simple lin-
ear models [19] to this lack of inductive bias—compounded by quadratic
memory in sequence length.

RNNs [20] maintain a compact hidden state with constant mem-
ory, which is suitable for long sequences. Fig. 3 (left) shows a generic
block; the encoder-decoder setup on the right processes a window
[21-3> 212> 211 into A, _;, then predicts (2, 2111

We adopt t?le GRU [21]. Gated RNNs are quasi-invariant to time warp-
ings, i.e. monotone differentiable maps = : R* — R*: for any f, and ¢
there exists f, € F that processes Zor identically [22]. This holds while
7 is continuous; discontinuities induced by missing windows break the
assumption, motivating richer RNN variants. Recent state-space mod-
els such as S4 and Mamba approach Transformer accuracy with linear
memory [23,24], reinforcing RNNs as strong baselines for time-series
tasks.

To exchange information across sensors Z! we employ a Graph Neural
Network [25]. Message passing at layer k is

k _ k( ok=1 k(k=1 k=1
xE =7 (xE Drewod (X711 ) @

where ¢ is the message function, [] a permutation-invariant aggrega-
tor, and y* the update. This permutation symmetry ensures isomorphic
graphs share representations, again constraining 7. We choose the
Heterogeneous Graph Attention Network (HGAT) [26], treating sensors
and relations as distinct node and edge types (see Section 3). A survey
of GNN variants appears in [27].
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Fig. 3. Basic RNN block (left). RNN in an auto-regressive setup for a sequence-to-sequence task on an evenly spaced time series (right).

2.4. FPSO dynamics and irregularities in MTS

Although the contributions of this work apply to a general MTS con-
text, it was developed to address the challenge of maintaining stable
positions of floating platforms in deep water. FPSO units have been
used for years to safely extract offshore oil reserves. These floating plat-
forms enable the extraction and storage of crude oil while being held in
place using mooring lines anchored to the ocean floor. Mooring systems
play a critical role in ensuring positional stability, personnel safety, and
smooth operation of various operations on a platform, such as extraction,
production, and oil offloading.

The constant exposure of floating structures to offshore environmen-
tal conditions such as waves, currents, and wind leads to continuous
stresses and strains on the platforms. Consequently, the structural
integrity and mooring lines of these platforms degrade over time.
Understanding and modeling the complex dynamics of the floating plat-
form allow real-time detection of unexpected oscillatory patterns, which
can help to assess the integrity of the mooring lines. In this work, we
analyze all six degrees of freedom (DoF) of FPSO motion: surge, sway,
and heave, which are translations; heading, roll, and pitch, which are
rotations. Fig. 4 depicts all six time series. Note the differences in reg-
ularity and periodicity between high-frequency DoFs (pitch, roll, and

heave) and low-frequency ones (heading, surge, and sway). The high-
frequency DoFs exhibit much lower damping effects, and consequently
more pronounced oscillatory patterns.

The ever increasing amount of data generated by sensors can be
used to train ML algorithms for this task, but the same environmental
characteristics that deteriorate the mooring system also affect the sen-
sors, which are reflected in the measurements. Typical sensor data from
FPSOs suffer from long missing data windows, different polling rates
between sensors, and other deformities.

3. The gap-ahead multivariate time series regressor

Building on the concepts from Section 2, we introduce an architec-
ture for the MTS forecasting task for M = ({Zi}!i(l), {Ti}lil)). We call
this the Gap-Ahead Multivariate Time Series Regressor (GAMR). GAMR’s
design is motivated by the need to handle individual sensor dynamics,
irregular sampling, and inter-sensor interactions within an MTS.

GAMR is built upon three core components:

1. Independent Sensor Encoding: Each sensor’s data stream (Zi, T')
is initially processed by an independent sequence model, capturing
its unique temporal characteristics.
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Fig. 4. Example windows of all six time series. High-frequency motions (pitch, roll and heave) display lower damping effects and more pronounced and well-behaved
oscillatory patterns, while low-frequency (heading, surge, sway) exhibit high level of noise and damping effects.
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Fig. 5. The GAMR architecture overview. 1) Measurements are enriched with encoded representations of future timestamps. Each time series is encoded by an
independent sequence model (here, an RNN). 2) A Regularized Heterogeneous GAT updates the node representation 4, , based on its neighborhood. 3) The updated

representation ;" initializes an autoregressive decoding process.

2. Gap-Ahead Time Encoding (GATE): A novel temporal encoding
mechanism that explicitly informs the model about irregular time
intervals between measurements, enabling flexible forecasting
across potentially varying sampling rates.

3. Information Diffusion via Heterogeneous Graph Attention
Network (HGAT): Based on [26,28], this component facilitates
information exchange between sensors, modeled as different node
types in a graph, enriching each sensor’s representation with
contextual information from others. This heterogeneous graph ap-
proach has proven effective for propagating information among
encoded time series [29].

Fig. 5 illustrates the GAMR architecture’s forward pass, which pro-
ceeds in three stages.

- Stage 1: Independent Encoding with GATE. Each sensor’s con-
text window (Zic,Tic) is processed by its dedicated sequence model.
While various sequential models could be used, our experiments uti-
lize RNNs. Crucially, this stage incorporates the GATE mechanism,
which encodes the time gap to the next event. The output is a fixed-
size, time-informed hidden representation 4/ € R for each sensor
l.

Stage 2: Information Diffusion via HGAT. The hidden representa-
tions /! from Stage 1 serve as initial node features in a Heterogeneous
Graph Attention Network (HGAT) with g layers. We construct a
fully-connected graph where each node represents a sensor i, and
crucially, each sensor is assigned a unique node type. This setup
defines a distinct relation type r € R for every ordered pair of sen-
sors (i, j), resulting in | S|? relation types. The HGAT mechanism [26]
is specifically designed to handle such heterogeneity by learning a
separate attention mechanism or message-passing function for each
relation type r. Applying g layers of graph convolutions allows the
model to approximate complex interactions tailored to each specific
sensor pair (i,j). We use a fully-connected graph topology inten-
tionally, treating the HGAT primarily as a powerful mechanism for
global information propagation among all sensors, rather than lever-
aging explicit, pre-defined structural relationships which may not
exist or be known. This process yields enriched representations h;’+
that integrate context from all other sensors. While other informa-
tion diffusion techniques could potentially be employed at this stage,
exploring them is beyond the scope of this paper.

Stage 3: Autoregressive Decoding. Each sensor’s sequence model
(e.g., RNN) is initialized with the enriched state h;’+. It then generates
hidden states h! sequentially for the target timestamps Tif using the
GATE mechanism in an autoregressive manner. For each target time
te Tif, a sensor-specific linear layer (W', b’) maps the hidden state
to the prediction 2:

gZ=Whi+b. (8

During decoding, the prediction Z; ' (as z! for the next step) and the

state h (as k| ) are fed back into the sequence model to predict the

value at the subsequent target timestamp, continuing until all values
for T} are estimated.

3.1. The gap-ahead time encoding mechanism

The GATE mechanism, detailed in Fig. 6, operates as follows. First, it
encodes the relative time 1" =t — 1, where #, is a reference timestamp,
using a time encoding function ¢ : R — R, This yields negative ¢/
for past events and positive ¢’ for future events relative to ¢, providing
temporal context and a common clock across sensors. Note that V' €
Tic, ' <0and V¢ € Tif, t'>0if t, marks the boundary between context
(M,) and forecast (M ;) windows.

Second, GATE concatenates the encoded time G(¢') with the value of
the previous measurement z! before feeding it into the sequence model:

R = SeqModel’ (z;; 11 6. hL) , ©)

where || denotes concatenation and SeqModel’ is the sensor-specific se-
quence model (e.g., RNN'). This fundamentally reinterprets the sequence
model’s iteration. Unlike a standard RNN step (Fig. 3) which processes
the current measurement z,, the GATE-infused step uses the previous mea-
surement zj_ and the target time ¢ encoding G(r'). The model learns a
into the hidden
state 4! and and evolves this state forward in time from 7_ to 7. This dy-
namic adjustment of the time step resembles numerical ODE integration
methods.

For the time encoding function G, our experiments use the standard
sinusoidal positional encoding (PE) from Ref. [2] as the default:

transformation that integrates the information from z/

Q(t/ )y x = sin > , for even indices, (10)

t!
< 10002 k/T

t

W) , for odd indices. (11)

g(tl)z k+1 = COS <

We opt for this nonparametric absolute time encoding (ATE) be-
cause of its straightforward nature and the minimal enhancements

hy

Fig. 6. GATE block setup. The transformation performed by the sequence model
(here, an RNN) incorporates zy into h;, and translates the hidden representation
forward to time 7. The resulting state h! is projected by a linear layer (LL) to
produce the prediction 2],
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observed in previous research on fully learnable positional encoding
alternatives over the nonparametric baseline [30]. However, we also
tested Time2Vec [31], which is a parameterized ATE, in one of our
model variants. It is worth mentioning that GATE can work with any
ATE method. Although refining the selection of G could potentially
boost performance, a detailed investigation is postponed for future
work.

Importantly, although our experiments primarily utilize RNNs as the
sequence processing backbone within GATE, the mechanism itself is gen-
eral. It can potentially be applied to any sequential model that iteratively
updates hidden states, such as Echo-State Networks [32] or Structured
State Space models (S3) such as Mamba [23]. In this work, we focus
on RNNs and defer the exploration of GATE with alternative sequence
modeling architectures to future research.
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The target timestamps 7, can be arbitrarily defined during infer-
ence. Section 5 demonstrates GATE’s ability to generate forecasts at
frequencies not encountered during training.

We train GAMR using supervised learning with the Adam optimizer
[33]. Training batches are formed by uniformly sampling 7, from the
continuous time span of training data, not just from existing measure-
ment timestamps (z;'d) need not exist). This continuous sampling acts
as dynamic data augmentation; multiple values 7, can yield the same
pair (M, M) but with different relative time encodings G(r — 14), Pro-
moting temporal robustness, similar to techniques image translation in
computer vision [34]. Furthermore, we randomly remove context and
target events for each sensor i with ratios ri,ri € [0,0.6] (completely
missing at random - MCAR), encouraging the model to learn to interpret
T! under varying data sparsity and improving temporal generalization.
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Fig. 7. Comparison between GAMR + MCAR, NODE, and GRUs variants of the model while forecasting the same window with distinct missing data proportions for
the three high-frequency motions (Pitch, Roll, Heave). GAMR + MCAR maintains a more consistent prediction for all levels of missing data ratio.
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GAMR consolidates and proposes several improvements over other
prominent models. GRU-D, for example, also incorporates timestamps
to address irregularities, but its masking strategy often leads to ineffi-
cient representations in highly irregular scenarios (see Section 2). Latent
ODEs, in turn, provide a continuous-time framework for modeling MTS
dynamics, yet they still require an encoder z to generate z(¢,) that cap-
tures irregularities within the context window. In principle, the GAMR
encoder could fulfill this role, producing z(7,) and enabling a Neural ODE
to forecast the sequence. From this perspective, Neural ODEs are con-
ceptually similar to the GATE mechanism. However, as demonstrated
in our experiments (see Section 5) and noted in prior work, Neural
ODEs are notoriously difficult to train, particularly when applied to
noisy real-world signals such as FPSO attitude data collected directly
from onboard sensors. GAMR mitigates these limitations by combining

SURGE
Missing Data: 0.0%

SWAY
Missing Data: 0.0%
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time-aware sequence modeling with graph-based aggregation, yielding
a more robust and practical alternative for forecasting under challenging
conditions.

Other recent end-to-end approaches, such as SeFT [13] and STraTS
[35], also attempt to model irregular MTS without preprocessing. These
methods share with GAMR the recognition that timestamp information
must be integrated into latent representations. Nevertheless, they adopt
an unordered set formulation, where each observation is represented
as a timestamp-source-value triplet, and attention layers are applied
to weigh triplets in the final representation. In contrast, GAMR treats
MTS as sets of ordered sequences that can be independently encoded
by any time-aware sequence model. This design exploits the natural
inductive bias of temporal ordering, whereas SeFT and STraTS rely
on computationally expensive attention mechanisms that compare all
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the three low-frequency motions (Heading, Surge, Sway). Once again, GAMR + MCAR maintains a more consistent prediction for all levels of missing data ratio.
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triplets pairwise. Furthermore, SeFT and STraTS were primarily devel-
oped for classification tasks and do not provide the flexible forecasting
capabilities enabled by GAMR through the GATE mechanism.

4. Experimental setup

To evaluate the effectiveness of GAMR and its components, we
performed experiments using real-world sensor data from an FPSO.
The dataset comprises four years of measurements (2020-2023) from
offshore sensors, with all variables originally sampled at 1 Hz. We des-
ignated the first three years (2020-2022) for training and the final year
(2023) for testing. For a consistent evaluation across all models, we ex-
tracted 1387 context-forecast pairs (M., M ;) from the 2023 test period
and evaluated all models in the forecasting task defined by these pairs.

We compared five model variants to systematically assess the contri-
bution of each architectural component.

* GAMR + MCAR: The complete proposed architecture, which incor-
porates both the GATE mechanism and the HGAT information dif-
fusion stage, is trained with missing completely at random (MCAR)
masking during training to enhance robustness to missing data.
GATE + MCAR: An ablation variant that uses only the GATE mecha-
nism (independent sensor encoding) without the HGAT component,
also trained with MCAR masking. This assesses the impact of remov-
ing inter-sensor information diffusion.

GATE_T2V + MCAR: Identical to GATE + MCAR, but substituting the
default sinusoidal positional encoding with Time2Vec [31] as the
time encoding function ¢. This evaluates sensitivity to the choice of
time encoder within GATE.
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* GATE: The GATE mechanism without the HGAT component and
without MCAR masking during training. This isolates the perfor-
mance of GATE under standard training conditions.

GRUs+HGAT: The HGAT component for information diffusion,
but using a standard RNN encoder for each sensor without the
GATE mechanism. This aims to evaluate the HGAT’s contribution
independently of the specialized time encoding.

Furthermore, we compared GAMR with two baseline models:

GRUs: Standard Gated Recurrent Unit (GRU) networks process each

sensor time series independently. This serves as a basic sequential

modeling baseline without explicit handling of time gaps or inter-

sensor communication.

Neural ODE: Neural Ordinary Differential Equations [9], represent-

ing a continuous-time modeling approach. Standard Neural ODEs

require an initial state h, to begin the integration process for

forecasting. To provide an informed initial state that captures the

context window’s characteristics, including potential irregularities,

we employed the following setup:

- An encoder LSTM processed the context window (Zic, Tic) for each
Sensor i.

- At each step of this LSTM encoder, the input consisted of the con-
catenation of the measurement z! and its corresponding timestamp
t, where the timestamp was encoded using sinusoidal positional
encoding (Equation (10)). This allows the encoder to implicitly
learn about timing patterns and irregularities.

- The final hidden state of the LSTM encoder for each sensor served
as the initial state A, for the neural ODE solver.
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Fig. 9. Comparison of the IoA decay of all models as the missing data ratio increases from 0 % missing data to 40 %, across all of the six time series. Models with
GATE that were trained with MCAR removals perform significantly better, exhibiting slower decay rates. Additionally, GATE + MCAR and GATE_T2V + MCAR have

remarkably similar results.
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Table 1
Comparison of model performance (IoA, mean + SD) across all fast DoFs (Pitch, Roll, Heave)

from 0 to 40 % of missing data. Higher values indicate better performance.

Missing Ratio % 0 10 20 30 40

Pitch

NODE 0.58 + 0.24 0.50 + 0.23 0.40 +0.20 0.38 +0.18 0.37 £ 0.16
GRUs 0.70 + 0.23 0.56 + 0.27 0.48 + 0.27 0.42 + 0.25 0.38 + 0.23
GATE 0.72 +£0.21 0.60 + 0.26 0.52 + 0.25 0.47 + 0.25 0.43 + 0.25
GATE + MCAR 0.73 + 0.20 0.71 + 0.21 0.66 + 0.23 0.59 + 0.24 0.53 + 0.24
GRUs +HGAT 0.74 + 0.20 0.65 + 0.24 0.57 £ 0.25 0.52 +0.23 0.48 + 0.22
GATE_T2V+MCAR  0.74 + 0.20 0.72 + 0.21 0.67 + 0.23 0.59 + 0.25 0.52 + 0.25
GAMR +MCAR 0.76 +0.19 0.74+0.20 0.70+0.22 0.63 +0.24  0.56 + 0.25
Roll

NODE 0.37 £ 0.17 0.37 £ 0.17 0.36 + 0.14 0.36 £ 0.13 0.35+0.12
GRUs 0.66 + 0.21 0.54 + 0.23 0.46 + 0.22 0.41 +0.19 0.37 +0.18
GATE 0.68 + 0.20 0.59 + 0.22 0.50 + 0.23 0.46 + 0.22 0.42 +0.21
GATE + MCAR 0.69 + 0.19 0.67 +0.19 0.64 + 0.20 0.59 + 0.21 0.53 + 0.21
GRUs + HGAT 0.69 + 0.20 0.60 + 0.22 0.53 + 0.23 0.49 + 0.22 0.46 + 0.20
GATE_T2V+MCAR  0.69 + 0.19 0.68 + 0.19 0.65 + 0.20 0.59 + 0.21 0.52 + 0.21
GAMR +MCAR 0.70 +0.18 0.69+0.19 0.66+0.20 0.59 +0.22  0.52 + 0.22
Heave

NODE 0.55 +0.27 0.48 + 0.26 0.37 £ 0.24 0.31 +£0.20 0.29 + 0.19
GRUs 0.66 + 0.25 0.59 + 0.26 0.53 + 0.28 0.48 + 0.27 0.44 + 0.26
GATE 0.69 + 0.22 0.62 + 0.25 0.54 + 0.26 0.48 + 0.26 0.46 + 0.25
GATE+MCAR 0.70 + 0.23 0.69 + 0.23 0.66 + 0.24 0.61 + 0.25 0.56 + 0.26
GRUs + HGAT 0.71 + 0.22 0.64 + 0.24 0.58 + 0.25 0.53 + 0.25 0.50 + 0.24
GATE_T2V+MCAR  0.70 + 0.22 0.69 + 0.23 0.66 + 0.24 0.62 + 0.25 0.57 + 0.25
GAMR +MCAR 0.73 + 0.22 0.71 + 0.22 0.68 + 0.23 0.63 + 0.24 0.57 + 0.25
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Given the challenges of applying standard Neural ODEs directly
to the full MTS with significant irregularities without relying on
masking or imputation techniques (as discussed in Section 2), we
evaluated this baseline only on the three faster, more regularly sam-
pled movements (heave, roll, and pitch) where inter-measurement
intervals are consistent.

It is important to note that neither baseline inherently handles the
full complexity of irregular MTS forecasting across all sensors without
specific adaptations (such as imputation or masking). Therefore, they
serve as valuable reference points but are not direct substitutes for
the GAMR architecture, which is explicitly designed to manage these
irregularities and facilitate intersensor communication.

We assess performance using the Index of Agreement (IoA) [36], a
standardized metric comparing sequences Zi and Zi:

Zr (Zi _ Z’\i)2
Y, (% - Zi| + 12 - Zi))’

IoA(ZI,Z}) = 1 — 12)

Table 2
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Ranging from O (no agreement) to 1 (perfect match), IoA robustly
measures accuracy, accounting for systematic biases and data variabil-
ity, and is common in hydrology. The training loss minimizes 1 — oA
averaged over target sensors | S| with non-empty forecast windows:

LMy M) = IS_lfI > (1 - oAz, Z)) 13)

Our first experiment tested model robustness to missing data by ran-
domly masking 0 %, 10 %, 20 %, 30 %, and 40 % of test set points. This
simulates sensor failures or communication gaps, assessing accuracy
degradation as data availability decreases.

Our second experiment evaluated temporal generalization by pro-
ducing forecasts at frequencies unseen during training. We altered target
timestamps Tif to generate sequences at 0.2 Hz, 0.5 Hz, 2 Hz, and 5 Hz
(frequencies > 1 Hz were absent during training). This assesses if the
time-encoding mechanism G enables the model f, to approximate the
underlying continuous system D,, rather than just the sampled MTS M.

Comparison of model performance (IoA, mean + SD) across all slow DoFs (Surge, Sway,
Heading) from O to 40 % of missing data. Higher values indicate better performance.

Missing Ratio % 0 10 20 30 40
Surge
GRUs 0.44 £ 0.19 0.43 £ 0.19 0.40 £ 0.18 0.37 £ 0.17 0.36 + 0.16
GATE 0.46 + 0.20 0.45 + 0.20 0.43 £ 0.20 0.41 £ 0.20 0.40 £ 0.19
GATE +MCAR 0.45 £ 0.19 0.45 £ 0.19 0.44 £ 0.19 0.43 £ 0.19 0.41 £0.18
GRUs+HGAT 0.48 +0.20 0.47 +0.20  0.45+0.19 0.43 £0.18 0.41 £ 0.17
GATE_T2V+MCAR  0.45 +0.19 0.45 £ 0.19 0.44 £ 0.19 0.43 £0.18 0.41 £0.18
GAMR +MCAR 0.48 +0.20 0.47 +0.20 0.46+0.20 0.45+0.19 0.43+0.19
Sway
GRUs 0.46 + 0.21 0.45 +0.21 0.42 + 0.20 0.39 +£0.18 0.37 £ 0.16
GATE 0.46 + 0.21 0.46 + 0.21 0.45 + 0.21 0.43 £0.21 0.41 £ 0.20
GATE +MCAR 0.46 + 0.21 0.46 + 0.21 0.46 + 0.21 0.45 +0.21 0.43 + 0.20
GRUs +HGAT 0.48 + 0.21 0.48 + 0.21 0.46 + 0.21 0.44 + 0.20 0.41 £0.18
GATE_T2V+MCAR  0.46 + 0.21 0.46 + 0.21 0.45 + 0.21 0.44 + 0.20 0.43 £ 0.19
GAMR +MCAR 0.48 + 0.21 0.48 + 0.21 0.47 £ 0.21 0.46 + 0.21 0.43 + 0.20
Heading
GRUs 0.56 + 0.22 0.49 +0.23 0.46 + 0.23 0.43 £ 0.19 0.42 £ 0.17
GATE 0.57 + 0.21 0.56 + 0.21 0.52 + 0.22 0.48 + 0.22 0.45 + 0.22
GATE+MCAR 0.57 £ 0.21 0.57 £ 0.21 0.56 + 0.21 0.54 + 0.21 0.51 £ 0.20
GRUs +HGAT 0.59 +0.22  0.57 +0.22 0.53 +£0.21 0.49 + 0.20 0.44 £ 0.18
GATE_T2V + MCAR 0.57 +0.21 0.57 + 0.21 0.56 + 0.21 0.54 + 0.21 0.51 +0.21
GAMR +MCAR 0.58 + 0.22 0.58 +0.22  0.57 +0.22  0.54 +0.21 0.50 + 0.22
Table 3

Wilcoxon test p-values for IoA distributions at 20 % missing data across the three fast DoFs. Lower
values indicate superiority of the row model over the column model.

Pitch Roll Heave
GRUs NODE GRUs NODE GRUs NODE
GATE + MCAR <1e=230"  8.4e—139 <1e=230"  9.9e—184 <1e=230"  12e-101
GATE_T2V + MCAR  4.0e—103 < 1e=230" 1.7e—132 < 1e-230" 1.45¢—63 < 1e=230"
GAMR + MCAR 3.3e-125 1.le—164 4.0e—132 6.9¢—189 4.7¢-76 3.7¢-120
" underflow.
Table 4

Wilcoxon test p-values for IoA distributions at 20 % missing data across the three slow DoFs. Lower
values indicate superiority of the row model over the column model.

Surge Sway Heading

GRUs GATE GRUs GATE GRUs GATE
GATE + MCAR < 1e-230" 3.45e—-05 < 1e-230" 5.34e-04 < 1e-230" 1.97e—12
GATE_T2V + MCAR 1.21e—18 < 1e=230" 2.92e—09 < 1e-230" 8.08e—44 < 1e=230"
GAMR + MCAR 2.44e-30 1.36e—14 3.51e-22 4.68¢—10 7.60e-51 3.92¢-20

* underflow.
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Using real FPSO sensor data, these experiments evaluate the ar-
chitecture’s robustness and flexibility against industrial dynamics and
data irregularities. We hypothesize that time-informed model variants
utilizing MCAR training will effectively handle missing data and variable
sampling rates.

5. Results and analysis

Figs. 7 and 8 present an illustration of the forecast of each model
for S, values as missing data levels increase. It should be noted that
GAMR +MCAR not only provides more accurate predictions but also
maintains greater consistency between different missing-data ratios. In
contrast, variant GRUs lacks a time encoding mechanism to detect data
irregularities, leading to significantly different forecasts based on the

Applied Soft Computing 186 (2026) 114039

extent of data removed from the context of MTS M,. Furthermore, the
variant GATE, although equipped with a time encoding, struggled to
deliver stable forecasts under missing data conditions, as it was not
trained on artificially induced irregularities. In Fig. 8, it is important
to note that GATE produces different predictions depending on the level
of missing data. This occurs because of the lack of the MCAR procedure
during training, which prevents the model from acquiring the ability to
correctly incorporate timestamp information.

Fig. 9 shows the drop in IoA for the seven models as the proportion
of missing data increases. Notably, time-sensitive models trained using
MCAR (GAMR +MCAR, GATE+MCAR, and GATE_T2V+ MCAR) show
a much slower decline than the other models. Our tests also indicated
that integrating HGAT improved model performance when fewer data
were missing. This supports prior research findings that used similar
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Fig. 11. Comparison between predictions of GRUs, GATE and GAMR + MCAR model variants when the target timestamps are built with different sampling rates for
the high-frequency motions. Only GAMR + MCAR is able to adapt, including to frequencies unseen during training such as 2Hz and 5Hz.
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HGAT methodologies [29]. These results suggest that the enhanced re-
silience to missing data is tied to linking GATE with MCAR and not to
HGAT. The baseline NODE performs less well compared to the other
models, particularly in predicting roll movement, noted for its com-
plexity. We propose that this is due to the limitations in stability and
expressivity inherent in the original formulation, as noted by several
studies [37-39]. However, it is relevant to note that all the GAMR ar-
chitecture variants tested exhibited a very well-behaved convergence
regime.

Fig. 10 illustrates the IoA probability distribution in the case of
30 % data loss. In the left column, it is evident that the combination of
GATE and MCAR methods more often yielded more accurate predictions,
especially for high-frequency movements.

SURGE

Oversampling: 0.2x

SWAY
Oversampling: 0.2x
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To quantitatively evaluate the results, statistical tests were per-
formed. Tables 3 and 4 display Wilcoxon’s test p-values comparing our
main model variants to the baselines at an intermediate 20 % missing
data level. Lower p-values suggest more significant model differences fa-
voring the raw model. These results show unequivocally the superiority
of the models equipped with GATE and MCAR in this setup.

The results of the initial experiment, which evaluated the mod-
els with escalating data missing rates, demonstrated that the variants
GAMR +MCAR, GATE+MCAR and GATE_T2V+MCAR were signifi-
cantly more accurate, particularly when faced with high levels of missing
data. Although the HGAT module enhances the model, it is beneficial
mainly at lower data loss rates. This aligns with previous findings, sug-
gesting that while HGAT effectively propagates information between
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sensors, it does not enhance the robustness of the model against missing
data [29]. This is evident from the comparison of GATE+ MCAR with
GAMR + MCAR and GRUs with GRUs + HGAT (Tables 1 and 2).

Figs. 11 and 12 present the results for the second experiment, which
changes the target timestamps 7 to verify if the model is able to gen-
erate predictions at unseen frequencies. As expected, models that were
not time-informed and trained with MCAR were not able to generalize.
On the other hand, our method produced sensible forecasts at unseen
frequencies such as 2Hz and 5Hz.

This result provides another robust evidence that the combination
of GATE and MCAR training induces the models to acquire this time
generalization property by using the information coming from G(r—t,,) to
dynamically evolve the state of the system over time, similar to NODEs.

6. Conclusion

Our results provide evidence that combining time-informed RNNs
with a training method that introduces artificial irregularities enhances
model robustness to missing data and induces temporal generalization.
This work also shows that an HGAT can be integrated with RNNs and
time encoders to address diverse MTS irregularities. Our main contri-
bution is demonstrating that irregular MTS can be modeled effectively
using independent, gap-ahead-informed encoders whose information is
propagated within a common latent space via mechanisms like HGAT.

By adopting general definitions that account for data irregularities,
we developed a simple, cost-effective, and robust architecture. This ar-
chitecture learns a continuous representation of the underlying system
D, from sampled data and demonstrates the ability to adapt to sampling
frequencies five times higher than the maximum seen during training.
These results suggest the architecture’s potential as a versatile model for
various MTS applications.

The findings indicate that incorporating a time representation G(t—,)
into the RNN input, combined with a simple MCAR mechanism during
training, is sufficient to achieve this temporal generalization and the
accompanying robustness to missing data.

We propose that the GATE mechanism could inspire alternative
NODE formulations capable of implicitly representing system time
derivatives. Future research directions include decomposing the GATE
block into distinct transformations: a time translation function m where
m(h, ,t—1;) = h;, and an ingestion function n where n(h,, z,) = b (with
ht being the refined hidden state after observing event z,). This de-
composition would enable imposing time-related symmetries on m and
necessitates further study of the time-encoding function ¢. Evaluating
the length generalization capabilities of this approach, drawing paral-
lels with findings on positional encoding in NLP tasks [40], presents
another promising avenue.
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