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H I G H L I G H T S

∙ A novel architecture is proposed to ad-

-

-

-

-

-

dress irregularities in multivariate time 

series (MTS), including varying sam

pling rates, missing data, and time mis

alignments.

∙ The model combines time-informed re

current neural networks (RNNs) with 

graph neural networks (GNNs) for gen

eralized temporal modeling.

∙ A modified training method enables the 

model to generalize temporal patterns 

and generate forecasts at unseen fre

quencies.

∙ Validation on real-world data from 

Floating Production, Storage, and 

Offloading units (FPSOs) demonstrates 

superior predictive accuracy and 

reduced preprocessing requirements.

G R A P H I C A L A B S T R A C T

GATE block setup. The transformation performed by the sequence model   

 (here, an RNN) incorporates 𝑧 

𝑖
𝑡− 
into ℎ𝑖

𝑡 − 
and translates  

  the hidden representation forward to time 𝑡. The resulting state ℎ𝑖
 is projected by a𝑡   linear layer

(LL) to produce the prediction 𝑧̂ 

𝑖
𝑡 

.

A R T I C L E I N F O
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A B S T R A C T

Data collection in many engineering fields involves multivariate time series gathered from a collection of sensors 

that operate independently of each other. These sensors often display various irregularities, such as different 

sampling rates and missing data. To manage these issues, complex preprocessing mechanisms are required, which 

become coupled with any statistical model trained with the transformed data. Modeling the motion of floating 

platforms anchored on seabeds from measurements acquired from sensors is a typical example. We propose 

and analyze a model in which each sensor is encoded using an independent time-informed recurrent neural 

network, information is propagated in a common latent space by a graph neural network, and a modified training 

method is used to induce temporal generalization of the model. Our method can generate forecasts at unseen 

frequencies, which provides empirical evidence that the model learns an implicit representation of the system’s 

time derivatives and is able to flexibly integrate the signal over the time domain.
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1. Introduction

Despite the fact that multivariate time series (MTS) research has been 

ongoing for more than four decades, it is still not as thoroughly investi-

gated as univariate time series. This discrepancy arises partly from the 

unique features of MTS, which diverge from traditional statistical princi-

ples. Although classical approaches usually depend on random sampling 

and the assumption of independence, MTS are typically marked by 

strong correlations [1].

However, the field has garnered attention from Machine Learning 

(ML) researchers, motivated by recent achievements in token sequence 

modeling, particularly in tasks related to Natural Language Processing 

(NLP). Models like the Transformer [2] have generated groundbreak-

ing results in tasks such as question answering and text classification, 

thereby prompting the question: Can such successes be replicated in the 

context of time series?

For most applications, ML algorithms perform poorly compared to 

traditional statistical methods for univariate time series [3]. One of the 

main hurdles is that deep learning models, largely responsible for the 

ML revolution in NLP, are particularly susceptible to overfitting in uni-

variate scenarios. However, multivariate problems exhibiting complex 

interactions are not easily modeled by classical approaches. This makes 

it an attractive area for ML research.

This work introduces a cost-effective encoder–decoder architecture 

based on recurrent and graph neural networks (RNNs and GNNs), cou-

pled with a time representation capable of forecasting MTS. Moreover, 

this proposed model can process data from sensors with differing 

sampling rates and missing data profiles without resorting to data im-

putation techniques, which are often unfit for highly irregular MTS 

obtained from uncoordinated sensors. Our dataset consists of measured 

motion data from Floating Production, Storage, and Offloading units 

(FPSOs)—floating sea platforms used for oil extraction. Moored to the 

seafloor, FPSOs display intricate oscillatory behavior influenced by en-

vironmental factors such as wind, currents, and waves. Considering the 

successes obtained in this complex real-world scenario, we argue that the 

proposed architecture can be successful in a wide range of applications.

The key contributions of this work are fourfold.

• We propose a definition for MTS and its associated forecasting task

that accounts for irregularities.

• Based on this definition, we propose a comprehensive end-to-end

system capable of modeling FPSO hydrodynamic behavior at low 

computational costs and without the need for elaborate data prepro-

cessing routines.

• We demonstrate that the combination of time encoding and masked

training improves the modeling of complex oscillatory dynamics rep-

resented as time series, especially when large missing data windows 

are present.

• We provide evidence that RNNs trained with our method exhibit tem-

poral generalization, being able to generate target sequences with 

sampling frequencies unseen during training.

In light of the above, this article is organized as follows. Section 2 

presents the foundational concepts that underlie this work and provides 

a synopsis of how data irregularities can affect common ML architec-

tures. Section 3 outlines the proposed architecture, while Section 4 

offers a more detailed description of the dataset and experimental setup. 

Sections 5 and 6, respectively, present the experimental results and offer 

some conclusions, as well as directions for future work.

2. Background and definitions

A multivariate time series (MTS) M is often defined as a sequence 

𝐙 =  
 

 [𝑧 1 

,… , 𝑧 

𝐾
𝐿             

×
 

] with 𝑧 R , equivalently as a matrix ̃
𝑡 ∈ or 𝐙 ∈

R 

𝐿 𝐾 where 𝐿 is the number of observations and 𝐾 the number of 

variables [1]. Most works assume a common, constant sampling rate, 

replacing the timestamp vector 𝐭 = [𝑡 1 

,… , 𝑡 𝐿 

] by the trivial grid 𝐭 = 

[1, … , 𝐿]. When explicit timestamps are provided, they are treated as

Fig. 1. Regularizing an irregular MTS may explode the number of inferred val-

ues. In this toy case the observed series has 5 points, yet its grid-aligned version 

requires 18. Red circles denote imputed entries.

identical across variables, reducing any irregularity to missing values 

on this grid.

To restore a regular grid, practitioners routinely impute missing data 

or supply a missing value mask. Classic imputation families include [4]: 

mean imputation, linear interpolation, 𝑘-nearest neighbors, multiple imputa-

tion, and matrix factorization. While this enables the direct use of RNNs,

Transformers and MLPs on 

̃ 𝐙 [5], the predictive model becomes tightly

coupled to the chosen imputation strategy. Moreover, as Fig. 1 illus-

trates, combining misalignment, variable sampling rates, and sparsity 

can inflate the grid dramatically, making full regularization impractical.

An alternative is to let the model reason about missingness explicitly 

via a binary mask 𝐌 ∈ {0, 1} 

𝐿×𝐾 :

𝑀 𝑡,𝑘 = 

{

0, 𝑍 𝑡,𝑘missing,
1, 𝑍 𝑡,𝑘observed.

The augmented input [𝐙, 𝐌]  

 ∈ R 

𝐿×2 𝐾 is then fed to the network, allow

ing it to learn directly from the available entries while being aware of 

the gaps [

-

6,7].

2.1. Removing regularity assumptions

Irregularities in MTS data fall into four broad classes:

• Irregular sampling — uneven collection frequencies across sensors

or time.

• Missing data — partial gaps in individual variables (distinct from

full-sample irregularity).

• Time offsets — misalignments that quickly sparsify the implicit grid

(cf. Fig. 1).

• Heterogeneous formats — variables may be images, audio, or text

rather than simple scalars.

The early variants of RNN for continuous systems—Phased-

LSTM [8], GRU-D [7], Neural ODE (NODE) [9]—already addressed 

uneven timestamps and introduced masks for missing entries, building 

on the continuous-time foundations of Ref. [10]. In NODEs, a continu-

ous latent trajectory is modeled by 𝑓 ∶ T → Y ⊂ R 

𝐾 , whose dynamics 

obey an ODE [11]. Real measurements, however, are discretized approx-

imations; limited temporal resolution can register multiple events at the 

same recorded instant, as in particle-physics detectors [12]. Hence 𝑓 

need not be bijective in practice.

In a more significant relaxation step, each variable can be treated 

as an independent sequence or encoded as triplets (𝑡, 𝑧, 𝑚), decoupling 

their sampling grids [13–15]. We adopt this per-variable view, which 

mirrors real sensor networks and highlights the complications of forcing 

misaligned data into a single regular grid (Fig. 1).
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Definition 1 (Multivariate Time Series). An MTS is a pair of finite sets
| |

of sequences M 𝑆
 = (S , T S ).  

 

𝐙𝐢The set S = {  } contains |𝑖=1  𝑆| sequences

𝐙𝐢 

 = [𝑧𝑖 , 𝑧𝑖 , , 𝑧𝑖
 

…
 

], where each measurement 𝑧𝑖 ∈ X 

𝑖 is associated𝑡1 

𝑡2 

𝑡𝐿𝑖 𝑡   

 

with 𝑡 ∈ |

 R 𝑆|
.  

 a timestamp   

𝐢The set T S  

 

= {𝐓 } contains𝑖=1  all non-decreasing 

sequences  

 of  

𝐢timestamps 𝐓 = [𝑡𝑖1,… , 𝑡 

𝑖
𝐿𝑖 ] associated with S. 

 

Each source 𝑖 produces a pair (𝐙𝑖  

 ,𝐓 

𝑖) with a consistent format X 

𝑖
𝑆

and no internal gaps, but the  

 collection M = {(𝐙𝑖
 ,𝐓 

𝑖)} may exhibit𝑖=1   

every irregularity introduced above. Splitting the measurements S = 

{𝐙𝑖
 } from their  

 timestamps T 

𝑖
S = {𝐓 } simplifies the forecasting setup 

and unifies previous treatments. 

A single (𝐙𝑖
 ,𝐓𝑖

 ) is itself an MTS, one whose only irregularity is un

even sampling of complete states 𝑧𝑖 

𝑡 ∈ X 

𝑖 . In 

-

Section 3 we encode each

pair with an independent, time-aware RNN; we call the corresponding 

data source sensor, although it does not need to correspond to a physical 

sensor.

The domain X 

𝑖 reflects the data type: for tabular streams X 

𝑖 ⊂ R 

𝐾 

𝑖

(e.g. wind speed & direction, 𝐾 

𝑖 = 2 𝑖
); for images X 

𝑖 ⊂ R 

𝐻  

 ×𝑊 

𝑖 ×𝐾  

 

𝑖
(e.g. 

satellite cloud maps). This work focuses on the tabular case.

We term irregularities any property that prevents stacking the se-

quences into a single tensor of shape 𝐿×shape(X), such as misalignment, 

missing data, or heterogeneous formats. Rather than treating an MTS as

a uniformly sampled trace of a dynamical system D 𝑡 

, we view it as a set

of measurement sequences S with their own timestamp sets T S 

, sampled,

possibly irregularly, from D 𝑡 

. 

2.2. Forecasting multivariate time series

For a given MTS M = (S , T S ), we consider an observer with access to 

limited information in the form of a contextual MTS. The observer’s goal 

is to estimate the values of the system D𝑡  

on a set of target timestamps.

Definition 2 (Regression task on MTS). Given a context MTS M𝑐 

and a target MTS M = (S , TS ), consis𝑓  the regression𝑓 𝑓
  task on MTS ts

of finding a function 𝑓 such that 𝑓 (M𝑐 , TS )
𝑓

 = S𝑓  

.

This definition covers MTS regression for any type of irregularity. In 

this work, we are particularly interested in the forecasting task. Given

an observer at time 𝑡 , the goal  

 

is to forecast the behavior of certain𝜙   

variables based on the data available at 𝑡 𝜙 

. 

A subtle aspect of this problem is that the observer, at 𝑡 , does𝜙   not 

know when or even if the events in S𝑓 will occur. However, the task is

not to predict the occurrence of these events, but rather to predict the 

values they would take if they were to occur at predefined timestamps

T S . In other words, the objective is to predict
𝑓

  the state of the underlying

continuous system D𝑡 at specific points in time using  

 

only the limited 

information available in M𝑐 . This represents a key distinction between

Temporal Point Processes (TPPs) [16] and MTS forecasting, where the 

former focuses on predicting the event occurrence itself.

A general procedure for extracting M𝑐 and M𝑓 is as follows. Let

𝑡  

 

denote the observer’s time, and define three parameters: 𝑖
𝜙  𝐶  

 , 𝐹 

𝑖 , and 

𝑂 

𝑖 ∈ R, representing the context length, forecast length, and offset time, 

respectively:

M 𝑐 

= (S 𝑐 , T S𝑐 ), (1)

S 𝑐 = { 𝑧𝑖𝑡 ∈ S ∣ 𝑡 𝜙 

− 𝐶 

𝑖 ≤ 𝑡 < 𝑡 𝜙 

}, (2)

T S𝑐 ⊢ S 𝑐 , (3)

M 𝑓 

= (S 𝑓 , TS𝑓 ), (4)

S 𝑓 = { 𝑧𝑖𝑡 ∈ S ∣ 𝑡 𝜙 ≤ 𝑡 < 𝑡 𝜙 

+ 𝐹 

𝑖 }, (5) 

TS𝑓 ⊢ S 𝑓 , (6)

where ⊢ represents the mapping between events and their corresponding 

timestamps.

Fig. 2 illustrates this process. Reducing 𝐶 

𝑖 is often motivated by the 

computational cost of processing long context windows, and by the fact

Fig. 2. An efficient method to extract context and forecast window pairs from an 

MTS involves defining 𝐶 

𝑖 and 𝐹 

𝑖 . In this example, sensor 3 has an empty context 

window due to missing data, 1and  

 sensor 1 is only used for context, i.e., 𝐹 = 0.

that in many systems, the autocorrelation between states diminishes 

over time. Note that no event must occur precisely at 𝑡 𝜙 

.

This approach differs from traditional formulations, where MTS is 

treated as a grid-like structure. In such cases, 𝑡 𝜙 

∈ Z represents the step 

from which forecasting begins, and the last 𝐶 steps are used to predict 

the next 𝐹 steps. As detailed above, this approach is inadequate for irreg-

ular MTS, while our method embraces the complexities of asynchronous 

data, offering a more flexible solution to the forecasting task. 

2.3. RNNs and GNNs as restrictions on F

In supervised learning we approximate 𝑓 by 𝑓𝜃 ∈ F , the 

 

architecture-

defined function class parameterised by 𝜃 ∈Θ; suitable parameterisation

ensures universal approximation [17]. Many neural architectures can be

viewed as symmetry-restricted optimisers: CNNs encode translation, gated

RNNs and Transformers encode temporal or attentional symmetries,

etc. [18].

For time series, strong temporal correlations and noise mean an

unconstrained F (e.g. an MLP) overfits quickly [1]. We attribute the

poor long-horizon performance of Transformers relative to simple lin-

ear models [19] to this lack of inductive bias—compounded by quadratic

memory in sequence length.

RNNs [20] maintain a compact hidden state with constant mem-

ory, which is suitable for long sequences. Fig. 3 (left) shows a generic

block; the encoder–decoder setup on the right processes a window

[𝑧𝑡𝜙−3 

, 𝑧 𝑡 𝜙 

−2 

, 𝑧 into , then predicts .𝑡  

[
𝜙

 

 

] ℎ 𝑡 𝜙 

−1   

 

 

−1  𝑧̂ 𝑡𝜙  

, 𝑧̂ 𝑡 𝜙 

+1 

]  

We adopt the GRU [21]. Gated RNNs are quasi-invariant to time warp

ings, i.e. + +monotone differentiable  

  maps 𝜏 ∶ R → R  

 : for any 𝑓 𝜃 

and 𝜏 

there exists 𝑓   

 

′ ∈ F that processes 𝐙◦𝜏 identically [𝜃

-

22]. This holds while

𝜏 is continuous; discontinuities induced by missing windows break the 

assumption, motivating richer RNN variants. Recent state-space mod-

els such as S4 and Mamba approach Transformer accuracy with linear 

memory [23,24], reinforcing RNNs as strong baselines for time-series 

tasks.

To exchange information across sensors 𝐙𝑖 

𝑡 we employ a Graph Neural

Network [25]. Message passing at layer 𝑘 is 

𝐱 

𝑘 

𝑖 = 𝛾 

𝑘
(

𝐱𝑘−1𝑖 , □ 𝑗∈N (𝑖)𝜙 

𝑘
(

𝐱 

𝑘−1
𝑖 , 𝐱𝑘−1𝑗

)) 

, (7) 

where 𝜙𝑘 

 is the message function, □ a permutation-invariant aggrega

tor, and 𝛾 

𝑘 the update. This permutation symmetry ensures isomorphic 

graphs share representations, again constraining F . We choose the 

Heterogeneous Graph Attention Network (HGAT) [

-

26], treating sensors 

and relations as distinct node and edge types (see Section 3). A survey 

of GNN variants appears in [27].

Applied Soft Computing 186 (2026) 114039 
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Fig. 3. Basic RNN block (left). RNN in an auto-regressive setup for a sequence-to-sequence task on an evenly spaced time series (right).

2.4. FPSO dynamics and irregularities in MTS

Although the contributions of this work apply to a general MTS con-

text, it was developed to address the challenge of maintaining stable 

positions of floating platforms in deep water. FPSO units have been 

used for years to safely extract offshore oil reserves. These floating plat-

forms enable the extraction and storage of crude oil while being held in 

place using mooring lines anchored to the ocean floor. Mooring systems 

play a critical role in ensuring positional stability, personnel safety, and 

smooth operation of various operations on a platform, such as extraction, 

production, and oil offloading.

The constant exposure of floating structures to offshore environmen-

tal conditions such as waves, currents, and wind leads to continuous 

stresses and strains on the platforms. Consequently, the structural 

integrity and mooring lines of these platforms degrade over time. 

Understanding and modeling the complex dynamics of the floating plat-

form allow real-time detection of unexpected oscillatory patterns, which 

can help to assess the integrity of the mooring lines. In this work, we 

analyze all six degrees of freedom (DoF) of FPSO motion: surge, sway, 

and heave, which are translations; heading, roll, and pitch, which are 

rotations. Fig. 4 depicts all six time series. Note the differences in reg-

ularity and periodicity between high-frequency DoFs (pitch, roll, and

heave) and low-frequency ones (heading, surge, and sway). The high-

frequency DoFs exhibit much lower damping effects, and consequently 

more pronounced oscillatory patterns.

The ever increasing amount of data generated by sensors can be 

used to train ML algorithms for this task, but the same environmental 

characteristics that deteriorate the mooring system also affect the sen-

sors, which are reflected in the measurements. Typical sensor data from 

FPSOs suffer from long missing data windows, different polling rates 

between sensors, and other deformities.

3. The gap-ahead multivariate time series regressor

Building on the concepts from Section 2, we introduce an architec

= ({𝐙𝐢 |S| |S|
ture for the MTS forecasting task for M   } , {𝐓𝐢

 }𝑖=0 𝑖=0). We call 

this the Gap-Ahead Multivariate Time Series Regressor (GAMR). GAMR’s 

design is motivated by the need to handle individual sensor dynamics, 

irregular sampling, and inter-sensor interactions within an MTS.

-

GAMR is built upon three core components: 

1. 𝐢Independent Sensor Encoding: Each sensor’s data stream (𝐙  

 ,𝐓𝐢
 ) 

is initially processed by an independent sequence model, capturing 

its unique temporal characteristics.

Fig. 4. Example windows of all six time series. High-frequency motions (pitch, roll and heave) display lower damping effects and more pronounced and well-behaved 

oscillatory patterns, while low-frequency (heading, surge, sway) exhibit high level of noise and damping effects.

Applied Soft Computing 186 (2026) 114039 
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Fig. 5. The GAMR architecture overview. 1) Measurements are enriched with encoded representations of future timestamps. Each time series is encoded by an 

independent sequence model (here, an RNN). 2) A Regularized Heterogeneous GAT updates the node representation ℎ based𝑖,𝑡   

 

on its neighborhood. 3) The updated 

representation ℎ 

𝑖,+ initializes𝑡  an autoregressive decoding process.

2. Gap-Ahead Time Encoding (GATE): A novel temporal encoding

mechanism that explicitly informs the model about irregular time 

intervals between measurements, enabling flexible forecasting 

across potentially varying sampling rates.

3. Information Diffusion via Heterogeneous Graph Attention

Network (HGAT): Based on [26,28], this component facilitates 

information exchange between sensors, modeled as different node 

types in a graph, enriching each sensor’s representation with 

contextual information from others. This heterogeneous graph ap-

proach has proven effective for propagating information among 

encoded time series [29].

Fig. 5 illustrates the GAMR architecture’s forward pass, which pro-

ceeds in three stages.

• Stage 1: Independent Encoding with GATE. Each sensor’s con
𝐢text window (𝐙 ,𝐓 

𝐢 ) is processed by𝐜 𝐜   its dedicated sequence model. 

While various sequential models could be used, our experiments uti

lize RNNs. Crucially, this stage incorporates the GATE mechanism, 

which encodes the time gap to the next event. The output is a fixed

size, time-informed hidden representation ℎ𝑖  

     ∈𝑡  R 

𝐻 for each sensor

𝑖.

-

-

-

-

• Stage 2: Information Diffusion via HGAT. The hidden representa

tions ℎ 

𝑖 from𝑡  Stage 1 serve as initial node features in a Heterogeneous

Graph Attention Network (HGAT) with 𝑔 layers. We construct a 

fully-connected graph where each node represents a sensor 𝑖, and 

crucially, each sensor is assigned a unique node type. This setup 

defines a distinct relation type 𝑟 ∈ R for every ordered pair of sen

sors (𝑖, 𝑗), 2resulting  

 in |S| relation types. The HGAT mechanism [

-

26] 

is specifically designed to handle such heterogeneity by learning a 

separate attention mechanism or message-passing function for each 

relation type 𝑟. Applying 𝑔 layers of graph convolutions allows the 

model to approximate complex interactions tailored to each specific 

sensor pair (𝑖, 𝑗). We use a fully-connected graph topology inten-

tionally, treating the HGAT primarily as a powerful mechanism for 

global information propagation among all sensors, rather than lever-

aging explicit, pre-defined structural relationships which may not

exist or  

𝑖,+be known. This process yields enriched representations ℎ 𝑡
that integrate context from all other sensors. While other informa

tion diffusion techniques could potentially be employed at this stage, 

exploring them is beyond the scope of this paper.

-

• Stage 3: Autoregressive Decoding. Each sensor’s sequence model
+(e.g., RNN) is  

   

𝑖,initializedwith the enriched state ℎ . It then generates𝑡     

hidden states ℎ 

𝑖 𝐢sequentially for using𝐟
 

𝑡  the target timestamps 𝐓  the 

GATE mechanism in an autoregressive manner. For each target time 

𝑡 ∈ 𝐓𝐢 , a sensor-specific linear layer (𝑊 𝑖
𝐟

  

         , 𝑏 

𝑖) maps the hidden state 

to the prediction 𝑧̂𝑖𝑡 

:

𝑧̂ 

𝑖
𝑡 = 𝑊 

𝑖 ℎ 

𝑖
𝑡 + 𝑏 

𝑖 . (8)

During decoding, the prediction 𝑧̂ 

𝑖 (as𝑡  𝑧𝑖 

𝑡 for−
 the next step) and the 

 

state ℎ 

𝑖 (as ℎ 

𝑖 ) are fed back𝑡 𝑡−
  into the sequence model to predict the

 

value at the subsequent target timestamp, continuing until all values 

for 𝐓𝐢
𝐟 are estimated. 

3.1. The gap-ahead time encoding mechanism

The GATE mechanism, detailed in Fig. 6, operates as follows. First, it 

encodes the relative time 𝑡′ = 𝑡 − 𝑡 ,𝜙  where 𝑡 is a reference timestamp,𝜙  

  

using a  

 time encoding   

   function G ∶ R → R 

𝐻𝑡 ′. This yields negative 𝑡 

for  

 past events  positive 𝑡 

′and for future events relative to 𝑡 , providing𝜙   

 

temporal context and a common clock across sensors. Note that  

 ∀𝑡 

′ ∈ 

𝐓 ′
𝐜

 , 𝑡  

 < 0 and ∀  

 

𝐢 𝑡′ ∈ 𝐓𝐢
 , 𝑡 

′ > 0 if 𝑡𝜙 marks the boundary between𝐟   

 

context

(M𝑐 ) and forecast (M𝑓 ) windows. 
′Second, GATE concatenates the encoded time G(𝑡  

 ) with the value of 

the previous measurement 𝑧𝑖𝑡 before−
 feeding it into the sequence model: 

 

ℎ 

𝑖
𝑡 = SeqModel 𝑖

(

𝑧𝑖 

𝑡 −
|| G(𝑡 

′ 

), ℎ𝑖𝑡− 

) 

, (9)

 

𝑖where || denotes concatenation and  

 SeqModel is the sensor-specific se

    

𝑖quencemodel (e.g., RNN  ). This fundamentally reinterprets the sequence 

model’s iteration. Unlike a standard RNN step (

-

Fig. 3) which processes 

the current measurement 𝑧 , the𝑡    

 

GATE-infused step uses the previous mea

surement 𝑧𝑖  

𝑡 
′and the target time 𝑡’ encoding G(

−
𝑡 ). The model learns a 

 

transformation that integrates the  

 information from 𝑧 

𝑖
𝑡 

into
−

 the hidden 

state ℎ  

 

𝑖 and in𝑡−
 and evolves this state forward   

 

time from 𝑡−  

to 𝑡. This dy

namic adjustment of the time step resembles numerical ODE integration 

methods.

-

-

For the time encoding function G, our experiments use the standard 

sinusoidal positional encoding (PE) from Ref. [2] as the default:

G(𝑡 

′ 

) 2 𝑘 

= sin 

(

𝑡 

′

1000 

2 𝑘∕T 

) 

, for even indices, (10)

G(𝑡 

′ 

) 2 𝑘+1 

= cos 

(

𝑡 

′

1000 

2 𝑘∕T 

) 

, for odd indices. (11)

We opt for this nonparametric absolute time encoding (ATE) be-

cause of its straightforward nature and the minimal enhancements

Fig. 6. GATE block setup. The transformation performed by the sequence model 

(here, an RNN) incorporates 𝑧 

𝑖 into  

𝑖
 

 

ℎ
 

and translates𝑡  the hidden representation𝑡    

− −
forward to time 𝑡. The resulting state ℎ𝑖

 is by𝑡  projected  a linear layer (LL) to

produce the prediction 𝑧̂ 

𝑖
𝑡 

.
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observed in previous research on fully learnable positional encoding 

alternatives over the nonparametric baseline [30]. However, we also 

tested Time2Vec [31], which is a parameterized ATE, in one of our 

model variants. It is worth mentioning that GATE can work with any 

ATE method. Although refining the selection of G could potentially 

boost performance, a detailed investigation is postponed for future 

work.

Importantly, although our experiments primarily utilize RNNs as the 

sequence processing backbone within GATE, the mechanism itself is gen-

eral. It can potentially be applied to any sequential model that iteratively 

updates hidden states, such as Echo-State Networks [32] or Structured 

State Space models (S3) such as Mamba [23]. In this work, we focus 

on RNNs and defer the exploration of GATE with alternative sequence 

modeling architectures to future research.

The target timestamps T 𝑓 

can be arbitrarily defined during infer-

ence. Section 5 demonstrates GATE’s ability to generate forecasts at 

frequencies not encountered during training.

We train GAMR using supervised learning with the Adam optimizer 

[33]. Training batches are formed by uniformly sampling 𝑡 𝜙 

from the 

continuous time span of training data, not just from existing measure

ment timestamps (𝑧𝑖𝑡 need not exist). This continuous sampling acts
𝜙 

as dynamic data augmentation; multiple values 𝑡 𝜙 

can yield the same 

pair (M 

 

,M with 

 

) but different relative𝑐 𝑓   time encodings G(𝑡 − 𝑡 , pro𝜙)  

 

moting temporal robustness, similar to techniques image translation in 

computer vision [34]. Furthermore, we randomly remove context and 

target events for each sensor 𝑖 with ratios 𝑟 

𝑖 𝑖
 

, 𝑟 ∈ [0𝑐 𝑓  , 0.6] (completely

missing at random - MCAR), encouraging the model to learn to interpret 

𝐓𝐢
 under varying data sparsity and improving temporal generalization.

-

-

Fig. 7. Comparison between GAMR+MCAR, NODE, and GRUs variants of the model while forecasting the same window with distinct missing data proportions for 

the three high-frequency motions (Pitch, Roll, Heave). GAMR+MCAR maintains a more consistent prediction for all levels of missing data ratio.
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GAMR consolidates and proposes several improvements over other 

prominent models. GRU-D, for example, also incorporates timestamps 

to address irregularities, but its masking strategy often leads to ineffi-

cient representations in highly irregular scenarios (see Section 2). Latent 

ODEs, in turn, provide a continuous-time framework for modeling MTS 

dynamics, yet they still require an encoder 𝑧 to generate 𝑧(𝑡 0 

) that cap-

tures irregularities within the context window. In principle, the GAMR 

encoder could fulfill this role, producing 𝑧(𝑡 0 

) and enabling a Neural ODE 

to forecast the sequence. From this perspective, Neural ODEs are con-

ceptually similar to the GATE mechanism. However, as demonstrated 

in our experiments (see Section 5) and noted in prior work, Neural 

ODEs are notoriously difficult to train, particularly when applied to 

noisy real-world signals such as FPSO attitude data collected directly 

from onboard sensors. GAMR mitigates these limitations by combining

time-aware sequence modeling with graph-based aggregation, yielding 

a more robust and practical alternative for forecasting under challenging 

conditions.

Other recent end-to-end approaches, such as SeFT [13] and STraTS 

[35], also attempt to model irregular MTS without preprocessing. These 

methods share with GAMR the recognition that timestamp information 

must be integrated into latent representations. Nevertheless, they adopt 

an unordered set formulation, where each observation is represented 

as a timestamp–source–value triplet, and attention layers are applied 

to weigh triplets in the final representation. In contrast, GAMR treats 

MTS as sets of ordered sequences that can be independently encoded 

by any time-aware sequence model. This design exploits the natural 

inductive bias of temporal ordering, whereas SeFT and STraTS rely 

on computationally expensive attention mechanisms that compare all

Fig. 8. Comparison between GAMR+MCAR, GATE, and GRUs variants of the model while forecasting the same window with distinct missing data proportions for 

the three low-frequency motions (Heading, Surge, Sway). Once again, GAMR+MCAR maintains a more consistent prediction for all levels of missing data ratio.
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triplets pairwise. Furthermore, SeFT and STraTS were primarily devel-

oped for classification tasks and do not provide the flexible forecasting 

capabilities enabled by GAMR through the GATE mechanism.

4. Experimental setup

To evaluate the effectiveness of GAMR and its components, we 

performed experiments using real-world sensor data from an FPSO. 

The dataset comprises four years of measurements (2020-2023) from 

offshore sensors, with all variables originally sampled at 1 Hz. We des

ignated the first three years (2020-2022) for training and the final year 

(2023) for testing. For a consistent evaluation across all models, we ex

tracted 1387 context-forecast pairs (M M𝑐  

, 𝑓  

) from the 2023 test period 

and evaluated all models in the forecasting task defined by these pairs.

-

-

We compared five model variants to systematically assess the contri-

bution of each architectural component.

• GAMR+MCAR: The complete proposed architecture, which incor-

-

porates both the GATE mechanism and the HGAT information dif-

fusion stage, is trained with missing completely at random (MCAR) 

masking during training to enhance robustness to missing data.

• GATE+MCAR: An ablation variant that uses only the GATE mecha

nism (independent sensor encoding) without the HGAT component, 

also trained with MCAR masking. This assesses the impact of remov-

ing inter-sensor information diffusion.

• GATE_T2V+MCAR: Identical to GATE+MCAR, but substituting the

default sinusoidal positional encoding with Time2Vec [31] as the 

time encoding function G. This evaluates sensitivity to the choice of 

time encoder within GATE.

• GATE: The GATE mechanism without the HGAT component and

without MCAR masking during training. This isolates the perfor-

mance of GATE under standard training conditions.

• GRUs+HGAT: The HGAT component for information diffusion,

but using a standard RNN encoder for each sensor without the 

GATE mechanism. This aims to evaluate the HGAT’s contribution 

independently of the specialized time encoding.

Furthermore, we compared GAMR with two baseline models:

• GRUs: Standard Gated Recurrent Unit (GRU) networks process each

sensor time series independently. This serves as a basic sequential 

modeling baseline without explicit handling of time gaps or inter-

sensor communication.

• Neural ODE: Neural Ordinary Differential Equations [9], represent-

ing a continuous-time modeling approach. Standard Neural ODEs 

require an initial state ℎ 0 

to begin the integration process for 

forecasting. To provide an informed initial state that captures the 

context window’s characteristics, including potential irregularities, 

we employed the following setup:

- 𝐢 𝐢An   

 encoder LSTM processed the context window (𝐙𝐜 ,𝐓𝐜 ) for each

sensor 𝑖.
- At each step of this LSTM encoder, the input consisted of the con

catenation of the measurement 𝑧𝑖𝑡 and its corresponding timestamp 

𝑡, where the timestamp was encoded using sinusoidal positional 

encoding (

-

Equation (10)). This allows the encoder to implicitly 

learn about timing patterns and irregularities.

- The final hidden state of the LSTM encoder for each sensor served

as the initial state ℎ 0 

for the neural ODE solver.

Fig. 9. Comparison of the IoA decay of all models as the missing data ratio increases from 0 % missing data to 40 %, across all of the six time series. Models with 

GATE that were trained with MCAR removals perform significantly better, exhibiting slower decay rates. Additionally, GATE+MCAR and GATE_T2V+MCAR have 

remarkably similar results.
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Fig. 10. Probability distribution of the IoA calculated for every forecast window in the test dataset on a 30 % missing data scenario. A distribution concentrated near 

1.0 indicates a better model, since the likelihood of a forecast having a higher IoA is greater. Moreover, striped vertical lines indicate the median IoA for each model 

configuration. The GAMR+MCAR and GATE+MCAR variants produce forecasts with higher agreement values more often than others.

Table 1 

Comparison of model performance (IoA, mean ± SD) across all fast DoFs (Pitch, Roll, Heave) 

from 0 to 40 % of missing data. Higher values indicate better performance.

Missing Ratio % 0 10 20 30 40

Pitch

NODE 0.58 ± 0.24 0.50 ± 0.23 0.40 ± 0.20 0.38 ± 0.18 0.37 ± 0.16

GRUs 0.70 ± 0.23 0.56 ± 0.27 0.48 ± 0.27 0.42 ± 0.25 0.38 ± 0.23

GATE 0.72 ± 0.21 0.60 ± 0.26 0.52 ± 0.25 0.47 ± 0.25 0.43 ± 0.25

GATE+MCAR 0.73 ± 0.20 0.71 ± 0.21 0.66 ± 0.23 0.59 ± 0.24 0.53 ± 0.24

GRUs+HGAT 0.74 ± 0.20 0.65 ± 0.24 0.57 ± 0.25 0.52 ± 0.23 0.48 ± 0.22

GATE_T2V+MCAR 0.74 ± 0.20 0.72 ± 0.21 0.67 ± 0.23 0.59 ± 0.25 0.52 ± 0.25

GAMR+MCAR 0.76 ± 0.19 0.74 ± 0.20 0.70 ± 0.22 0.63 ± 0.24 0.56 ± 0.25

Roll

NODE 0.37 ± 0.17 0.37 ± 0.17 0.36 ± 0.14 0.36 ± 0.13 0.35 ± 0.12

GRUs 0.66 ± 0.21 0.54 ± 0.23 0.46 ± 0.22 0.41 ± 0.19 0.37 ± 0.18

GATE 0.68 ± 0.20 0.59 ± 0.22 0.50 ± 0.23 0.46 ± 0.22 0.42 ± 0.21

GATE+MCAR 0.69 ± 0.19 0.67 ± 0.19 0.64 ± 0.20 0.59 ± 0.21 0.53 ± 0.21

GRUs+HGAT 0.69 ± 0.20 0.60 ± 0.22 0.53 ± 0.23 0.49 ± 0.22 0.46 ± 0.20

GATE_T2V+MCAR 0.69 ± 0.19 0.68 ± 0.19 0.65 ± 0.20 0.59 ± 0.21 0.52 ± 0.21

GAMR+MCAR 0.70 ± 0.18 0.69 ± 0.19 0.66 ± 0.20 0.59 ± 0.22 0.52 ± 0.22

Heave

NODE 0.55 ± 0.27 0.48 ± 0.26 0.37 ± 0.24 0.31 ± 0.20 0.29 ± 0.19

GRUs 0.66 ± 0.25 0.59 ± 0.26 0.53 ± 0.28 0.48 ± 0.27 0.44 ± 0.26

GATE 0.69 ± 0.22 0.62 ± 0.25 0.54 ± 0.26 0.48 ± 0.26 0.46 ± 0.25

GATE+MCAR 0.70 ± 0.23 0.69 ± 0.23 0.66 ± 0.24 0.61 ± 0.25 0.56 ± 0.26

GRUs+HGAT 0.71 ± 0.22 0.64 ± 0.24 0.58 ± 0.25 0.53 ± 0.25 0.50 ± 0.24

GATE_T2V+MCAR 0.70 ± 0.22 0.69 ± 0.23 0.66 ± 0.24 0.62 ± 0.25 0.57 ± 0.25

GAMR+MCAR 0.73 ± 0.22 0.71 ± 0.22 0.68 ± 0.23 0.63 ± 0.24 0.57 ± 0.25
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Given the challenges of applying standard Neural ODEs directly 

to the full MTS with significant irregularities without relying on 

masking or imputation techniques (as discussed in Section 2), we 

evaluated this baseline only on the three faster, more regularly sam-

pled movements (heave, roll, and pitch) where inter-measurement 

intervals are consistent.

It is important to note that neither baseline inherently handles the 

full complexity of irregular MTS forecasting across all sensors without 

specific adaptations (such as imputation or masking). Therefore, they 

serve as valuable reference points but are not direct substitutes for 

the GAMR architecture, which is explicitly designed to manage these 

irregularities and facilitate intersensor communication.

We assess performance using the Index of Agreement (IoA) [36], a

standardized metric comparing sequences 𝐙̂ 𝐢
 and 𝐙 

𝐢 :

IoA(𝐙̂ 

𝐢,𝐙 

𝐢 ) = 1 −
∑ 

𝑡 

(𝐙 

𝐢 − ̂ 𝐙 

𝐢) 

2

∑ 

𝑡 (|𝐙̂ 

𝐢 − ̄ 𝐙 

𝐢
| + |𝐙 

𝐢 − ̄ 𝐙 

𝐢
|) 

2 

(12)

Ranging from 0 (no agreement) to 1 (perfect match), IoA robustly 

measures accuracy, accounting for systematic biases and data variabil

ity, and is common in hydrology. The training loss minimizes 1 − IoA 

averaged over target sensors |S |𝑓  with non-empty forecast windows:

-

L(M̂ 𝑓 ,M 𝑓 

) = 

1
|S 𝑓 | 

∑ 

𝑖
(1 − IoA(𝐙̂ 

𝐢,𝐙 

𝐢)) (13)

Our first experiment tested model robustness to missing data by ran-

domly masking 0 %, 10 %, 20 %, 30 %, and 40 % of test set points. This 

simulates sensor failures or communication gaps, assessing accuracy 

degradation as data availability decreases.

Our second experiment evaluated temporal generalization by pro

ducing forecasts at frequencies unseen during training. We altered target 

timestamps 𝐓 

𝐢 to𝐟  generate sequences at 0.2 Hz, 0.5 Hz, 2 Hz, and 5 Hz 

(frequencies > 1 Hz were absent during training). This assesses if the 

time-encoding mechanism G enables the model 𝑓 𝜃 

to approximate the 

underlying continuous system D , rather than just the sampled MTS M.𝑡

-

Table 2 

Comparison of model performance (IoA, mean ± SD) across all slow DoFs (Surge, Sway, 

Heading) from 0 to 40 % of missing data. Higher values indicate better performance.

Missing Ratio % 0 10 20 30 40

Surge

GRUs 0.44 ± 0.19 0.43 ± 0.19 0.40 ± 0.18 0.37 ± 0.17 0.36 ± 0.16

GATE 0.46 ± 0.20 0.45 ± 0.20 0.43 ± 0.20 0.41 ± 0.20 0.40 ± 0.19

GATE+MCAR 0.45 ± 0.19 0.45 ± 0.19 0.44 ± 0.19 0.43 ± 0.19 0.41 ± 0.18

GRUs+HGAT 0.48 ± 0.20 0.47 ± 0.20 0.45 ± 0.19 0.43 ± 0.18 0.41 ± 0.17

GATE_T2V+MCAR 0.45 ± 0.19 0.45 ± 0.19 0.44 ± 0.19 0.43 ± 0.18 0.41 ± 0.18

GAMR+MCAR 0.48 ± 0.20 0.47 ± 0.20 0.46 ± 0.20 0.45 ± 0.19 0.43 ± 0.19

Sway

GRUs 0.46 ± 0.21 0.45 ± 0.21 0.42 ± 0.20 0.39 ± 0.18 0.37 ± 0.16

GATE 0.46 ± 0.21 0.46 ± 0.21 0.45 ± 0.21 0.43 ± 0.21 0.41 ± 0.20

GATE+MCAR 0.46 ± 0.21 0.46 ± 0.21 0.46 ± 0.21 0.45 ± 0.21 0.43 ± 0.20

GRUs+HGAT 0.48 ± 0.21 0.48 ± 0.21 0.46 ± 0.21 0.44 ± 0.20 0.41 ± 0.18

GATE_T2V+MCAR 0.46 ± 0.21 0.46 ± 0.21 0.45 ± 0.21 0.44 ± 0.20 0.43 ± 0.19

GAMR+MCAR 0.48 ± 0.21 0.48 ± 0.21 0.47 ± 0.21 0.46 ± 0.21 0.43 ± 0.20

Heading

GRUs 0.56 ± 0.22 0.49 ± 0.23 0.46 ± 0.23 0.43 ± 0.19 0.42 ± 0.17

GATE 0.57 ± 0.21 0.56 ± 0.21 0.52 ± 0.22 0.48 ± 0.22 0.45 ± 0.22

GATE+MCAR 0.57 ± 0.21 0.57 ± 0.21 0.56 ± 0.21 0.54 ± 0.21 0.51 ± 0.20

GRUs+HGAT 0.59 ± 0.22 0.57 ± 0.22 0.53 ± 0.21 0.49 ± 0.20 0.44 ± 0.18

GATE_T2V+MCAR 0.57 ± 0.21 0.57 ± 0.21 0.56 ± 0.21 0.54 ± 0.21 0.51 ± 0.21

GAMR+MCAR 0.58 ± 0.22 0.58 ± 0.22 0.57 ± 0.22 0.54 ± 0.21 0.50 ± 0.22

Table 3 

Wilcoxon test p-values for IoA distributions at 20 % missing data across the three fast DoFs. Lower 

values indicate superiority of the row model over the column model.

Pitch Roll Heave

GRUs NODE GRUs NODE GRUs NODE

GATE + MCAR < 1𝑒−230 

* 8.4𝑒−139 < 1𝑒−230 

* 9.9𝑒−184 < 1𝑒−230 

* 1.2𝑒−101
GATE_T2V + MCAR 4.0𝑒−103 < 1𝑒−230 

* 1.7𝑒−132 < 1𝑒−230 

* 1.45𝑒−63 < 1𝑒−230 

*

GAMR + MCAR 3.3𝑒−125 1.1𝑒−164 4.0𝑒−132 6.9𝑒−189 4.7𝑒−76 3.7𝑒−120

* underflow.

Table 4 

Wilcoxon test p-values for IoA distributions at 20 % missing data across the three slow DoFs. Lower 

values indicate superiority of the row model over the column model.

Surge Sway Heading

GRUs GATE GRUs GATE GRUs GATE

GATE + MCAR < 1𝑒−230 

* 3.45𝑒−05 < 1𝑒−230 

* 5.34𝑒−04 < 1𝑒−230 

* 1.97𝑒−12
GATE_T2V + MCAR 1.21𝑒−18 < 1𝑒−230 

* 2.92𝑒−09 < 1𝑒−230 

* 8.08𝑒−44 < 1𝑒−230 

*

GAMR + MCAR 2.44𝑒−30 1.36𝑒−14 3.51𝑒−22 4.68𝑒−10 7.60𝑒−51 3.92𝑒−20

* underflow.
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Using real FPSO sensor data, these experiments evaluate the ar-

chitecture’s robustness and flexibility against industrial dynamics and 

data irregularities. We hypothesize that time-informed model variants 

utilizing MCAR training will effectively handle missing data and variable 

sampling rates.

5. Results and analysis

Figs. 7 and 8 present an illustration of the forecast of each model 

for S 𝑓 values as missing data levels increase. It should be noted that 

GAMR+MCAR not only provides more accurate predictions but also 

maintains greater consistency between different missing-data ratios. In 

contrast, variant GRUs lacks a time encoding mechanism to detect data 

irregularities, leading to significantly different forecasts based on the

extent of data removed from the context of MTS M 𝑐 

. Furthermore, the 

variant GATE, although equipped with a time encoding, struggled to 

deliver stable forecasts under missing data conditions, as it was not 

trained on artificially induced irregularities. In Fig. 8, it is important 

to note that GATE produces different predictions depending on the level 

of missing data. This occurs because of the lack of the MCAR procedure 

during training, which prevents the model from acquiring the ability to 

correctly incorporate timestamp information.

Fig. 9 shows the drop in IoA for the seven models as the proportion 

of missing data increases. Notably, time-sensitive models trained using 

MCAR (GAMR+MCAR, GATE+MCAR, and GATE_T2V+MCAR) show 

a much slower decline than the other models. Our tests also indicated 

that integrating HGAT improved model performance when fewer data 

were missing. This supports prior research findings that used similar

Fig. 11. Comparison between predictions of GRUs, GATE and GAMR+MCAR model variants when the target timestamps are built with different sampling rates for 

the high-frequency motions. Only GAMR+MCAR is able to adapt, including to frequencies unseen during training such as 2Hz and 5Hz.
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HGAT methodologies [29]. These results suggest that the enhanced re-

silience to missing data is tied to linking GATE with MCAR and not to 

HGAT. The baseline NODE performs less well compared to the other 

models, particularly in predicting roll movement, noted for its com-

plexity. We propose that this is due to the limitations in stability and 

expressivity inherent in the original formulation, as noted by several 

studies [37–39]. However, it is relevant to note that all the GAMR ar-

chitecture variants tested exhibited a very well-behaved convergence 

regime.

Fig. 10 illustrates the IoA probability distribution in the case of 

30 % data loss. In the left column, it is evident that the combination of 

GATE and MCAR methods more often yielded more accurate predictions, 

especially for high-frequency movements.

To quantitatively evaluate the results, statistical tests were per-

formed. Tables 3 and 4 display Wilcoxon’s test p-values comparing our 

main model variants to the baselines at an intermediate 20 % missing 

data level. Lower p-values suggest more significant model differences fa-

voring the raw model. These results show unequivocally the superiority 

of the models equipped with GATE and MCAR in this setup.

The results of the initial experiment, which evaluated the mod-

els with escalating data missing rates, demonstrated that the variants 

GAMR+MCAR, GATE+MCAR and GATE_T2V+MCAR were signifi-

cantly more accurate, particularly when faced with high levels of missing 

data. Although the HGAT module enhances the model, it is beneficial 

mainly at lower data loss rates. This aligns with previous findings, sug-

gesting that while HGAT effectively propagates information between

Fig. 12. Comparison between predictions of GRUs, Only GATE and GAMR+MCAR model variants when the target timestamps are built with different sampling rates 

for the low-frequency motions. Only GAMR+MCAR is able to adapt, including to frequencies unseen during training such as 2Hz and 5Hz.
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sensors, it does not enhance the robustness of the model against missing 

data [29]. This is evident from the comparison of GATE+MCAR with 

GAMR+MCAR and GRUs with GRUs+HGAT (Tables 1 and 2).

Figs. 11 and 12 present the results for the second experiment, which 

changes the target timestamps T 𝑓 

to verify if the model is able to gen-

erate predictions at unseen frequencies. As expected, models that were 

not time-informed and trained with MCAR were not able to generalize. 

On the other hand, our method produced sensible forecasts at unseen 

frequencies such as 2Hz and 5Hz.
This result provides another robust evidence that the combination 

of GATE and MCAR training induces the models to acquire this time 

generalization property by using the information coming from G(𝑡−𝑡 𝜙 

) to 

dynamically evolve the state of the system over time, similar to NODEs.

6. Conclusion

Our results provide evidence that combining time-informed RNNs 

with a training method that introduces artificial irregularities enhances 

model robustness to missing data and induces temporal generalization. 

This work also shows that an HGAT can be integrated with RNNs and 

time encoders to address diverse MTS irregularities. Our main contri-

bution is demonstrating that irregular MTS can be modeled effectively 

using independent, gap-ahead-informed encoders whose information is 

propagated within a common latent space via mechanisms like HGAT.

By adopting general definitions that account for data irregularities, 

we developed a simple, cost-effective, and robust architecture. This ar-

chitecture learns a continuous representation of the underlying system

D 𝑡 

from sampled data and demonstrates the ability to adapt to sampling

frequencies five times higher than the maximum seen during training. 

These results suggest the architecture’s potential as a versatile model for 

various MTS applications.

The findings indicate that incorporating a time representation G(𝑡−𝑡 𝜙 

) 

into the RNN input, combined with a simple MCAR mechanism during 

training, is sufficient to achieve this temporal generalization and the 

accompanying robustness to missing data.

We propose that the GATE mechanism could inspire alternative 

NODE formulations capable of implicitly representing system time 

derivatives. Future research directions include decomposing the GATE 

block into distinct transformations: a time translation function 𝑚 where 

𝑚( +ℎ  

 𝑡− , 𝑡 − 𝑡 𝑖) = ℎ𝑡 , and an ingestion function 𝑛 where 𝑛(ℎ 𝑡, 𝑧  

  

 

𝑡 

) = ℎ 

  

(with𝑡
+ℎ  

 being the refined hidden state after observing𝑡   event 𝑧𝑡  

). This de

composition would enable imposing time-related symmetries on 𝑚 and 

necessitates further study of the time-encoding function G. Evaluating 

the length generalization capabilities of this approach, drawing paral

lels with findings on positional encoding in NLP tasks [

-

-

40], presents 

another promising avenue.
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