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Enabling quantum non-Markovian dynamics by injection of classical colored noise
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The non-Markovian nature of quantum systems recently turned to be a key subject for investigations on
open quantum system dynamics. Many studies, from its theoretical grounding to its usefulness as a resource for
quantum information processing and experimental demonstrations, have been reported in the literature. Typically,
in these studies, a structured reservoir is required to make non-Markovian dynamics emerge. Here, we investigate
the dynamics of a qubit interacting with a bosonic bath and under the injection of a classical stochastic colored
noise. A canonical Lindblad-like master equation for the system is derived by using the stochastic wave function
formalism. Then, the non-Markovianity of the evolution is witnessed by using the measure of Andersson, Cresser,
Hall, and Li. We evaluate the measure for three different noises and study the interplay between environment
and noise pump necessary to generate quantum non-Markovianity, as well as the energy balance of the system.
Finally, we discuss the possibility to experimentally implement the proposed model.
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I. INTRODUCTION

The unavoidable interaction of every quantum system with
its surroundings is the central topic of study in the theory
of open quantum systems [1-6]. One of its main objectives
is to understand how the system loses information to the
environment and how it could be recovered [7,8], which
leads to the current interest in non-Markovian open quantum
systems [9-15]. Non—Markovian environments display the
desired memory effects and information backflows [9,16—19]
but, in turn, usually need to be highly structured [20-28].

The concept of non-Markovianity, although well under-
stood in classical stochastic processes [29], has no straight-
forward generalization to quantum systems. In classical
probability theory, a stochastic process is Markovian if the
conditional probability that it takes some value x,, at the time ¢,
given it had the value x,,_; attime #,_1, is independent of events
prior to 7,1 [9,29]. In other words, the process is Markovian
if the probability of going to some future state depends only
on the present state and not on the previous ones, i.e., the
process has no memory of its past states [9]. That definition
does not work well in quantum mechanics, because we need to
measure the system in its past states to formulate conditional
probabilities. Since measurements in quantum mechanics
disturb the system and, therefore, the conditional probabilities
above, the definition of Markovianity would depend not only
on the process to be analyzed but also on the choice of
measurement scheme [9], which is a undesirable drawback.

To fix that, various definitions were proposed in the
literature [1,2,4,18,30-32], but they are in most cases not
equivalent to each other. On the one hand, the Rivas, Huelga,
Plenio (RHP) definition [9] says that a quantum evolution is
Markovian if it is CP-divisible, i.e., it satisfies a composition
law analogous to the Chapman—Kolmogorov equation, which
is obeyed by classical Markov processes [9,29]. On the other
hand, the Breuer, Lane, Piilo (BLP) definition [33] states that,
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in Markovian processes, the distinguishability of quantum
states subject to the same evolution does not increase over time,
which is a way to state that the process is memoryless. Both
definitions are not equivalent, as are many other definitions in
the literature, which shows that quantum non-Markovianity is
in reality a multifaceted phenomenon.

As broad as the different definitions of quantum non-
Markovianity is the plethora of its features and applications.
Quantum non-Markovianity is related, for example, to preser-
vation of coherence [34], energy backflows [35], speedup of
quantum speed limits [36], violations of the Landauer bound
[37], formation of steady-state entanglement [38], revivals
and protection of entanglement [39-45], and is an obstacle
to quantum Darwinism [46]. It has applications from quan-
tum metrology [21], superdense coding [47], and quantum
cryptography [48] to quantum control [49]. Recently, many
experiments were conducted that verify or take advantage of
non-Markovian features [50-55]. Finally, non-Markovianity is
necessary for a realistic description of some quantum systems,
such as strongly coupled systems [56,57], some spin baths
[58], biological systems [59], complex nanostructures [60],
and photosynthetic systems [61]. As can be seen, quantum
non-Markovianity is an invaluable resource for quantum
technologies, which needs to be completely understood and
harnessed.

In this paper, we show that one alternative to reservoir
engineering is to induce quantum non-Markovianity by
injection of classical noise [62-69]. A sufficiently strong
noise could reverse the information flow from the system
to the environment, thereby leading to memory effects. The
procedure is as follows: We use the stochastic wave function’s
formalism [70,71], where the state of the system is described
by an ensemble of pure states, and the system density matrix
is recovered by an averaging process. The environment is
a thermal bath in the Born—Markov setting [1,2], while
the classical noise is modeled by a stochastic Hamiltonian
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[62—64]. Finally, the master equation of the system is derived
using functional techniques [72—74], and a non-Markovianity
measure [75] is used to show that the evolution is indeed
non-Markovian. We specifically use the Andersson, Cresser,
Hall, and Li (ACHL) [75] measure, since it can be applied
directly to the master equation of the system. The definitions
of quantum non-Markovianity are in general nonequivalent,
and so are its measures, thus we also relate the ACHL measure
to other known measures of non-Markovianity.

The structure of the paper is arranged as follows: In Sec. 11
we review the definition of quantum non-Markovianity, the
ACHL non-Markovianity measure and its relation to other
measures, while in Sec. III the master equation of the problem
is derived. The results are discussed in Sec. IV, where
different noises are applied to the master equation and its
non-Markovianity is measured. An experimental proposal is
made in Sec. V and, finally, Sec. VI contains the conclusion.

II. QUANTUM NON-MARKOVIANITY
A. Definition

In this paper we consider two quantum non-Markovianity
definitions: the RHP [2] and BLP conditions [33]. The RHP
condition states that a quantum process £(¢,7y) is Markovian
if it is a CP-divisible map, i.e., a trace-preserving, completely
positive (CPTP) map such that, for any intermediate time, it
can be broken into two CPTP maps; namely,

Et,p) = EE,1)E(,), to <t <t (1)

where £(t,11) and £(t1,1p) are CPTP maps. The BLP defines
Markovianity as an evolution such that the trace distance
between any two states decreases monotonically with time:

d
Ellpl(t)—pz(t)lll <0, 2

where p(r) = E(t,t0)[p] and || X||; = trv/ X XT. Physically, it
means that, in a Markovian evolution, the indistinguishability
between any two states cannot increase. We should stress a
difference between the classical and quantum cases: the well-
defined classical trajectories, that diverge for systems with
positive Lyapunov exponents do obey Markovian equations of
motion. To understand how the two definitions of Markovianity
are related to each other, we need the concept of k-divisibility.

A quantum evolution £ is positive if it takes positive
operators (such as density operators) to positive operators,
and is k-positive if 1; ® £ is a positive evolution. If the
evolution is k-positive for every k € N less than or equal to
the dimension of the system, then it is completely positive
(CP). These concepts can be generalized to continuous in
time evolutions: a k-divisible map [76] is a k-positive map
which can be arbitrarily broken into two other k-positive
maps, and a CP-divisible map is simply a map which is
k-divisible for every k € N. For simplicity, we call 1-divisible
maps as P-divisible maps. Now we are able to link the two
definitions: the BLP and RHP conditions are equivalent to the
map being P-divisible and CP-divisible, respectively, as shown
in Ref. [76]. Therefore, every non-Markovian evolution in the
BLP sense is non-Markovian in the RHP sense, but not the
converse.
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B. Decay-rate measure

The most general form of a completely positive, trace-
preserving Markovian (in the RHP sense) master equation is
given by Lindblad’s theorem [4,77]:

dp(t)
dt

= Lilp(1)] = =i[H (1), p(1)]
+ ) VapO| Ap(D)p(DAL) — Lalasm,p0)
of B a 5 g\),p ’

op
3)

where the A,(¢) are general operators acting on the system,
H(t) is a Hermitian operator, and y,g(t) > 0, for every o,
B, and t. However, master equations obeying the form of
Eq. (3) and with possibly negative decay (or decoherence)
rates ),g(f) can represent more general time-local master
equations [75], such as non-Markovian ones. With that in
mind, the negativity of the decay rates can be used as a measure
of non-Markovianity and is a very suitable measure since it
applies directly to the master equation.

The above measure, however, faces a problem: the Lindblad
form is nonunique, and the same set of coefficients y,p()
may generate different dynamics. To circumvent that issue,
the canonical form [9,75] of Lindblad-like equations is used.
This form is obtained by expressing the Lindbladian in a
orthonormal operator space basis, i.e., a basis {Gk}gz_l such
that tr[GjG j1 = 8;j, where d is the dimension of the Hilbert

space and, for simplicity, Gy = 1/+/d [2]. In that basis,
Ap) = apu(t)Gu, ap,(t) = t[GLVp(D)],  (4)

Al =" a;, (G, @) =ulG, VD], (5

m

where the operators V,, shall be associated with the stochastic
noise in the following. The master equation is

d

% = —i[H(1).p(1)]
1

+ chma)[an(r)GL - E{GLGn,pm}}, (6)

n,m

where ¢,,,, = Z% 8 ay, @) Vap(t)ag,(t). It is straightforward to
show that the c,,, form a Hermitian matrix C just by using
the fact that the y,4(¢) also form a Hermitian matrix. Since
every Hermitian matrix can be diagonalized by a unitary
operation, C = U DUT, with U and D being unitary and
diagonal matrices, respectively, we have that the coefficients
of C are given by ¢, = Zk ak (O ye(®us, (), where u, (1)
are coefficients of the unitary matrix U. Equation (6) is now
written as

dp(t)

=~ iHD.pO1+ Y n)
k

, 1 )
x [Lk(r)p(mL,t(r)—E{L,la)Lk(t),p(t)}], )
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where

Li(t) =) un(t)Gy, ®)

LIO =) up (G, )

m

still form an orthonormal basis, since unitary operations
preserve inner products.

The y4(t) are the canonical decay rates and with them we
can build the measures of non-Markovianity. Define [75]

d*—1 d>—1

1
fO = max{=y(®),0) = 2 3 [yl = y@]. (10)

k=1 k=1

The decay rates or ACHL measure [75] for the time interval
to <T<LUtis

NACHL:/ f(@)dr. (11)

Note that max{—y(#),0} simply selects the negative part of
each y(¢) and is zero if it is strictly nonnegative. The term
f(t) sums the contributions of all negative decay rates, and
NachL is this contribution integrated along the time interval.

The ACHL measure is nonzero if at least one decay rate is
negative, for any brief interval of time, since this is sufficient
for the breakdown of CP-divisibility [9]. That condition,
however, for most cases is not sufficient to break P-divisibility.
Therefore, some BLP Markovian evolutions can be considered
non-Markovian by this measure.

C. Relation with other measures

The decay-rate measure can be related to other non-
Markovianity measures. The RHP measure [16] estimates the
breakdown of CP-divisibility by computing how the interme-
diate dynamics deviates from complete positivity. Namely,
given a quantum evolution £(#,7), it can be decomposed as in
Eq. (1), since the map is continuous in time. Supposing that,
for some #,, £~ (t1,#y) exists, then the intermediate dynamical
map

E(t.n) = Et,10)E™" (11.10), (12)
is well defined. An evolution is non-Markovian if there exists at
least an intermediate time #; such that £(¢,#,) is not completely
positive, and the latter is completely positive if its Choi matrix
[78,79]

1 d
J(E@,n) = 7 DO Gl @ EE L) (11, (13)

ij=1

where |i) is an orthonormal basis for the system, is positive
semidefinite. Since our evolution is trace preserving, Eq. (13)
is positive definite if its 1-norm is equal to unity [9]. With that
in mind, we define

o) — tim WECF DN =1

e—>0t €

(14)
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and g(¢) > 0 if and only if the evolution is non-Markovian.
Then, the RHP measure is

NRHP=/ g(r)dr. (15)

fo

The RHP measure is proportional to the ACHL measure
[9,16,75]:
d
NachL = ENRHP (16)
An interesting case is the qubit, where both measures are
equivalent.

Another common measure is the BLP measure [33], related
to the BLP condition, and which measures the increase of
distinguishability of quantum states. For any two states p;(¢)
and p,(¢) undergoing the same evolution, their trace distance

D(pi1(1),p2(1)) = 5 | p1(8) — pa(1) | ,

is nonincreasing under completely positive evolutions [1,80],

7)

d
o(t,p1,02) = —D(p1(1),02(2)) < 0.

18
o (18)
The BLP measure is defined as
Nprp = max/ o(r'.p1.p2)dt’, (19)
PP J 550

where the integral is evaluated over time intervals on which
o > 0. The measure is the maximum distance for two states for
any possible initial states p; and p,. Although its computation
is nontrivial, its relationship with the decay rates measure can
be studied for the case of a single qubit [75].

Since qubits can be represented in Bloch form [80],
p=30+7i-5), (20)

where 7 is its Bloch vector, any master equation in Lindblad
form,

dp(1)
— =L [p)], 21
i L] 2D
can be rewritten in terms of the Bloch vector as
it = D(0)ii + i(t), (22)
where
Dj(t) = Ltrlo | L, (o0, (23)
uj(t) = Strlo | L, (D], (24)

are the matrix elements of the so-called damping matrix D(¢)
and the drift vector i(t), respectively [75].

The increase of trace distance between two arbitrary qubits
is only possible if the increase occurs at infinitesimal distance.
For any two infinitesimally separated qubits p and p + ép,

their squared trace distance is [75]
D(p,p +8p) = 33ii - 8ii, (25)

and it can be shown that it increases if the matrix (D + DT)(¢)
has a positive eigenvalue [75]. For a qubit under amplitude
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damping [1,2], the case which will be studied in this article,
this condition boils down to

2

Y n <o, (26)

k=1

and a related measure is
2
h(t) = max{—Zyk(t),O}, 27)
k=1

Narp = / h(z)dr. (28)

This condition is stronger than the required in the ACHL
measure in Eq. (10), since it needs the sum of all decay rates
to be negative, and not just one of them. Then, for example,
we could have Markovianity even in the presence of a negative
decay rate, given the other decay rates were large enough to
make the sum in Eq. (27) positive. As a consequence, for single
decoherence channels both measures are equivalent.

The Bloch volume measure [81], whose application is
restricted to qubits, is another non-Markovianity measure.
Since the volume, in the Bloch sphere, of accessible states
under a CP quantum evolution only decreases, its increase can
be related to non-Markovianity [9,81]. Using the damping
matrix, it is possible to show [75] that non-Markovianity
emerges if and only if Eq. (26) holds, so there is an equivalence
between the Bloch volume and BLP measures. Note that these
measures are inequivalent in more general scenarios [9,75].

In the next section we deduce the canonical master equation
of a qubit in a bosonic bath and under the influence of a
classical colored noise. After that, it is possible to use the
ACHL measure and study the non-Markovian character (in
the RHP sense) of the evolution.

III. STOCHASTIC PUMPING AND AMPLITUDE DAMPING

A. System-environment evolution

Our first step is deriving a master equation in Lindblad
form for a system interacting with a bath. Let us consider an
evolution described by the Hamiltonian

H= ot Loblb Y g (bl +oib). 09

which describes a two-level system coupled to a bosonic bath
[2], and where w is the system frequency, bI (b,)is the creation
(annihilation) operator of the environment, and g is a coupling
constant. The third term on the right-hand side of Eq. (29) is the
Hamiltonian Hj,, responsible for the system-bath interaction,
which can be written as

Hint =0-Q® Zgrb:[ + o4 ®Zgrb,

=A ®B+A,Q B,. (30)

The Liouville-von Neumann equation [82] for the Hamiltonian
in Eq. (29), in the interaction picture, is

d ~
Eﬁ(t) = —i[Hin(1),p(1)], €Y
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where A means that the corresponding operator is in the
interaction picture, and

Him(t) — e—iwotOL ®Zgre—iw,-tb1' +e—ia)0to_+®zgreia),lbr

= A1(1) ® Bi(t) + Ax(t) ® Ba(1). (32)

To obtain the system’s evolution, we must trace over the
bath’s degree of freedom [77] and resort to the Born—-Markov
approximation [1,2]. Namely, we assume that the reservoir
correlation functions (RCFs) decay rapidly compared with the
system evolution, so that we can work in a timescale where
they are negligible and, therefore, memory effects are absent.
The RCFs are

Bop(t) = trg[Bu(t)Bs s, (33)

where «, B are the indexes related to the interaction term
Hi, and, in the case of Eq. (32), range from 1 to 2. The
approximation is valid if we work in the weak-coupling limit,
i.e., we assume that the coupling constant g is small, and the
initial state is uncorrelated,

p(0) = ps(0) ® ps. (34)

where ps is the system density operator and pp =
exp(—BHs)/Z, with Z = trlexp(—BHs)] and 8 = 1/T, the
environment density operator is in a thermal state. The RCFs
of our problem are

Biut)=)_ lg ' N(w,), (35)

Bu(t) =Y _lg e [1+ N(w)], (36)

where N(w,) = 1/[exp(w,/T) — 1] is the density of states in
the mode w, [1], and the other RCFs Bj,(¢t) and B,,(¢) are
zero. After performing the continuum limit,

> e [ a0t w1
, 0 Tl

where J(w) is the spectral density of the bath and f(wy) is an
arbitrary function of the bath frequencies, the (nonzero) RCFs
become

Bii(x) = / oode(w)e"wa(w), (38)
0

Ba(t) = / doJ(@)e " [1 + N(w)]. (39)
0

The decay rates are Fourier transforms of the RCFs, and the
final master equation for the system, in the Schrodinger picture
where pg = trg(p), is [2]

d ()
dt'os

.[ @Wo
= —i [7(& + HLS,;OS(I)]

1
+ V(wo)N(wo)[UJrPS(f)U— - E{G_GJ”'OS(I)}}

1
+ y(wo)[1 + N(wo)] |:0,Os(l)0+ - 5{0#7,/)5(1)}}
(40)
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where y(wg) = 27 J(wp) and Hyg is the Lamb-shift Hamilto-
nian [2,83],

HLS = (P/ dw
0

where P represents the Cauchy principal value. The term Hi g
is simply a shift in the energy levels of the system.

J(w)[N(w)+1/2]>U @1)

wy — w

B. System-noise evolution

The next step is to study the evolution of a quantum system
under the influence of stochastic pumping of classical fields
[64,65]. In this model, the Liouville-von Neumann equation
of the system is given by

d [ @o
Zp(t) = =i To. + V.0 42)
The term V (¢), responsible for the classical noise, is

V() =ile u(t)o_ — e u*(t)o,]
=5V + &0V, (43)

where £(¢) is a stochastic variable. We assume that it is a
colored Gaussian noise with zero mean [29],

E()=0, (44)
EMER) = EX(DEX1) = 0, (45)
EX(DE() = EME*() = x(1,1)), (46)

where the bar denotes an average over the stochastic realiza-
tions [64].

To deal with this stochastic behavior we use the stochastic
wave-function formalism [3] in which the state of an open
quantum system is described by an ensemble of pure states
p(t) = [W(1)) (¥(2)| [64]. The density matrix of the system is
recovered after an average over the stochastic realizations [29]

ps(t) = p(t). (47)

Taking the average over Eq. (42), we have that

d
—ps(t) = z[‘;" 0 p(1)| = iVDPD — pOVD].  (48)

To calculate the terms V(t)p(t) and p(z)V(t) we apply
Novikov’s theorem [72,73],

§(m)plsl = [ dt'E(DE( )8;&,]) (49)

which considers the average of the product of a stochastic
process £(¢) and its functional form p[£], and where the last
term on the right-hand side is a functional derivative [73].
Following the steps of Refs. [64,65] and assuming a weak
coupling between system and pumping [62], Eq. (48) takes
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the form

d
Tps(t) == i| S o..ps)]

-y / dt' Yap (1 V@O, LVE(E ). ps D11,
B 0

(50)

Evaluating Eq. (50) and assuming homogeneity in time
correlations, i.e., xop(t,t") = xqp(t —t') = S(1), the master
equation, in Lindblad form, is

d
Zps(f) =— l[%ffz + Hgrr(1), ,Os(l)]

1
+ U(l)|:0+,05(l)0 - E{UU+’PS(f)}i|

1
+ n(t)[o—ps(t)0+ - E{U+U—,P5(I)}}, (51

where
n(t) = 2/ dtS(t)cos (Awrt), (52)
0

and Hgpp(t) appears due the coupling between the system and
the stochastic pumping and represents a shift in the system
energy levels. It is defined as

HEFF(I):/ dtS(7) sin (Awt)o,, (53)
0

and Aw = w — wp. An analogous derivation, but using white
Gaussian noise, is presented in Ref. [84].

C. Combined evolution

Combining the evolutions of Egs. (40) and (51), the
complete master equation for the system takes the form

d . [ wo He
() =~ 1[7@ + Hain(0, p(1) |
1
+ Vl(l)[0+,0(f)0— - E{U—UJWO(I)}}

1
+ Vz(t)[dp(t)0+ - E{GM,;O(I)}}, (54)

where the coefficients of the master equation,
Y1) = y N(wo) + n(1), (55)

y2(t) = y[1 + N(wo)] + n(), (56)

are the decay rates. The term Hgpr(#) is the sum of the energy
shifts Hy s and Hggg(2). Note that the master equation is already
in canonical form, so the ACHL measure can be applied
directly to its decay rates.

The decay rates in Egs. (55) and (56) are composed of
two terms: one related to the bath and the other to the noise
pump. The first is always positive, and the second, which is
time dependent, can be either positive or negative. Therefore,
the non-Markovian character of the evolution, determined by
the negativity of the decay rates [75], depends on the relative
strength between system-bath and system-pump interactions.
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The evolution is RHP Markovian when the temperature terms
are greater, in absolute value, than the negative part of
n(t). Then, a question can be asked: which is the minimum
temperature above which the evolution is RHP Markovian
or, equivalently, the maximum temperature under which the
evolution shows RHP non-Markovian effects? Following the
ACHL criterion given in Egs. (10) and (11), it is determined
by the point where at least one of the decay rates becomes
negative. Since y,(¢) is always smaller than y,(¢), that point is
when y N(wp) + Nmin = 0, where

Mmin = min 7(7). (57

to<T<t

Then, a RHP Markovianity temperature can be set as

Ti=— 0 (58)

In (1 _x )
Nmin

This is the temperature below which RHP non-Markovian
features emerge.

The master equation for the qubit population p;;(#) takes
the simple form

d
7@ = =@+ rOlen® +nw), (59)

and the other population is constrained by the unitarity of
the trace of the density operator: py(f) =1 — py1(¢). It is
simpler, however, to put the qubit density matrix in Bloch
form, Eq. (20), and study the evolution of the z component of
the Bloch vector, n () = (o,(1)):

d
Enz(t) = —[n@®) + y2(Dln(1) + (@) — y2(1).  (60)
In terms of n,(¢), the average energy of the system is

(E) = tr[%ozpm] = %nza). 61)

For long times, t — o0, the system thermalizes and the rate of
change of n,(¢) is zero. Therefore, the average energy tends to

the value
1
(E) = —@[ ] (62)
2 [2N(wo) + 14 2n00/y

where 7, is the limit of n(¢) as t — oo. Without the noise, the
average energy converges to the value

_ﬂ[;} 63)
2 | 2N(wp) + 1

and therefore the energy difference (E) —

(Enopump) =

(Enopump> is

wy Y 27700 !
72nw[1+<y<21v<wo>+1>>} e

Note that, since 7 is usually very small, if we vary N (wy) the
energy difference will not change considerably.

AE =

IV. ROLE OF STOCHASTIC NOISE

A. Exponential noise

In this section we study Eq. (54) for different classical
stochastic noise injections, which are defined by their corre-
lation functions S(t). The first noise correlation which we
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analyze is an exponential decay [67] (which characterizes the
Ornstein—Uhlenbeck process),

Q
Sou(®) = 5—e "™, (65)
27,
where 2 is an amplitude and 7, is the correlation time. The
€ must remain small, since otherwise the weak-coupling
assumption would be violated. The exact formula for n(¢) is

) = A hwn)

% [1+ 1+ (Awre /™ sin(Awt — )], (66)

where

. 1 1
= _|. 67
¢ = sin |: v j| (67)

Note that the function 7(¢) is composed of a constant term and
a damped oscillating term.

We will consider a system where T = cwy wherein c is a
constant, i.e., we define the temperature as a function of the
frequency of the system. Fixing all other parameters but the
product Awt,, n(t) reaches a global minimum value when
Awt, = 8.5. With these conditions, the only remaining free
parameter is 2. Now, we want to find the Markovian to
non-Markovian transition, i.e., the smallest value of 2 for
which the decay rates have a negative part. Physically, we are
looking for the smallest pump intensity for which the system
reaches the RHP Markovianity limit, where this limit identifies
the border between the two regimes. That value is 2 = 0.91,
which corresponds to the situation when the decay rate y;(¢)
touches the horizontal axis. The coefficients (¢) and y;(¢) are
plotted in Fig. 1.

If we assume that the initial state of the system is p(0) =
|[+)(+], and |+) = LZ(IO) + |1)) [which implies that n,(0) =
0], then the average energy of the system can be calculated.
The average energy with (Ep) and without (Eyp) pump, as
well as the difference (AE = Ep — Enp), at T = 0.1wy, are
shown in Fig. 2(a), in units of wy. Note that the average energy
tends to a bigger value when the pump acts on the system, than
when it is absent.

Note that, for short times, i.e., t < 1., we have

Qt
nou(?) = —. (68)

c

For the opposite limit, t — oo,
Q
% —1
1 + (Awrt,)?

and the average energy tends to

1
(E) - _%[M 1 - } (70)
(a)O) +1+ 1+(Awt,)?

Now the temperature is lowered to T = 0.1wj, where RHP
non-Markovian effects are present. The average energy is
plotted in Fig. 2(b), and the decay rate y;(¢) and the ACHL
measure f(¢) are plotted in Fig. 3. We can see that the average
energy increases compared with the Markovian case, due to
its dependence with the density of the states, (E) o< 1/N (wy).

nNou (69)

052126-6



ENABLING QUANTUM NON-MARKOVIAN DYNAMICS BY ...

a
0.10 ( )
&
3
= 0.05
5]
P
5]
2
=
2
= 0.00
—0.05
0 2 4 6 8 10 12 14
t(s)
0.3
= T=0.10wo (b)
==+ T =0.33wq
) T = 0.50wp
&
o ~
=i
it /\
S 0.1 7
g I" \‘\ / \ -~ — _
£ "' W\ /'.\\\ / N_~ ~—
= lr ‘\\ ’ Nid RN -~ - -
> 00 NN S
\_,'
-0.1
0 2 4 6 8 10 12 14

t(s)

FIG. 1. (a) n(t), defined in Eq. (52), and (b) y,(¢), defined in
Eq. (55), as a function of time using the exponential pump for
three different temperatures: 7 = 0.10w, (short-dashed red line),
T = 0.33w, (long-dashed blue line), which characterizes the limit
to find RHP Markovian dynamics in the system and 7 = 0.50w,
(dot-dashed yellow line). Note that the condition to achieve RHP
non-Markovianity is 9y, < 0. For all the curves used, Aw = 2,
. =425 Q2=091,y =1.

The energy difference, however, remains small, which suggests
that, in this scheme, we can induce RHP non-Markovianity
without too much energy cost. For the decay rate y, (), negative
regions can be observed, which is a sign of non-Markovianity.
These regions generate the peaks in the ACHL measure. The
values obtained for the measure were Nacyr = 0.0546 for
T = 0.1(1)0 and NACHL =0.0046 for T = 03(1)()

B. Squared exponential noise

The squared exponential correlation function is [67]

e*(f/fc)z’ (71)

c

Sse(r) =

and for the same parameters as in the exponential case, we
reach the RHP Markovian limit with 2 = 0.47. The average
energies for T = 0.33wg and T = 0.10w, are plotted in Fig. 4.
Note that, for this noise, the difference in the energies is almost
negligible. For short times,

2Qt
JrT

nse(r) ~ (72)
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FIG. 2. Average energy of the system, in units of w,, with (Ep,
blue solid line) and without (E y p, red dashed line) exponential pump.
Inset shows average energy difference, defined as AE = Ep — Eyp.
(a) RHP Markovian regime, with 7 = 0.33wy, and (b) RHP non-
Markovian regime, with 7" = 0.10w,. The parameters used were
Aw =2,7. =4.25,Q =091, y = 1. We can observe that the energy
differences in the two regimes are equivalent; thus, the energy cost to
generate RHP non-Markovianity is low.

and for the long-time limit,

NSE — Qe_(Am’/z)z. (73)
The average energy tends to
1
(E)—>—@|: 2]' a4
2 [2N(wp) + 1 + 2Qe—(dwr/2)

The decay rate y,(¢) and the ACHL measure f () are plotted in
Fig. 5. In this case, the values for the measure were Nacpur =
0.0585 for T = 0.10ewq and Nacpr, = 0.0040 for T = 0.30cwy.

C. Power-law noise
For the power-law noise [67],
(x—1) 2 1

2 (/e + )T (73)

SpL(T) =

where o > 2, we have a global minimum (using « = 3) for
Awt. = 20, and the RHP Markovian limit is reached with Q =
1.35. The average energies for T = 0.33w, (RHP Markovian
regime) and 7 = 0.10wy (RHP non-Markovian regime) are
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FIG. 3. (a) Decay rate y,(¢), Eq. (55) as a function of time in
RHP non-Markovian regime using the exponential pump for two
different temperatures, 7 = 0.1lwy (short-dashed red line) and T =
0.3wq (long-dashed blue line) (b) ACHL measure f(t), Eq. (10), as a
function of time in the same regime, for the temperatures 7 = 0.1wy
(red solid line with circles) and 7 = 0.3w, (blue solid line with
triangles). The value obtained for the measure were Aycyr, = 0.0546
for T = 0.1wy and NacpL = 0.0046 for T = 0.3w,. The parameters
used were Aw =2,17. =4.25,Q2=091,y = 1.

plotted in Fig. 6. The short-time limit is
Qt

npL(?) (76)

c
For t — 00, we were not able to find an analytical expression,
but the decay rate y;(¢) and the ACHL measure f(¢) are plotted
in Fig. 7(b). The value obtained for the measure were Nacu.
is 0.0532 for T = 0.1wg and Nacpr is 0.0058 for T = 0.3w.

D. Comparisons

The decay rates y;(¢) for the three pumps are plotted
in Fig. 8(a) and the average energies in Fig. 8(b) for the
RHP non-Markovian case (T = 0.1wp). The function f(¢),
Eq. (10), for the three studied noises, with the parameters as
in previous sections and for the case 7 = 0.1wy, is shown in
Fig. 9(a), where the blue, yellow, and green lines correspond,
respectively, to the exponential, the squared exponential, and
the power-law noises. Note that the ACHL measure, Eq. (11),
corresponds to the area under the functions, and its numerical
values are given in Table I. Since it is clearly positive,
the RHP non-Markovianity of the evolution is verified. The
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FIG. 4. Average energy of the system with (Ep, blue solid line)
and without (Ey p, red dashed line) squared exponential pump. Inset
shows the average energy difference, defined as AE = Ep — Eyp.
(a) RHP Markovian regime, with 7" = 0.33w,, and (b) RHP non-
Markovian regime, with 7" = 0.10w,. The parameters used were
Aw =2, 1. =425, Q=0.47, y = 1. We can observe again that
the energy differences in the two regimes are equivalent.
values of the measure are approximately N'O4;,; = 0.0546,
N %HL = 0.0585, and XéHL = 0.0532 for the exponential,
squared exponential, and power-law noises, respectively. In
that regime, the three noises are very similar.

For a better comparison among the RHP non-Markovianity
generated by the noises, we plotted in Fig. 9(b) the ACHL
measure using the parameters of the power-law case, where
we find RHP non-Markovianity for all the three cases, and
the numerical values for the ACHL measure are in Table 1.
It can be seen that, for the same parameters, the squared

TABLE 1. Numerical value of the ACHL measure for the three
noises. The parameters for the second column were Aw = 2, 7. =
4.25,2=0.91 (0OU); Aw =2, 1. =4.25,2 =0.47 (SE); Aw = 2,
7. = 10, 2 = 1.35 (PL). The parameters for the third column were
Aw =2, 7. =10, Q = 1.35. In both cases, we used y =1, T =
O.la)().

ACHL measure ACHL measure
Noise (different parameters) (same parameters)
Exponential (OU) 0.0546 0.1047
Squared exponential (SE) 0.0585 0.1651
Power law (PL) 0.0532 0.0532
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FIG. 5. (a)Decay rate y, (), Eq. (55), as a function of time in RHP
non-Markovian regime using the square exponential pump for two
different temperatures: 7 = 0.1w, (short-dashed red line) and T =
0.3wy (long-dashed blue line). (b) ACHL measure f(¢), Eq. (10), as a
function of time in the same regime, for the temperatures 7 = 0.1wg
(red solid line with circles) and T = 0.3w, (blue solid line with
triangles). The value obtained for the measure were Mycyr, = 0.0585
for T = 0.1wy and Nacur = 0.0040 for T = 0.3w,. The parameters
used were Aw =2,7. =4.25,Q=047,y = 1.

exponential noise shows a bigger value in the ACHL measure
than the others. Namely, the values are N4, = 0.1047,
Nty =0.1651, and NE5, = 0.0532 for the exponential,
squared exponential, and power-law noises, respectively. In
all these cases, however, the other decay rate y,(¢) is always
positive, since the noise strength cannot be large enough to
overcome the temperature term y [N (w) + 1)], as we are in the
weak-coupling regime. Moreover, the sum of the decay rates
is always positive as well, since the magnitude of the positive
rate results much larger than the magnitude of the negative
rate. Therefore, although our evolution is non-Markovian in
the RHP sense, it is Markovian by the BLP definition, since the
BLP measure (negativity of the sum of the decay rates) is zero.

V. EXPERIMENTAL PROPOSAL

Single trapped ions are a great test bench for reservoir
engineering. Changes in the trapping potential and laser-
ion interactions can be used to create amplitude and phase
reservoirs [85-87]. Another important feature of this system
is the ability to do full quantum state tomography [88,89],
which is a key feature to see the signature of non-Markovian
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FIG. 6. Average energy of the system with (Ep, blue solid line)
and without (E y p, red dashed line) power-law pump. Inset shows the
average energy difference, AE = Ep — Eyp, in (a) RHP Markovian
regime, with 7 = 0.33wy, and (b) RHP non-Markovian regime, with
T = 0.10wy. The parameters used were Aw = 2, 7. = 10, 2 = 1.35,
y = 1. We can observe also in this case that the energy differences in
the two regimes are equivalent.

dynamics in the different types of measurements. Therefore,
they are a good candidate to test our proposal.

A linear Paul trap combines oscillating and static electric
fields to create an effective static three-dimensional (3D)
harmonic potential. If we considered the radial trapping
frequency (w,) much higher than the axial one (@) the ion
motion is simplified. In this approximation, the net system
comprises of one ion in a one-dimensional (1D) harmonic
motion. Choosing two internal metastable electronic levels,
the ion internal structure can be approximated by a two-level
system, which can be represented in the spin 1/2 basis [1) |{).

The Hamiltonian that describes the quantum dynamics of
the single trapped ion interacting with the light field is

Q
H = %O’Z + wa'a + 3(0+ +o0.)

% [ei(kz—w1+¢) + e—i(kz—w/+¢)]’ (77)
where Q is the coupling strength of the laser, k is the
wave number, and w; and ¢ are the laser frequency and
phase, respectively. There are several approximations and
considerations that we can take into account [88] that simplify
the Hamiltonian and enable us to express it in terms of the
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FIG. 7. (a)Decay rate y;(¢), Eq. (55), as a function of time in RHP
non-Markovian regime using the power-law pump for two different
temperatures: 7 = 0.1wy (short-dashed red line) and 7 = 0.3wy
(long-dashed blue line) (b) ACHL measure f(¢), Eq. (10), as a
function of time in the same regime, for the temperatures 7 = 0.1wy
(red solid line with circles) and T = 0.3w, (blue solid line with
triangles). The value obtained for the measure were Nacyr, = 0.0532

for T = 0.1wy and Nacur = 0.0058 for T = 0.3w. The parameters
used were Aw =2,7., =10,Q =135,y = 1.

harmonic-oscillator operators of creation and annihilation:

H = %UZ +wa'a + %[ei”(“*'“T)aJre_i(‘””La’)

+ e*in(a+af)o,_e+i(a)/+¢)]

(78)
where the Lamb-Dicke parameter is defined as
| h
n=k . (79)
2mow

With laser cooling methods the ion motion can be prepared
near to the ground state of the oscillator [88]. This is known
as the Lamb-Dicke regime, where n < 1. Therefore, we
can consider that the average vibrational occupation number
is negligible. In this regime the exponential terms can be
expanded in powers of 1. Keeping only the terms up to first
order 1 the light-field—ion interaction is described by three
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FIG. 8. (a) Decay rate y;(¢), Eq. (55), as a function of time in
RHP non-Markovian regime for different noises. The parameters
used were Aw =2, 7, = 4.25, Q = 0.91 (OU, green dashed line);
Aw =2, 1. = 4.25, 2 = 0.47 (SE, red solid line); Aw = 2, 7. = 10,
Q = 1.35 (PL, dot-dashed blue line). (b) Average energy for different
noises. The parameters used were Aw = 2, 7. = 4.25,Q2 = 0.91 (OU,
short-dashed green line); Aw = 2,7, = 4.25, Q = 0.47 (SE, red solid
line); Aw = 2, t. = 10, Q2 = 1.35 (PL, dot-dashed blue line); average
energy of the system without pump (long-dashed black line). Inset
shows a comparison of average energies on a better scale. All the
curves used have y = 1, T = 0.1wy.

resonant terms:

He = 1hQn(ose™'? +o_e'?), (80)
Hyo = 3hQg(aoe™® —alo_e'?), (81)
Hyg, = 5hQp(a'0re™' — ao_e'?), (82)

where Q. = Q(1 — 1?), Q4 = 1< are the coupling strength of
the Raman transitions. The first term is the Carrier transition;
this coupling changes only the internal degree of freedom, the
ion motion is kept intact. The second (third) term couples the
internal degree of freedom with the motion. It connects the
states || ,n) <> |1,n — 1) (|{,n) < |1,n + 1)). Therefore, it
is known as the red-side band (blue-side band) transition.

We can see that the two-level system coupled to a harmonic
bath plus colored noise can be fully simulated by a combination
of these transitions. In fact, comparing the terms above
with the interaction term of the Hamiltonian of Eq. (29),
for a suitable choice of the laser phase, the red-side band
interaction mimics the amplitude damping Hamiltonian, where
the environment has only one mode of vibration. The noise is
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FIG. 9. ACHL measure f(¢) for different noises. (a) The pa-
rameters used were Aw = 2, t. = 4.25, @ = 0.91 (OU, red dashed
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7. = 10, = 1.35 (PL, dot-dashed blue line). (b) The parameters
used were Aw =2, 7. =10, @ =1.35. All curves used y =1,
T = 01(1)0

modeled by using a stochastic time-dependent light field in the
Carrier transition. Experimentally this can be achieved with an
arbitrary function generator and an acousto-optic modulator
to adjust the amplitude and phase of the laser. The Markovian
temperature, in this case, will be related to the ratio between
the blue-side band and the Carrier laser intensities.

We can go one step further and couple one oscillator system
to a oscillator bath, as was done by Myatt et al.[86]. They
used the superposition of coherent motion states to study
decoherence through the coupling to engineered amplitude and
phase reservoirs. In the experiment, the amplitude reservoir
was created by adding a white noise in the trap electric field
and the phase damping by modulating the trap frequency with
that noise. Using this technique they were able to engineer
high-temperature and zero-temperature reservoirs. The system
was prepared in a superposition of coherent motion states
and its coherence as function of the size of the superposition
was measured with single-atom interferometry [86]. Adding a
colored noise to the white noise, the non-Markovian dynamics
could be seen as a revival of the interference fringes.

VI. CONCLUSIONS AND OUTLOOK

We have investigated the dynamics of a system subjected
to a classical colored noise and shown that this pump indeed

PHYSICAL REVIEW A 95, 052126 (2017)

induces quantum non-Markovianity. We have considered a
qubit interacting with a bosonic environment and undergoing
a Markovian evolution. After turning on the classical noise, the
evolution becomes non-Markovian, as witnessed by the ACHL
measure applied to the master equation of the system. We
have analyzed three different colored noises, showing that the
squared exponential noise is the more efficient one to produce
this effect.

The evolution of the system has been decomposed in two
parts: system-bath and system-pump evolutions. In the first the
qubit exchanges energy with a bosonic bath, and a Markovian
master equation has been derived under the Born—Markov
setting [1,2]. For the second, the noise has been modelled by a
stochastic Hamiltonian and functional calculus and, together
with a weak-coupling assumption, has been used in order to
derive a master equation [64]. In this case, we have found
that the evolution can become non-Markovian, depending on
the noise parameters. Having the master equation, we have
been able to evaluate the RHP non-Markovianity of the system
evolution by analysis of its decay rates, according to the ACHL
measure [75].

Three noises have been used in the subsequent analysis:
exponential (Ornstein—Uhlenbeck), squared exponential, and
power-law noises [67]. The idea has been to subject the system
to an environment at 7 = 0.33w and find the minimum values
of the parameters of each noise required to reach the RHP
Markovianity limit. Physically we have been interested in the
minimum noise strength necessary to overcome the decohering
effects of the bath and reverse the energy flow. Cooling the
environment to 7 = 0.10w with fixed noise parameters, we
have been able to measure the RHP non-Markovianity of the
system dynamics associated with each noise. The noises have
been then compared under the same values of the parameters,
with the ACHL measure for the squared exponential noise
exhibiting bigger values, which shows that, among the three
noises, it can generate more quantum non-Markovianity. The
noise pumps also have been found to cause the system’s
average energy to oscillate and increase from the value they
reach without the pump. This increase in value, however,
results almost independent of the temperature. Since the energy
differences between Markovian and non-Markovian regimes
are equivalent to all noise, the energy required to carry from
one regime to another is low.

Our results suggest further interesting studies within the
context of open quantum systems. For instance, the formalism
developed here could be applied to actual quantum systems for
investigating to which extent (i) the injection of noise acts as
a reliable alternative to reservoir engineering and (ii) the non-
Markovian features of the model are relevant to decoherence
suppression or preservation of information. Moreover, the
model could be exploited for quantum thermal machines
[90,91] to verify its possible role in enabling useful thermo-
dynamical features, such as increased efficiencies of cycles.
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