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Abstract

The so-coined fourth paradigm in science has reached the sensing area, with the use of machine learning (ML) toward data-
driven improvements in sensitivity, reproducibility, and accuracy, along with the determination of multiple targets from a
single measurement using multi-output regression models. Particularly, the use of supervised ML models trained on large
data sets produced by electrical and electrochemical bio/sensors has emerged as an impacting trend in the literature by allow-
ing accurate analyses even in the presence of usual issues such as electrode fouling, poor signal-to-noise ratio, chemical
interferences, and matrix effects. In this trend article, apart from an outlook for the coming years, we present examples from
the literature that demonstrate how helpful ML algorithms can be for dispensing the adoption of experimental methods to
address the aforesaid interfering issues, ultimately contributing to translate testing technologies into on-site, practical, and

daily applications.
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Introduction

Since the early days of science, classical heuristics have
looked for patterns from limited data sets to achieve laws,
models, and rules. Many of the chemical heuristics that
have still been taught in chemistry courses date back at
least a century ago, such as the concept of electronegativity,
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the Pauling rules, and the periodic table of elements. As a
limitation, such heuristics suffer from extrapolation issues,
being valid only under specific conditions. For instance, the
periodic table and electronegativities can change drasti-
cally at high pressures. Alternatively, the traditional heuris-
tic approach has recently been replaced by artificial intel-
ligence (AI) and machine learning (ML) models trained on
large data sets (these terms are briefly explained in the next
topic of this article). Because of the significant amount of
data available and the existence of open-source software
able to perform high-throughput data processing, Al and
ML methods have provided the so-called fourth paradigm
in science, namely, data-driven scientific discoveries and
improvements by applying robust algorithms that are valid
at more extreme conditions when compared with the con-
ventional models [1].

ML has contributed to advance diverse areas such as
speech processing, finances, navigation control, loco-
motion, personality profiling, game playing, computer
vision, organic synthesis, bioinformatics, drug discov-
ery, material design, and sensors/biosensors (bio/sen-
sors) [2, 3]. Bio/sensors have been widely developed in
a period of sustained growth due to a series of intrinsic
advantages like speed, low-cost, simplicity, nondestruc-
tive property, and ability to make on-site applications
across environmental, food, and biomedical fields [4,
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5]. In particular, the electrical and electrochemical bio/
sensors are powerful tools by combining low-cost, hand-
held, and user-friendly platforms with rapid and high-
performance assays. However, these approaches can
suffer from issues such as electrode fouling, poor signal-
to-noise (S/N) ratio, chemical interferences, and matrix
effect that undermine their precision and accuracy. As
an alternative, ML algorithms can assist the performance
of electrical and electrochemical bio/sensors even when
facing those challenges [4].

In a pioneering work, Holmberg et al. [6] reported in
1996 the use of ML to reduce signal drifts in electronic
noses for correctly classifying 85% of alcohol gas samples
(1-propanol, 2-propanol, 1-butanol, and 2-butanol). Since
then, the amalgamation of electrical and electrochemical
bio/sensors with ML to process their data has proved to
be an effective shortcut to reach accurate analyses, being
a frontier trend in the sensing area [4, 5]. Indeed, ML
methods bring relevant analytical gains by eventually
removing anomalous experimental features while smartly
picking up only certain data to obtain robust descriptors,
which can deliver analytically useful information (out-
puts) from qualitative (analyte identification and pattern
classification) and/or quantitative (regression) analyses
with enhanced sensitivity, reproducibility, and accuracy
even in the presence of issues (electrode fouling, poor
S/N ratio, and matrix effects) as mentioned before [4,
5, 7-9]. Another ML-aided benefit is the capability of
monitoring multiple parameters or targets from a single
measurement (multidetermination), thus avoiding the
need of separation methods or various selective sensors/
biosensors (bio/sensors) [10, 11]. Such advances are sum-
marized in Scheme 1, together with conceptual considera-
tions on bio/sensors and ML. Some reviews have already
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been reported summarizing the use of ML in different
bio/sensing applications [4, 5, 9, 11]. Specifically, this
trend article is aimed at researchers in the field of electro-
chemical/electrical bio/sensors with focus on the general
benefits of ML (particularly, supervised models) and how
it can help us to overcome typical and decisive analytical
issues found in the area.

Brief considerations on ML methods

ML is a class of statistical methods that automatically
identifies patterns in data sets, even if they are present
in high-dimensionality spaces, to obtain input—output
algorithms. In the sensing field, such ML algorithms
can predict unknown information (output) in qualitative,
semi-quantitative, or quantitative assays [2, 12]. To date,
ML is a subfield of Al that covers any computational
tool capable of mimicking human intelligence, includ-
ing “less intelligent” approaches such as decision trees,
if—then rules, and computer logic. ML methods can be
categorized into unsupervised or supervised learning. In
the first case, patterns from unlabeled inputs (the output
is unknown) are found for clustering, density estimation,
and/or dimensionality reduction tasks. For instance, PCA
is a commonly used approach to decrease the dimension-
ality of large data sets while preserving relevant infor-
mation contained in the original data cloud. Conversely,
supervised learning is trained on labeled inputs to achieve
classification or regression algorithms, which are able to
accurately provide discrete and continuous (numerical)
outputs, respectively [2]. Details on the concept, advan-
tages, and limitations of a set of ML algorithms can be
found out in recent and didactic reviews [3, 4].
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ML-aided analytical gains in bio/sensors

Capacity of classification

When bio/sensors lead to the generation of chemi-
cally diversified outputs, i.e., fingerprints, with pattern
responses being attained to the samples, the use of ML
becomes an effective strategy to assure accurate detection
and/or classification tasks [13-21]. Impedimetric devices
are attractive tools to provide diversified features as the
variation of impedance (Z) with frequency depends on
a set of distinguishable parameters, including resistive,
capacitive, interface, and mass-transport phenomena [22].
Ali et al. [15] reported a disposable all-printed impedance
sensor for fast detection and classification of three bacte-
ria, Salmonella typhimurium, and Escherichia coli strains.
Such a sensor consisted of interdigitated silver (Ag) elec-
trodes coated with Ag nanowires. While the impedance
data for forty samples of each strain were similar, unique
sample-related fingerprints consisting of distinct input
features, i.e., power, current—potential (i-V) curve, and
first and second derivative of these curves, were extracted
from the data and utilized as features in pattern recogni-
tion methods like linear discrimination analysis (LDA),
linear maximum likelihood estimation (MLE), and non-
linear back propagation neural network (BPNN). These
unsupervised approaches delivered the classification of the
samples through randomized cross-validation tests with
100% accuracy.

In the work developed by Okur et al. [19], an electronic
nose based on quartz crystal microbalance (QCM) sens-
ing array was applied to distinguish five pairs of chiral
odor molecules, with ten volatile organic compounds
(VOC:s) in total. These arrays were coated with six dif-
ferent metal-organic framework (MOF) thin films, three
of them with chiral properties and the other three, achiral.
Since the isomers have their intrinsic response patterns,
these features were treated by a ML method toward a more
detailed understanding of the sensor data and an enhanced
performance of the nose. Supervised k-nearest neighbor
(KNN) algorithm was used, and the mean classification
accuracy for distinguishing all 10 isomers was 96.1%, indi-
cating that it was possible to discriminate the compounds
with high accuracy.

More recently, the coronavirus disease 2019 (COVID-
19) pandemic showed us the necessity of developing
quickly available tools to address emerging healthcare
issues at the point of care (POC). In the testing area, differ-
ent devices were reported to diagnose this infection [23],
with ML methods proving to be essential in some works
for clinical screening applications. For instance, Shan
et al. [17] addressed a noninvasive approach to detecting
and following up on individuals who are at risk or have

an existing COVID-19 infection, with a potential ability
to serve as a pandemic control tool. Specifically, a breath-
ing device composed of a hybrid sensing array based on
nanomaterial with multiplexed detection capability was
described. Different gold (Au) nanoparticles bonded to
organic ligands created electrical resistance-based finger-
prints as these nanoconjugates undergo diversified levels
of swelling or shrinking after exposure to volatile disease-
specific biomarkers. ML methods were used to investi-
gate the pattern of these signals to achieve the COVID-19
signature toward screening purposes. The study cohort
included 49 confirmed COVID-19 patients, 58 healthy
controls, and 33 non-COVID lung infection controls. Dis-
criminant factor analyses (DFA) of the sensing data pro-
vided 94% and 76% accuracies in differentiating patients
from controls for the training and test sets, respectively.
The method further led to 90% and 95% accuracies in dif-
ferentiating between patients with COVID-19 and those
with other lung infections. ML models can benefit not only
from diversified sensing data, but also from a significant
training set size for creating descriptors with an enhanced
prediction ability. In this way, analyses of a larger number
of training samples are expected to boost the classification
ability of the prior sensor in blinded sample-with applica-
tions (test set).

The combination of sensor with ML method toward
COVID-19 diagnosis was also proposed by Beduk et al. [21].
In this case, laser-scribed graphene (LSG) devices coupled to
Au nanoparticles (AuNPs) were developed as affinity-based
biosensing platforms to probe novel variants of COVID-19,
i.e., alpha, beta, and delta, as presented in Fig. 1A. The elec-
trode was modified with angiotensin-converting enzyme 2
(ACE2) bioreceptor for detecting SARS-CoV-2 S1 and S2
antigen proteins. A homemade electrochemical analyzer,
KAUSTat, was utilized for differential pulse voltammetry
(DPV) experiments. This device is portable and allowed
smartphone connection via micro-USB port. The KAUSTat
platform was also able to provide ML processing through a
neural algorithm, thus meaning a promising tool to deliver
POC diagnostics. The dense neural network (DNN)-super-
vised architecture was used to validate such a self-diagnosis
setup. A clinical study was conducted with nasopharyngeal
swabs from 63 patients having the SARS-CoV-2 variants,
patients without the mutation, and negative patients. Accu-
racies of 98.7%, 99.5%, 100.0%, and 99.4% were obtained
for the inference of the beta, alpha, and delta variants and
control patients, respectively. Particularly, apart from electri-
cal devices as discussed before, these data reveal the ability
of faradaic electrochemical methods to afford chemically
diversified signals for ML-aided high-performance classi-
fications as well.

In another work, our group [24] used a five—amino acid
peptide (Asn-Asn-Ala-Thr-Asn-COOH, called PEP2003)
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Fig. 1 ML-aided analytical gains in electrical and electrochemical bio/
sensors. A Immunoaffinity biosensor based on LSG/AuNPs electrodes
to detect novel variants of COVID-19. Construction of the biosensing
interface and SARS-CoV-2 detection (1), sensor attached on a port-
able electrochemical analyzer connected to smartphone by USB (2),
DPV scans showing the oxidation current changes after each modifica-
tion and detection of 200 ng mL™' SARS-CoV-2 S1 and S2 antigens
(I: Bare LSG, II: AuNPs-LSG, III: AuNPs-LSG-Binders, IV: AuNPs-
LSG Immunosensor, V: 200 ng mL™' S1 antigen, and VI: 200 ng mL™!
S2 antigen) (3), DNN architecture (4), and resulting spatial representation
of the dataset collected by measuring nasopharyngeal swabs of COVID-
19-positive and negative patients (5). EDC, NHS, and Cys mean 1-ethyl-

to recognize SARS-CoV-2 antibodies in a label-free (LF)
biosensor designed for COVID-19 screening. The biosen-
sor relied on glassy carbon electrodes (GCE) coated with
AuNPs, which were used for electrochemical impedance
spectroscopy (EIS) analyses. In contrast to big-size rec-
ognition elements (e.g., proteins and antibodies), this pep-
tide can be easily prepared via chemical synthesis and it is
not amenable to denaturation, hence meeting the trade-off
between scalability, cost, and shelf-life. The biosensor pre-
served 95.1% of the initial signal for 20 days when stored
dry at 4 °C. Concerning the discrimination of two types
of diluted human sera, pre-pandemic individuals (15) and
convalescent patients (24), false negatives (~ 10%) were
noted when using a cutoff line based on univariate charge-
transfer resistances (R, extracted from Nyquist plots) for
COVID-19 screening. To solve this issue, a supervised
model named sure independence screening and sparsifying
operator (SISSO) was used, and two simple equations fitted
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3-(3-dimethylaminopropyl)carbodiimide, N-hydroxysulfosuccinimide,
and cysteine, respectively. Reproduced from [21], Copyright 2020 with
permission from Elsevier B.V. B Smartphone-based ECL sensor. Sche-
matic diagrams of data-driven modeling using FNN and RF algorithms
(1) and the parity plots of predicted vs actual Ru(bpy)3 concentrations
using RF (2) and FNN (3). Reprinted from [26], Copyright 2020 with
permission from MDPI Open Access Journals. C Multidimensional elec-
trochemical sensor toward metal ion recognition. Microfluidic device
comprising an association of double-layer capacitors in parallel (1), a
parity plot of predicted vs true ion concentrations according to RF (2),
and the errors related to multi-output regression (3). Reproduced from
[10], Copyright 2020 with permission from Elsevier B.V

the R, data. Remarkably, such equations led to the COVID-
19 screening of sera into healthy and infected groups with
no false positives or negatives, i.e., 100.0% accuracy. SISSO
converts the input data into low-dimensional and easy-to-
use mathematical equations aiming at accurate qualitative or
quantitative analyses even from a small number of training
sets, therefore meeting the trade-off between accuracy and
simplicity/speed of computation. Such advantages favor the
development of ML-aided sample-to-answer experiments on
mobile phones, which would greatly facilitate detection at
the point of care as no data treatment by the user is needed.

Accurate quantification

Beyond their employment to improve the capacity of clas-
sification, ML methods have been applied to increase the
quantification accuracy [25-27]. For instance, Rivera et al.
[26] used supervised random forest (RF) and feedforward
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neural network (FNN) algorithms to quantitatively inves-
tigate the relationship between the concentration of
Ru(bpy)?r luminophore and the resulting electrochemilu-
minescence (ECL) and electrochemical signals, as exhib-
ited in Fig. 1B. The multivariate character of this kind of
experiment naturally imposes challenges against the fitting
of accurate regression models, which were successfully
attained by both the prior ML methods. Multimodal data
consisting of ECL images and amperograms (recorded
in+1.2 V) and the Ru(bpy)g+ concentrations were pro-
cessed as the input and output features for ML models,
respectively. High correlations (0.99 for RF and 0.96 for
FNN) between real and predicted values were achieved in
the detection range from 0.02 to 2.50 umol L=, Thus, the
RF and FNN regression models proved to be capable of
directly inferring the Ru(bpy)?r concentration from diversi-
fied ECL and electrochemical responses.

More recently, Lu et al. [27] applied the artificial neural
network (ANN) in the analysis of niclosamide (NA) using an
electrochemical sensor. ANN was chosen due to its intrinsic
abilities such as the high capacity of self-learning, solution
of non-linear problems in arbitrary data, high-speed search
for optimal modeling, and robustness against noise issues.
The sensor consisted of a glassy carbon electrode modified
with carbonized MOF. DPV scans were first recorded to
quantitatively detect NA in the range from 1.0 nmol L™! to
9.0 pmol L~! by the traditional analytical curve method. In
this case, the peak currents presented a linear relationship
with the NA concentration square, and the root mean square
error of calibration (RMSEC) was 2.7602. When ANN was
applied to the DPV data, nonetheless, the RMSEC was
reduced to 0.2788. For the analysis of NA in spiked real
drug samples, the average relative standard deviation (RSD)
of recoveries reduced from 1.9 to 1.6% with the ML method.
More significative improvements in prediction capacity can
be provided by ML when challenging the method in complex
samples, as it will be discussed in the section “Supervised
models solving specific challenges in chemical analyses and
bio/sensors” of this trend article.

Multidetermination from single measurements

Another analytical gain from the adoption of supervised
ML models to treat the bio/sensing data is the capabil-
ity of addressing the determination of multiple analytes,
i.e., multidetermination, from a single measurement, thus
bypassing the use of preparation methods (e.g., clean-up
routine, extraction, chromatography, and electrophoresis)
or different selective sensors as usually required. Accord-
ingly, this strategy leads to important advances in cost
reduction, throughput, and operational simplicity [10, 28,
29]. Some recent examples of this application of ML are
presented below.

Bonet-San-Emeterio et al. [29] proposed a voltammetric
device electrochemically modified with reduced graphene
oxide (rGO) for the analysis of mixtures of dopamine
(DA), serotonin (5-hydroxytryptamine, 5-HT), and their
most common interferents, i.e., ascorbic acid (AA) and
uric acid (UA). Although these compounds are electro-
chemically active, peak current overlapping can occur as
their voltammetric responses are similar, damaging the
accuracy of direct electrochemical analyses. Remarkably,
ANN provided the accurate quantification of each com-
ponent from a unique voltammetry scan. Methods such
as principal component analysis (PCA), discrete wavelet
transform (DWT), and fast Fourier transform (FFT) were
further employed to decrease the dimensionality of the
voltammetric data. The graphs acquired from DWT-ANN
showed the lowest dispersion and greatest linearity (cor-
relation coefficient > 0.974). Further, this model yielded
a normalized root-mean-square error (NRMSE) of 0.088.

In another publication, our group [10] developed a mul-
tidimensional electrochemical sensing array that assures
the multidetermination of metal ions in lake samples in
a direct way from a single cross-reactive electrode and
measurement, as presented in Fig. 1C. Microfluidic
devices were prototyped by a scalable, cleanroom-free,
green, and simple method, whereas commercial and ordi-
nary stainless-steel capillaries were utilized as sensing
probes. The latter formed an association of double-layer
capacitors in parallel to generate multidimensional, i.e.,
chemically diversified, responses. This property was
reached in a single response since the equivalent capaci-
tances (fingerprints) encompass contributions of all the
individual capacitors that were capable of delivering pat-
tern responses because of the multidimensional nature
of the frequency-function capacitance scans [30, 31], as
aforesaid for impedimetric devices. This sensor led to the
simultaneous quantification of the cations Ni’*, AI**, and
Cu?* from universal ac voltage tests by treating the capaci-
tance values assuming the electrodes as ideally polarizable
interfaces. Specifically, multi-output regressions based
on RF algorithms showed high correlation coefficients
(R?>>0.99) in all the cases. The overall mean absolute
error (MAE) was revealed to be only 0.2 mg L~! (the con-
centrations of the ions ranged from 5.0 up to 50.0 mg L™").

Supervised models solving specific
challenges in chemical analyses and bio/
sensors

Electrode fouling

As recently demonstrated by Ferreira et al. [7], ML is capa-
ble of circumventing accuracy issues caused by electrode
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fouling. Specifically, the authors developed a platform using
a millifluidic impedimetric sensor to monitor the synthesis of
silica nanoparticles (SiO,NPs) for 24 h. These nanoparticles
were selected due to their wide range of applications. Using
linear regression—based analytical curves with univariate
signals of Z at specific frequencies as sensing features, the
inter-synthesis accuracy (employing independent sensors as
well) was poor. Specifically, the determined hydrodynamic
diameter (Dy) of the nanoparticles presented discrepancies
of up to 132.8% with regard to the true data (determined by
dynamic light scattering, DLS). This poor reproducibility
was shown to be triggered by the adsorption of SiO,NPs
on the Au electrode during the synthesis. Utilizing SISSO
descriptors composed of only six Z inputs (at different fre-
quencies; the whole spectra contained 18 Z data), this inter-
ference could be overcome with Dy being determined in
a real-time, accurate, and simple way without using anti-
fouling layers on the electrodes. The global average accu-
racy was 103.7 = 1.9%, thereby demonstrating the robustness
of the SISSO descriptor. The SiO,NP concentration could
also be attained with accuracy using the SISSO multi-output
regression model. The root-mean-square errors (RMSE)
were calculated as 2.0 nm and 2.6 x 10'* nanoparticles mL ™!
for the size and SiO,NPs concentration, respectively.

In another work, Aiassa et al. [32] developed a new
method for electrochemical sensing of propofol with com-
pensation of the fouling effect through the ML model, as
shown in Fig. 2A. In this case, the passivation of the HB
pencil lead, a carbon electrode, stemmed from the forma-
tion of a polymeric film coating, decreasing the signal and
disturbing the accuracy as such a phenomenon is charac-
terized by a strong non-linear response. As a consequence,
the application of a univariate linear regression model to
cyclic voltammetry (CV) features provided poor accuracy
in classifying propofol samples diluted in phosphate buft-
ered saline solution (PBS) and human serum, being only
69.8% and 33.3%, respectively. The compensation of this
non-linear fouling effect was achieved by processing the CV
data through the radial basis function support vector classi-
fier (RBF-SVC), which is a non-linear ML algorithm. In this
case, the accuracies were improved to 98.9% and 100% for
samples in PBS and human serum, respectively.

As noted in the two prior works [7, 32] and following in
this section, supervised ML models are a powerful strategy
to afford direct analyses as the use of experimental meth-
ods to inhibit the interfering issue is avoided and ML-fitted
algorithms can be automatically performed, e.g., in mobile
phones toward the development of sample-to-answer fash-
ions. The latter facilitates detection at the point of need
because no data treatment or interpretation by the user is
required. Concerning the approaches that are commonly
described in the literature to prevent electrode fouling, they
include self-assembled monolayers of polyethylene glycol,
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zwitterionic polymers, hybrid coating, and bovine serum
albumin (BSA). Although valuable, these blocking layers
generally hamper the redox reaction kinetics, hence impair-
ing the analytical performance of the device. Further, these
coatings may present low durability, repeatability, and scal-
ability, mining POC tests and commercial manufacturing
feasibility [33].

Matrix effects

ML can also be employed to solve matrix effects in chemical
analysis, as recently reported by our group [8]. Microhole-
structured and flexible Ni meshes acting simultaneously
as gas diffusion membranes and electrodes were used for
voltammetric determination of volatile compounds. The
diffusion of gas from donor (samples) to receptor phases
(electrolyte) was conducted in headspace (contactless)
mode, thus minimizing issues related to the mesh fouling,
as represented in Fig. 2B. The platform was challenged in
sugar cane fermentation broths for ethanol determination.
This application is relevant to detect unconformities and pro-
vide high efficiencies in the production of ethanol biofuel.
Ni(OH),-modified Ni electrodes were interrogated with CV
to probe ethanol vapor dissolved into the receptor solution.
Briefly, Ni(OH), was reversibly oxidized in alkaline media
to the high-valence NiOOH, which promoted the irreversible
oxidation of ethanol by acting as an electron mediator [34].
Using the univariate method of analytical curve—based inter-
polation with oxidation currents (4+0.65 V) as responses,
the attained ethanol concentrations variated in relation to
the expected data with accuracies from 80% up to 105%.
This accuracy range suffered from the susceptibility of gas
diffusion to matrix effects as the medium composition alters
the analyte evaporation rate. Nonetheless, a simple SISSO
descriptor with CV scan—based inputs was once again able
to boost accuracy, as discussed next.

Parity plots between the predicted and expected concen-
trations of ethanol exhibited ideal behavior, with the slope
close to 1.0 and linear fitting (0.99 R2), whereas the accura-
cies ranged from 97 to 102% for the test samples [8]. The
use of a mathematical descriptor containing only seven fea-
tures of current at different potentials provided direct assays
with accuracy. In this sense, while the traditional method
of standard addition may overcome matrix effect interfer-
ences, the necessity for determining spiked solutions before
the analysis of every sample can compromise the practical
accomplishment of daily, practical, and on-site applications.

Chemical interferences

Torrecilla et al. [35] developed an amperometric biosensor
to simultaneously determine glucose and its interferents,
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Fig.2 ML addressing specific challenges in the bio/sensing area.
A Continuous voltametric monitoring of propofol. Experimental
setup and the representation of a propofol molecule (1), scheme of
the proposed ML approach that assured accurate determinations in
spite of the electrode fouling (2), and the confusion matrices for
the results in undiluted human serum with the standard linear ana-
lytical curve (3) and with the ML-based model (4). Adapted from
[32], Copyright 2022 with permission from ACS. B Bifunctional
metal mesh working as gas diffusion membrane and electrode for
the accurate electrochemical quantification of ethanol in liquid
samples (donor) by overcoming matrix effect-related interferences.
Ilustration of the developed protocol with the addition of an elec-
trolytic receptor solution to dissolve ethanol vapor and provide
low-ohmic drop faradaic electrochemical assays (1), picture (2) and
SEM images (3) of the flexible Ni mesh with 20.0-um microholes,
and parity plots of predicted vs true concentrations of ethanol

AA and UA, in a mixture. The concentration of these ana-
lytes ranged from 0.1 to 1.0 mmol L', and their analyti-
cal information was extracted from CV. The combination
of biosensing responses with chemometric tools can solve
the issue of complex analytical signals from the set of spe-
cies with similar responses. In this sense, the authors used
ANN to process the device signals aiming at the accurate
quantification of glucose in the presence of interferents. The
contents of glucose, AA, and UA could be estimated with
mean prediction errors (MPE) of 0.007, 0.013, and 0.032,
respectively. Moreover, in all these cases, R was higher than
0.99. Using ML, accurate quantifications could be reached

considering the sensing data treatment by the traditional univari-
ate analytical curve method (4) and SISSO (5). Adapted from [8],
Copyright 2021 with permission from ACS. C ML-aided sensitive
monitoring of gas (1-3) and LWC from soy leaves (4-8). Layers of
the device and the use of DNN to extract “hidden signals” from the
raw resistance signals (1), DNN learning approach (2), and clas-
sification accuracy for two H, concentrations measured in distinct
metallic electrodes as highlighted (3). Adapted from [43], Copy-
right 2022 with permission from ACS. Impedimetric wearable sen-
sor composed of flexible free-standing Ni electrodes to assess LWC
from soy leaves. Electrodes before (4) and after attachment on leaf
using adhesive tape (5), electrodes under deformation (6), Z assays
over 24 h at 30 and 20 °C (7), and the ensuing parity plot of pre-
dicted vs expected LWC at 20 °C using SISSO (8). The scale bar in
(4) means 5.0 mm. Adapted from [44], Copyright 2022 with per-
mission from ACS

without the adoption of experimental methods to prevent
chemical interferences in bio/sensors, such as the use of
separation techniques and permselective membranes [36].

Sensitivity

Improving the sensitivity is a relevant task to be pursued
in the sensing area. In addition to contributing toward early
monitoring, sensitive devices allow a high dilution of sam-
ples, hence providing the analysis of small-volume samples
(a crucial benefit in biological assays) and preventing elec-
trode fouling as the interferences present in the samples are
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diluted to insignificant contents [37]. Despite the existence
of a plethora of efficient strategies to enhance sensitivity
such as the use of nanomaterials toward current amplification
[38—41], the adoption of bare electrodes is desirable by sup-
porting scalable, simple, and low-cost sensing methods [42].
In this case, we can resort to ML to guarantee sensitive analy-
ses by smartly selecting specific input features. For instance,
Cho et al. [43] developed a resistive array comprising six
metals, i.e., Au, Cu, Mo, Ni, Pt, and Pd, for sensitive gas
monitoring. DNN was used to extract “hidden signals” from
the raw resistance signals in the error region, as shown in
Fig. 2C. They found that the use of ML enabled a reduction
in the limit of detection (LOD) for H, from 10.0 to 2.5 mg
L~! with a recovery of 73.8% considering the Pd electrode.

Significant ML-assisted improvement in the S/N ratio was
recently described by our group [44]. We proposed an impedi-
metric wearable sensor for determining the loss of water con-
tents (LWC) from soy leaves at different temperatures along
24 h, namely, 12 h at 30 °C and then 12 h at 20 °C. Water
content is a key marker of leaf health, and it can lend insights
into daily practice in precision agriculture, toxicity studies,
and the development of agricultural inputs. Ni films obtained
by well-established microfabrication approaches (photolithog-
raphy and electroplating) were used as flexible on-leaf elec-
trodes, as displayed in Fig. 2C. While these electrodes were
sufficiently sensitive to quantify LWC at 30 °C using a simple
linear fitting from univariate single-frequency Z input data,
these signals remained nearly unchanged over the next 12 h
at 20 °C when the water loss rate was decreased 1.7 times
(6.2x1073% min~" at 30 °C and 3.7x 1073% min~" at 20 °C).
Remarkably, the SISSO descriptor picking up only six input
features from the whole Bode plot (16 Z values vs frequency)
led to the accurate monitoring of LWC at 20 °C, with RMSEs
being 0.2% and 0.1% for the training and test sets, respectively.
The ability of directly determine LWC from plant leaves at dis-
tinct temperatures through a simple ML descriptor is important
for practical use of the method outside of laboratory facilities
in outdoor or even indoor gardens.

Outlook

As presented throughout this trend article, the convergence
of electrical and electrochemical bio/sensors with machine
learning methods provides a promising strategy aiming at
the translation of testing technologies capable of affording
point-of-need and extensive trials (many trials per thousand
people) into practical use. In addition to allowing multide-
termination and improving the analytical performance of
devices through the discrimination of overlapping signals,
supervised ML models may lead to accurate tests without the
requirement for experimental methods to prevent common
analytical issues such as electrode fouling, matrix effects,
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chemical interferences, and poor S/N ratio. These obstacles
can delay time and increase costs facing the commercial
adaptation of sensing technologies [23].

According to Clark [45]: “the young investigators in the
field of sensors are coming from a myriad of backgrounds,
including materials, analytical chemistry, and chemical
biology.” Probably, by considering the analytical gains pro-
vided by ML-fitted mathematical models as described above,
advanced data treatment techniques trained on large data sets
will be also a crucial topic to be dominated by the emerg-
ing generation of these scientists. In fact, the amalgamation
of bio/sensors with ML has emerged as a relevant trend in
the literature, adding even more interdisciplinarity to the
exciting sensing area [23]. In practice, several commercial
and open-source software packages, codes, and tools exist
to implement the most common ML models and learning
workflow tasks. A set of theoretical and experimental data-
bases are also available for supporting various areas [2, 46].

As mentioned above, the prediction ability of supervised
ML methods is expected to progressively increase with the
number of training samples and the chemical diversification
of the sensing data (inputs) [1]. Hence, instead of training
the model with standard samples or a limited number of real
samples as usually noted in the literature, the descriptors
in future works should be extracted from large sets of real
samples. Such a type of investigation will not only contribute
to effectively advancing the platform across the technology
readiness levels (TRLs) toward real-world applications, but
also it will likely reinforce the engineering, biological, and
chemical challenges into the research, including parameters
such as reproducibility, scaling, stability (i.e., shelf-life),
sensitivity, cross-reactivity, and fouling. In this way, one
should also stress the relevance of dialogues with business-
related entities for product development. The convergence
among academic and industrial knowledge will probably
work as a shortcut to speed up the commercial translation
of sensing systems, which are likely to be better equipped to
deal with on-demand economic, social, health, and environ-
ment challenges in the future.

However, one should stress that the two prior require-
ments, i.e., number of training samples and chemical diversi-
fication of the inputs, are not enough to guarantee the fitting
of algorithms with a high generalization, i.e., models that
can accurately predict the output for unknown samples (test
set) outside the training set. The fitting of these algorithms
from large data sets critically depends also on the quality of
the experimental data that compose the inputs [2, 47]. Spe-
cifically, the measurements must be precise and reproduc-
ible to minimize systematic errors. Further, the experimental
data must be representative of the target property even in the
presence of the aforesaid analytical issues. In fact, ML will
only be able to meet these issues if a minimum correlation
between the sensing data and the target property is held.
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In practice, as absolute signal values are amenable to non-
specific variations, this correlation can be partially provided
by parameters such as peak position and signal profile, i.e.,
relative variations in signals.
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