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1. Introduction

When studying an algebraic or geometric structure, a central problem is that of understanding how one 
such structure is related to the nearby ones. The main objective is to describe a neighbourhood of such 
structure in its moduli space. A first approximation to this problem is to study the space of structures 
which can be obtained from the original one through a small path in the moduli space. These paths give 
rise to families of structures which will be called deformations. This paper deals with deformations of Lie 
group homomorphism and Lie subgroups. More precisely, we are interested in understanding when a smooth 
family of Lie group homomorphisms or a smooth family of Lie subgroups represents a constant path in the 
corresponding moduli spaces. When this is the case, the deformation will be called a trivial deformation. 
Therefore, the first problem that we will deal with in this paper is that of determining when a deformation 
of a Lie group homomorphism (or a Lie subgroup) is trivial.
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The notion of triviality of a deformation depends on the automorphism group that one considers. For 
Lie group homomorphisms φ : H → G or Lie subgroups H ⊂ G, it is usual to consider the group of inner 
automorphisms of G as the allowed group of automorphisms. Thus, for example, a smooth family of Lie 
group homomorphisms φε : H → G will be called trivial if there exists a smooth curve ε �→ gε starting at the 
identity in G such that φε(h) = gεφ0(h)g−1

ε for all h ∈ H. An analogous definition is made for deformations 
of a Lie subgroup H ⊂ G. We will relate the triviality of deformations with the (smooth) vanishing of 
certain classes in cohomology groups associated to H, G and φ.

Theorem 1.1. Let φε be a deformation of φ : H → G. Then for each λ we obtain a 1-cocycle

Xλ(h) = dφλ(h)Rφλ(h)−1
d

dε
|ε=λφε(h)

in the complex which computes the differentiable cohomology of H with coefficients in the pullback by φλ of 
the adjoint representation of G.

Moreover, the deformation is trivial if and only if the family of 1-cocycles Xλ can be smoothly transgressed 
(i.e., the cohomology classes vanish in a smooth manner).

To be precise, the result stated above holds under an extra completeness assumption. What we will 
actually prove is a local version of this result (see Theorem 3.7).

A similar result will be stated and proved for deformations of Lie subgroups (Theorem 4.11). We also 
consider the problem of determining when a deformation φε of φ : H → G is trivial with respect to the 
full group of automorphisms of G. We will call such deformations weakly trivial. In order to deal with this 
problem, we note that for each ε we obtain a homomorphism

φ∗
ε : H∗(G, g) −→ H∗

φε
(H, g), φ∗

ε[c] = [φ∗
ε(c)],

where H∗
φε

(H, g) denotes the differentiable cohomology of H with coefficients in the representation

Ad ◦ φε : H −→ GL(g).

We will say that a family [Xε] ∈ H1
φε

(H, g) has a smooth pre-image in H1(G, g) if there exists a smooth 
family of 1-cocycles Zε ∈ C1(G, g) and a smooth path uε ∈ g such that

φ∗
ε(Zε) = Xε + δφε

(uε),

where δφε
: g → C1

φε
(H, g) denotes the differential of the complex computing the cohomology of H with 

values in the pullback by φε of the adjoint representation of G. In other words, the family of cohomology 
classes [Zε] ∈ H1(G, g) is a smooth pre-image of [Xε] ∈ H1

φε
(H, g). We will show that

Theorem 1.2. Let φε : H → G be a smooth family of Lie group homomorphisms and let Xε be its deformation 
cocycle. Then φε is weakly trivial if and only if [Xε] has a smooth pre-image in H1(G, g).

We remark that the presence of the “extra smoothness hypothesis” is unavoidable in our theorems. This 
is due to the geometric approach we use to prove the theorems (see the discussion on Moser’s argument 
below). However, when H is compact we can use a Haar measure on H to provide explicit transgressions 
to δφε

. With this we obtain, for example, the following result.

Theorem 1.3. Let H be a compact Lie group. Then every Lie group homomorphism φ : H → G admits only 
trivial deformations.
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Similarly, we obtain the following result for compact Lie subgroups of G.

Theorem 1.4. Let H ⊂ G be a compact Lie subgroup. Then every deformation of H in G is trivial.

Remark 1.5. Roughly speaking, a deformation of a Lie subgroup H ⊂ G is a deformation Hε of the Lie 
group H along with embeddings ιε : Hε → G which deform the embedding ι : H → G (see Section 4 for 
the precise definition). Such a deformation is trivial if there exists a smooth curve gε in G, starting at the 
identity, such that ιε(Hε) = gει(H)g−1

ε , where the equality is that of subgroups of G.
As pointed out by the referee, if a deformation of a Lie subgroup H ⊂ G is trivial, then in particular, 

Hε is isomorphic to H for all ε. Therefore, after identifying Hε with H, we may view ιε as a deformation of 
the homomorphism of ι : H → G. In this sense, we are implicitly considering a third notion of equivalence 
of deformations of homomorphisms. For this notion of equivalence, ιε is a trivial deformation if there exists 
a smooth family of automorphisms Fε of H such that F0 = IdH , and a smooth curve gε in G starting at 
the identity element of G such that

ιε ◦ Fε(h) = gει(h)g−1
ε , for all h ∈ H.

In summary, there are deformations of Lie subgroups which are more general than those obtained simply by 
acting on the subgroup with an automorphism and then deforming the inclusion of a Lie subgroup, but the 
trivial deformations are necessarily of this form and in this case the problem reduces to a new deformation 
problem for homomorphisms.

Comparison to existing results. The problem of understanding the space of group homomorphisms and 
Lie subgroups near to a fixed one is not new. In [10], the authors topologize the space of Lie group ho-
momorphisms from H to G using the compact open topology and consider the G-action through inner 
automorphisms of G on the space Hom(H, G) of Lie group homomorphisms. They sketch a proof of a the-
orem which states that if H1

φ(H, g) = 0 then the G-orbit of φ is open in Hom(H, G), and therefore every 
nearby homomorphism is conjugate to φ. A complete proof of this theorem can be found in [9], where the 
author allows H to be a compactly generated locally compact group. This theorem is very closely related 
to our Theorems 1.1 and 1.3. On the one hand, the conclusion of their theorem is stronger than ours since 
our conclusions only hold for paths of homomorphisms while theirs is topological. If we could show that the 
space of Lie group homomorphisms is locally path connected in a neighbourhood of φ then one might expect 
to obtain their results from ours. However we do not know if such a result is true. On the other hand, our 
hypothesis is in a way weaker than theirs; we do not ask for the vanishing of the entire cohomology group, 
but only the (smooth) vanishing of the deformation class to obtain our conclusion. In any case, when H is 
compact it follows that H1

φ(H, g) vanishes for all φ and we obtain smooth transgressions of the deformation 
class of any deformation φε. In this way we obtain a parametric version of their result.

In [3], the author deals with deformations of a Lie subgroup H ⊂ G. Similarly to our approach, the 
problem that is described is that of controlling the triviality of families of Lie subgroups. The key ingredient 
in the proof of his first main theorem is the Implicit Function Theorem which he applies under the condition 
that the whole cohomology H1(H, g/h) vanishes. He then obtains that every deformation of H is locally 
trivial. On the other hand, we again do not impose the vanishing of the entire cohomology group. Our result 
is valid for subgroups which may admit non-trivial deformations. We characterize the trivial deformations 
of such a subgroup as being those for which the deformation class vanishes smoothly in cohomology. When 
H ⊂ G is a compact Lie subgroup we use an explicit transgression of the deformation class and recover the 
result of [3]. Coppersmith also discusses the obstructions to the existence of deformations with prescribed 
deformation class. We do not deal with this problem in this paper.
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Problems similar to the ones discussed in the present paper have also been studied in the context of Lie 
algebras rather than Lie groups. For example, [6] (see also the references therein) discusses the stability 
problem for Lie algebra structures, Lie algebra homomorphisms and Lie subalgebras. The paper discusses 
the relevant cohomology theory which controls the corresponding deformation problems, the construction 
of Kuranishi models for the corresponding moduli spaces, and proves rigidity and stability results in the 
context of Lie algebra structures, homomorphisms and subalgebras. Similar results are also discussed in [2]
in the context of deformations of Lie algebras and of nilpotent Lie algebras (in the space of nilpotent Lie 
algebras).

The results of the present paper can be interpreted as global versions of the corresponding results for Lie 
algebras. In fact, the differentiable cohomology of a Lie group with coefficients in a representation is related 
to the cohomology of its Lie algebra via the van Est map [7]

ϑ : Hk(H,V ) −→ Hk(h, V ).

This map is an isomorphism up to degree k, as long as H is k-connected. Deformations at the level of Lie 
groups induce deformations of their infinitesimal counterparts at the level of Lie algebras. For example, if 
φε : H → G is a deformation of φ, then deφε : h → g is a deformation of deφ. When H is 1-connected, 
classical results in Lie theory give a one-to-one correspondence between deformations at the group level and 
at the algebra level. Also, since every 1-connected Lie group is automatically 2-connected, the van Est map 
is an isomorphism in the degrees relevant for deformation theory. This relates the deformation cocycles at 
the global and infinitesimal levels. We note, however, that the deformation theory at the group level cannot 
in general be recovered by the corresponding theory for Lie algebras. For example, if H is not 1-connected 
then it is not true in general that every Lie algebra homomorphism ϕ : h → g integrates to a Lie group 
homomorphism from H to G. Therefore, there could be deformations at the infinitesimal level which do 
not induce deformations at the group level. Moreover, the techniques used in [2,6] differ from the ones used 
in the current paper. While we use a Moser deformation argument, the papers above use versions of the 
Implicit Function Theorem which are analogous to the technique in [3].

The moser deformation argument. Our versions of the results on deformations of Lie group homomorphisms 
and Lie subgroups were made possible due to the technique we employ. Our approach is an adaptation of 
the Moser Deformation Argument to the context of deformations of homomorphisms and Lie subgroups. 
The Moser Deformation Argument is a classical technique in symplectic geometry used to understand when 
a deformation of a symplectic structure is trivial.

In order to motivate the techniques used in this paper we briefly explain Moser’s Deformation Argument 
in symplectic geometry. Recall that a symplectic structure on a manifold M is a 2-form ω ∈ Ω2(M) which 
is closed under the de Rham differential (dω = 0) and is non-degenerate in the sense that for every x ∈ M , 
if u ∈ TxM is a tangent vector then ω(u, v) = 0 for all v ∈ TxM if and only if u = 0. Suppose that ωε is 
a smooth family of symplectic structures on M . Since each ωε is closed under the de Rham differential it 
follows that d

dεωε is also a cocycle in the de Rham cohomology of M for all ε. The claim is then that there 
exists a smooth family φε : M → M (defined for small values of ε) of diffeomorphisms such that φ0 = IdM

and φ∗
εω = ωε if and only if the cocylcles d

dεωε can be smoothly transgressed, i.e., if there exists a smooth 
family αε ∈ Ω1(M) of 1-forms such that

dαε = d

dε
ωε

for all small values of ε.
To prove this claim one uses the following argument, which is known as the Moser Deformation Argument. 

Assume there exists φε satisfying the conditions of the claim. Differentiating the condition
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φ∗
εω = ωε

with respect to ε one obtains that

LXε
ω = d

dε
ωε,

where LXε
denotes the Lie derivative with respect to the vector field Xε = d

dεφε. Using Cartan’s magic 
formula and the fact that dω = 0 one obtains that

LXε
ω = d(ω(Xε)) = d

dε
ωε

for all ε. But then one can take αε = ω(Xε) to conclude one of the implications of the claim.
To prove the converse, suppose that there exists a smooth family αε of 1-forms which satisfy dαε = d

dεωε. 
Since ω is non-degenerate, there exists a unique smooth time dependent vector field Xε on M such that 
ω(Xε) = αε for all ε. Then the computations done in the first part of the proof show that the flow φε of the 
time dependent vector field Xε satisfies φ∗

εω = ωε (for flows of time dependent vector fields see e.g., [8]). To 
be precise, we remark that this argument is valid as long as the flow φε is defined at all points for ε ∈ [0, ε′].

In this paper we use a similar approach to prove the triviality of deformations of Lie group homomor-
phisms and Lie subgroups. We identify the relevant cohomology theory controlling the deformation and 
prove that the deformation cocycle can be smoothly transgressed if and only if the deformation is (locally) 
trivial.

We remark that a similar approach has also been used in [5] to understand when a deformation of 
Lie groupoids (and in particular Lie groups) is trivial. Also in [1] these techniques were used to address 
deformations of Lie group representations.

This paper is organised as follows. In Section 2 we recall the definition of the differentiable cohomology of 
a Lie group with values in a representation and describe the special cases which are relevant for controlling 
the deformation problems. In Section 3 we describe our results for deformations of Lie group homomorphisms 
and in Section 4 we describe the results for Lie subgroups.

Acknowledgements. We would like to thank João Nuno Mestre for his valuable comments on a first version 
of this paper. We are also grateful to the anonymous referee for the many suggestions which have helped to 
improve the final version of this paper.

2. Lie group cohomology

In this section we briefly recall the definition of the differentiable cohomology of a Lie group G with 
coefficients in a representation ρ : G → GL(V ), and describe the representations that will be useful for our 
purposes.

Let G be a Lie group and ρ : G → GL(V ) be a representation of G. The cochain complex of G with 
coefficients in V is defined as follows: the cochains Ck(G, V ) of degree k are smooth functions on Gk (the 
cartesian product of k copies of G) with values in V . The differential δρ : Ck(G, V ) → Ck+1(G, V ) is defined 
by

δρc(g1, ...gk+1) := ρ(g1)c(g2, ..., gk+1) +
k∑

i=1
(−1)ic(g1, ...gigi+1, ...gk+1)

+ (−1)k+1c(g1, ..., gk).
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For any representation ρ of G, we have δ2
ρ = 0; the resulting cohomology is denoted by Hk

ρ (G, V ). The 
following examples will be useful for us.

Example 2.1. The adjoint complex of G is the complex obtained by taking V to be the Lie algebra g of G, 
and ρ to be the adjoint representation of G on g. In this case, the differential of the cochain complex will 
be simply denoted by δ, and the cohomology groups will be denoted by Hk(G, g).

Example 2.2. If φ : H → G is a homomorphism, then the adjoint representation of G pulls-back to a 
representation of H, ρ = Ad ◦ φ : H → GL(g). In this case, we will denote the resulting cochain complex 
by (C∗

φ(H, g), δφ) and its cohomology by H∗
φ(H, g).

Example 2.3. When H ⊂ G is a Lie subgroup with Lie algebra h ⊂ g, the adjoint action of H on g induces a 
representation of H on the quotient vector space V = g/h. In this case, we will again denote the differential 
of the cochain complex by δ and we will denote the resulting cohomology groups by H∗(H, g/h).

Remark 2.4. By putting together the two previous examples, if φ : H → G is a homomorphism and h is 
the Lie algebra of H, one obtains a representation of H on g/h̃, where h̃ is the Lie algebra of φ(H). The 
differential of the resulting complex will be denoted by δ̄φ and its cohomology groups will be denoted by 
Hk

φ(H, g/h̃).

Remark 2.5. Observe that, with the same notations as in the previous remark, there is a natural cochain-map 
(induced by φ) between these complexes:

φ∗ : C∗(H, h) → C∗
φ(H, h̃) ⊂ C∗

φ(H, g).

3. Deformations and stability of Lie group homomorphisms

In this section we state and prove our main results for Lie group homomorphisms. Let G and H be Lie 
groups and let φ : H → G be a Lie group homomorphism.

Definition 3.1. A deformation of φ is a smooth map

φ̃ : I ×H → G,

where I is an interval containing 0 and φε = φ̃(ε, ·) : H → G is a homomorphism of Lie groups for all ε such 
that φ0 = φ. We will denote a deformation of φ by φε. Two deformations φε and φ′

ε of φ are equivalent if 
there exists a smooth curve

g : I → G, ε �→ gε,

such that g0 = 1, and φε = Igε ◦ φ′
ε for all ε ∈ I, where Igε : G → G denotes conjugation by gε.

Remark 3.2. We will also be interested in deformations which are only locally equivalent. For this, we only 
demand that φε = Igε ◦ φ′

ε for small enough values of ε.

Proposition 3.3. Let φε : H → G be a deformation of φ. Then for each λ ∈ I, the cochain

Xλ ∈ C1
φλ

(H, g), Xλ(h) = dφλ(h)Rφλ(h)−1
d

dε
|ε=λφε(h)

is a cocycle.
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Moreover, the cohomology class when λ = 0, [X0] ∈ H1
φ(H, g), only depends on the (local) equivalence 

class of the deformation φε.

Proof. We begin by proving that Xλ is a cocycle. Let us denote by mH : H ×H → H the multiplication on 
the Lie group H, and by mG : G ×G → G the multiplication on G. Then, since φε is a group homomorphism 
for all ε we have that

φε(mH(h1, h2)) = mG(φε(h1), φε(h2)),

for all ε ∈ I. Differentiating both sides of this equation with respect to ε at ε = λ we obtain

d

dε

∣∣∣∣
ε=λ

φε(mH(h1, h2)) − dmG( d

dε

∣∣∣∣
ε=λ

φε(h1),
d

dε

∣∣∣∣
ε=λ

φε(h2)) = 0.

Right translating back to the identity, i.e., applying dRφλ(mH(h1,h2))−1 we obtain the cocycle equation for Xλ.
Assume now that φε and φ′

ε are equivalent deformations and let gε be a curve in G starting at the identity 
and such that

φε(h) = Igε ◦ φ′
ε(h)

for all h ∈ H and ε ∈ I. Equivalently,

mG(φε(h), gε) = mG(gε, φ′
ε(h)).

Differentiating both sides of the equation at ε = 0 we obtain

d

dε
|ε=0φε(h) + dLφ(h)u0 = d

dε
|ε=0φ

′
ε(h) + dRφ(h)u0,

where u0 = d
dε |ε=0gε ∈ g. Right translating both sides of this equation by φ(h)−1, i.e., by applying dRφ(h)−1

to both sides of the equation we obtain

X0(h) + Adφ(h)u0 = X ′
0(h) + u0,

therefore proving that X0 −X ′
0 is a coboundary concluding the proof. �

Remark 3.4. It would be pleasing to have a statement saying that [Xλ] ∈ H1
φλ

(H, g) only depends on the 
equivalence class of the deformation φε for all λ ∈ I. The problem with such a statement is that even if 
φε and φ′

ε are equivalent deformations of a Lie group homomorphism φ : H → G, the cohomology classes 
[Xλ] ∈ H1

φλ
(H, g) and [X ′

λ] ∈ H1
φ′
λ
(H, g) live in different cohomology groups and we would have to identify 

both groups. One way around this difficulty is to note that G acts on the space of Lie group homomorphisms 
Hom(H, G) by sending

φ ∈ Hom(H,G) �−→ g · φ = Ig ◦ φ ∈ Hom(H,G).

This action induces an isomorphism

g∗ : Hk
φ(H, g) −→ Hk

g·φ(H, g), g∗[c] = [Adg ◦ c].

Moreover, if φε is a deformation of φ, then g · φε is a deformation g · φ, and g∗ : H1
φ(H, g) → H1

g·φ(H, g)
maps the deformation class of φε at time 0 to the deformation class of g · φε at time 0.
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If φε and φ′
ε are equivalent deformations of φ, then by definition there exists a smooth curve gε : I → G

such that φε = gε ·φ′
ε for all ε ∈ I. Thus, we may view φλ+ε and gλ ·φ′

λ+ε as equivalent deformations of φλ. 
It then follows that (gλ)∗[X ′

λ] = [Xλ].

In view of the proposition and remark above, we think of the cohomology classes [Xλ] ∈ H1
φλ

(H, g) as 
the velocity vector of the equivalence class of the deformation φε at time λ.

Definition 3.5. A deformation φε : H → G of φ is (locally) trivial if it is (locally) equivalent to the constant 
deformation φ′

ε = φ for all ε ∈ I.

We wish to characterize the deformations of φ : H → G which are trivial. Thinking of the cohomology 
class [Xλ] of a deformation φε as its velocity vector, it is natural to suspect that deformations for which 
[Xλ] = 0 for all λ are trivial. In order to take into account also the smoothness of the deformation with 
respect to ε, we pose the following definition.

Definition 3.6. Let φε : H → G be a deformation of φ and for each ε ∈ I, let cε ∈ C1
φε

(H, g) be cocycles. 
We say that the cohomology classes [cε] vanish smoothly if there exists a smooth curve uε ∈ g such that 
δφε

(uε) = cε for all ε ∈ I. In this case we also say that uε is a smooth transgression of cε.

Theorem 3.7. A deformation φε : H → G of a Lie group homomorphism φ : H → G is locally trivial if and 
only if [Xε] ∈ H1

φε
(H, g) vanishes smoothly for small values of ε ∈ I.

Proof. Assume first that φε is (locally) equivalent to the constant deformation, and let gε be a curve in G
starting at the identity and such that φε = Igε ◦ φ for all ε. Differentiating both sides of this equation we 
obtain

d

dε

∣∣∣∣
ε=λ

φε(h) = d

dε

∣∣∣∣
ε=λ

Igε(φ(h))

= dRφ(h)g−1
λ

( d

dε

∣∣∣∣
ε=λ

gε) + dLgλφ(h)

[
di

(
d

dε

∣∣∣∣
ε=λ

gε

)]
,

where i : G → G denotes the inversion map of G which sends g to g−1. Applying dRφλ(h)−1 = dRgλφ(h)−1g−1
λ

to both sides of the equation we obtain

Xλ(h) = dRφλ(h)−1

(
dRφ(h)g−1

λ
( d

dε

∣∣∣∣
ε=λ

gε) + dLgλφ(h)

[
di

(
d

dε

∣∣∣∣
ε=λ

gε

)])

= dRg−1
λ

( d

dε

∣∣∣∣
ε=λ

gε) + Adφλ(h)

(
dLgλ ◦ di( d

dε

∣∣∣∣
ε=λ

gε)
)

= dRg−1
λ

( d

dε

∣∣∣∣
ε=λ

gε) + Adφλ(h)

(
di ◦ dRg−1

λ
( d

dε

∣∣∣∣
ε=λ

gε)
)

= dRg−1
λ

( d

dε

∣∣∣∣
ε=λ

gε) − Adφλ(h)

(
dRg−1

λ
( d

dε

∣∣∣∣
ε=λ

gε)
)
.

Thus, by taking

uλ := − d
∣∣∣∣ (g(ε)g(λ)−1) = −dRg−1

λ
( d

∣∣∣∣ gε) ∈ g, (3.1)

dε ε=λ dε ε=λ
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we obtain that

Xλ = δφλ
(uλ).

That is, the family of cocycles Xλ is transgressed by the smooth family uλ.
Conversely, assume that

Xλ = −δφλ
(uλ), (3.2)

where uλ is a smooth curve in g = C0
φλ

(H, g). Consider the time-dependent vector field −→u ε on G, where 
each −→u λ is the right invariant vector field which takes value uλ at the identity 1G of G. Let ε′ > 0 be such 
that the flow Φε,0 of −→u ε is defined at 1G ∈ G for all ε ∈ (−ε′, ε′). Take gε to be the integral curve from 
time 0 to ε of the time-dependent vector field −→u ε starting at 1G, i.e., gε := Φε,0(1G), (|ε| < ε′). We will 
show now that φε(h) = Igε(φ(h)) for all small values of ε.

Consider the vector field on G given by Zλ(g) := dRg(uλ) − dLg(uλ) and the vector field along φλ, −→
Xλ(h) := dRφλ(h)(Xλ(h)). Then, by (3.2), −→Xλ coincides with the pull-back of Zλ by φλ.

On the other hand, the deformation Igε ◦ φ of φ has associated the family of 1-cocycles

Yε := −δIgε◦φ(uε). (3.3)

Equation (3.3) implies that the vector field 
−→
Y λ = dRIgλ◦φ(h)(Yλ(h)) along Igλ ◦ φ also coincides with 

the pull-back of Zλ by Igλ ◦ φ, for all λ. In other words, we have that ε �→ φε(h) and ε �→ Igε ◦ φ(h) are 
integral curves of the time-dependent vector field Zε passing through φ(h) ∈ G at time ε = 0. Therefore, 
φε(h) = Igε(ι(h)) for ε small enough, as we claimed. �

The theorem above gives a characterization of the deformations of a homomorphism φ : H → G which 
are (locally) trivial in terms of its deformation cocycle. We next show that if H is compact, then any 
deformation of φ is trivial. We state this property by saying that φ is stable.

In order to prove our stability result, we will need to integrate a function with respect to a normalized 
left invariant Haar measure on H, i.e., a measure such that

•
∫
H
f(h′h)dh =

∫
H
f(h)dh for all f ∈ C∞(H) and h′ ∈ H;

•
∫
H
dh = 1.

Any compact Lie group admits such a measure.

Theorem 3.8. Let H be a compact Lie group. Then any Lie group homomorphism φ : H → G is stable.

Proof. Let φε be any deformation of φ. If H is compact, each H1
φε

(H, g) vanishes. A primitive of Xε is given 
by uε = − 

∫
H
Xε(h) dh ∈ g, where the integral is taken w.r.t. a normalized left invariant Haar’s measure of 

H. In fact, since Xε is a 1-cocycle, Xε(h′) = −Adφε(h′)Xε(h) + Xε(h′h). Thus by integrating one has

Xε(h′) =
∫
H

Xε(h′)dh

= −
∫
H

Adφε(h′)Xε(h)dh +
∫
H

Xε(h′h)dh

= −Adφε(h′)

∫
Xε(h)dh +

∫
Xε(h)dh
H H
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= Adφε(h′)uε − uε

= δφε
(uε)(h′).

It follows that Xε is smoothly transgressed. Moreover, since H is compact the flow Φε,0 of the time 
dependent vector field obtained from the transgression of Xε is defined for all ε ∈ I. We can therefore apply 
Theorem 3.7 to conclude that φε is a trivial deformation of φ. �

We can also apply our methods to study weak triviality of a deformation φε of a Lie group homomorphism 
φ : H → G.

Definition 3.9. A deformation φε of a Lie group homomorphism φ : H → G is said to be weakly trivial if 
there exists a smooth family Fε : G → G of Lie group automorphisms such that F0 = IdG, and φε = Fε ◦ φ
for all ε ∈ I.

Recall that a Lie group homomorphism φ : H → G induces a pull-back map φ∗ : Hk(G, g) → Hk
φ(H, g). 

The key to characterizing the weakly trivial deformations lies in understanding if the deformation cocycle 
of a deformation φε lies in the image of the pull-back map.

Definition 3.10. We will say that a family [Xε] ∈ H1
φε

(H, g) has a smooth pre-image in H1(G, g) if there 
exists a smooth family of cocycles Zε ∈ C1(G, g) and a smooth curve uε ∈ g such that

φ∗
ε(Zε) = Xε + δφε

(uε).

Theorem 3.11. Let φε : H → G be a smooth family of Lie group homomorphisms and let Xε be its defor-
mation cocycle. Then φε is locally weakly trivial if and only if [Xε] has a smooth pre-image in H1(G, g) for 
small values of ε.

Proof. Assume φε = Fε ◦ φ, for a smooth family Fε of automorphisms of G, with F0 = IdG. By applying 
d
dε to both sides of the equation we obtain

dRφε(h)Xε(h) = −→
Z ε(Fε ◦ φ(h))

= dRFε◦φ(h)(Zε(Fε ◦ φ(h)))

= dRφε(h)Zε(φε(h))

where 
−→
Z ε = d

dεFε is a vector field on G, and Zε : G → g is given by

Zε(g) = dRg−1
−→
Z ε(g).

It follows that Xε = φ∗
εZε, where φ∗

εZε is the 1-cocycle in C1
φε

(H, g) obtained by pulling back the 1-cocycle 
Zε through the cochain map φ∗

ε.
Conversely, assume that

Xε = φ∗
εZε + δφε

(uε), (3.4)

for Zε and uε smooth families of elements in C1
cl(G, g) and g respectively. Consider the time-dependent 

vector field 
−→
Z ε(g) = dRg(Zε) on G. Define Fε = Φε,0 as the flow from time 0 to ε of −→Z ε, which exists for ε

small enough due to the right-invariance of each vector field 
−→
Z ε. In fact, if γ̃(r) = (γ(r), r), r ∈ (−ε, ε), is 

the integral curve of the vector field Z := −→
Z ε + ∂ defined on G × I such that γ̃(0) = (1G, 0), then, for any 
∂ε
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g ∈ G, Rg(γ̃(r)) = (Rg(γ(r)), r) is the integral curve of Z starting in (g, 0); in other words Rg(γ(r)) is the 
integral curve of the time-dependent vector field 

−→
Z ε passing through g ∈ G at time ε = 0. Therefore, the 

flow Fε(g) is defined for every g ∈ G.
We claim that Fε is a family of Lie group isomorphisms. In fact, if we denote by m : G × G → G the 

multiplication on G, then the curves Fε(m(g1, g2)) and m(Fε(g1), Fε(g2)) are integral curves of the same 
time-dependent vector field on G starting at the same point at time ε = 0 for all g1, g2 ∈ G. Indeed, on the 
one hand we have that

d

dε

∣∣∣∣
ε=λ

m(Fε(g1), Fε(g2)) = dm
(
dRFλ(g1)Zλ(Fλ(g1)), dRFλ(g2)Zλ(Fλ(g2))

)
= dRFλ(g2)dRFλ(g1)Zλ(Fλ(g1)) + dLFλ(g1)dRFλ(g2)Zλ(Fλ(g2))

= dRm(Fλ(g1),Fλ(g2))(Zλ(m(Fλ(g1), Fλ(g2))))

= −→
Z λ(m(Fλ(g1), Fλ(g2))),

where in the third equality we have used the fact that Zλ is a cocycle.
On the other hand, by definition we have that

d

dε

∣∣∣∣
ε=λ

Fε(m(g1, g2)) = −→
Z λ(Fλ(m(g1, g2))).

Thus, since m(F0(g1), F0(g2)) = F0(m(g1, g2)) the curves are the same.
What we will show next is that φ′

ε = F−1
ε ◦ φε is a trivial deformation of φ. That is, we will obtain a 

smooth curve gε in G, starting at the identity, and such that F−1
ε ◦ φε = Igε ◦ φ for all ε. Therefore, we will 

have shown that φε = Fε ◦ Igε ◦ φ for all small values of ε concluding the proof.
On the one hand, taking ũε ∈ g to be such that uε = dFε(ũε), equation (3.4) becomes

Xε = φ∗
ε(Zε) + δφε

(dFε(ũε))

= φ∗
ε(Zε) + dFε(δF−1

ε φε
(ũε)).

(3.5)

On the other hand, we set X ′
ε ∈ C1

φ′
ε
(H, g) to be the family of deformation cocycles associated to the 

deformation φ′
ε = F−1

ε φε of φ. We claim that X ′
ε = δφ′

ε
(ũε), i.e., X ′

ε is smoothly transgressed. In fact,

d

dε

∣∣∣∣
ε=λ

φ′
ε(h) = d

dε

∣∣∣∣
ε=λ

F−1
ε (φλ(h)) + dF−1

λ ( d

dε

∣∣∣∣
ε=λ

φε(h)),

from where it follows that

dRφ′
λ(h)X

′
λ(h) = −dF−1

λ (−→Z λ(φλ(h))) + dF−1
λ (dRφλ(h)Xλ(h)).

Thus, by applying dR−1
φ′
λ(h) to both sides of the equation above we obtain

X ′
λ(h) = −dF−1

λ (Zλ(φλ(h))) + dF−1
λ (Xλ(h))

= −dF−1
λ (φ∗

λZλ)(h) + dF−1
λ (Xλ)(h)

= δφ′
λ
(ũλ)(h),

where the last equality follows from equation (3.5). It then follows from Theorem 3.7 that φ′
ε is locally 

trivial concluding the proof of the theorem. �
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4. Deformations and stability of Lie subgroups

In this section we state and prove our results on deformations and stability of Lie subgroups. Let ι : H →
G be an embedding of H into G. Roughly speaking, a deformation of H as a Lie subgroup of G is a smooth 
family (Hε, ιε) of embedded Lie subgroups such that (H0, ι0) = (H, ι). In order to make this precise, we 
first explain what a deformation of a Lie group H is (see also [5] and references therein for the deformation 
theory of Lie groups and more generally of Lie groupoids).

Definition 4.1. Let H be a Lie group. We denote its multiplication map by m : H×H → H and its inversion 
map by i : H → H. A deformation of H is a smooth family of maps mε : H ×H → H, and iε : H → H

such that m0 = m, i0 = i, and Hε = (H, mε, iε) is a Lie group for all ε.

Remark 4.2. In the definition above, the smoothness of the families mε : H×H → H, and iε : H → H refer 
to the existence of smooth maps

m̃ : I ×H ×H −→ H, m̃(ε, h1, h2) = mε(h1, h2),

and

ĩ : I ×H −→ H, ĩ(ε, h) = iε(h),

where I is an interval.

Remark 4.3. In principle one may also wish to allow the identity element to vary with ε. However, after 
composing with an isotopy of H one would obtain an equivalent deformation where the identity element is 
fixed (see [5]). For this reason we consider the identity element to be fixed for any deformation of H.

Remark 4.4. In [5], the authors allow for more general deformations where Hε may vary smoothly (as a 
manifold). For this purpose, they consider Hε to be the fibre of a submersion H̃ → I. Since we are interested 
in triviality of Lie subgroups, we will consider here only the case where H̃ = H × I (as manifolds). These 
deformations are called strict deformations of H in [5].

We can now proceed to define deformations of Lie subgroups.

Definition 4.5. Let ι : H → G be an embedding of Lie groups. A deformation of the Lie subgroup (H, ι) is 
a deformation Hε = (H, mε, iε) of H along with a smooth map

ι̃ : I ×H −→ G,

where I is an interval containing 0, and

ι̃(ε, ·) = ιε : Hε −→ G

is an embedding of Lie groups for all ε ∈ I such that ι0 = ι. We will denote a deformation of (H, ι) by 
(Hε, ιε). Two deformations (Hε, ιε) and (H ′

ε, ι
′
ε) of (H, ι) are (locally) equivalent if there exist smooth maps

F : I ×H −→ H, and g : I −→ G

such that Fε = F (ε, ·) is an isomorphism from H ′
ε to Hε, F0 = IdH , g0 = 1, and
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ιε(Fε(h′)) = gει
′
ε(h′)g−1

ε

for all h′ ∈ H and for all (small values of) ε ∈ I.

Remark 4.6. The equivalence of two deformations (Hε, ιε) and (H ′
ε, ι

′
ε) of (H, ι) amounts to the existence 

of a smooth curve gε in G starting at the identity element such that ιε(Hε) = gει
′
ε(H ′

ε)g−1
ε .

Remark 4.7. When Hε is a trivial deformation of H the deformations of the subgroup (H, ι) amount to 
deformations of the homomorphism ι : H → G through homomorphisms which are embeddings of Lie 
groups. As pointed out by the referee, the notion of equivalence of deformations of subgroups translates 
to a third notion of deformations of homomorphisms which we are implicitly treating in this paper. Under 
this notion of equivalence, two deformations ιε and ι′ε of ι are identified if there exists a smooth family 
Fε : H → H of automorphisms starting at the identity, and a smooth curve gε starting at the neutral 
element 1 ∈ G such that

ιε ◦ Fε = Igε ◦ ι′ε

for all ε ∈ I, where as usual, Igε : G → G denoted conjugation by gε (see also Remark 1.5).

Proposition 4.8. Let (Hε, ιε) be a deformation of the Lie subgroup ι : H ↪→ G. Then for each λ the expression

X̄λ(h) := dRιλ(h)−1
d

dε

∣∣∣∣
ε=λ

ιε(h) mod hλ

defines a cocycle X̄λ in the complex C1
ιλ

(Hλ, g/hλ), where hλ is the image under the differential of ιλ of 
the Lie algebra of Hλ. Moreover, [X̄0] ∈ H1

ι (H, g/h) only depends on the (local) equivalence class of the 
deformation (Hε, ιε).

Proof. The proof of the proposition is practically identical the proof of Proposition 3.3. We give a sketch 
of the proof here and leave the details to the reader.

Denoting by mε : H ×H → H the multiplication of Hε and by mG : G ×G → G the multiplication on 
G we have that

ιε(mε(h1, h2)) = mG(ιε(h1), ιε(h2))

for all h1, h2 ∈ H, and for all ε ∈ I. Differentiating this equation with respect to ε at ε = λ, right 
translating back to the identity and projecting the result onto g/hλ furnishes the cocycle equation for X̄λ. 
In this verification one must use the fact that

dRιλ(h1)−1ιλ(h2)−1 ◦ dιλ
(

d

dε

∣∣∣∣
ε=λ

mε(h1, h2)
)

∈ hλ.

For the proof of the second part of the proposition, assume that (Hε, ιε) and (H ′
ε, ι

′
ε) are equivalent 

deformations of (H, ι). By definition there exists a smooth family Fε : H ′
ε → Hε of Lie group isomorphisms 

and a smooth curve gε in G starting at the identity element such that F0 = IdH and

ιε ◦ Fε = Igε ◦ ι′ε

for all ε ∈ I. Let Y0(h) = d
dε

∣∣
ε=0 Fε(h), and u0 = d

dε

∣∣
ε=0 gε. Differentiating the equation above w.r.t. ε at 

ε = 0 we obtain
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dι(Y0) + d

dε

∣∣∣∣
ε=0

ιε(h) + dLι(h)(u0) = dRι(h)(u0) + d

dε

∣∣∣∣
ε=0

ι′ε(h).

Right translating this expression back to the identity via dRι(h)−1 and projecting to g/h we obtain

X̄ ′
0(h) − X̄0(h) =

(
Adι(h)(u0) − u0

)
mod h

where we have used the fact that dRι(h)−1 ◦ dι(Y0(h)) belongs to h. It follows that

X̄ ′
0 − X̄0 = δ̄ι(ū0),

which concludes the proof. �
As in the previous section, we will consider the problem of characterizing locally trivial deformations in 

terms infinitesimal data.

Definition 4.9. A deformation (Hε, ιε) of (H, ι) is (locally) trivial if it is (locally) equivalent to the constant 
deformation (H ′

ε, ι
′
ε) = (H, ι).

Definition 4.10. Let (Hε, ιε) be a deformation of (H, ι) and let X̄ε ∈ C1
ιε(H, g/hε) be its family of deformation 

cocycles. We will say that X̄ε is smoothly transgressed if there exists a smooth curve uε ∈ g such that 
X̄ε = δ̄ιε(ūε), where ūε = uε mod hε.

Theorem 4.11. Let (Hε, ιε) be a deformation of an embedded Lie subgroup ι : H ↪→ G. Then (Hε, ιε) is 
locally trivial if and only if X̄ε can be smoothly transgressed for all small values of ε ∈ I.

Proof. The triviality of (Hε, ιε) amounts to saying that

ιε ◦ Fε = Igε ◦ ι,

for a smooth family of isomorphisms Fε : H → Hε. Denote by 
−→
Y ε the time-dependent vector field on the 

manifold H induced by the diffeomorphisms Fε and let uλ = d
dε

∣∣
ε=λ

gεg
−1
λ . Differentiating the equation 

above with respect to ε at ε = λ and right translating back to the identity we obtain

dRιλ(Fλ(h))−1

(
dιλ(−→Y λ(Fλ(h))) + d

dε

∣∣∣∣
ε=λ

ιε(Fλ(h))
)

= uλ − Adιλ(Fλ(h))(uλ).

Projecting to g/hλ and using the fact that dRιλ(Fλ(h))−1

(
dιλ(−→Y λ(Fλ(h)))

)
∈ hλ we obtain

X̄λ(Fλ(h)) = −δ̄ιl(ūλ)(Fλ(h))

for all h ∈ H, and λ ∈ I. Since Fλ is surjective, we conclude that

X̄λ = δ̄ιλ(−ūλ)

which proves that X̄ε can be smoothly transgressed.
We will now prove the converse statement. Assume that X̄ε can be smoothly transgressed. By definition, 

there exists a smooth curve uε in g such that

X̄ε(h) = δ̄ιε(ūε)(h) =
(
Adιε(h)(uε) − uε

)
mod hε

for all h ∈ H and ε ∈ I.



JID:JPAA AID:6195 /FLA [m3L; v1.260; Prn:30/07/2019; 17:42] P.15 (1-17)
C.C. Cárdenas, I. Struchiner / Journal of Pure and Applied Algebra ••• (••••) •••–••• 15
Let Xε(h) = dRιε(h)−1
(

d
dε ιε(h)

)
∈ g. Since Xε(h) and Adιε(h)(uε) − uε project to the same element in 

g/hε, it follows that

Xε(h) − Adιε(h)(uε) + uε = −dιε(Yε(h)), (4.1)

where Yε : H → h is a smooth map.
Let −→Y ε be the time dependent vector field on H given by

−→
Y ε(h) = dRε

h(Yε(h)),

where Rε
h(h′) = mε(h′, h) denotes right translation by h in Hε, and let Fε denote its flow from time 0 to ε, 

which exists for ε small enough due to the right-invariance of each vector field 
−→
Y ε (for the existence of the 

flow, see the analogous statement in the proof of Theorem 3.11).
We claim that for each ε, Fε : H → Hε is a Lie group isomorphism. In order to show this we must verify 

that

Fε(h1 · h2) = mε(Fε(h1), Fε(h2))

for all h1, h2 ∈ H, and all ε, where Hε = (H, mε, iε). It is clear that the equation holds when ε = 0, so we 
will prove that both sides are integral curves of the same time-dependent vector field defined on H.

On the one hand, we have that

d

dε

∣∣∣∣
ε=λ

mε(Fε(h1), Fε(h2)) = d

dε

∣∣∣∣
ε=λ

mε(Fλ(h1), Fλ(h2))+

+ dmλ

(
dRλ

Fλ(h1)Yλ(Fλ(h1)), dRλ
Fλ(h2)Yλ(Fλ(h2))

)

= d

dε

∣∣∣∣
ε=λ

mε(Fλ(h1), Fλ(h2)) + dRλ
Fλ(h2)dR

λ
Fλ(h1)Yλ(Fλ(h1))+

+ dLλ
Fλ(h1)dR

λ
Fλ(h2)Yλ(Fλ(h2))

= dRλ
mλ(Fλ(h1),Fλ(h2))

(
dRλ

mλ(Fλ(h1),Fλ(h2))−1
d

dε

∣∣∣∣
ε=λ

mε(Fλ(h1), Fλ(h2))
)

+

+ dRλ
mλ(Fλ(h1),Fλ(h2))

(
Yλ(mλ(Fλ(h1), Fλ(h2))) + δλ(Yλ)(Fλ(h1), Fλ(h2))

)
= dRλ

mλ(Fλ(h1),Fλ(h2))(Yλ(mλ(Fλ(h1), Fλ(h2))))

= −→
Y λ(mλ(Fλ(h1), Fλ(h2))),

where in the fourth equality we have used the fact that

δλ(Yλ)(h1, h2) = −dRλ
mλ(Fλ(h1),Fλ(h2))−1

(
d

dε

∣∣∣∣
ε=λ

mε(Fλ(h1), Fλ(h2))
)

which follows from applying διε to Equation (4.1) and using that

διεXε(h1, h2) = dιε ◦ dRε
mε(h1,h2)−1(

d

dε
mε(h1, h2))

(see Proposition 4.8).
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On the other hand, by definition we have that

d

dε

∣∣∣∣
ε=λ

Fε(m(h1, h2)) = −→
Y λ(Fλ(m(h1, h2))).

Therefore, mε(Fε(h1), Fε(h2)) and Fε(m(h1, h2)) are integral curves of the time-dependent vector field 
−→
Y λ

on H and they start at the same point at time ε = 0, hence they are equal.
Define ι′ε := ιε ◦ Fε. We claim that the deformation cocycles of the deformation ι′ε of ι can be smoothly 

transgressed. Indeed, it is straightforward to check that its associated 1-cocycles X ′
ε are

X ′
ε(h) = Xε(Fε(h)) + dιεYε(Fε(h))

= διε(uε)(Fε(h))

= διε◦Fε
(uε)(h)

= δι′ε(uε)(h).

Therefore, by Theorem 3.7, the deformation ι′ε is locally trivial. In other words, we have that ιε ◦Fε = Igε ◦ ι
for small values of ε, from where it follows that (Hε, ιε) is locally trivial. �
Remark 4.12. We remark that the proofs presented above continue valid word by word if instead of consid-
ering embedded subgroups one considers immersed subgroups (and deformations by immersed subgroups).

The second main result about stability of this paper states that any compact Lie subgroup of any Lie 
group G is stable as a Lie subgroup. In order to prove this result, we will need to use a normalized left 
invariant Haar system on a deformation Hε of H. Such a system is a family of normalized left invariant 
Haar measures on Hε which depend smoothly on ε in the sense that if f : H × I → R is smooth, then

ε ∈ I �→
∫
Hε

fε(h)dh

is a smooth function on I. Any deformation of a compact Lie group admits such a Haar System (see for 
example [11] or [4]).

Theorem 4.13. Let G be a Lie group and let ι : H ↪→ G be a compact Lie subgroup. Then any deformation 
(Hε, ιε) of (H, ι) is trivial.

Proof. Let (Hε, ιε) be a deformation of (H, ι). Consider the smooth family of functions Xε : H → g given 
by

Xε(h) = dR−1
ιε(h)

(
d

dλ

∣∣∣∣
λ=ε

ιλ(h)
)
,

so that Xε mod hε = X̄ε ∈ C1
ιε(H, g/hε) is the family of deformation cocycles associated to the deformation 

(Hε, ιε).
We define the uε ∈ g by

uε = −
∫

Xε(h)dh.

Hε
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Notice that since the Haar system is smooth, it follows that uε is a smooth curve in g. By a computation 
identical to the one presented in the proof of Theorem 3.8 we obtain that

δ̄ιε(ūε) = X̄ε,

where ūε = uε mod hε.
It follows that X̄ε can be smoothly transgressed and we can apply Theorem 4.11 to conclude the proof. 

The “global” triviality of the deformation follows from the fact that H is compact and therefore the flows 
of the vector fields used in the proof of Theorem 4.11 are defined for all ε ∈ I. �
Remark 4.14. The theorem above can be given an alternative proof in which it becomes a corollary of 
Theorem 3.8 and the stability of compact Lie groups (see for example [5] and references therein). Here is 
a sketch of how to proceed with this proof. Let (Hε, ιε) be a deformation of (H, ι). Since H is compact, 
any deformation of H is trivial. Therefore, there exists a smooth family of isomorphisms Fε : H → Hε

such that F0 = IdH . We can then view the deformation (Hε, ιε) of (H, ι) as a deformation Fε ◦ iε of the 
homomorphism ι : H → G. Since H is compact, it follows from Theorem 3.8 that ι is stable, and thus Fε ◦ iε
is a trivial deformation. From this it follows that (Hε, ιε) is a trivial deformation of (H, ι).
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