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Livestock are highly implicated, and while food producing animals
afford undoubted economic and social benefits, their associated direct
and indirect environmental footprints in terms of land use change and
GHG emissions have come under increasing scrutiny (Godde et al., 2021;
Henchion et al., 2021; Moran and Blair, 2021).

One sector's response to this challenge is through sustainable inten-
sification, which integrates a range of practices that can help to improve
soil health, reduce water pollution, mitigate and adapt to climate
change, and increase biodiversity (Cassman and Grassini, 2020; Giller
etal., 2021a, 2021b). Reducing the emissions-intensity (GHG per unit of
product) is an increasingly important focus for livestock science (Godde
et al., 2021; Moran and Blair, 2021), as well as the goal of expanding
(land) productivity, i.e. the output per unit area, with associated land-
saving effects (Martha Jr et al., 2012; Villoria, 2019). Increasing yields
and simultaneously reducing the negative environmental impacts of
agricultural and livestock production are, thus, central to sustainable
intensification approaches.

In pastoral systems, stocking rates have been used as a proxy for land
productivity (Marin et al., 2022; Monteiro et al., 2020; Stocco et al.,
2020). However, stocking rate, as a metric of productivity or, more
broadly, of sustainable intensification in production systems warrants
scrutiny to signpost successful transformative change of food systems
and to avoid provision of misleading policy advice. Here we discuss why
future studies would benefit of considering the two constituent elements
of productivity in pastoral systems — animal performance (kg of animal
product/head) and stocking rates (heads/ha) —, rather than stocking
rates alone.

1. Productivity in pasture-based systems

Many studies have successfully applied yield gap modeling and
analysis to assess local and global opportunities for increasing yields in
several crops (Cassman and Grassini, 2020; Giller et al., 2021a, 2021b;
Marin et al., 2022; van Dijk et al., 2017). Recent yield gap studies have
extended the focus to livestock productivity in pastoral systems. Some of
these studies have considered stocking rates, observed and potential (i.e.
carrying capacity), as a proxy for animal productivity in pasture-based
livestock systems (Marin et al., 2022; Monteiro et al., 2020; Stocco
et al., 2020). However, the analysis of land productivity in pasture-based
systems is more complex. Forage production may be the major deter-
minant of potential stocking rates (heads/ha), but two other partial ef-
ficiencies are relevant to grazing systems: the grazing efficiency (i.e., the
proportion of herbage dry mass produced that is ingested by the grazing
animals), and the conversion efficiency (i.e. the ratio between consumed
herbage dry mass and animal product). In pasture-based systems, pro-
ductivity (kg of animal product/ha) derives from the product of animal
performance (kg of animal product/head) and stocking rates. Animal
output is, thus, the product of area and productivity (Martha Jr et al.,
2012). Accordingly, using stocking rates as a proxy for productivity in
pasture-based systems can be misleading for both private decision
making and public policy.

Firstly, stocking rates explain only a fraction of observed pro-
ductivities in reality. For example, used as a proxy for productivity,
stocking rates would have captured only one-third of the actual pro-
ductivity gains registered in Brazilian beef production in 1996-2006
(Martha Jretal., 2012). Were a similar analysis performed for the period
2006-2017, stocking rates would indicate that “productivity” had only
slightly decreased (from 1.10 head/ha to 1.09 head/ha). However, gains
in animal performance contributed for an overall 13 % increase in beef
productivity in the period (from 43 to 48 kg carcass weight-equivalent/
ha).

Secondly, a focus solely on stocking-rates may be misleading in terms
of environmental impacts of livestock production. This is due to the
inaccurate description of variations in emissions-intensity associated
with animal performance (i.e., kg methane emitted per unit of carcass
weight-equivalent).
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Thirdly, stocking rates inadequately capture the price signals asso-
ciated with changes in demand and supply that ultimately provide in-
centives (disincentives) to expand (contract) production, because it is
not directly linked to the value of commercialized beef.

In practical terms, if stocking rates increase without matching forage
availability, they may reduce animal performance, animal productivity
and, therefore, jeopardize economic performance. A lower animal per-
formance increases methane emission-intensity (McAuliffe et al., 2018).
Furthermore, attaining higher stocking rates, especially in environments
with weathered tropical soils, would likely require increased use of
fertilizers, supplements, and other inputs (Martha Jr et al., 2012), so full
impacts should include a production system approach and lifecycle
assessment. If a higher level of animal performance is associated with a
very low stocking rate, then again productivity and economic perfor-
mances are compromised.

Note that the concept of a yield gap, per se, is not automatically
linked to an economic assessment of agricultural production. To that
end, it is necessary to consider the yield that maximizes the net value at a
particular condition, which in addition to biophysical criteria will vary
according to input/product price ratios (Beddow et al., 2014; van Dijk
et al., 2017). Such technological and economic perspectives become
more complex when applied to pastoral systems, because considering
only one component of productivity (i.e., animal performance or
stocking rates) may lead to misleading conclusions.

Furthermore, from both economic and environmental analytical
viewpoints, there is no rule of thumb, i.e., increasing stocking rates or
animal performance might or might not be profitable and environment-
friendly. Each situation must be carefully evaluated, and the efficiency
of any pastoral system should consider price and transformation ratios
for both productivity components, stocking rates and animal perfor-
mance, including the possibility of using supplements, such as agricul-
tural co-products, for the grazing animals. Increasingly, key
environmental variables should be explicitly considered as part of the
farmers' objective function.

2. A real-world perspective on animal productivity in pastures

As indicated by others (Marin et al., 2022; Monteiro et al., 2020;
Stocco et al., 2020), stocking rates as a proxy for productivity may be
problematic, as this approach is unable to adequately capture key var-
iables associated with decisions in the real-world, and might not provide
sufficient guidance for policies focusing on the multiple dimensions of
sustainability. Distortions arising from using stocking rates as a pro-
ductivity proxy may be minimized by estimating animal productivity in
pastures as the product between animal performance and stocking rates.
A methodological challenge refers to estimating animal productivity at
more disaggregated scales, such as the municipality level. Yet, it is
possible to adapt available methods (Martha Jr et al., 2012) (for an
example, see Supplementary material). A key assumption is that animal
performance at aggregate levels (such as state or province) can represent
the average animal performance at more disaggregated scales (such as
county or municipality levels). Yet, that approach, although offering a
better perspective of productivity compared to the stocking rate-only
approach, has some limitations. In part, because it is unable to capture
the factors influencing animal performance locally and, as such, it is not
completely accurate. In addition, this analysis is based on annual proxy
variables that only partially capture complex interactions in biophysical,
socio-economic, and environmental dimensions affecting productivity.
Thus, it is not able to, nor intended to, reflect characteristics of the
production systems across seasonal variations such as the dry season
impacts and associated coping strategies. Such monthly, weekly, or daily
effects are diluted in any annual average. Also, available data for beef
output, used as a proxy of animal performance, is based on a complete
cattle cycle, i.e., cow-calf, yearling, and finishing phases. More detailed
analysis, such as the evaluation of the impacts of improved technical
coefficients on bio-economic performance and greenhouse gas
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emissions, would require additional pre- and post-modeling efforts
based on cattle herd structure and selling projections resulting from
variations in technical coefficients.

3. Livestock productivity in pasture-based systems: from science
into practice

Beef production in pasture-based systems is increasingly contested
due to related biophysical and environmental challenges (Giller et al.,
2021a, 2021b; Godde et al., 2021; Henchion et al., 2021; Herrero et al.,
2020; Moran and Blair, 2021). Addressing these challenges will require
rigorous science-based approaches so that private decisions and public
policies can be based on the best evidence.

For a given output level, the higher the land productivity (output per
unit area) - the intensive margin — the lower is the demand for agri-
cultural land expansion — the extensive margin. The Borlaug hypothesis
implies that a focus on the intensive margin allows agricultural output
expansion with less pressure on natural resources and biodiversity
(Hertel et al., 2014). Such a strategy should be additionally coupled with
resource-use efficient approaches to alleviate the demand for human-
made inputs such as fertilizers and agrochemicals and, thus, minimize
their associated impacts on the environment (Beddow et al., 2014;
Martha Jr et al., 2012). However, it must be recognized that a rebound
effect (“Jevons' paradox™), i.e. land expansion despite yield gains, may
occur when global food demand is price responsive and yields in an
innovative region are relatively low compared to the global average
(Hertel et al., 2014).

Furthermore, sustainable intensification goals and achievements
require animal productivity in pastures to be adequately estimated.
"Productivity" can be easily estimated by using available cattle herd
population and pasture area data (e.g. stocking rate). However, this
“standard” approach fails to reflect accurately livestock productivity in
pastoral systems. By minimizing such measurement distortions — e.g. by
estimating animal productivity in pastures as the product of animal
performance and stocking rate — it is possible to refine the insights
presented to decision-makers and, consequently, to improve the basis in
which policies and programs are designed, implemented, and moni-
tored. From a policy perspective, for instance, the knowledge of current
productivity and its potential (and associated gap) may indicate op-
portunities for simultaneously expanding agricultural output and the
provision of environmental services through land-sparing effects. In
addition, a more accurate knowledge of animal productivity in pastures
could guide the design of improved research and development (R&D)
targets, tailored rural extension approaches and agricultural risk man-
agement recommendations, and the need for improving market func-
tioning through credit, fertilizer and other inputs (Beddow et al., 2014;
Cassman and Grassini, 2020; van Dijk et al., 2017).

Novel modeling methods and approaches to simultaneously evaluate
biophysical, environmental, and economic synergies and trade-offs are
needed to support better private and public planning and policy design.
Correctly estimated livestock productivities in pastures can greatly
contribute to that analytical framework, as they can be plugged into
available biophysical (Hoogenboom et al., 2019; van Dijk et al., 2017;
Wu et al.,, 2022) and economic-environmental models (Wang et al.,
2022; Zilli et al., 2020) to spatially simulate multi-scale socioeconomic
and environmental impacts of technological gaps and/or policy shocks.

Innovative farmers are already intensifying their production systems,
driven by market requirements, economic pressures, and environmental
objectives (Giller et al., 2021a, 2021b; Herrero et al., 2020). However,
pursuing sustainable intensification approaches in agricultural systems
is not a simple or risk-free task. Despite the urgent need for food systems
transformation it must be recognized that transformative pathways are
usually vulnerable to a combination of structural challenges such as
fragmented decision-making, vested interests, and power imbalances in
the climate policy and food communities (Zurek et al., 2022).
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