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Dimeric interactions and 
complex formation using direct 
coevolutionary couplings
Ricardo N. dos Santos1,2,*, Faruck Morcos1,*,†, Biman Jana3, Adriano D. Andricopulo2 & 
José N. Onuchic1

We develop a procedure to characterize the association of protein structures into homodimers 
using coevolutionary couplings extracted from Direct Coupling Analysis (DCA) in combination 
with Structure Based Models (SBM). Identification of dimerization contacts using DCA is more 
challenging than intradomain contacts since direct couplings are mixed with monomeric contacts. 
Therefore a systematic way to extract dimerization signals has been elusive. We provide evidence 
that the prediction of homodimeric complexes is possible with high accuracy for all the cases 
we studied which have rich sequence information. For the most accurate conformations of the 
structurally diverse dimeric complexes studied the mean and interfacial RMSDs are 1.95Å and 1.44Å, 
respectively. This methodology is also able to identify distinct dimerization conformations as for 
the case of the family of response regulators, which dimerize upon activation. The identification of 
dimeric complexes can provide interesting molecular insights in the construction of large oligomeric 
complexes and be useful in the study of aggregation related diseases like Alzheimer’s or Parkinson’s.

The ability of life’s basic components to act synergistically, make decisions and perform complex func-
tions is essential in biology. For the case of proteins, these interactions have been shaped by evolution-
ary pressures constrained by their three dimensional structures and their physiological requirements. A 
considerable fraction of biological processes in cells are performed by protein complexes that result from 
stable interactions between subunits of equal or different compositions. Important examples include scaf-
folding proteins like actin or tubulin forming actin filaments and microtubules1–4, macrocomplexes form-
ing rings used in cell division (tubulin-like FtsZ protein)5, protein degradation (FtsH AAA protease)6,7 
and dimerization occurring in transcription factors required to bind DNA and perform gene regula-
tion8,9. All of these protein complexes are examples of the prevalent group called homo-oligomers10. 
Furthermore, homodimeric systems are the most abundant inside this subgroup10,11 and seem to have, in 
average, twice as many interaction partners than non-self-interacting proteins12. Dimeric interactions are 
ubiquitous as well as relevant for cell survival, yet there is no indication in their amino acid sequences 
whether a given sequence will or will not form a dimer. Even when experimental evidence points towards 
dimer formation, it is a challenge to determine the molecular details of the complex. Dimeric interactions 
have to satisfy both monomeric and dimeric structural requirements and we show that these constrains 
are reflected as direct amino acid couplings in the collection of sequences of a given protein family. 
The idea of coevolution has been utilized to study residue-residue covariation and its implications in 
residue pair energetics13–18. This idea has been useful to predict the structure of protein monomers19–23, 
especially in combination with knowledge potentials used to parameterize inter-residue distances24,25, 
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and to uncover conformational plasticity26,27. Residue coevolution has also been studied in the context 
of protein-protein interactions. An early application was our prediction of complexes between histidine 
kinases and response regulators28,29. Other studies include specificity in two component systems30,31, the 
prediction of interaction modes for novel cancer targets32, macro-complex formation and function of 
the AAA protease33 and several other diverse complexes34. Most of the applications of coevolutionary 
methods to study heterodimeric interactions involve the construction of a database of known heterod-
imer pairs using a priori knowledge. For instance, the assumption that two protein sequences that are 
proximally encoded in the genome interact or the presence of single copies in the organism facilitates 
this matching. Homodimers are a special case where the interacting signal is obtained from sequences 
belonging to a single family. The challenge is that coevolving residues with high couplings reflect mostly 
physical contacts of the monomeric three dimensional structure. Hence, dimeric or oligomeric contacts 
are mixed with monomeric contacts making it challenging to distinguish between them.

Prediction of dimeric complexes is an area of active research with progress done from different fields 
including docking algorithms35–40 as well as molecular dynamics simulations41,42–44. Here, we show that a 
relatively simple protocol can be used to extract important coevolving dimeric contacts from the mon-
omeric signals obtained using Direct Coupling Analysis (DCA)22 and that those couplings can be used 
to predict complexes with high accuracy. Although this concept might not be applicable to all proteins, 
here we provide evidence that this approach works for a set of 18 different dimeric complexes from dif-
ferent families which cover different classes, folds, conformations as well as complexes with multidomain 
architectures with different sizes including medium to large proteins (up to 446 aa). Our success for this 
diverse set of families and classes suggests that this methodology can be applied to many other protein 
systems with rich sequence data, without the requirement of genome adjacency or single copies in the 
organism. Although not universal, the applicability of this idea to a larger number of molecular systems 
where dimerization or oligomerization plays an important biological role, but the molecular details have 
not been elucidated yet, is possible as the number of available sequence information increases over time.

Results
The key idea to study residue-residue coevolution involved in dimerization is the combination of accu-
rate prediction of residue contacts using DCA with the availability of monomeric structural data (e.g. 
X-ray crystallography or NMR). This provides a natural filter for residue pairs that are highly coupled 
but are found in the hydrophobic core of the protein. These direct couplings are most probably pairings 
required for folding and not for complex formation. Therefore, we exclude highly coupled pairs that have 
low surface accessibility as well as those pairs that are in close proximity in the monomeric contact map. 
Although there exist dimeric contacts that are both monomeric and dimeric, filtering them appears to 
have a small effect on the complex prediction accuracy. The resulting contacts are then incorporated in a 
coarse-grained (Cα ) SBM with Gaussian potentials45 for complex formation. Figure 1 shows a summary 
of this methodology exemplified by the tRNA methyltransferase dimer. The residue-residue contacts 
obtained from coevolution bring the two molecules together after an annealing-like procedure needed 
for a controlled interfacial reordering and binding. Figure 1B shows the most accurate predicted complex 
with a lowest RMSD value of 1.5 Å and Fig.  1C shows the RMSD progression until reaching a stable 
complex close to the native state. The details on how to extract coevolving dimeric signatures and a 
description of the parameters used in the binding simulations are described in the Methods section and 
Supplementary Methods.

A case study of dimeric protein complexes in several protein families.  We first studied 16 
dimeric systems for which we have known complex structures needed for model validation. We selected 
proteins that are typically larger than proteins used for folding simulations, ranging from 121 to 444 aa 
with an average of 303 aa. These proteins belong to families with abundant number of sequences (> 2500 )  
and very distinct folds and structures. Table  1 lists the dimeric proteins used in this study along with 
their characteristics and their respective protein families.

Figure 2 depicts native contact maps of two different dimeric complexes: protein isocitrate dehydro-
genase (2IV0) and glucose 6-phosphate isomerase (3FF1) along with the contact map of the predicted 
dimer structure. The native maps, shown in the upper triangular section of the plot, have two different 
types of contacts. Native monomeric contacts are colored in brown and native multimeric contacts are 
colored in orange. These maps also show the predicted dimeric contacts from DCA in black circles. The 
exact number of constrains used for each case depends on filtering the top 100 DCA pairs using a solvent 
accessibility criterion and by removing contacts around the monomeric structure (see Methods section). 
It has been suggested that these types of long distance couplings might be related to elastic interactions46 
but this remains to be characterized. The number of couplings used in the simulations range from 30–75 
for all the systems. Most of the remaining predicted contacts are part of the dimeric interface and are 
used as contact pairs described by a Gaussian potential (Supplementary Methods, Eqs 6–7). The lower 
triangular regions on the contact maps of Fig. 2 represent the contacts of the best-predicted complexes. 
The intra-domain contacts are shown in blue and the intermolecular contacts are shown in green. The 
reconstruction of these maps is highly accurate and recapitulates well both intra and inter-domain native 
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interactions. The contact maps for the remaining proteins studied are shown in Supplementary Figs S2-3 
and the estimated complexes are shown in Fig. 3 and Supplementary Fig. S4.

Using the same protocol as shown in Fig.  1, we estimated dimeric complexes for the remaining 13 
systems. For all the different experimental dimers studied our predictions had an average root mean 
square deviation for the best complexes of RMSDbest =  1.60 Å (mean interfacial iRMSDbest =  1.29 Å). If we 
consider the average RMSD at the last stage of the annealing procedure (see Fig. 1C) when the distance 
parameter for contacts is 8 Å, the mean RMSDr=8Å =  2.80 Å (mean iRMSD =  2.21 Å). See Supplementary 
Table S1 for individual values. Figure 3 shows the structures of the predicted complexes for proteins IspG 
(4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase), aminomutase (glutamate-1-semialdehyde 
aminotransferase), histidine triad, tRNA methyltransferase, GAPDH (glyceraldehyde 3-phosphate dehy-
drogenase), alcohol dehydrogenase, glucose 6-phosphate isomerase and ketoacyl synthase. The mono-
mers are colored in blue and red and the true positive dimeric contacts driving the complex formation 
are shown in green. RMSD and iRMSD (in parenthesis) are shown as performance metrics (see also 
Supplementary Fig. S4 for the predictions of further protein complex structures). For proteins alcohol 
dehydrogenase and ketoacyl synthase there is a multidomain architecture, hence in addition to estimate 
dimeric contacts as described before we also estimated contacts across different domains. Since these 
domains belong to the same protein, the sequence pairing procedure is trivial and the results are equiv-
alent as cases of heterodimers29,31,34.

Prediction of multiple dimeric complexes in response regulator proteins.  Response regulators 
are members of a very large family of primarily prokaryotic proteins with more than a hundred thou-
sand members. They are involved in signaling pathways where their receiver domain (Pfam PF00072) 
is typically phosphorylated by a histidine kinase (Pfam PF00512). This event triggers a conformational 
change and promotes dimerization of the phosphorylated protein, activating its function as a transcrip-
tion factor that binds to DNA and continues a cascade of events in response to its original input sensed 
by the kinase47–49. Homodimerization of the receiver domain (REC) is fundamental to achieve an active 
state conformation50. We studied the phosphate regulon transcriptional regulatory protein PhoB in E. 
coli, which upon activation dimerizes in its typical configuration (α 4-β 5-α 5). Figure 4A shows the result 

Figure 1.  Inferring dimerization complexes with coevolutionary pairings. (A) Two monomeric structures 
of the tRNA methyltransferase are used in a molecular dynamics simulation that brings the molecules 
together until reaching a stable complex close to the native homodimer state (shown in the center with light 
colors). (B) Accurate complex formation is driven by the dimeric constraints (shown in green) extracted 
using DCA. This methodology seems robust to the existence of those non-dimeric contacts that are used 
as constrains from DCA. (C) The RMSD progression of the simulation shows how at different stages of the 
protocol (shown in different background colors) the procedure gets closer to the native structure. At each 
stage the equilibrium distance and the shape of the Gaussian function are parameterized (See Supplementary 
Methods) to facilitate the satisfiability of the DCA couplings. For example, the contact range starts at 50 Å 
and concludes at typical native distances of 8 Å. This figure is representative of all the systems investigated 
here. For other RMSD progression plots refer to Supplementary Fig. S1.
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Protein PDB Length Family (Pfam) Sequences

Histidine triad protein 3O0M 149 HIT 8213

GAPDH 4LSM 346 Gp_dh_N 14213

Isocitrate Dehydrogenase 2IV0 412 Iso_dh 12354

Alcohol dehydrogenase 1HDY 374 ADH_zinc_N ADH_N 42002  
42970

Aminomutase 2ZSM 434 Aminotran_3 23135

tRNA methyltransferase 1UAL 274 tRNA_m1G_MT 5148

IspG 4G9P 406 GcpE 3640

Ketoacyl synthase 2IX4 431 ketoacyl-synt  
Ketoacyl-synt_C

24208  
23531

Glucose 6-phosphate Isomerase 3FF1 446 PGI 7325

RegX3 2OQR 230 Response_reg  
Trans_reg_C

47512  
47512

PhoB 1ZES 125 Response_reg  
Trans_reg_C

47512  
47512

ATP Corrinoid Adenosyltransferase 1G64 196 CobA_CobO_BtuR 2528

Adenylosuccinate Synthetase 1ADE 431 Adenylsucc_synt 5395

Aspartate Racemase 1JFL 228 Asp_Glu_race 8372

MJ0577 protein 1MJH 162 Usp 22843

3,4-Dihydroxy-2-Butanone 4-Phosphate Synthase 2RIS 204 DHBP_synthase 4699

Zucchini endoribonuclease 4GEL 4GEN 155 PLDc_2 86127

Inositol monophosphatase 2HHM 2QFL 260 Inositol_P 43154

Table 1.   Proteins used to predict dimeric complexes. Most proteins are single domain proteins, however 
for the case of alcohol dehydrogenase and ketoacyl synthase, also interdomain contacts were predicted using 
two Pfam families. For the case of the response regulator proteins, the additional constrain of being linked 
to the Trans_reg_C effector domain was used to narrow the number of sequences to a specific subfamily 
including this regulatory domain.
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Figure 2.  Direct couplings of single domain families contain signals of dimeric interfaces. (A) Contact 
maps of protein isocitrate dehydrogenase (412 aa). The upper triangular map shows the native monomeric 
contacts (brown) along with the native dimeric contacts (orange). The circular symbols represent the top 
ranked couplings estimated using DCA, the solvent accessibility criterion and removing contacts close to the 
monomeric map. These DCA couplings are used as constrains in the molecular dynamics simulation. The 
lower triangular map shows the contacts of the best predicted complex obtained after using the SBM +  DCA 
protocol. Monomeric contacts are shown in blue and resulting dimeric contacts in green. (B) Contact maps 
of glucose 6-phosphate isomerase use the same convention as in (A) with similar and consistent results. The 
predicted contact maps for the protein-protein interface colored in green are very similar to their native 
counter parts shown in dashed boxes.
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of applying the SBM +  DCA methodology to the complex formed by the REC domain of PhoB upon 
activation. A series of dimeric contacts among residues in the region 90–120 (orange) are detected by 
DCA (black circles). The complex was predicted with an RMSD accuracy of 0.89 Å with respect to the 
crystal structure (PDB 1ZES) for the best case and an average of 1.57 Å for the last stabilized simulation 
stage. This suggests the presence of a clear coevolutionary signal for the active state complex formation. 
It has also been suggested that the active state dimers for the REC domain of the response regulator can 
take alternative conformations. One of such conformations involves domain swapping of helices α 4 and 
α 5 and sheet β 5, as well as the formation of distinct dimeric contacts51. We applied our methodology to 
the monomeric structures of the sensory transduction protein regx3 of M. bovis (PDB 2OQR) that binds 
using this alternative active interface. The contact map in Fig.  4B shows that some of the monomeric 
contacts in Fig.  4A become dimeric for regx3 and are highly coupled. Additionally, another region of 
contacts involving residues 10–20 interacting with residues 100–110 is also captured using coevolution-
ary analysis (see Fig. 4B, dashed box). These two contact regions drive the formation of this alternative 
complex with a resolution of RMSD of 2 Å (iRMSD =  1.33 Å). Regx3 is a multidomain protein containing 

Figure 3.  Predicted dimeric structures for 8 different proteins and families. The best inferred bound 
complexes have different topologies and sizes. These proteins have lengths ranging from 121–444 aa (mean 
303 aa) and contain distinct folds as well as single and multidomain architectures (ketoacyl synthase and 
alcohol dehydrogenase). A notable case is the protein GAPDH for which the iRMSD has sub-angstrom 
resolution and the ketoacyl synthase with an RMSD =  1 Å. For the case of the isocitrate dehydrogenase we 
see that the dimeric interface shown on the top requires a conformational rearrangement in order for the 
helices to wrap around each other. This was only possible given the high number of coevolved contacts 
found around this area. See Supplementary Fig. S4 for more systems.
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an effector domain. If we compute the RMSD only for the response regulator domain, as in the case 
of PhoB, then the best RMSD =  1.13 Å. This implies that coevolutionary signals for multiple dimeric 
conformations are present and can be used to characterize multiple physiologically relevant configura-
tions. Although the dimeric state of the receiver domain is mainly observed for the activated state, some 
studies suggest that an inactive state can also form homodimers and some symmetric units supporting 
this view50,52. Nonetheless, it is not known if these inactive homodimers are formed in vivo or if they 
have any physiological relevance. Furthermore these inactive state complexes are arranged in such a way 
that the aspartate residue that is phosphorylated upon activation is not accessible to the kinase making 
this configuration less physiologically viable. Although some of the contacts in the inactive state dimer 
are captured by DCA, they do not appear to be sufficient to reach the same resolutions as for the active 
states. Supplementary Fig. S5 shows the predicted structure for such system, which has no resemblance 
to the inactive state dimeric interface observed in PDB 1B00. One interpretation of this result is that our 
methodology is not able to capture this alternative dimer correctly. The other view is that the evolution-
ary signal for this dimeric inactive state is weak and therefore not functional.
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Figure 4.  DCA/SBM for interfaces can infer multiple dimer conformations. (A) Coevolving contacts for 
the active state of the PhoB response regulator dimer in E. coli shown in black circles overlap well with the 
dimeric interface (orange). The predicted complex has a resolution of RMSD =  0.89 Å (iRMSD =  0.83 Å). (B) 
An alternative configuration of the activated dimer in protein regx3 upon phosphorylation is also predicted 
with an RMSD =  2 Å (iRMSD =  1.3 Å). This configuration involves domain swapping of helix α 4 and α 5 
and sheet β 5 and a second interacting region (dashed box) that is also captured by DCA. This structure also 
includes the effector domain (shown in white) that is a member of the transcriptional regulatory protein, 
Trans_reg_C (PF00486). Domain swapping is possible because of the contacts formed between the effector 
domain and the receiver domain in regx3 that allow this helical region to be exposed for binding.



www.nature.com/scientificreports/

7Scientific Reports | 5:13652 | DOI: 10.1038/srep13652

Most of the protein complexes presented here were validated with experimental structures that were 
already part of a dimer. To understand the effects of estimating complexes using only monomeric infor-
mation that might be different from their bound structures, we have studied additional systems where 
the knowledge of a monomeric structure is available. We predicted complexes for the response regulator 
PhoB (monomeric PDB 1B00) and compared against the dimeric complex described before (PDB 1ZES); 
the Zucchini endoribonuclease (monomeric PDB 4GEN, dimeric PDB 4GEL) as well as the Inositol 
monophosphatase (monomeric PDB 2QFL and dimeric PDB 2HHM). We observed that, in average, 
the RMSD resolution is decreased by 1.2 Å and 0.86 Å at the interface (see Supplementary Table. S4 and 
Figure S6). These results gave us confidence of the applicability of our method to novel cases where the 
structural information is not complete.

Discussion
The use of coevolutionary information to study protein structure and molecular interactions is prom-
ising and has been the topic of recent research. The number of coevolutionary constrains needed to 
accurately reconstitute complexes is much smaller compared to protein structure prediction, making it a 
particularly promising application to study intermolecular interactions. Homo-oligomerization is prev-
alent across the molecular biology of the cell and relevant for a wide range of molecular functions from 
scaffolding to gene regulation. The results discussed in this work provide support that a combination of 
structure based modeling in concert with coevolutionary signals let us uncover dimeric complexes close 
to experimental accuracy. Our previous work has focused on specific and biologically relevant heterodi-
mers29,31,32. Here we systematically advance this idea to homodimers with diversity in families and folds 
(see Supplementary Tablse S5) that present the additional challenge of having compound evolutionary 
signals with couplings required for monomeric structure formation that could lead to non-physiological 
complexes. We found that such distinct dimeric signals can be successfully extracted and be used to 
study protein interactions.

In addition to the requirement of sequence availability, the success of our methodology can be limited 
by the requirement of “mirrored” residue interactions of the same amino acid positions in both mono-
meric chains that are not detectable by coevolutionary methods. In the systems presented here, we do 
encounter these kinds of interactions but they are often mixed with typical cross-residue interactions 
that are detected and successful complex formation was driven by those interactions. We also observe a 
change in performance when we use monomeric structures to predict already known dimeric complexes. 
This performance change is mainly due to conformational differences between the monomeric exper-
imental structure and the dimers. This effect is relatively small especially at the interface and in some 
cases, like the Zucchini endoribonuclease, negligible. Domain swapping might also present a challenge 
since important monomeric intradomain interactions might be missing in this protocol, however, this 
could be alleviated by also incorporating intradomain couplings. This, nonetheless, is a topic of further 
research.

Our methodology also allows us to uncover multiple dimer conformations as for the case of the active 
response regulator dimer. This opens the possibility of exploring a larger spectrum of complexes. This 
knowledge could be of use in rational drug design when the objective is to disrupt alternative dimeric 
interfaces or devising important residues for dimerization. Uncovering functionally relevant dimeric 
interactions are of great importance for structural assemblies like microtubule formation or filament 
formation. Coevolutionary docking can be of use to accurately build very large assemblies that are hard 
to achieve using X-ray crystallography or NMR methods. Finally, homo-dimeric interactions are relevant 
for aggregation-induced ailments like Alzheimer’s, Parkinson’s or prion diseases53–55. Therefore, under-
standing the evolutionary nature of aggregation using protein energy landscape theory56 could help in 
the study of these degenerative disorders.

Methods
Sequence Alignments and Directly Coupled Residue Pairs.  In order to predict coevolved dimeric 
contacts between monomers, the datasets of multiple sequence alignments for all families present within 
each selected protein were extracted from Pfam57. All Pfam datasets contain more than 3500 sequences 
(see Table 1), a prerequisite to ensure statistical significance and a substantial level of prediction accu-
racy from Direct Coupling Analysis (DCA). A list of the Pfam families used for DCA predictions and 
its respective proteins are shown in Table  1. To estimate directly coupled co-evolving residue-residue 
physical contacts we used the mean field implementation of DCA (mfDCA), as described by Morcos  
et al.22. In this method, individual sites are represented by frequencies and couplets in multiple sequence 
alignments are defined as single and pairwise probabilities. Further details of this formulation and its 
performance can be found in13,22. The ordered couplets based on the Direct Information (DI) value can 
be interpreted as a ranking of the plausibility that residues pairs are in contact in a three-dimensional 
protein structure19.

The positions of the Pfam alignments for each protein were determined using the hmmscan mod-
ule from HMMER software, which employs Hidden Markov Models to perform alignments58. The DI 
ranked contacts from Pfam family sequences were mapped to their residues in the PDB protein struc-
tures using the output of hmmscan and an in-house mapping script. Due to the fact that the dimeric 
proteins predicted in these studies are homo-dimeric, the signals corresponding to the intermolecular 
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dimeric interactions are mixed among the monomeric contacts intrinsic of each chain. In order to filter 
these monomeric DCA contacts and to obtain only the coevolutionary signals related to dimerization, 
we developed a filtering protocol comprised by two steps. First, for one of the homo-dimeric chains we 
calculated the Solvent Accessible Surface Area (SASA) of each residue using GetArea59. In general, a 
residue needs to be significantly exposed to the surface of a dimer in order participate in interactions 
to promote protein-protein association. We removed all predicted pairs that did not have at least one 
of their residues with a SASA larger than 50%, which is a minimum value for a residue to be classified 
as solvent accessible according to the GetArea server. In a second step, we selected the top 100 DI pairs 
after SASA filtering and removed all predicted contacts that occur in one of the monomers. This was 
performed by comparing the DCA contacts with the native contact map between Cα atoms of the native 
monomer structure at a cutoff of 8 Å. The remaining contacts were included as interaction forces in the 
topologies used for molecular dynamics simulations.

Structural Modeling.  All the homodimers used in this study were retrieved from Protein Data Bank 
(PDB)60. The PDB accession code for each structure is shown in Table 1. The resolution of the selected 
proteins varies from 1.55 Å to 2.50 Å, with an average resolution of 1.97 Å. Homodimers that present 
only a monomer in the crystallographic asymmetric unit were duplicated by rotation and translation 
operations to generate a symmetry mate corresponding to the missing monomer in the structure. These 
operations were performed using PyMOL 1.6 molecular graphics system. Missing loops were modeled 
using the SwissModel server having the same structure as a reference template61. Atoms that were not 
part of the protein chain were removed before employing these structures to SBM modeling simulations. 
In order to carry on binding simulations as an effort to retrieve the original structure, each prepared 
native homodimer was separated in two monomers by a distance of 50 Å and then randomly rotated 180 
degrees in the axis between molecules to remove the initial native complex orientation. Other angles and 
axes of rotation were tried with no significant change in the performance of the protocol. The outcome 
structures were processed using the SMOG server to generate Cα models and structure-based (SB) poten-
tials suitable to carry molecular modeling simulations with GROMACS 4.5.7 software62,63.

Molecular Simulations.  In order to reproduce dimerization of the selected complexes, the structure 
of each homodimer separated by 50 Å in two monomers was processed by the SMOG server, generat-
ing topologies containing SBM coarse-grained potentials. The DCA contacts obtained using the filter-
ing process described before were utilized to generate structure-based models with Gaussian potentials 
describing residue pairs that should be in contact in the condition of minimum energy. For a detailed 
description of Gaussian potentials45 employed here see Supplementary Methods. The potentials were 
added into the topology generated by SMOG, alongside with the potentials related to the monomeric 
contacts, which were also parameterized in the Gaussian potential. To avoid substantial changes in each 
monomer conformation during the binding process, the dihedrals strength constant kd was increased by 
a factor of 100 from its original value generated by SMOG. The binding simulations consist of 7 steps in 
which the equilibrium distance (rN) was modulated, along with the Gaussian parameters of amplitude 
and decay A and w, respectively (see Supplementary Methods). The equilibrium distance for the potential 
was systematically decreased to allow the relative orientation between the monomers as they approximate 
towards each other. The Gaussian decay was modified to improve the conformation exploration between 
molecules. Higher decay values result in wider Gaussian functions and, therefore, in a higher number of 
possible conformations for a given energy value in the system. Also, the amplitude of the potentials was 
increased during the last three simulation steps, to further stabilize the complex in the final complex. 
Each simulation stage was carried until the observation of a stabilized conformation, observed by a 
reduced variance on each stage’s RMSD. The parameters used for each simulation stage and the variances 
at the last stage of the simulation are summarized in Supplementary Tables S2-3.
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