CENTRO DE ESTATÍSTICA APLICADA - CEA - USP RELATÓRIO DE ANÁLISE ESTATÍSTICA – CÓDIGO 99P01

TÍTULO: Relatório de análise estatística sobre o projeto "Curva de peso fetal estimado em gestações gemelares"

PESQUISADORA: Mariza Marie Fujita

INSTITUIÇÃO: Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - HC

FINALIDADE DO PROJETO: Publicação

RESPONSÁVEIS PELA ANÁLISE: Julio da Motta Singer

Alexandre Ryuzo Shinzato

REFERÊNCIA DESTE TRABALHO:

SINGER, J.M., SHINZATO, A.R.. Relatório de análise estatística sobre o projeto: "Curva de peso fetal estimado em gestações gemelares" São Paulo, IME-USP, 1999. (CEA. Relatório de Análise Estatística, 99P01).

FICHA TÉCNICA

BIBLIOGRAFIA

- CROWDER, M.J. and HAND, D.J. (1990). **Analysis of Repeated Measures.**1st. ed. London: Chapman and Hall. 257 p.
- DETER, R.L., HARRIST, R.B., HADLOCK, F.P. and POINDEXTER, A.N. (1982). Longitudinal studies of fetal growth with the use of dynamic image ultrasonography. **American Journal of Obstetrics and Gynecology, 143**, 545-554.
- FUJITA, M.M. (1998). **Avaliação ultra-sonográfica do crescimento fetal em gestações gemelares.** São Paulo. 146p. Dissertação (Doutorado). Faculdade de Medicina USP.
- HADLOCK, F.P., HARRIST, R.B., SHARMAN, R.S., DETER, R.L. and PARK, S.K. (1985). Estimation of fetal weight with the use of head, body, and femur measurements a prospective study. **American Journal of Obstetrics and Gynecology, 151**, 333 337.
- HADLOCK, F.P., HARRIST, R.B. and MARTINEZ-POYER, J. (1991). In utero analysis of fetal growth: a sonographic weight standard. **Radiology, 181**, 129-133.
- JOHNSON, R.A. and WICHERN, D.W. (1992). **Applied Multivariate Statistical Analysis.** 3rd. ed. New Jersey: Prentice-Hall. 642 p.
- JONES, R.H. (1993). Longitudinal Data with Serial Correlation: a State-space Approach. London: Chapman and Hall. 225p.
- LUBCHENCO, L.O., HANSMAN, C., DRESSLER, M. and BOYD, E. (1963). Intrauterine growth as estimated from live births at gestacional ages from 26 to 42 weeks. **Pediatrics**, **32**, 793-800.
- NAEYE, R.L., BENIRSCHKE, K., HAGSTROM, J.M.C. and MARCUS, C.C. (1966). Intrauterine growth of twins as estimated from liveborn birth-weight data. **Pediatrics**, **37**, 409-416.

- ROBINSON, H.P. and FLEMING, J.E.E. (1975). A critical evaluation of sonar "crown-rump length" measurements. **British Journal of Obstetrics and Gynaecology, 82**, 702-710.
- ROYSTON, P. (1991). Constructing time-specific reference ranges. **Statistics in Medicine**, **10**, 675-690.
- ROYSTON, P. (1995). Calculation of uncondicional and conditional reference intervals for foetal size and growth from longitudinal measurements. **Statistics in Medicine, 14**, 1417-1436.
- SAS Institute Inc. (1995), **SAS Procedures Guide, Version 6.12**, 1st. ed. New Castle: SAS Institute Inc.
- SINGER, J.M. and ANDRADE, D.F. (1999). Analysis of Longitudinal Data. In Handbook of Statistics, volume 17: Bio-Environmental and Public Health Statistics, eds. C.R. Rao and P.K. Sen. Amsterdam: North Holland (no prelo).

PROGRAMAS COMPUTACIONAIS UTILIZADOS

SAS for Windows (versão 6.12)

SPSS for Windows (versão 8.0)

Microsoft Excel (versão 7.0)

Microsoft Word for Windows (versão 7.0)

TÉCNICAS ESTATÍSTICAS UTILIZADAS

[Entre parênteses encontra-se a classificação "Statistical Theory & Methods Abstracts (ISI)"]

Análise Descritiva Unidimensional (03:010)

Análise de Variância com Modelos Mistos (08:040)

Análise de Regressão Clássica (07:020)

ÁREA DE APLICAÇÃO: Medicina (14:040)

ÍNDICE

Resumo	5
1. Introdução	6
2. Descrição do Estudo e do Processo de Coleta de Dados	7
3. Análise Descritiva	8
4. Análise Inferencial	10
Apêndice A - Tabelas e Figuras	14

RESUMO

O objetivo do estudo é construir curvas de peso fetal estimado por ultrasonografia para diversos percentis populacionais (3%, 10%, 25%, 50%, 75%, 90% e 97%) com dados oriundos de gestações gemelares duplas. Para essa finalidade foram acompanhadas 40 gestantes (80 fetos) do Ambulatório de Prénatal da Clínica Obstétrica do Hospital das Clínicas, satisfazendo os seguintes critérios de inclusão: (1) estar em processo de gestação gemelar dupla, (2) não apresentar patologia materna intercorrente durante a gestação, (3) não apresentar malformação ou óbito fetal, (4) não existir discordância de peso entre os gêmeos (diferença maior ou igual a 20% do peso do maior gêmeo ao nascimento), (5) ter a primeira ultra-sonografia obstétrica realizada até a 24ª semana de gestação. Levando em conta fatores como a possível correlação entre as medidas realizadas no mesmo feto e em fetos irmãos, heterocedasticidade, normalidade da distribuição para cada idade gestacional, consideramos modelos não polinomiais ou polinomiais de 2º ou 3º graus para representar as curvas de interesse. Utilizando técnicas de análise de dados longitudinais, obtivemos um ajuste adequado para um modelo log-linear com termos de primeiro e segundo graus e com base nele, construímos as curvas desejadas implementando-as numa planilha EXCEL.

1. INTRODUÇÃO

O estudo e a avaliação do crescimento fetal em gestações gemelares é importante pois enseja condutas obstétricas e/ou neonatais adequadas durante o período gestacional. Uma das formas de avaliar o crescimento de um feto é através do seu ganho de peso. Dado que o baixo peso ao nascer está relacionado com maiores taxas de morbidade e de mortalidade perinatal e que, além disso, em gestações gemelares, o peso médio dos recém nascidos é menor que o de gestações únicas, o estudo desses casos tem interesse obstétrico.

O objetivo do projeto é estudar a variação do peso fetal em gestações gemelares normais, com a intenção de avaliar se o crescimento fetal está sendo adequado para determinada idade gestacional intra-útero. Essa avaliação é baseada nas curvas de variação do peso estimado fetal para diversos percentis populacionais (3%, 10%, 25%, 50%, 75%, 90% e 97%). Ver Royston (1991) e Royston (1995), para detalhes. Essas curvas deverão ser estimadas a partir de observações realizadas em 40 gestações gemelares (80 fetos) acompanhadas no Ambulatório de Pré-natal da Clínica Obstétrica do Hospital das Clínicas.

Existem curvas de crescimento de peso para gestações gemelares elaboradas por meio de estudos transversais (Lubchenco et al. (1963) ou Naeye et al. (1966), por exemplo). Porém, essas curvas não se adequam ao nosso objetivo, ou por utilizarem indivíduos doentes e/ou pré-termos na sua construção ou por não utilizarem critérios bem especificados ou confiáveis para a determinação da idade gestacional (Fujita (1998)).

O peso estimado fetal é obtido por meio de medidas ultra-sonográficas de múltiplos parâmetros biométricos (Deter et al. (1982) e Hadlock et al. (1985)).

2. DESCRIÇÃO DO ESTUDO E DO PROCESSO DE COLETA DE DADOS

Este estudo foi realizado num período de 3 anos, durante o qual foram acompanhadas gestantes do Ambulatório de Pré-natal da Clínica Obstétrica do Hospital das Clínicas. O estudo pode ser classificado como clínico, prospectivo e longitudinal. Desse acompanhamento, obteve-se uma amostra de 80 fetos, satisfazendo o seguinte protocolo:

- provenientes de gestações gemelares duplas;
- primeira ultra-sonografia obstétrica realizada até a 24ª semana de gestação;
- ausência de patologia materna intercorrente durante a gestação;
- ausência de malformação ou óbito fetal;
- ausência de discordância de peso entre os gêmeos (diferença maior ou igual a 20% do peso do maior gêmeo ao nascimento).

As características observadas nos 80 fetos foram:

- identificação da gestante (1,...,40);
- identificação do feto dentro de cada gestação (1 = feto com ordem de nascimento esperada igual a 1 e 2 = feto com ordem de nascimento esperada igual a 2);
- identificação do feto (1,...,80);
- idade gestacional (semanas) e
- peso fetal estimado (gramas).

A idade gestacional foi determinada por um de três critérios diferentes:

- 1) a partir do primeiro dia após a última menstruação;
- 2) a partir do comprimento cabeça-nádega (Robinson and Fleming (1975));
- 3) média aritmética da idade estimada por vários parâmetros biométricos (Hadlock et al. (1985)).

O critério (1) foi utilizado nos casos em que a data da última menstruação era conhecida (devendo ser coerente com a estimativa obtida por um dos outros dois critérios na primeira ultra-sonografia). O critério (2) foi utilizado para

estimar as idades gestacionais inferiores ou iguais a 12 semanas e o critério (3) foi utilizado para estimar as idades nos demais casos.

Cada par de fetos foi avaliado ultra-sonograficamente em dois ou mais instantes ao longo da gestação. Os exames ultra-sonográficos foram realizados com um aparelho Toshiba, modelo Capasee SSA-220A, para obtenção das seguintes características biométricas: diâmetro biparietal, circunferência cefálica, circunferência abdominal e comprimento do fêmur. Cada característica biométrica era medida pelo menos três vezes e sua média aritmética foi utilizada como valor para o estudo. Caso a imagem ultra-sonográfica não fosse satisfatória para alguma dessas características, o peso fetal estimado não era calculado para aquela sessão de avaliação.

O peso fetal estimado foi obtido pela fórmula proposta por Hadlock et al. (1985):

```
log peso = 1,3596 - 0,00386 x CA x F + 0,0064 x CC + 0,00061 x DBP x CA + 0,0424 x CA + 0,174 x F
```

em que:

CA - Circunferência Abdominal (cm);

CC - Circunferência Cefálica (cm);

DBP - Diâmetro Biparietal (cm);

F - Comprimento do Fêmur (cm).

Essas características biométricas não são de interesse direto para o projeto, servindo apenas para determinar o peso.

3. ANÁLISE DESCRITIVA

Foram calculados a média, a mediana, o desvio padrão, o 1º e 3º quartis e o coeficiente de variação dos pesos fetais estimados, para cada idade

gestacional estudada. Esses dados podem ser visualizados na Tabela A.1. Os valores do desvio padrão aumentam com a idade gestacional indicando que os dados não apresentam variância constante (são heterocedásticos). Um outro ponto a ressaltar é que o coeficiente de variação parece estar estabilizado (em torno de 10%), indicando que o desvio padrão pode se relacionar de forma linear com a média.

O gráfico de perfis individuais pode ser observado na Figura A.1. Esse gráfico confirma a possível heterocedasticidade mencionada acima, e em função do "paralelismo" dos perfis individuais sugere também uma possível correlação entre as medidas realizadas no mesmo indivíduo. Na Figura A.2 podemos ver o gráfico de perfil médio amostral (com barras verticais representando erros padrões) e de quartis amostrais para cada idade gestacional. Esses gráficos sugerem que a variação do peso fetal estimado deve ser representada por uma curva não polinomial ou por curvas polinomiais de 2º ou 3º graus. Além disso, sugere uma simetria na distribuição dos dados. Essa simetria é indicada pela proximidade entre o perfil médio e o perfil mediano e a aparente igualdade das distâncias entre o 1º quartil e a mediana e entre a mediana e o 3º quartil.

Na Figura A.3, apresentamos gráficos do tipo *Box Plot* para as idades gestacionais com 10 ou mais medidas obtidas. Essa figura reforça as suposições de simetria e heterocedasticidade dos dados.

Para avaliar se distribuições normais podem ser utilizadas como modelo probabilístico, foi utilizado o teste de correlação dos coeficientes do gráfico do tipo Q-Q (Johnson and Wichern (1992)). Esse teste foi calculado para as idades gestacionais com pelo menos 5 observações. Em todos eles, a hipótese de que os pesos fetais estimados têm distribuição normal não foi rejeitada. Os coeficientes obtidos e os valores contra os quais eles são comparados podem ser encontrados na Tabela A.2.

Na Figura A.4, apresentamos um gráfico de dispersão para o logaritmo dos pesos fetais estimados. A esse gráfico se sobrepõe uma curva de regressão polinomial ordinária de ordem 2, indicando que uma curva quadrática ou cúbica

pode ser adequada à modelagem do logaritmo do peso fetal.

Gráficos de perfis individuais para os 40 pares de gêmeos de cada gestação estão apresentados na Figura A.5. O comportamento semelhante de ambos os fetos de cada par sugere a inclusão de gestação como bloco nos modelos estatísticos a serem empregados na análise.

4. ANÁLISE INFERENCIAL

Utilizamos técnicas de análise de dados longitudinais (ver Crowder and Hand (1990) ou Singer and Andrade (1999) por exemplo) para construir as curvas de peso fetal estimado. Dentre as alternativas disponíveis, escolhemos modelos de efeitos mistos, dada a sua flexibilidade para modelar curvas polinomiais sob diversas estruturas de correlação e heterocedasticidade.

Nesses modelos de efeitos mistos, incluem-se efeitos fixos e efeitos aleatórios. Os efeitos fixos determinam o perfil médio populacional e estes acrescidos dos efeitos aleatórios modelam os perfis individuais.

A estratégia de modelagem incluiu as três etapas descritas a seguir.

- 1. Obtenção dos melhores modelos para o perfil médio populacional, levando em consideração apenas a correlação entre as medidas realizadas nos mesmos fetos. Nesta etapa a avaliação do ajuste dos modelos foi baseada na significância dos coeficientes e de critérios de ajuste como o AIC e BIC (ver Jones (1993), por exemplo).
- 2. Avaliação dos modelos selecionados em (1) sob uma estrutura de covariância mais complexa envolvendo um termo adicional de correlação entre as medidas realizadas em fetos irmãos. Nesta etapa, a avaliação do ajuste de modelos também incluiu análise de resíduos.
- Construção das curvas de peso fetal estimado para os percentis populacionais 3%, 10%, 25%, 50%, 75%, 90% e 97% para cada modelo de
 (2) e escolha do melhor modelo em termos da compatibilidade dos percentis

populacionais estimados com os amostrais.

A primeira etapa do processo de obtenção dos modelos se iniciou com:

- 8 modelos para peso fetal;
- 8 modelos para logaritmo do peso fetal.

Todos os 16 modelos iniciais continham efeitos fixos e aleatórios lineares, quadráticos e cúbicos para a idade gestacional (IdG, IdG² e IdG³) e se diferenciavam entre si pela presença ou não dos efeitos fixos e aleatórios do intercepto, e do tipo de estrutura de covariância para os efeitos aleatórios (não estruturada ou componentes de variância). Os termos incluídos em cada um dos 16 modelos estão explicitados na Tabela A.3.

Os modelos foram ajustados via métodos de máxima verossimilhança restrita. Com base na significância dos parâmetros fixos e/ou aleatórios desses 16 modelos, outros mais parcimoniosos (com menor número de parâmetros foram gerados e seu ajuste avaliado. Modelos para o peso fetal foram identificados pelos números 1, 2, 3, ... e modelos para o logaritmo do peso fetal, por L1, L2, L3, Utilizando os critérios AIC e BIC, quando possível, três modelos de cada classe foram selecionados para a segunda etapa. Estimativas dos parâmetros e de medidas de variabilidade (erros padrões ou limites de intervalos de confiança) correspondentes estão apresentados na Tabela A.4. Nessa tabela também apresentamos os valores do AIC e BIC.

A cada um dos seis modelos selecionados na primeira etapa foi adicionado um efeito aleatório para modelar a correlação entre as medidas realizadas em fetos irmãos. Valores preditos e residuais para cada um desses modelos foram obtidos. Com base na análise de resíduos (ver dois exemplos de comportamento dos resíduos nas Figuras A.6 a A.13), os modelos com ajuste adequado e resultados mais coerentes com as suposições dos modelos de efeitos aleatórios foram selecionados para a terceira etapa (Tabela A.5). Esses modelos podem ser expressos como:

Modelo L14: Ln Peso (g) = $0.77066 + 0.32939 \text{ IdG} - 0.00374 \text{ IdG}^2 + \text{efeitos}$ aletórios (IdG e IdG²);

Modelo L15: Ln Peso (g) = 0.78385 + 0.32835 IdG - 0.00372 IdG² + efeitos aletórios (intercepto e IdG);

Modelo L16: Ln Peso (g) = $0.79148 + 0.32762 \text{ IdG} - 0.00371 \text{ IdG}^2 + \text{efeitos}$ aletórios (IdG);

Para a estimação das curvas de percentis populacionais (Royston (1995)), fez-se uso da suposição de normalidade e simetria dos dados. Para cada idade gestacional, utilizamos a média amostral como estimativa da mediana populacional e a média amostral acrescida ou subtraída de um determinado número de desvios padrões como estimativa dos demais percentis populacionais. Tanto os percentis populacionais estimados, como as curvas de percentis populacionais estimadas pelos três modelos mencionados acima podem ser encontradas nas Tabelas A.6 a A.8 e Figuras A.14 a A.16.

Para cada um desses modelos obtivemos o número e porcentagem de fetos com pelo menos 50% das observações limitadas superiormente pelas curvas de percentis estimadas. Os resultados estão dispostos nas tabelas A.9 e A.10.

Com base nisso, escolhemos o Modelo L15 para estimar as curvas de interesse. Segundo esse modelo, o logaritmo natural do peso fetal estimado é estimado através de uma combinação entre termos lineares e quadráticos da idade gestacional, sendo a estrutura de covariância definida pelos seguintes efeitos aleatórios: gestação, intercepto e idade gestacional.

A curva do perfil médio para o peso fetal estimado pode ser escrita como:

Ln Peso (g) =
$$0.78385 + 0.32835 \text{ IdG} - 0.00372 \text{ IdG}^2$$
.

Esta curva é semelhante àquela encontrada num estudo do tipo transversal para fetos únicos por Hadlock et al. (1991), sugerindo a adequação do modelo.

Na Tabela A.11 apresentamos as estimativas para os efeitos fixos deste modelo, assim como seus erros padrões e os respectivos intervalos de confiança com nível de significância de 95%. Também incluímos aí estimativas para as variâncias e covariâncias dos efeitos aleatórios correspondentes além dos respectivos intervalos de confiança com nível de significância de 95%.

Os percentis populacionais de 3%, 10%, 25%, 50%, 75%, 90% e 97% estão apresentados na Tabela A.7. Na Figura A.17, apresentamos apenas as curvas de percentis populacionais estimados.

APÊNDICE A - Tabelas e Figuras

Tabela A.1. Estatísticas descritivas para peso fetal estimado.

Idade	Nº fetos	Peso Fetal Estimado (gramas)					
Gestacional	-		Desvio	Coef. de			
(semanas)		Média	Padrão	Variação	1º Quartil	Mediana	3º Quartil
12	2	68	8	12%	-	-	-
13	6	76	3	3%	-	-	-
14	2	92	6	6%	-	-	-
15	2	153	15	10%	-	-	-
16	17	167	28	17%	144	162	191
17	2	205	10	5%	-	-	-
18	12	253	20	8%	241	255	261
19	16	318	49	16%	289	326	343
20	16	350	50	14%	313	356	370
21	8	394	41	10%	-	-	-
22	16	475	52	11%	430	478	509
23	26	584	90	15%	506	574	654
24	14	709	98	14%	642	697	769
25	36	785	112	14%	698	786	835
26	9	998	106	11%	-	-	-
27	30	993	117	12%	939	978	1061
28	22	1201	132	11%	1091	1182	1271
29	38	1314	157	12%	1216	1314	1407
30	19	1522	189	12%	1398	1506	1642
31	43	1605	218	14%	1436	1570	1759
32	29	1746	244	14%	1612	1739	1879
33	40	1956	236	12%	1793	1964	2107
34	31	2134	257	12%	1966	2091	2352
35	37	2294	241	11%	2179	2319	2438
36	38	2440	266	11%	2194	2422	2658
37	18	2540	372	15%	2213	2621	2826
38	21	2619	322	12%	2384	2525	2925
39	2	2638	444	17%	-	-	-

Tabela A.2. Teste de normalidade dos dados *.

Idade Gestacional semanas	Nº fetos	Coef. de Correlação para Gráfico Q-Q	Pontos Críticos nível de sig. de 10%
12	2	-	-
13	6	0,9460	0,9032
14	2	-	-
15	2	-	-
16	17	0,9900	0,9503
17	2	-	-
18	12	0,9760	0,9351
19	16	0,9800	0,9503
20	16	0,9700	0,9503
21	8	0,9700	0,9351
22	16	0,9870	0,9503
23	26	0,9870	0,9665
24	14	0,9850	0,9503
25	36	0,9880	0,9740
26	9	0,9630	0,9351
27	30	0,9830	0,9715
28	22	0,9700	0,9604
29	38	0,9920	0,9771
30	19	0,9870	0,9604
31	43	0,9930	0,9792
32	29	0,9870	0,9715
33	40	0,9930	0,9771
34	31	0,9780	0,9715
35	37	0,9910	0,9740
36	38	0,9890	0,9771
37	18	0,9770	0,9604
38	21	0,9760	0,9604

^{*}rejeita-se hipótese de normalidade se coeficiente de correlação < ponto crítico

Tabela A.3. Modelos iniciais (S ou N indicam se o efeito está presente ou não) .

código do		Efeito	s Fixos		Efeitos Aleatórios				
modelo	Intercepto	ldG	ldG2	ldG3	Intercepto	ldG	ldG2	ldG3	Covariancia
1	S	S	S	S	S	S	S	S	NE
2	S	S	S	S	S	S	S	S	CV
3	S	S	S	S	N	S	S	S	NE
4	S	S	S	S	N	S	S	S	CV
5	N	S	S	S	S	S	S	S	NE
6	N	S	S	S	S	S	S	S	CV
7	N	S	S	S	N	S	S	S	NE
8	N	S	S	S	N	S	S	S	CV
l1	S	S	S	S	S	S	S	S	NE
12	S	S	S	S	S	S	S	S	CV
13	S	S	S	S	N	S	S	S	NE
14	S	S	S	S	N	S	S	S	CV
15	N	S	S	S	S	S	S	S	NE
16	N	S	S	S	S	S	S	S	CV
17	N	S	S	S	N	S	S	S	NE
18	N	S	S	S	N	S	S	S	CV

NE: matrizes de covariância intra-unidades amostrais não estruturadas

CV: matrizes de covariância intra-unidades amostrais diagonais com elementos diferentes na diagonal principal

Tabela A.4. Estatísticas de ajuste para os modelos iniciais.

	-	Efeitos	Fixos		Efeitos Aleatórios				Ajuste	
Modelo	Efeito	Estimativa	Erro Padrão	р	Efeito	Estimativa	LIC	LSC	AIC	BIC
40	Intercepto	2.01045	0.2591	0.0001	Intercepto	0.05598	0.0352	0.1027	311 4301	302.8175
40	IdG	-0.28183	0.0318	0.0001	Cov(ldG, Int.)		-0.0047	-0.0018	011. 1 001	002.0170
	ldG ²	0.01209	0.0012	0.0001	IdG	0.00020	0.0001	0.0003		
	ldG ³	-0.00011	0.00002	0.0001	Res	0.01144	0.0100	0.0132		
13	_		_	_	ldG	0.00005	0.0000	0.0001	301 6730	293.0541
	IdG	-0.04367	0.0013	0.0001	Cov(ldG ² , ldG)		0.0000	0.0001	001.0700	200.00+1
	ldG ²	0.00308	0.0013	0.0001	IdG ²	0.00000	_	_		
	-	-	-	-	Res	0.01187	0.0104	0.0137		
42	_	_	_	_	Intercepto	0.05049	0.0291	0.1081	293 5101	284.8903
	IdG	-0.04339	0.0011	0.0001	Cov(ldG, Int.)		-0.0015	-0.0046	200.0101	20
	ldG ²	0.00310	0.0000	0.0001	ldG	0.00018	0.0001	0.0003		
	-	-	-	-	Res	0.01306	0.0114	0.0151		
		0.77000	0.0504	0.0004		0.00040	0.0004	0.0000	500.0040	500.0704
L14	Intercepto	0.77066	0.0534	0.0001	IdG	0.00012	0.0001	0.0002	538.6942	530.0781
	ldG ldG²	0.32939 -0.00374	0.0042	0.0001	Cov(IdG ² , IdG) IdG ²		-	-		
	-	-0.00374	0.0001 -	0.0001 -	Res	0.00000 0.00447	0.0039	0.0052		
L15	Intercepto	0.78254	0.0623	0.0001	Intercepto	0.03696	0.0238	0.0651	536 0364	527.4202
	IdG	0.32843	0.0044	0.0001	Cov(IdG, Int)	-0.00087	-0.0004	-0.0014	000.0001	027.1202
	ldG ²	-0.00372	0.0001	0.0001	ldG	0.00003	0.0000	0.0001		
	-	-	-	-	Res	0.00453	0.0040	0.0052		
L16	Intercepto	0.79148	0.0578	0.0001	IdG	0.00001	_	_	501.1414	496.8333
	ldG	0.32762	0.0045	0.0001	Res	0.00610	0.0054	0.0070		
	ldG ²	-0.00371	0.0001	0.0001	-	-	-	-		

LIC: limite inferior de intervalo de confiança 95%

LSC: limite superior de intervalo de confiança 95%

Tabela A.5. Estatísticas de ajuste para os modelos com inclusão de termo aleatório de gestação.

		Efeito	s Fixos			Efeitos Alea	tórios		Ajı	uste
Modelo	Efeito	Estimativa	Erro Padrão	р	Efeito	Estimativa	LIC	LSC	AIC	BIC
L14	Intercepto	0.77115	0.0567	0.0001	ldG	0.00005	0.0000	0.0001	549.5235	538.7532
	ldG	0.32933	0.0042	0.0001	Cov(IdG2, IdG)	-0.00000	-	-		
	ldG ²	-0.00374	0.0001	0.0001	ldG ²	0.00000	-	-		
	-	-	-	-	Mae	0.00898	0.0039	0.0141		•
	-	-	-	-	Res	0.00450	0.0039	0.0052		
L15	Intercepto	0.78386	0.0624	0.0001	Intercepto	0.02078	0.0109	0.0544	549.5730	538.8028
	IdG	0.32835	0.0044	0.0001	Cov(IdG, Int)	-0.00073	-0.0002	-0.0012		
	ldG ²	-0.00372	0.0001	0.0001	ldG	0.00003	0.0000	0.0001		
	-	-	-	-	Mae	0.00962	0.0044	0.0149		
	-	-	-	-	Res	0.00453	0.0040	0.0052		
L16	Intercepto	0.78144	0.0587	0.0001	IdG	0.00001	-	_	538.9129	532.4508
	ldG	0.32852	0.0043	0.0001	Mae	0.01027	0.0047	0.0158		
	ldG ²	-0.00372	0.0001	0.0001	Res	0.00520	0.0046	0.0060		

LIC: limite inferior de intervalo de confiança 95%

LSC: limite superior de intervalo de confiança 95%

Tabela A.6. Peso fetal estimado para diversos percentis populacionais (modelo final L14).

ld. Gestacional	Percentis (gramas)							
(semanas)	3%	10%	25%	50%	75%	90%	97%	
12	53	56	61	66	71	76	82	
13	67	71	77	83	90	97	104	
14	84	90	96	105	113	122	131	
15	104	112	120	130	141	152	163	
16	129	139	149	161	175	188	202	
17	158	170	183	198	215	231	248	
18	193	207	223	242	262	282	303	
19	234	251	270	293	317	341	367	
20	281	302	324	352	381	410	441	
21	335	360	387	420	455	489	526	
22	396	426	458	497	539	579	623	
23	465	500	538	583	633	681	732	
24	542	583	627	680	738	794	854	
25	627	674	726	788	854	920	989	
26	720	775	834	905	982	1057	1136	
27	821	883	951	1032	1120	1205	1296	
28	929	999	1076	1168	1267	1364	1468	
29	1043	1122	1208	1312	1424	1533	1649	
30	1163	1251	1347	1462	1588	1710	1839	
31	1286	1384	1491	1619	1757	1893	2036	
32	1412	1520	1637	1778	1931	2080	2238	
33	1539	1657	1785	1938	2105	2268	2441	
34	1665	1792	1931	2098	2279	2455	2642	
35	1788	1925	2074	2253	2448	2637	2839	
36	1906	2051	2211	2402	2610	2812	3028	
37	2016	2170	2339	2542	2762	2977	3205	
38	2116	2279	2456	2669	2901	3127	3367	
39	2205	2375	2560	2783	3025	3261	3512	

Tabela A.7. Peso fetal estimado para diversos percentis populacionais (modelo final L15).

Id. Gestacional			Percent	is (grama	ıs)		-
(semanas)	3%	10%	25%	50%	75%	90%	97%
12	50	55	60	66	73	80	87
13	64	69	76	83	92	100	109
14	80	87	95	105	115	126	137
15	100	109	119	131	144	156	170
16	125	135	147	162	177	193	209
17	154	167	181	199	218	236	256
18	188	204	221	242	265	288	312
19	228	247	268	293	320	347	376
20	275	297	322	352	385	417	451
21	328	355	384	419	458	496	536
22	389	420	455	496	542	586	634
23	457	494	534	583	636	688	744
24	533	576	623	680	742	802	867
25	617	667	721	787	858	928	1003
26	709	766	828	904	986	1066	1152
27	808	873	944	1030	1124	1216	1314
28	913	987	1068	1166	1273	1378	1489
29	1024	1108	1199	1310	1431	1549	1675
30	1140	1234	1336	1461	1597	1730	1872
31	1259	1363	1478	1617	1768	1917	2076
32	1379	1495	1622	1776	1945	2110	2287
33	1499	1627	1767	1937	2123	2306	2501
34	1617	1757	1910	2096	2300	2501	2717
35	1731	1882	2049	2252	2475	2694	2930
36	1838	2002	2182	2401	2643	2881	3137
37	1937	2112	2306	2542	2802	3058	3335
38	2026	2212	2418	2670	2948	3223	3520
39	2102	2299	2517	2785	3080	3373	3689

Tabela A.8. Peso fetal estimado para diversos percentis populacionais (modelo final L16).

ld. Gestacional			Perce	ntis (gran	nas)		
(semanas)	3%	10%	25%	50%	75%	90%	97%
12	52	56	60	66	72	78	84
13	66	71	76	83	91	98	106
14	82	89	96	105	114	123	133
15	102	111	120	131	142	154	166
16	127	137	148	162	176	191	206
17	155	168	182	198	217	234	253
18	189	205	222	242	264	286	309
19	229	247	268	293	320	347	375
20	274	297	322	352	385	417	451
21	326	354	383	419	459	497	539
22	386	418	453	496	543	589	638
23	452	491	532	583	638	693	751
24	527	571	620	680	745	809	877
25	609	660	717	787	863	937	1017
26	698	758	824	904	991	1078	1170
27	794	863	939	1030	1131	1230	1337
28	897	975	1061	1166	1281	1394	1516
29	1006	1094	1192	1310	1440	1568	1706
30	1119	1218	1328	1461	1607	1751	1906
31	1236	1347	1468	1617	1780	1941	2114
32	1355	1477	1612	1776	1957	2135	2327
33	1475	1608	1756	1936	2135	2332	2543
34	1592	1738	1899	2096	2313	2527	2758
35	1707	1864	2039	2252	2487	2719	2970
36	1816	1985	2172	2401	2654	2904	3174
37	1918	2098	2297	2541	2811	3079	3367
38	2010	2200	2411	2670	2956	3239	3546
39	2091	2290	2512	2784	3085	3384	3707

Tabela A.9. Percentis populacionais estimados e número de fetos com curvas individuais limitadas pelas curvas populacionais.

Percentis	Número de casos observados						
(gramas)	modelo L14	modelo L15	modelo L16				
3%	5	3	3				
10%	10	8	6				
25%	21	18	15				
50%	43	43	43				
75%	63	64	65				
90%	76	76	76				
97%	79	79	79				

Tabela 10. Percentis populacionais estimados e porcentagem de fetos, com curvas individuais limitadas pelas curvas populacionais.

Percentis	ntis Percentual observado					
(gramas)	modelo L14	modelo L15	modelo L16			
3%	6%	4%	4%			
10%	13%	10%	8%			
25%	26%	23%	19%			
50%	54%	54%	54%			
75%	79%	80%	81%			
90%	95%	95%	95%			
97%	99%	99%	99%			

Tabela 11. Estimativas, erros padrões, limites de confiança inferiores e superiores (LIC e LSC) com nível de confiança de 95% para efeitos fixos e aleatórios correspondentes ao modelo adotado (L15).

	Efeito	Estimativa	Erro Padrão	LIC	LSC
Fixos	Intercepto IdG IdG²	0,78386 0,32835 -0,00372	0,06241 0,00436 0,00008	0,66155 0,31981 -0,00387	0,90618 0,33690 -0,00357
Aleatórios*	Intercepto Cov(IdG, Int) IdG Mae Res	0,02078 -0,00073 0,00003 0,00962 0,00453	- - - -	0,01090 -0,00120 0,00000 0,00440 0,00400	0,05440 -0,00020 0,00010 0,01490 0,00520

^{*} o software estatístico não fornece as estimativas dos erros padrões

Figura A.1. Perfis individuais dos 80 fetos estudados.

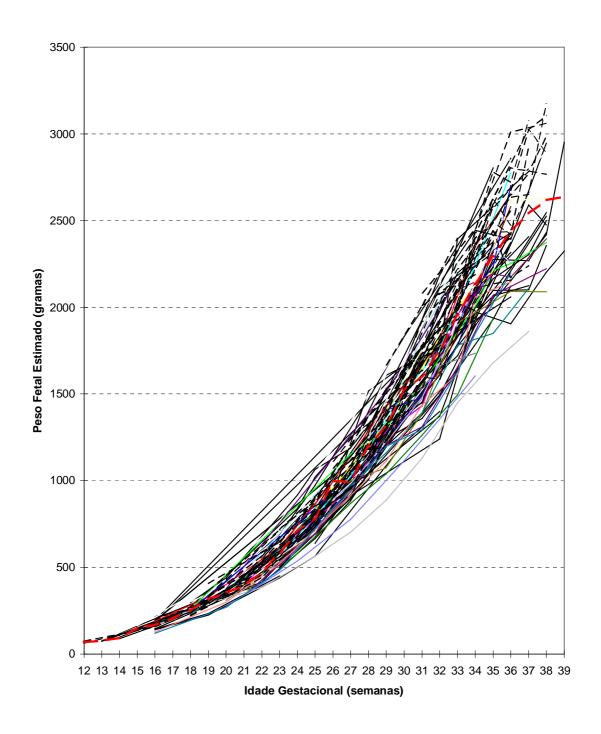


Figura A.2. Perfil médio, erro padrão e quartis do peso fetal estimado.

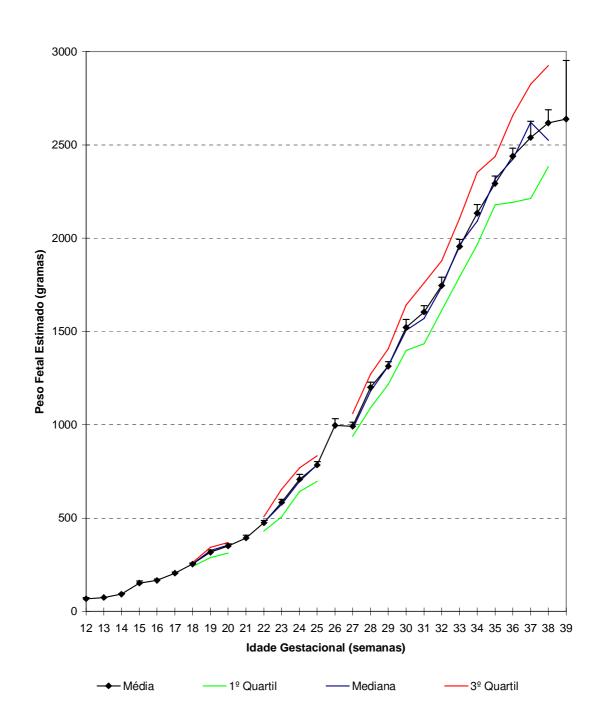
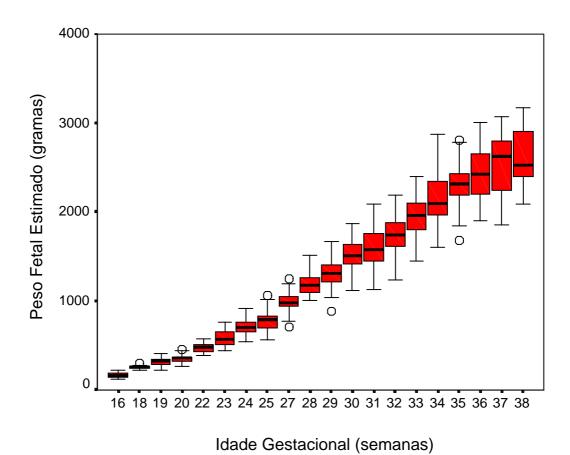



Figura A.3. Box Plots.

8,5 8 7,5 Ln Peso Fetal Estimado (In gramas) 7 6,5 6 5,5 5 4,5 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 **Idade Gestacional (semanas)**

Figura A.4. Gráfico de dispersão do logaritmo dos pesos fetais estimados.

Figura A.5. Peso fetal estimado para 40 gestações gemelares. No eixo vertical temos peso estimado (0 a 3500 g) e no horizontal, idade gestacional (12 a 39 semanas).

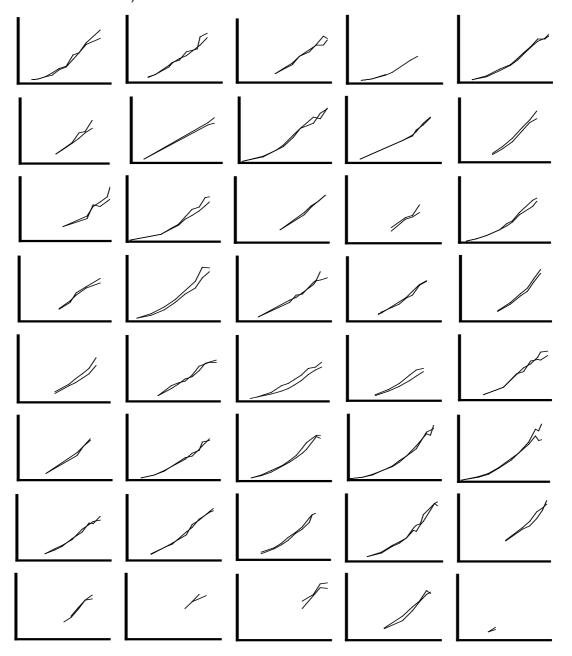
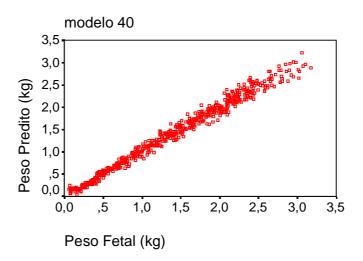



Figura A.6. Gráfico de dispersão entre os pesos fetais e pesos fetais preditos.

Figura A.7. Gráfico do tipo QQ, entre os resíduos observados e os resíduos esperados sob a hipótese de normalidade.

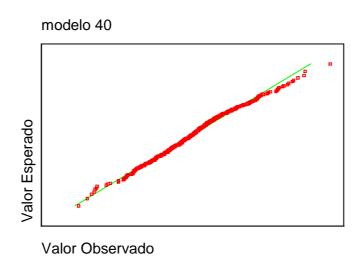


Figura A.8 Gráfico de dispersão entre os resíduos e os pesos fetais preditos.

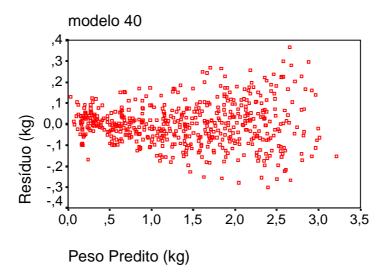


Figura A.9. Gráfico de dispersão entre os resíduos e a idade gestacional.

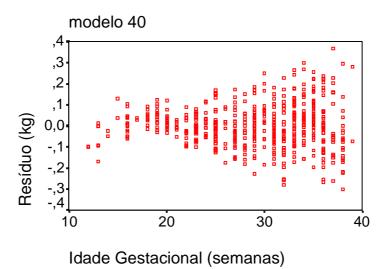
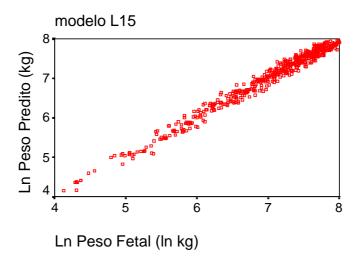



Figura A.10. Gráfico de dispersão entre os pesos fetais e pesos fetais preditos.

Figura A.11. Gráfico do tipo QQ, entre os resíduos observados e os resíduos esperados sob a hipótese de normalidade.

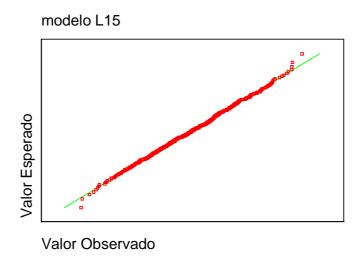
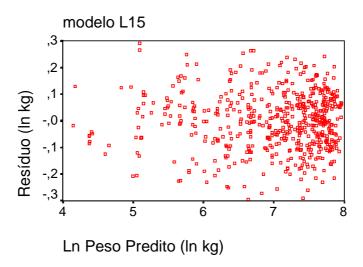
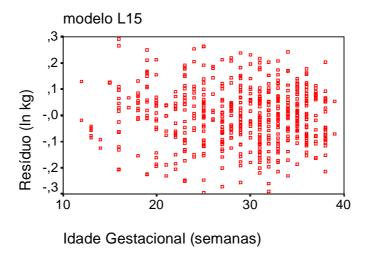
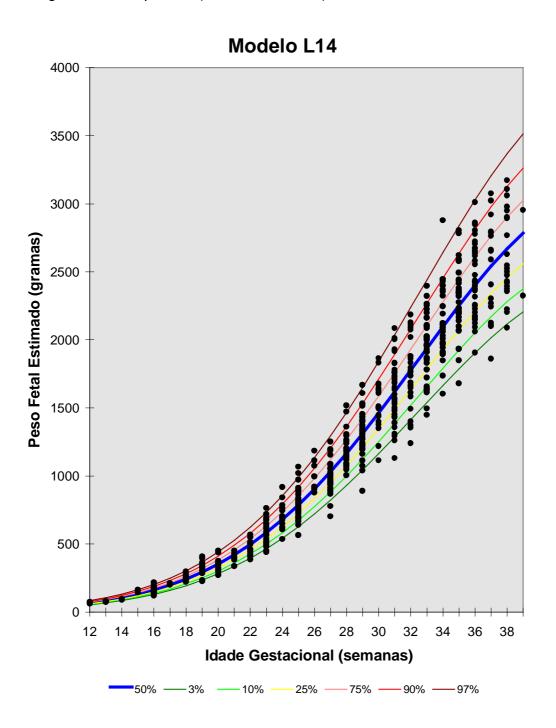


Figura A.12 Gráfico de dispersão entre os resíduos e os pesos fetais preditos.

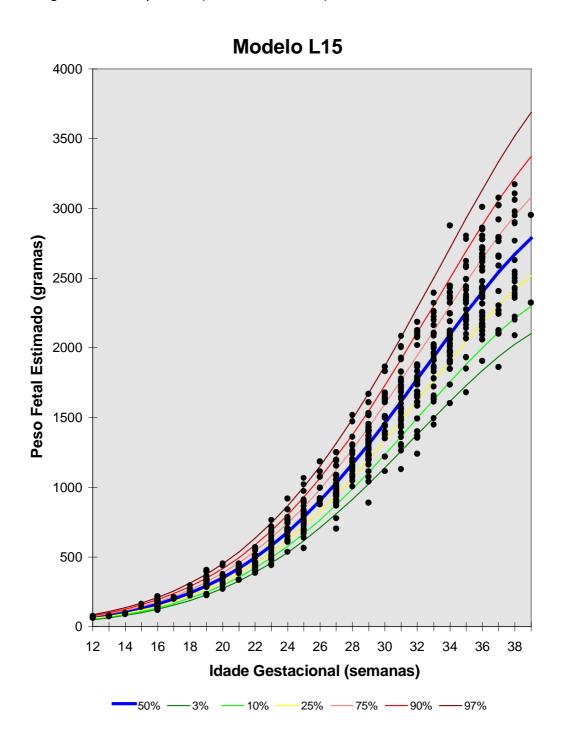

Figura A.13. Gráfico de dispersão entre os resíduos e a idade gestacional.

Figura A.14. Curvas de percentis populacionais estimados sobrepostas ao gráfico de dispersão (modelo final L14).

Figura A.15. Curvas de percentis populacionais estimados sobrepostas ao gráfico de dispersão (modelo final L15).

Figura A.16. Curvas de percentis populacionais estimados sobrepostas ao gráfico de dispersão (modelo final L16).

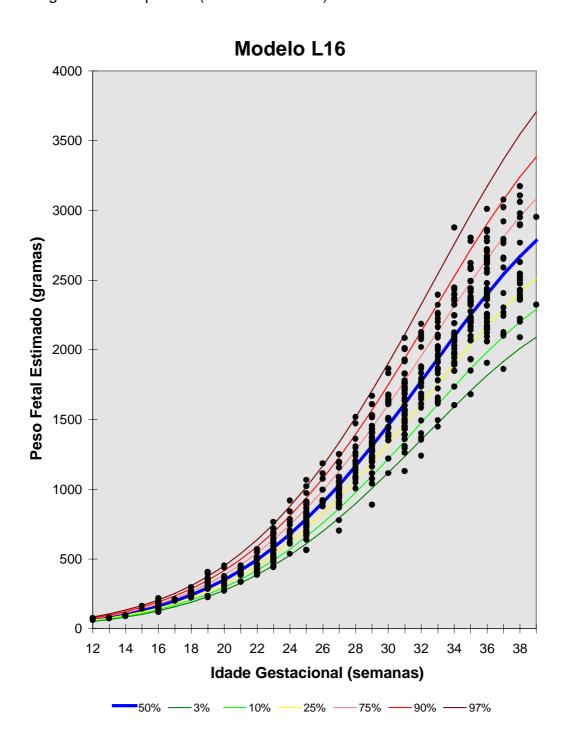
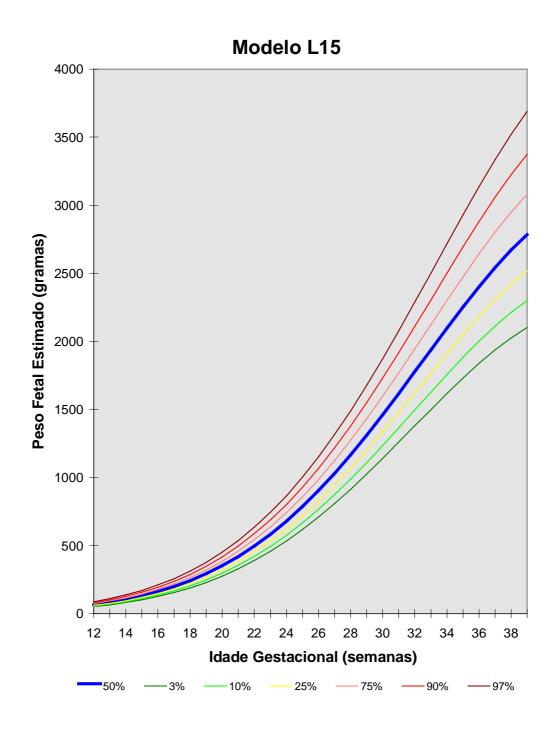



Figura A.17. Curvas de percentis populacionais estimados do modelo L15.

