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A possible path to the interpretability of neural networks is to (approximately) represent them in 
the regional format of piecewise linear functions, where regions of inputs are associated to linear 
functions computing the network outputs. We present an algorithm for the translation of feedforward 
neural networks with ReLU activation functions in hidden layers and truncated identity activation 
functions in the output layer. We also empirically investigate the complexity of regional representa­
tions outputted by our method for neural networks with varying sizes. Lattice and logical represen­
tations of neural networks are straightforward from regional representations as long as they satisfy 
a specific property. So we empirically investigate to what extent the translations by our algorithm 
satisfy such property. 

1 Introduction 

Neural networks are computational models that aim to generalize patterns found in datasets from which 
they are determined by means of a learning algorithm [8]. Despite the undeniable advancement in the 
state of the art of intelligent systems promoted by neural networks, their lack of interpretability is subject 
to criticism. Neural networks suffer from the black box problem due to the lack of justification for their 
results and the impossibility to directly inspect their learned information [3, 5]. 

As several architectures of neural networks realize piecewise linear functions or may be approxi­
mated by them, a path towards interpretability is through regional format representations of such neural 
networks and functions by explicit sets of pairs (p, Q) of a linear piece p and a region Q such that, 
for a vector of input values x E Q, the output is given by p(x). An algorithm for establishing regional 
representations from feedforward neural networks with rectified linear units as activation functions is 
proposed in [15]. 

The main goal of this work is to introduce an algorithm for computing regional format representa­
tions of ReLU-Tld neural networks, which are feedforward neural networks with rectified linear units 
as activation functions in hidden layers and truncated identity as activation functions in the output layer. 
Such algorithm outputs representations in the pre-closed regional format, where regions are polyhedra. 
Rather than just adapting the iterative method in [15], we present a novel recursive approach that allows 
a correctness proof by a straightforward induction argument. 

An important feature of neural networks is that they are compact representations of functions. Then, 
although regional representations might provide interpretability of neural networks, they also might be 
exponential in the size of their traditional representation as graphs. In Section 4, we empirically measure 
the complexity of regional representations determined by our method for randomly generated ReLU-Tid 
neural networks with varying numbers of neurons and layers and varying layer sizes. 
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Lattice representation is another possibility for representing neural networks and is achieved by com­
bining maximum and minimum operations over linear pieces. Such representations further enable the 
codification ofReLU-Tid neural networks in logical systems as Lukasiewicz infinitely-valued logic (Loo) 
and its extensions [4, 7, 11, 12], leading to yet another path to interpretability. Lattice and logical rep­
resentations find applications in the formal verification of neural networks in attempts to circumvent 
the black box problem and allow their use in critical tasks; for instance, in aircraft collision avoidance 
alerts and autonomous vehicles. There are methods for formal verification using the lattice representa­
tion of neural networks [l] and methods that codify properties of neural networks in the language of Loo 
departing from their logical representation [13, 14]. 

Lattice and logical representations may be built in polynomial time from ReL U-Tld neural networks 
given in the pre-closed regional format as long as such encodings satisfy the so-called lattice property 
(Section 2) [ 12]. In this case, the regional representations are said to be in the closed regional format. 
This work also aims at empirically experimenting how far from satisfying lattice property are randomly 
generated neural networks. 

The rest of this work is organized as follows. Section 2 introduces neural networks and their graph, 
regional, lattice and logical representations. Section 3 presents an algorithm for translating ReLU-Tid 
neural networks into the pre-closed regional format. Section 4 presents the results of experiments where 
we measure the complexity of representations in pre-closed regional format and their degree of satisfia­
bility of lattice property. 

2 Preliminaries: Some Neural Networks and Their Representations 

Traditionally, afeedforward neural network N is given (and represented) by a graph whose nodes are 
partitioned into an ordered family of ordered sets .!t'N = {Lo, ... ,LA}, where each Li is a layer. All 
nodes in layer Li, for i E {O, ... ,A- 1 }, are linked by an edge to all nodes in layer Li+l establishing a 
computational circuit such that all output values of nodes in Li are input values to each node in Li+ 1. 
There is a linear function fj : RIL;-i I -t R associated to each node n~ in layer Li, for j E { 1, ... , IL;!} and 

i E {1, ... ,A}. For a tuple of input values x = (x1, ... ,xlL;-il) E RIL;-il to node n~, it has as output the 

value nj( x) = Pi o fJ ( x), where Pi : R -t R is an activation function. Thus, for x = (x1, ... , xlL;-i I) as 
input to layer Li, it has as outputs the values in the tuple 

Input values to Nin a tuple x = (x1, ... , xlLol) E RILol are neatly associated to the nodes n?, ... , nfLol E Lo, 
called input nodes; thus, from such inputs, N produces the output values in the !LAI-tuple 

Nodes in LA are called output nodes. We say that each output node nf in a neural network N computes a 

function for which the value N(x) j is given in function of the input values x E RILol _ 
We might restrict the input values of a neural network to some set R ~ R In this work, we focus 

on ReLU-Tld neural networks: they accept input values from [O, 1] and have as activation functions the 
rectified linear unit Pi= ReLU: R -t R, given by ReLU(x) = max(O,x), for i E {1, ... ,A-1 }, and the 
truncated identity function PA= Tld: R -t R, given by Tid(x) = max(O,min(l,x)). Such activation 
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Figure 1: Graph of the ReLU-Tld neural network E 

functions may be given by piecewise linear definitions as follows: 

ReLU(x) = { O, x < O 
x, x::::::o 

{ 
0, X < 0 

Tld(x) = x, 0 '.S x '.S 1 
I, X > I 

(1) 

Example 1 Let Ebe a ReLU-Tld neural network with 2E = {Lo,L1,L2}, where Lo= {n~,ng}, L1 = 
{ n}, n½} and L2 = { nf}. The graph of E depicted in Figure 1 highlights the input values x1 and x2 in layer 
Lo and the functions fl ,JJ Jr : IR2 ➔ IR in layers L1 and L2, which are given by: 

• Jl(x1,x2) = 1x1 -x2; 

• JJ(x1,x2) = x1 -x2 + ½; 

• Jl(x1,x2)=x1+x2+½-

For a tuple of inputs e =(½,½)to E, we have L1 (e) = (ReLU(-½),ReLU(½)) = (0, ½) and, thus, E(e) = 
Lz(L1(e)) = Tld(i) = f 0 

Before introducing another type of neural network, let us define a rational McNaughton function 
f : [0, 1 in ➔ [0, 1], which is a function that satisfies the following conditions: 

• f is continuous with respect to the usual topology of [0, 1] as an interval of the real number line; 

• There are linear polynomials Pl, ... , Pm over [0, 1 in with rational coefficients such that, for each 
point x E [0, lt, there is an index i E {1, ... ,m} with f(x) = Pi(x). Polynomials Pl, ... ,Pm are the 
linear pieces off. 

A neural network whose v = ILAI output nodes exactly compute rational McNaughton functions in func­
tion of its input nodes is called av-rational McNaughton neural network (v-RMcN3 ); a l-RMcN3 is also 
called rational McNaughton neural network (RMcN3 ). 

A possibility to represent rational McNaughton functions (consequently, v-rational McNaughton 
neural networks) is through the regional formats discussed in the following. Let .Q.0 denote the topolog­
ical interior of .Q. ~ [0, It and say that, given functions f,g: [0, It ➔ [0, 1], f is above g over the set 
.Q. if f(x) 2 g(x), for all x E .Q.. A given rational McNaughton function f: [0, lt ➔ [0, 1] is said to be 
encoded in the closed regional format if it is given by m (not necessarily distinct) linear pieces 

(2) 
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where x = (x1, ... ,xn) E [O, l]n, yij E Q and i E {1, ... ,m }, such that each Pi is identical to f over a 
polyhedron Qi ~ [O, 1 in, called region. These regions are determined by the finite intersection of half­
spaces given by linear inequalities 1 as 

(3) 

and such setting of linear pieces and regions satisfy the following properties: 

• U~1 Qi= [O, It; 

• Qf nQf' = 0, for i' #- i"; and 

• The lattice property: for i #- j, there is k such that linear piece Pi is above linear piece Pk over 
region Qi and linear piece Pk is above linear piece Pj over region Qj. 

Such an encoding is called closed because regions Qi are closed sets in the topological sense. As regions 
are given by such polyhedra described by (3), there is a polynomial procedure to establish whether a 
linear piece p is above q over region Q: find the minimum value m of p - q over Q, which is a linear 
program and may be solved in polynomial time [2]; then, if m 2 0, pis above q over Q, otherwise, it is 
not. 

The lattice property yields the possibility to represent rational McNaughton functions and v-RMcN3s 
by lattice representations-i.e., based on operations of maximum and minimum over functions-as fol­
lows. First, let fnj : [O, 1 ]n--+ [O, 1] be the function given by 

fn/x) = min{Pk(x) I Pk is above Pj over Qj }-

Note that fnj(x) :S f(x), for all x E [O, l]n, which is obvious for x E Qj and follows from the lattice 
property for x E Qi where i #- j. In this way, we have that 

f(x) = max {tnj(x) I j E {1, ... ,m} }-

In [13], we find an example of the one-variable rational McNaughton function f: [O, 1]--+ [O, 1], whose 
graph is depicted in Figure 2. Function f has a lattice representation given by 

f(x) =max{ fn,(x), fn.Jx), fn.3 (x), Jn_4 (x) }, 

where fn. 1 (x) = min{p1(x),p3(x)}, fn.2 (x) = fn.3 (x) = min{p2(x),p3(x)} and fn.4 (x) = 
min{p2(x),p4(x)}. Note that the lattice encoding just introduced may be employed in represent­
ing piecewise linear functions in general, not only rational McNaughton functions. 

When a rational McNaughton function is given in an encoding that almost completely agrees with 
the closed regional format, with the sole exception that there is no guarantee that such encoding satisfies 
the lattice property (although it may still satisfy), we say that it is in the pre-closed regional format. 

Unfortunately, lack of lattice property might entail the failure of lattice representation as in the fol­
lowing example taken from [12]. The rational McNaughton function fE with graph in Figure 3a may 
have an encoding based on regions in Figure 3b; a linear piece Pi is associated to each region Qi. The 
dotted line in Figure 3b is the projection over [O, 1 ]2 of where p3 intercepts p5; note that such line passes 

1 We occasionally abuse notation by using the same symbol to refer both to a set of inequalities and to the polyhedron it 
determines. 
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Figure 2: One-variable piecewise linear function 

0 

0)~---------Y 

Xz 

(a) Graph (b) Region configuration 

Figure 3: Function encoded in the pre-closed regional format 

through the interior of both .Q.3 and .Q.5. There is no linear piece Pk such that p3 is above Pk over .Q.3 
and Pk is above Ps over .Q.5. So an encoding for fE based on regions .Q.1-.Q.5 may be at most encoded in 
pre-closed regional format. 

Now, there is xo E .Q.3 such that ps(xo) > p3(xo). Therefore, fn5 (xo) = ps(xo) > p3(xo) = 
min{p1 (xo),p3(xo)} = fn.3 (xo), yielding that max{fn/xo)} > fn. 3 (xo), which eliminates the possibility 
of lattice representation. Such an issue may be circumvented by splitting region .Q.5, according to the 
dotted line in Figure 3b, in regions n; = ns n {ps - p3 2:: 0} and ni = ns n {ps - p3 :S: 0}. In general, 
repeatedly splitting a region according to projections of linear pieces intersections eventually achieves 
closed regional format [12, Theorem 7]. 

We may also represent rational McNaughton functions and v-RMcN3s in logical systems. For that, 
let us introduce the Lukasiewicz infinitely-valued logic (Loo). The basic language 2 of Loo comprehends 
formulas freely generated from a countable set of propositional variables JID, a disjunction operator EB and 
a negation operator,. A valuation is a function v: 2-+ [0, 1 ], such that, for <p, lfl E 2: 

v(<pE& lfl) = min(l, v(<p) +v(lfl)); 
v(,<p) = l -v(<p). 

(4) 

(5) 
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From disjunction and negation we derive the following operators: 

Conjunction: <p 01/f =aef ,( ,<p EB ,lfl) 

Implication: <p ----+ 1/f =aef ,<p EB 1/f 

Maximum: <p V 1/f =aef ,( ,<p EB lfl) EB 1/f 

Minimum: <p I\ 1/f =aef ,( ,<p V ,lfl) 

Bi-implication: <p +-+ 1/f =aef ( <p ----+ lfl) I\ ( 1/f----+ <p) 

v( <p 01/f) = max( 0, v( <p) + v( lfl) - 1) 

v( <p ----+ lfl) = min( 1, 1 - v( <p) + v( lfl)) 

v( <p V lfl) = max( v( <p), v( lfl)) 

v( <p I\ lfl) = min( v( <p), v( lfl)) 

v(<p +-+ lfl) = 1- lv(<p)-v(lfl)I 

69 

Note that, as lattice operations are expressed in Loo by the minimum and maximum operators, piecewise 
linear functions might have a lattice representation in Loo as far as their linear pieces are representable 
in this system. Indeed, the formulas of Loo represent all the McNaughton functions, which are rational 
McNaughton functions constrained to allow only integer coefficients in their linear pieces [9, 10]. 

Unfortunately, Loo cannot express rational McNaughton functions. For that, one possible path is 
to extend the language of Loo, which is done, for instance, by [7]. Another possibility is to implicitly 
represent such functions in plain Loo using the technique of representation modulo satisfiability, which 
we introduce in the following [6, 11, 12]. 

Let us denote the Loo-semantics, that is the set of all valuations, by Val. Let us also denote by Val<!> 
the set of valuations v E Val that satisfy a set of formulas <I>; we call such a restricted set of valuations 
a semantics modulo satisfiability. Given a rational McNaughton function f: [0, 1 in ----+ [0, 1 ], a formula 
(f)J and a set of formulas <I> f, we say that (f)J represents f modulo <I> rsatisfiable or that the pair ( (f)J, <I> f) 
represents f (in the system Loo-MODSAT) if, for distinguished propositional variables X1, ... ,Xn E JPl: 

• For all (x1, ... ,xn) E [O, It, there exists some valuation v E Val<1>1 , such that v(Xi) = Xi, for i = 
1, ... ,n; 

• For all valuations v, v' E Val<1>1 such that v(Xi) = v'(Xi), for i =I, ... ,n, we have v(<p1) = v'(q,1); 
and 

• f( v(X1), ... , v(Xn)) = v( (f)J ), for all v E Val<1>r 

As an example, any constant function that takes value ¾, with b E N*, may be represented by the pair 

(6) 

where formula <p is only the propositional variable Z,;b and set <I> is a singleton comprehending formula 
Z,;b +-+ ,(b - 1 )Z,;b, which we denote by <p,;b• In fact, for any valuation v E Valrp11, -=I- 0, we have that 

v(Z,;b) = t· Also, functions that take constant value i, with a EN, may be represented by the pair 
(a<p, <I>). 

Any rational McNaughton function may be represented in Loo-MODSAT. Moreover, there is a poly­
nomial algorithm for the translation from a rational McNaughton function in closed regional format to 
its representation in such system [11, 12]. 

3 Neural Networks into Pre-Closed Regional Format 

Given a ReLU-Tld neural networkN for which .ZN= {Lo, ... ,LA}, we provide an algorithm to translate 
it into a tuple ZN = (Z1, ... , ZILAI), where each Zk, k E { 1, ... , ILA I}, is the codification for a rational 
McNaughton function in pre-closed regional format, which we will show to be the function computed 
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(a) fl (x) ~ 0, fi (x) ~ 0 (b) fr(0,Jl (x)) ~ 0, Jr(0,Jl (x)) ~ 1 

Figure 4: Determining a region for neural network E 

by N through the path to its k-th output node. Each Ek is a set of pairs (p, Q), where p is a linear piece 
and Q is its associated region. 

Let us begin by analyzing the computation that takes place in each node of N. Given a tuple of 
input values v E JRIL;-il to node nj of N, where i E {1, ... ,A- 1} and so Pi= ReLU, the computation 
proceeds in two steps: first, the linear function fj(x) is evaluated for x = v; second, the activation function 
ReLU(x) is evaluated for x = fJ(v). In the second step, one from the two possible values highlighted 
in the piecewise definition of ReLU in (1) is chosen as the output of nj. Such choice depends on the 

position of point v E JRIL;-il in relation to the hyperplane given by equation fJ(x) = 0, since it may be 

a point lying either in the half-space given by fJ(x) :S O or in the half-space given by fJ(x) 2 0. For 

instance, for e = ( ½, ½) as input to the node nt of E in Example 1, the fact that fl ( e) :S 0 indicates that e 
lies in one of the half-spaces determined by fl (x) = 0 where, according to P1 = ReLU, nt outputs 0. On 
the other hand, if e is given as input to the node n!, as f i ( e) 2 0, e lies in the half-space determined by 
fi (x) = 0 where, according to p1 = ReLU, n! outputs fi ( e) = ½- Figure 4a depicts the position of e in 
relation to these hyperplanes. 

Similarly, in case i = A, we have that Pi = Tld and, then, one from three possible values is chosen 
for Tld(JJ(v)) depending on the position of v E JRILA-1 1 in relation to the hyperplanes ff(x) = 0 and 

ff (x) = 1. It may be a point lying either in the half-space given by ff (x) :S 0, or in the half-space given 

by ff ( x) 2 1 or in the intersection of half-spaces ff ( x) 2 0 and ff ( x) ::=:; 1. Again, for e = ( ½, ½) as input 
to the neural network E in Example 1, we have e1 = L1 (e) = (0, ½). Since f/(e1) 2 0 and f/(e1) :S 1, e1 
lies in a position relative to f/(x) = 0 and fr(x) = 1 where, according to P2 = Tld, nj outputs fr( e1) = f 

Now, still considering Example 1, let x E [0, l]ILol be any point that, as e = (½, ½), satisfies both 
inequalities 

fl(x) :SO and f,l(x) 2 0. (7) 

Then, to x 1 = L1 ( x) satisfy inequalities fr ( x 1) 2 0 and fr ( x 1) ::=:; 1 is equivalent to x satisfy inequalities 

ff (0,J,l (x)) 2 0 and ff (0,J,l (x)) :S 1. (8) 

As the former inequalities (7), the latter inequalities (8) are also linear over tuples from [0, 1] ILol of input 
values to the neural network E. Moreover, for x E [0, 1 ]ILol satisfying inequalities (7) and (8), we have 
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that E ( x) = ff ( 0 ,J,} ( x)). In this way, we have just devised a region and its associated linear piece for 
the rational McNaughton function computed by neural network E. 

Generalizing the observations above, the idea behind the base algorithm for building Ek, for k E 

{1, ... , ILAI}, is to compute each pair (p,Q) E Ek beginning by: associating a symbol between Sand 2: 
to each node n~, for i < A, alluding to one of the two possible positions of an input to n~ in relation to 
the hyperplane Jj(x) = 0-i.e., lying in the half-space Jj(x) S 0 or in the half-space Jj(x) 2: 0---; and 
associating a symbol among S, 2: and 5 to the node nt alluding to one of the three possible positions 
of an input to nt in relation to the hyperplanes J/((x) = 0 and J/((x) = 1-i.e., lying in the half-space 
Jf((x) S 0, or in the half-space Jf((x) 2: 1 or in the intersection of the half-spaces Jf((x) 2: 0 and J/((x) S 
1. These associations of symbols to all the nodes in layers L1, ... , LA determine a configuration of 
symbols. Then, the algorithm proceeds by defining Q ~ [0, 1] ILol as an intersection of half-spaces based 
on such configuration of symbols and establishing a linear expression for p such that N(x)k = p(x), for 
xEQ. 

Example 2 For the neural network E in Example 1, in a configuration of symbols where we associate 
s to n~ and 2: to nl, the consequent region Q should comprehend the inequalities 1x1 - x2 s 0 and 
x1 -x2 + ½ 2: 0 (shaded area in Figure 4a). For an input x E [0, 1 ]2 that satisfies these inequalities, we have 
the outputs n~ (x) = 0 and nl(x) = Ji (x) which, composed withf{\ gives us the expressionx1 -x2 + 1. In 
this way, in case we complete the configuration of symbols by associating S to nf, Q should comprehend 
the inequality x1 -x2 + 1 s 0 and p should be given by p(x1,x2) = 0. In case we associate 2: to nf, Q 

should comprehend the inequality x1 -x2 + 1 2: 1 and p should be given by p(x1,x2) = 1. In the last 
case, if we associate 5 to nf, Q should comprehend both inequalities x1 - x2 + 1 S 1 and x1 - x2 + 1 2: 0 
(shaded area in Figure 4b) and p should be given by p(x1 ,x2) = x1 - x2 + 1. Note that the last case is the 
only one where region Q would be non-empty. 0 

In order to build the entire representative tuple EN= (E1, ... ,EILAI), the algorithm needs to com­
pute all the pairs (p,Q), each one associated to a different configuration of symbols, for all possible 
configurations of symbols. Thus, the entire computation of EN ends up with 2IL,I x • • • x 2ILA-1I x 3ILAI 
pairs (p,Q). Later, we introduce methods meant to be combined with the base algorithm that might 
circumvent such high complexity. 

For establishing the base translation algorithm, we first fix some notation. Let rqj and K1 be the 
constant linear functions with domain [0, 1 in and ranges equal to { 0} and { 1}, respectively; and let 
Xn: {s, 2:}--+ {rqj, K?} be the functions given by Xn(S) = rqj andXn(2:) = K?- Also, let n;:z: [0, 1r--+IR 
be the projection functions given by n::Z(x1, ... ,xm) = Xn, form EN and 1 Sn Sm. The base translation 
algorithm is split into Algorithms 1 and 2. 

Algorithm 1 treats the tuple EN = (E1, ... , EILAI) as a variable to be updated as it runs; thus, it first 
sets each of the E1, ... , EILAI to the empty set as their initial values (lines 1 and 2). Then, it defines Q[O,l] 

as a set of inequalities common to all regions (line 3) and n as a tuple of projection functions (line 4), 
which will be suitable for compositions with functions f J related to the first layer L1. It proceeds by 
calling the recursive routine NN2PWL-R(EN II L1,D.,n) (line 5), where EN is an argument passed by 
reference, which means that whenever NN2PWL-R modifies the value of EN, it will also be modified in 
the scope of the calling function. Finally, Algorithm 1 returns EN with its final value (line 6). 

Algorithm 2 describes the recursive routine NN2PWL-R that has as inputs a tuple EN= (E1, ... , EILAI) 
to be updated, a ReLU-Tid neural network N with a distinguished layer Li E .:t'N, a set of inequalities Q 

and a tuple of functions f = (!1, ... ,fjL;_,1)- If L; -=I-LA, for all possible association of symbols sand 2: to 
the nodes ni, . .. , nb summarized in the tuple of symbols txl= (txJ1, ... , txJIL;I), NN2PWL-R(EN 11 Li, Q,j) 
proceeds by: 
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• Computing Q~ as Q extended by the half-spaces fJ o f(x) l><lj 0, for j E {1, ... , ILM, where f = 
(!1, ... ,JjL;_,I) is a tuple of linear functions such that f(x) = (!1 (x), ... ,JjL;-il (x)) = Li-1 o • • • o 
L1 (x), for x E Q (line 3); 

• Computing the tuple of linear functions f~ that is identical to the output of Li o • • • o L1 for inputs 
x E Q~, with assistance of functions X11.o1 (line 4); 

• And calling itself again by NN2PWL-R(ZN II Li+l, Q~,f~) (line 5). 

If Li= LA, for each of the output nodes nt, ... ,nQAI' NN2PWL-R(ZN II Li,QJ) proceeds by: 

• Computing n:c;, n::,: and Q~ as Q extended, respectively, by the half-space ft o f(x) :S:: 0, the 
half-space ft o f(x) 2: 1 and the pair of half-spaces ft o f(x) 2: 0 and ft o f(x) :S:: 1, where f is a 
tuple of linear functions such that f(x) = LA-1 o • • • 0L1 (x), for x E Q (lines 9, 11 and 13); 

• And rewriting Zk by adding the pairs ( KiiLo 1, n:c;), Ut of, Q~) and ( 1CiLo 1, n::,:) to it (lines 10, 12 
and 14). 

Let Q be any region appearing in the output of the base algorithm; it is built in A+ 1 steps in a way 
that, in each step, new inequalities are added to a polyhedron (identified with a set of inequalities) until 
it becomes Q. The first step adds the inequalities that determine [0, l]ILol (Algorithm 1, line 3). The 
next A - 1 steps, where the produced polyhedra are named Q~ (Algorithm 2, line 3), are associated to 
layers L1, ... , LA-l of N. The final step, where the produced region Q is named either as n:c;, n:2: or Q~ 
(Algorithm 2, line 9, 11 or 13), is associated to layer LA. 

Algorithm 1 NN2PWL: puts neural networks in the closed regional format 
Input: A ReLU-Tid neural network N for which 2N ={Lo, ... ,LA}-
Output: A set ZN representing rational McNaughton functions computed by the output nodes of N. 

1: Z1 := 0, ... 'ZILAI := 0; 

2: ZN:= (Z1, ... ,ZILAI); 
3: Q[O,l] := {x1 2: 0,x1 :S:: 1, ... ,xlLol 2: 0,xlLol :S:: 1}; 
4 ·. ,,,. . (,,,.ILol ,,,.ILol). 

'" .- '"1 '· • • ''"ILol ' 
s: NN2PwL-R(ZN II L1,n10,1J,n'); 
6: return ZN; 

Lemma 1 Let a ReLU-Tld neural network N, for which 2N = {Lo, ... ,LA}, be given as input to 
Algorithm I. Then, Algorithm I terminates and outputs a tuple ZN= (Z1, ... ,ZILAI) where, for 
k E {1, ... , ILAI}, we have: 

• Un,Jor(p,il)E:SkQ = [0, l]ILol; 

• Q 10 n Q"0 = 0, for distinct (p', Q'), (p", Q") E Zk. □ 

PROOF Algorithm 1 always terminates since all of its loops, which are originated from Algorithm 2 
calls, range over some finite set and all recursive calls in Algorithm 2 increments the index of the input 
layer Li, which will eventually reach the last layer LA and break the recursion by falsifying the condi­
tional statement in line 1 of Algorithm 2. Let Zk be an entry in ZN; all inequalities added to regions 
in Zk determine half-spaces in [0, 1] ILol. Indeed, this is the case in the first step of the construction of 
regions (Algorithm 1, line 3). This is also the case for the remaining half-spaces, whose corresponding 
inequalities are recursively added in lines 3, 9, 11 and 13 of Algorithm 2 and depend on its input tuple 
of linear functions f, which, in tum, are inductively defined over [0, 1 ]ILol: first by 7r (Algorithm 1, line 
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Algorithm 2 NN2PWL-R: recursive routine called by NN2PWL 

Input: A tuple EN= (E1, ... , EILAI), a ReLU-Tld neural network N, for which 2N ={Lo, ... ,LA}, with 
a distinguished layer L; #- Lo, a set of inequalities Q and a tuple of linear functions f = (!1, ... , /jL;-i I). 

1: if L; #- LA then 
2: for t><JE {:S, 2:}IL;I do 
3: n~ := nu {JJ o f(x) txlj O I j = 1, ... , IL;I}; 

4: f~ := (XILol (t><J1) • (f{ 0 f), · · · ,XILol (t><JIL;I) • (fj~;1 ° f)); 
5: NN2PWL-R(EN II Li+l,Q~,f~); 
6: end for 
7: else 
8: fork= 1, ... ,ILAI do 
9: Q::;:=QU{ffof(x):SO}; 

10: Ek:=Eku{(KiJLol,n::;)}; 

11: ns := nu{ff of(x) 2: 0, ff of(x) :S 1}; 
12: Ek:= Eku { (ff o f,ns) }; 
13: Qe". :=QU{ffof(x) 2: 1}; 

14: Ek:=Eku{(xf01 ,ne".)}; 
15: end for 
16: end if 

4) in the first call of NN2PWL-R (Algorithm 1, line 5); then, by f~, for i E {2, ... , A} (Algorithm 2, line 
4) in the following A- 1 calls of NN2PWL-R (Algorithm 2, line 5). Let x E [O, 1] ILol; note that among 
the possibilities for inequalities to be added in each step of the construction of regions, there is certainly 
one that is satisfied by x. Thus, with the suitable configuration of symbols, there is a region Q of Ek 
built such that x E Q. Now, in the construction of two regions Q' and Q" of Ek, with Q' #- Q", there is 
some step where the added inequalities differ for Q' and Q" for the first time. Such differing inequalities 
guarantee that Q.10 n Q."0 = 0, whether they appear in an intermediate step or the final one. ■ 

Lemma 2 Let a ReLU-Tld neural network N, for which 2N ={Lo, ... ,LA}, be given as input to Al­

gorithm 1 and let Ek be an entry in the outputted tuple EN for which (p, Q) E Ek. If x E Q, then 

N(x)k = p(x). □ 

PROOF Let x E Q. Note that Q = Q[0,1] n Q~ n · · · n nt-l n Q[XJ and Q[0,1] ;;2 Q~ ;;2 • • • ;;2 nt-l ;;2 Q[XJ, 

where Q~ is such that t><JE {:S, 2:}IL;I and Q[XJ E {Q::;,ns, Qe".}- Then, as x E Q[O,l], x E [O, l]ILol_ Also, 
as x E Q~, for i E { 1, ... , A - 1}, the tuples of functions f~ defined in line 4 of Algorithm 2, given as 
arguments in the recursive call of NN2PWL-R, are such that f~(x) =Lio··· 0L1 (x). Indeed, as x E Q~, 
x satisfies the inequalities 

Then, we have that 

f !(x) = (X(t><J1) • fl o n(x), ... , X(t><JILi I) • fiL I o n(x)) = (ReLU(f l (x)), ... , ReLU(fiL 
1 
(x))) = L1 (x). 

Now, let us assume that f~ ( x) = L; o • • • o L1 ( x), for x E Q. As, in particular, x E Q~ 1, x satisfies the 
inequalities 
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it follows that 

f~+1(x) = (X(tx:J1) • f{+l oLi o • • • 0L1 (x), 

= (ReLU(f{+1 oLi o • • • 0L1 (x)), 

=Li+10•••0L1(x). 

... ' 

... ' 

'+1 X(tx:JILi I)·~~, I o Lio··· o L1 (x)) 

ReLU(~ZI oLi o • • • 0L1 (x))) 

Finally, in case QM = ns: (Algorithm 2, line 11), as, in particular, x E ns:, we have that 

O~ffoLA-10•••0L1(x) ~ 1. 

Therefore, 

The other cases where Q is either n:s; or n;:,: are similar. ■ 

Theorem 1 (Correctness) Let a ReLU-Tld neural network N, for which !£N ={Lo, ... ,LA}, be given 
as input to Algorithm 1 and let 'Ew = (21, ... , 2n) be its output. Then, each entry 2k in 2N codifies a 
rational McNaughton function in the pre-closed regional format which is exactly the function computed 
by N through the path to its k-th output node. □ 

PROOF By construction and Lemma 1, regions in 2k comply to the properties of pre-closed regional 
format. Lemma 2 establishes that evaluation via 2k is the same as via the k-th output node. Since 
the function computed via the k-th output node is a composition of continuous functions-both linear 
functions associated to nodes of N and activation functions-, it is a continuous function. Therefore, 
entries in the tuple 2N codify continuous functions which are rational McNaughton functions. ■ 

Corollary 1 ReLU-Tld neural networks are v-rational McNaughton neural networks, where v = ILA I- 0 

3.1 Decreasing the execution time of the base algorithm 

The base algorithm just introduced has the downside to be exponential in the number of nodes of a 
given neural network. For a neural network N with !£N ={Lo, ... ,LA}, we have seen that it computes 
3ILAI x 2IL,l+·+ILA-1I regions. However, many of such regions may be the empty set, which makes the 
outputs of the base algorithm examples of degenerate codification in pre-closed regional format. 
Example 3 In a configuration of symbols where we associate 2: to nt and ~ to n1 in the neural network 
E in Example 1, the corresponding inequalities 1x1 - x - 2 2: 0 and x1 - xz + ½ ~ 0 together, related to 
the first layer L1, determine the empty set. □ 

In the step-by-step construction of a region Q = 0 by the base algorithm, there is some step from the 
second when equations are added to the current polyhedron turning it into the empty set. In view of that, 
the first addition proposed for decreasing the execution time of the base algorithm consists in: 

• Conditioning the call of NN2PWL-R in line 5 of Algorithm 2 by placing it within the scope of an 
if-statement that verifies whether Q~ #- 0; 

• Conditioning the addition of new pairs (p,QM), for all tx:l E {~,'S, 2:}, to tuple 2N in lines 10, 12 
and 14 of Algorithm 2 by placing these commands within the scope of if-statements that verify 
whether n:s; #- 0, ns: #- 0 and n;:,: #- 0. 

Verifying whether QM #- 0 might significantly decrease the running time of the translation algorithm 
in practice. Indeed, each true statement QM #- 0 occurring in the the i-th step of the construction of 
regions, for i E { 1, ... , A - 1}, avoids a call of NN2PWL-R that, in the pure base algorithm, would yield 
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the computation of 3ILAI x 2IL;+il+·+ILA-1I pairs (p,Q). On the other hand, verifying whether n::;-=/- 0, 

Q> -=/- 0 or n;:: -=/- 0 in the last step of the construction of regions only prevents the algorithm to add pairs 
with empty regions to the regional format codification, which, nevertheless, makes the final representative 
tuple EN smaller. 

A possible way to verify whether a polyhedron Q given as in (3) is nonempty is by applying the 
known polynomial techniques used to verify whether a linear optimization program constrained by Q is 
feasible [2]. 

For another method for easing the execution time of the base algorithm, observe that, for a layer Li, 
for i E {1, ... ,A- 1 }, each of the hyperplanes Jj(x) = 0 related to nodes nj of Li, for j E {1, ... , ILil}, 
divides the euclidean space RILol in two half-spaces determined by the inequalities Jj(x) 2 0 and Jj(x) :S 
0. Each of these inequalities is added to half of the 2IL;I polyhedra generated in the first for-loop of 
Algorithm 2 (lines 2 to 6); these are the polyhedra generated in the i-th step of the construction ofregions. 
Now, note that if the hyperplane Jj(x) = 0 does not intercept the interior of the unit cube [O, 1] ILol, half of 
the new generated polyhedra are certainly empty. For instance, the hyperplane x1 + x2 - 2 = 0 does not 
intercept [O, l]ILol_ Thus, although the half-space given by x1 +x2 - 2 :SO contains the entire unit cube 
[O, 1] ILol, the half-space given by x1 + x2 - 2 2 0 does not intersect it; so, if x1 + x2 - 2 2 0 is added to a 
polyhedron in some step of the construction of regions by the base algorithm, the regions generated from 
such polyhedron will be the empty set. 

Thus, for the step related to layer Li, for i E { 1, ... , A}, in the construction of regions, the proposed 
method consists in building a set I~ {:S, :::::}IL;! to be iterated instead of the set {:S, :::::}IL;! in the for-loop 
beginning in line 2 of Algorithm 2, so avoiding the generation of empty polyhedra. For that, we compute 
I= l1 x • • • x IIL;I where, for j E {1, ... , IL;!}, 

l1 = {:S}, if JJ(x) :SO contains the entire [O, l]ILol { 
{2, :S}, if f}(x) = 0 intercepts the interior of [O, l]ILol 

{2}, if Jj(x) 2 0 contains the entire [O, l]ILol 

Determining which is the case for each I 1 may be done by solving both of the following maximization 
and minimization linear programs, which are known to be solvable in polynomial time [2]: 

max/min Jj(x) 
subject to [O, 1] ILol 

Let M and m respectively be the maximum and the minimum optimum values of the linear programs 
above. Then: if M 2 0 and m '.SO or if M '.SO and m 2 0, Jj(x) = 0 intercepts [O, l]ILol; if M 2 0 and 

m 2 0, Jj(x) 2 0 contains [O, l]ILol; and if M '.SO and m '.S 0, Jj(x) :SO contains [O, l]ILol_ The overall 
execution time of the translation algorithm, even with an additional routine for building I, might be 
significantly smaller than the time for the original base algorithm. In fact, let J ~ { 1, . .. , I Li I} be the set 
of indexes such that 11 -=/- {:S, 2} if, and only if, j E J; then, the for-loop beginning in line 2 of Algorithm 
2 has 2IL;I-III iterations instead of 2IL;I _ 

Combining both of the methods described in this section with the base translation algorithm makes 
it compute exactly the same pairs (p, Q) that it would compute without such methods with the exception 
of the ones for which Q = 0. Therefore, we are able to establish the following result. 
Theorem 2 Replacing the routine NN2PWL-Rfor a version of it that includes the methods proposed in 
this section maintains the correctness of Algorithm 1 established in Theorem 1. □ 
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Figure 5: Experiments increasing the number of layers 

4 Experiments and Results 

We perform experiments for measuring the complexity of pre-closed regional format encodings of ran­
domly generated ReLU-Tid neural networks by counting the number of nonempty regions in them. All 
weights of the neural networks have the form i + d, where both i and d are uniformly generated from 
{ -1, 0, 1} and [0, 1 ), respectively. 

For each encoding in pre-closed regional format, we also evaluate its degree of satisfiability of the 
lattice property by counting the number of pairs of regions (Qi,QJ) for which there is no linear piece 
Pk such that Pi is above Pk over Qi and Pk is above Pi over QJ, that is the number of pairs (Qi,QJ) that 
falsifies lattice property. If the counting is 0, such an encoding completely satisfies lattice property; the 
higher the count the further from satisfying lattice property the encoding is. 

Implementations of NN2PWL, including the methods for decreasing its execution time, and a neural 
network generator were developed for the experiments; the source code is publicly available.2 

In the first batch of experiments, for a fixed value h, ReLU-Tid neural networks with h input neurons, 
h neurons in each hidden layer and one output neuron are generated. Such random generation is done 
in such a way that the neural networks are partitioned in L classes, each containing n neural networks 
with l hidden layers, for l E { 1, ... , L}. We ran such experiment for two parameter setups: h = 4, L = 6, 
n = 50 and h = 5, L = 10, n = 25. Figure 5 depicts the average number of regions extracted from the 
neural networks in each class of l hidden layers. 

In order to analyze whether the results of the previous experiments depend on the distribution of 

2http://github.com/spreto/reluka 
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Figure 6: Experiments increasing the number of neurons per layer 

neurons per layer, in the second batch of experiments, ReLU-Tld neural networks with a fixed number 
l of hidden layers and one output neuron are generated. Now, the randomly generated neural networks 
are partitioned in M classes, each containing n neural networks with m input neurons and m neurons in 
each of their hidden layers, form E { 1, ... , M}. We ran such experiment for two parameter setups: l = 4, 
M = 6, n = 50 and l = 5, M = 10, n = 25. Figure 6 depicts the average number ofregions extracted from 
the neural networks in each class of m neurons in the input layer and per hidden layer. 

Note that the first experiment in both batches of experiments are related: for l = m, neural networks 
in a class with [ layers (first experiment, first batch) have the same number of neurons than the neural 
networks in a class with m nodes per layer (first experiment, second batch). The same relation may be 
seen between the second experiments of each batch. 

In all experiments, we may see that the average number of regions increases as long as the number 
of neurons increases. However, while such variation in the number of regions is smooth for varying the 
number of layers, a sharp variation may be perceived for varying the number of neurons per layer. A 
neural network with 5 hidden layers and 10 neurons in each of them (50 neurons in all hidden layers) 
achieved the maximum number of 1852 regions among all neural networks generated. For comparison, 
among the neural networks with 50 neurons distributed in 10 hidden layers (5 neurons per hidden layer), 
the maximum number of regions achieved is 228. And among all the neural networks with more than 5 
hidden layers, but only 5 neurons in each of them, the maximum number of regions achieved is 446 (in 
a neural network with 7 hidden layers). 

Regarding lattice property, among all 1100 ReLU-Tld neural networks that were generated in all 
experiments, only one failed to satisfy it. Such neural network has 5 neurons in each of its 5 hidden 
layers (25 neurons in all hidden layers) and its pre-closed regional format encoding has 91 regions and 
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fails to fulfill lattice property for 36 pairs ofregions (Qi, Q 1). 

5 Conclusions 

We have proposed an algorithm for translating ReLU-Tld neural networks into the pre-closed regional 
format, which is a more interpretable representation than the traditional graph one. We also proposed 
methods for decreasing the computation time of the base algorithm and proved that ReLU-Tld neural 
networks are v-rational McNaughton neural networks. 

Empirically, we measured the complexity of pre-closed regional format encodings of randomly gen­
erated ReLU-Tld neural networks by counting the number of nonempty regions in such encodings. We 
could verify a bigger increase in the number of regions in the encodings with wider, but fewer, layers 
than in the encodings with more, but thinner, layers. The fast increase of curves in Figure 6, related to the 
variation in the size of a fixed number of layers, points to the high complexity of regional representation. 
Therefore, the reported results foresee scaling issues in the regional representation of real-world neural 
networks, which often are larger than those generated in our investigation. 

We have also investigated the degree of satisfiability of the lattice property by the neural networks 
generated in our experiments. The results empirically indicate that the outputs of NN2PWL lacking lattice 
property are a very rare event. Only one of the neural networks generated do not fulfill such a property. 

For the future, approximate and less complex regional representations might be pursued. A possible 
path is to establish the reasonability of allowing encodings not satisfying lattice property as approxi­
mations of neural networks. From an exact perspective, one might investigate efficient procedures for 
turning a rational McNaughton function encoding in pre-closed regional format into closed regional for­
mat. 
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