EPTCS 421

Proceedings of the

19th International Workshop on
Logical and Semantic Frameworks, with
Applications

Goiania, Brazil, 18th-20th September 2024

Edited by: Cynthia Kop and Helida Salles Santos

Published: 6th June 2025
DOI: 10.4204/EPTCS.421
ISSN: 2075-2180

Open Publishing Association

Table of Contents
Table Of CONENTSottt e e e e e e e 1
Preface . . oo e ii

Cynthia Kop and Helida Salles Santos

Properties of UTxO Ledgers and Programs Implemented on Them 1
Polina Vinogradova and Alexey Sorokin

Query Answering in Lattice-based Description Logic ..., 21
Krishna Manoorkar and Ruoding Wang

Fuzzy Lattice-based Description LOZICoou ittt e 44
Yiwen Ding and Krishna Manoorkar

Regional, Lattice and Logical Representations of Neural Networks................, 64
Sandro Preto and Marcelo Finger

Nominal Equational Rewriting and Narrowingooiiiiin i, 80
Mauricio Ayala-Rincon, Maribel Ferndndez, Daniele Nantes-Sobrinho and
Daniella Santaguida

Towards an Analysis of Proofs in Arithmetic.o i, 98
Alexander Leitsch, Anela Loli¢ and Stella Mahler

An Execution Model for RICEo e 112
Steven Libby
Paraconsistent Relations as a Variant of Kleene Algebras............. 130

Juliana Cunha, Alexandre Madeira and Luis S. Barbosa

Regional, Lattice and Logical Representations
of Neural Networks

Sandro Preto Marcelo Finger
Center for Mathematics, Computing and Cognition Institute of Mathematics and Statistics
Federal University of ABC, Brazil University of Sdo Paulo, Brazil
Institute of Mathematics and Statistics mfinger@ime.usp.br

University of Sao Paulo, Brazil

sandro.preto@ufabc.edu.br

A possible path to the interpretability of neural networks is to (approximately) represent them in
the regional format of piecewise linear functions, where regions of inputs are associated to linear
functions computing the network outputs. We present an algorithm for the translation of feedforward
neural networks with ReLLU activation functions in hidden layers and truncated identity activation
functions in the output layer. We also empirically investigate the complexity of regional representa-
tions outputted by our method for neural networks with varying sizes. Lattice and logical represen-
tations of neural networks are straightforward from regional representations as long as they satisfy
a specific property. So we empirically investigate to what extent the translations by our algorithm
satisfy such property.

1 Introduction

Neural networks are computational models that aim to generalize patterns found in datasets from which
they are determined by means of a learning algorithm [8]. Despite the undeniable advancement in the
state of the art of intelligent systems promoted by neural networks, their lack of interpretability is subject
to criticism. Neural networks suffer from the black box problem due to the lack of justification for their
results and the impossibility to directly inspect their learned information [3, 5].

As several architectures of neural networks realize piecewise linear functions or may be approxi-
mated by them, a path towards interpretability is through regional format representations of such neural
networks and functions by explicit sets of pairs (p,Q) of a linear piece p and a region Q such that,
for a vector of input values x € Q, the output is given by p(x). An algorithm for establishing regional
representations from feedforward neural networks with rectified linear units as activation functions is
proposed in [15].

The main goal of this work is to introduce an algorithm for computing regional format representa-
tions of ReLU-TId neural networks, which are feedforward neural networks with rectified linear units
as activation functions in hidden layers and truncated identity as activation functions in the output layer.
Such algorithm outputs representations in the pre-closed regional format, where regions are polyhedra.
Rather than just adapting the iterative method in [15], we present a novel recursive approach that allows
a correctness proof by a straightforward induction argument.

An important feature of neural networks is that they are compact representations of functions. Then,
although regional representations might provide interpretability of neural networks, they also might be
exponential in the size of their traditional representation as graphs. In Section 4, we empirically measure
the complexity of regional representations determined by our method for randomly generated ReLU-TId
neural networks with varying numbers of neurons and layers and varying layer sizes.

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on © S. Preto & M. Finger
Logical and Semantic Frameworks with Applications (LSFA’24) This work is licensed under the
EPTCS 421, 2025, pp. 64-79, doi:10.4204/EPTCS.421.4 Creative Commons Attribution License.

S. Preto & M. Finger 65

Lattice representation is another possibility for representing neural networks and is achieved by com-
bining maximum and minimum operations over linear pieces. Such representations further enable the
codification of ReLU-TId neural networks in logical systems as Lukasiewicz infinitely-valued logic (L)
and its extensions [4, 7, 11, 12], leading to yet another path to interpretability. Lattice and logical rep-
resentations find applications in the formal verification of neural networks in attempts to circumvent
the black box problem and allow their use in critical tasks; for instance, in aircraft collision avoidance
alerts and autonomous vehicles. There are methods for formal verification using the lattice representa-
tion of neural networks [1] and methods that codify properties of neural networks in the language of L.
departing from their logical representation [13, 14].

Lattice and logical representations may be built in polynomial time from ReLU-TId neural networks
given in the pre-closed regional format as long as such encodings satisfy the so-called lattice property
(Section 2) [12]. In this case, the regional representations are said to be in the closed regional format.
This work also aims at empirically experimenting how far from satisfying lattice property are randomly
generated neural networks.

The rest of this work is organized as follows. Section 2 introduces neural networks and their graph,
regional, lattice and logical representations. Section 3 presents an algorithm for translating ReLU-TId
neural networks into the pre-closed regional format. Section 4 presents the results of experiments where
we measure the complexity of representations in pre-closed regional format and their degree of satisfia-
bility of lattice property.

2 Preliminaries: Some Neural Networks and Their Representations

Traditionally, a feedforward neural network N is given (and represented) by a graph whose nodes are
partitioned into an ordered family of ordered sets £y = {Lo,...,La}, where each L; is a layer. All
nodes in layer L;, for i € {0,...,A— 1}, are linked by an edge to all nodes in layer L;;| establishing a
computational circuit such that all output values of nodes in L; are input values to each node in L;; .
There is a linear function f} : RILi-1l — R associated to each node ni- in layer L;, for j € {1,...,|L;|} and

i €{1,...,A}. For a tuple of input values X = (xi,...,xy,) € RI“Il to node n/, it has as output the

value n%(x) = p; o fi(x), where p; : R — R is an activation function. Thus, for x = (x1,...,x,_|) as
input to layer L;, it has as outputs the values in the tuple

Li(x) = (pio fi(x),...,pio fir(x)).
Input values to N in a tuple x = (x1,... X| Lo\> e RIbl are neatly associated to the nodes n‘f, ceey n?LO‘ € Ly,

called input nodes; thus, from such inputs, N produces the output values in the |Lx |-tuple

N(x) = (N(X)1,...,N(X)|r,|) = Lao---oLi(x).

A
J
function for which the value N(x); is given in function of the input values x € R

We might restrict the input values of a neural network to some set R C R. In this work, we focus
on ReLU-TId neural networks: they accept input values from [0, 1] and have as activation functions the
rectified linear unit p; = ReLU : R — R, given by ReLU(x) = max(0,x), fori € {1,...,A— 1}, and the
truncated identity function py = TId : R — R, given by TId(x) = max(0,min(1,x)). Such activation

Nodes in Ly are called output nodes. We say that each output node n‘}' in a neural network N computes a

Lol

66 Regional, Lattice and Logical Representations of Neural Networks

Figure 1: Graph of the ReLU-TId neural network E

functions may be given by piecewise linear definitions as follows:

0, x<0 0, x<0
ReLU(x) = ’ Td(x)=¢ x, 0<x<1 (1)
% x20 1, x>1

Example 1 Let E be a ReLU-TId neural network with %z = {Lo,L;,L,}, where Ly = {n{,n9}, L; =
{nl,n}} and L, = {n?}. The graph of E depicted in Figure 1 highlights the input values x; and x, in layer
Ly and the functions f}, le , f12 : R? = Riin layers L; and L,, which are given by:

o fl(x1,x0) = Fx —xo
o Alx,x) =x1—x+ 3
. f]Z(X],Xz) =x1+x2+ %

For a tuple of inputs e = (%, 1) to E, we have L; (e) = (ReLU(—1),ReLU(})) = (0, 1) and, thus, E(e) =

Ly(Li(e)) =TId(3) = 3. O
Before introducing another type of neural network, let us define a rational McNaughton function
f:10,1]" — [0, 1], which is a function that satisfies the following conditions:

* fis continuous with respect to the usual topology of [0, 1] as an interval of the real number line;

* There are linear polynomials py, ..., p, over [0,1]" with rational coefficients such that, for each
point x € [0,1]", there is an index i € {1,...,m} with f(x) = p;(x). Polynomials py,..., p,, are the
linear pieces of f.

A neural network whose v = |L| output nodes exactly compute rational McNaughton functions in func-
tion of its input nodes is called a v-rational McNaughton neural network (v-RMcN?); a 1-RMcN? is also
called rational McNaughton neural network (RMcN?).

A possibility to represent rational McNaughton functions (consequently, v-rational McNaughton
neural networks) is through the regional formats discussed in the following. Let Q° denote the topolog-
ical interior of Q C [0, 1]" and say that, given functions f,g: [0,1]" — [0, 1], f is above g over the set
Qif f(x) > g(x), for all x € Q. A given rational McNaughton function f : [0,1]" — [0, 1] is said to be
encoded in the closed regional format if it is given by m (not necessarily distinct) linear pieces

pi(X) = Yo+ Yix1 + -+ YinXn, 2)

S. Preto & M. Finger 67

where x = (x1,...,x,) € [0,1]", %; € Q and i € {1,...,m}, such that each p; is identical to f over a
polyhedron Q; C [0,1]", called region. These regions are determined by the finite intersection of half-
spaces given by linear inequalities' as

Q= {xe 0,1]"

wj0+wjl~xl+"'+wjnxnzoaje{lv"-vkﬂi}} (3)

and such setting of linear pieces and regions satisfy the following properties:
« UL Qi =10,1]"
* Q5NQS =, for i’ #i"; and

* The lattice property: for i # j, there is k such that linear piece p; is above linear piece p; over
region €; and linear piece py is above linear piece p; over region £ ;.

Such an encoding is called closed because regions Q; are closed sets in the topological sense. As regions
are given by such polyhedra described by (3), there is a polynomial procedure to establish whether a
linear piece p is above g over region Q: find the minimum value m of p — g over Q, which is a linear
program and may be solved in polynomial time [2]; then, if m > 0, p is above g over Q, otherwise, it is
not.

The lattice property yields the possibility to represent rational McNaughton functions and v-RMcN3s
by lattice representations—i.e., based on operations of maximum and minimum over functions—as fol-
lows. First, let fq, : [0,1]" — [0, 1] be the function given by

fo;(x) = min {pk(x)) Pk is above p; over Qj}.

Note that fq,(x) < f(x), for all x € [0,1]", which is obvious for x € Q; and follows from the lattice
property for x € Q; where i # j. In this way, we have that

f(x) :max{fgj(x) ‘ JjE {1,...,m}}.

In [13], we find an example of the one-variable rational McNaughton function f : [0, 1] — [0, 1], whose
graph is depicted in Figure 2. Function f has a lattice representation given by

£ =max { foy (x). fo,(3), fou (@), fou(x) },

where fo,(x) = min{pi(x),p3(x)}, fo,(x) = fo,(x) = min{p2(x),p3(x)} and fo,(x) =
min{p2(x),ps(x)}. Note that the lattice encoding just introduced may be employed in represent-
ing piecewise linear functions in general, not only rational McNaughton functions.

When a rational McNaughton function is given in an encoding that almost completely agrees with
the closed regional format, with the sole exception that there is no guarantee that such encoding satisfies
the lattice property (although it may still satisfy), we say that it is in the pre-closed regional format.

Unfortunately, lack of lattice property might entail the failure of lattice representation as in the fol-
lowing example taken from [12]. The rational McNaughton function fr with graph in Figure 3a may
have an encoding based on regions in Figure 3b; a linear piece p; is associated to each region ;. The
dotted line in Figure 3b is the projection over [0, 1]? of where pj intercepts ps; note that such line passes

IWe occasionally abuse notation by using the same symbol to refer both to a set of inequalities and to the polyhedron it
determines.

68 Regional, Lattice and Logical Representations of Neural Networks

f(x)

Q Q Q3 Q4 X

Figure 2: One-variable piecewise linear function

X2
Q)
..) Q
Qs T <
0,
Q4
0 1
X ! X1
(a) Graph (b) Region configuration

Figure 3: Function encoded in the pre-closed regional format

through the interior of both Q3 and Q5. There is no linear piece pj such that p3 is above p; over Q3
and py is above ps over Q5. So an encoding for fr based on regions ;—Q5 may be at most encoded in
pre-closed regional format.

Now, there is xg € Q3 such that ps(xg) > p3(Xo). Therefore, fo,(X0) = ps(Xo) > p3(Xo) =
min{p;(xo), p3(x0)} = fo,(Xo), yielding that max{fo,(x0)} > fa,(Xo), which eliminates the possibility
of lattice representation. Such an issue may be circumvented by splitting region Qs, according to the
dotted line in Figure 3b, in regions Qf = Qs N {ps — p3 > 0} and Q7 = Qs N {ps — p3 < 0}. In general,
repeatedly splitting a region according to projections of linear pieces intersections eventually achieves
closed regional format [12, Theorem 7].

We may also represent rational McNaughton functions and v-RMcN?s in logical systems. For that,
let us introduce the Lukasiewicz infinitely-valued logic (f..). The basic language .Z of L... comprehends
formulas freely generated from a countable set of propositional variables P, a disjunction operator & and
a negation operator —. A valuation is a function v : £ — [0, 1], such that, for @,y € .Z:

v(@ @ y) =min(1,v(@) +v(y)); 4)
v(=p) =1-v(9). (5)

S. Preto & M. Finger 69

From disjunction and negation we derive the following operators:

Conjunction: ¢ © Y =gef ~(—¢ O Y) v(p© y) =max(0,v(¢) +v(y)—1)
Implication: ¢ — W =gef Q@ D Y v(p =) =min(1,1 —v(@) +v(y))
Maximum: @V Y =get ~(—@ S Y) & ¥ v(QVy) =max(v(@),v(y))
Minimum: @ A Y =get = (¢ V —y) v(@ Ay) =min(v(@),v(y))
Bi-implication: @ <> Y =aer (¢ = Y)A (Y = @) v(@ < y)=1—|v(9)—v(y)|

Note that, as lattice operations are expressed in L., by the minimum and maximum operators, piecewise
linear functions might have a lattice representation in L., as far as their linear pieces are representable
in this system. Indeed, the formulas of L., represent all the McNaughton functions, which are rational
McNaughton functions constrained to allow only integer coefficients in their linear pieces [9, 10].

Unfortunately, f... cannot express rational McNaughton functions. For that, one possible path is
to extend the language of L., which is done, for instance, by [7]. Another possibility is to implicitly
represent such functions in plain L., using the technique of representation modulo satisfiability, which
we introduce in the following [6, 11, 12].

Let us denote the L...-semantics, that is the set of all valuations, by Val. Let us also denote by Valg
the set of valuations v € Val that satisfy a set of formulas ®; we call such a restricted set of valuations
a semantics modulo satisfiability. Given a rational McNaughton function f : [0,1]" — [0, 1], a formula
¢ and a set of formulas @, we say that @y represents f modulo ® ¢-satisfiable or that the pair (¢r, D)
represents f (in the system t...-MODSAT) if, for distinguished propositional variables X1, ..., X, € P:

s For all (xy,...,x,) € [0,1]", there exists some valuation v € Valg,, such that v(X;) = x;, for i =
1,...,n;

* For all valuations v,v" € Valg, such that v(X;) =V/(X;), fori = 1,...,n, we have v(¢r) = v'(¢r);
and

o f(v(X1),..,v(Xn)) = v(@y), forall v € Valg,.

As an example, any constant function that takes value %, with b € N*, may be represented by the pair

(0. 0) =(7, {7, o =b-17,}), ©)

where formula ¢ is only the propositional variable Zi, and set & is a singleton comprehending formula
Zij, <> =(b—1)Zy;,, which we denote by ¢, In fact, for any valuation v € Valy, # @, we have that

v(Zi /,,) = %. Also, functions that take constant value 7,
(ap,®).

Any rational McNaughton function may be represented in L..-MODSAT. Moreover, there is a poly-
nomial algorithm for the translation from a rational McNaughton function in closed regional format to

its representation in such system [11, 12].

with a € N, may be represented by the pair

3 Neural Networks into Pre-Closed Regional Format

Given a ReLU-TId neural network N for which £y = {Lo,...,Lx}, we provide an algorithm to translate
it into a tuple Ey = (Ey,...,E|z,|), where each E, k € {1,...
McNaughton function in pre-closed regional format, which we will show to be the function computed

70 Regional, Lattice and Logical Representations of Neural Networks

*2 X2 /520, £ (x) =0
Ax) =0
.e
i (x)=0 70 (%) =1
X1 X1
(@) f}(x) <0, fi(x) >0 (b) f7(0. £3(x)) >0, (0, f1(x)) <1

Figure 4: Determining a region for neural network E

by N through the path to its k-th output node. Each E; is a set of pairs (p,Q), where p is a linear piece
and Q is its associated region.

Let us begin by analyzing the computation that takes place in each node of N. Given a tuple of
input values v € RI%-1l to node nj- of N, where i € {1,...,A— 1} and so p; = ReLU, the computation
proceeds in two steps: first, the linear function f j’(x) is evaluated for x = v; second, the activation function
ReLU(x) is evaluated for x = fj’(v) In the second step, one from the two possible values highlighted
in the piecewise definition of ReLU in (1) is chosen as the output of n’j Such choice depends on the
position of point v € RI%-1l in relation to the hyperplane given by equation f} (x) =0, since it may be
a point lying either in the half-space given by f} (x) <0 or in the half-space given by f}(x) > 0. For
instance, for e = (3, 3) as input to the node n} of E in Example 1, the fact that f/(e) < 0 indicates that e
lies in one of the half-spaces determined by f]1 (x) = 0 where, according to p; = ReLU, n{ outputs 0. On
the other hand, if e is given as input to the node nl, as £} (e) > 0, e lies in the half-space determined by
f5 (x) = 0 where, according to p; = ReLU, n} outputs £, (e) = é Figure 4a depicts the position of e in
relation to these hyperplanes.

Similarly, in case i = A, we have that p; = TId and, then, one from three possible values is chosen
for TId(f} (v)) depending on the position of v € R*+-1l in relation to the hyperplanes f,’\(x) =0 and
f]A(X) = 1. It may be a point lying either in the half-space given by fj’-\(x) <0, or in the half-space given
by f*(x) > 1 or in the intersection of half-spaces f7(x) > 0and f#(x) < 1. Again, for e = (§,1) asinput
to the neural network E in Example 1, we have e; = L;(e) = (0, 1). Since fZ(e;) > 0and f{(e;) < 1, e
lies in a position relative to f7(x) =0 and fZ(x) = 1 where, according to p» = TId, n} outputs f7(e;) = 3.

Now, still considering Example 1, let x € |0, 1]|L°‘ be any point that, as e = <§, %), satisfies both
inequalities

fi) <0 and f(x)>0. ™
Then, to x; = L (x) satisfy inequalities f7(x;) > 0 and f7(x;) < 1 is equivalent to x satisfy inequalities
fi0,£2(x) =0 and f1(0,f2(x)) < 1. ()

As the former inequalities (7), the latter inequalities (8) are also linear over tuples from [0, 1] Lol of input
values to the neural network E. Moreover, for x € [0, 1]|L‘" satisfying inequalities (7) and (8), we have

S. Preto & M. Finger 71

that E(x) = f7(0, 3 (x)). In this way, we have just devised a region and its associated linear piece for
the rational McNaughton function computed by neural network E.

Generalizing the observations above, the idea behind the base algorithm for building E, for k €
{1,...,|LAl}, is to compute each pair (p,Q) € E; beginning by: associating a symbol between < and >
to each node n;-, for i < A, alluding to one of the two possible positions of an input to n; in relation to
the hyperplane fj(x) = O—i.e., lying in the half-space fj(x) < 0 or in the half-space f}(x) > 0—; and
associating a symbol among <, > and < to the node nﬁ alluding to one of the three possible positions
of an input to ¢ in relation to the hyperplanes f*(x) = 0 and fA(x) = 1—i.e., lying in the half-space
fA(x) <0, or in the half-space f*(x) > 1 or in the intersection of the half-spaces f*(x) >0 and f}(x) <
1. These associations of symbols to all the nodes in layers Li,...,La determine a configuration of
symbols. Then, the algorithm proceeds by defining Q C [0, 1]|L°| as an intersection of half-spaces based
on such configuration of symbols and establishing a linear expression for p such that N(x); = p(x), for
X € Q.

Example 2 For the neural network £ in Example 1, in a configuration of symbols where we associate
< to n{ and > to né, the consequent region € should comprehend the inequalities ‘3—‘x1 —xp <0 and
x| —Xxy+ % > 0 (shaded area in Figure 4a). For an input x € [0, 1]2 that satisfies these inequalities, we have
the outputs 7} (x) = 0 and n}(x) = £, (x) which, composed with f, gives us the expression x; —x, + 1. In
this way, in case we complete the configuration of symbols by associating < to nf, Q should comprehend
the inequality x; — x> + 1 < 0 and p should be given by p(x;,x;) = 0. In case we associate > to n/l\, Q
should comprehend the inequality x; —x, + 1 > 1 and p should be given by p(x;,x2) = 1. In the last
case, if we associate < to n’l\, Q should comprehend both inequalities x; —x;+1 < landx; —x;+1>0
(shaded area in Figure 4b) and p should be given by p(x1,x2) =x; —x, + 1. Note that the last case is the
only one where region would be non-empty. 0

In order to build the entire representative tuple Zy = (Z1,...,E,|), the algorithm needs to com-
pute all the pairs (p,Q), each one associated to a different configuration of symbols, for all possible
configurations of symbols. Thus, the entire computation of Zy ends up with 21411 x ... x 2lla-1l x 3|LA|
pairs (p,Q). Later, we introduce methods meant to be combined with the base algorithm that might
circumvent such high complexity.

For establishing the base translation algorithm, we first fix some notation. Let k{j and x} be the
constant linear functions with domain [0, 1]" and ranges equal to {0} and {1}, respectively; and let
Xn:{<, >} — {x§, k' } be the functions given by y,(<) = &jj and x,(>) = k. Also, let @' : [0,1]" = R
be the projection functions given by @/ (x1,...,x,) = X,, for m € N and 1 < n < m. The base translation
algorithm is split into Algorithms 1 and 2.

Algorithm 1 treats the tuple Zy = (Eq,...,E|;,|) as a variable to be updated as it runs; thus, it first
sets each of the E,...,E,| to the empty set as their initial values (lines 1 and 2). Then, it defines Qo
as a set of inequalities common to all regions (line 3) and 7 as a tuple of projection functions (line 4),
which will be suitable for compositions with functions f Jl related to the first layer L;. It proceeds by
calling the recursive routine NN2PWL-R(Ey || L1,Q,7) (line 5), where Ey is an argument passed by
reference, which means that whenever NN2PWL-R modifies the value of Zy, it will also be modified in
the scope of the calling function. Finally, Algorithm 1 returns Ey with its final value (line 6).

Algorithm 2 describes the recursive routine NN2PWL-R that has as inputs a tuple Ey = (Zy,...,Z,|)
to be updated, a ReLU-TId neural network N with a distinguished layer L; € %y, a set of inequalities Q
and a tuple of functions f = (fi,..., ﬁ Li ‘>. If L; # Ly, for all possible association of symbols < and > to
the nodes nj, . .. ,nm summarized in the tuple of symbols b= (> ,...,><|7,|), NN2PWL-R(Ey || L;, , f)
proceeds by:

72 Regional, Lattice and Logical Representations of Neural Networks

+ Computing Q! as Q extended by the half-spaces f} o f(x) < 0, for j € {1,...,|L;|}, where f =
(fi;---5fi,_,)) is a tuple of linear functions such that f(x) = (f1(x),..., fi, (X)) = Li-10---0
L;(x), for x € Q (line 3);

 Computing the tuple of linear functions f., that is identical to the output of L;o---o L; for inputs
x € Q! , with assistance of functions X|Lo| (line 4);

* And calling itself again by NN2PWL-R(Zy || L1, QL fL) (line 5).
If L; = Ly, for each of the output nodes n?,.. ., n"z/\‘, NN2PWL-R(Ey || L;, Q, f) proceeds by:

e Computing Q<, Q> and Q< as Q extended, respectively, by the half-space f,g\ o f(x) <0, the
half-space f* o f(x) > 1 and the pair of half-spaces f* o f(x) > 0 and fo f(x) < 1, where f is a
tuple of linear functions such that f(x) = Lx_jo---oL;(x), for x € Q (lines 9, 11 and 13);

* And rewriting E; by adding the pairs <K(|)LO|,Q§>, (flof, Q<) and <K1‘L°‘,Qz> to it (lines 10, 12

and 14).

Let Q be any region appearing in the output of the base algorithm; it is built in A+ 1 steps in a way
that, in each step, new inequalities are added to a polyhedron (identified with a set of inequalities) until
it becomes Q. The first step adds the inequalities that determine [0, 1]‘1‘0‘ (Algorithm 1, line 3). The
next A — 1 steps, where the produced polyhedra are named Q¢ (Algorithm 2, line 3), are associated to
layers Ly, ...,Lx—1 of N. The final step, where the produced region €2 is named either as Q, Q> or Q<
(Algorithm 2, line 9, 11 or 13), is associated to layer L.

Algorithm 1 NN2PWL: puts neural networks in the closed regional format
Input: A ReLU-TId neural network N for which %y = {Ly,...,Lx}.
Output: A set Zy representing rational McNaughton functions computed by the output nodes of N.

1. By =49, ..., E‘LA‘ =

2: Ey = <E],...,E|LA‘ X

3: -Q[O.l] = {x1 >0,x < 1,...,X|L0| > O>X\L0\ < 1};
4: 0= (n{LM,...,n“fgh;

5: NN2PWL-R(Ey || L1,Q,1},7);

6: return Ey;

Lemma 1 Let a ReLU-TId neural network N, for which £y = {Lo,...,LA}, be given as input to

Algorithm 1. Then, Algorithm | terminates and outputs a tuple Ey = <31,---,3|LA\> where, for
ke {1,...,|LAl}, we have:

° UQ,for (p,Q)eZ) Q= [07 1]|L0|;

» Q°NQ" =g, for distinct (p',Q'), (p", Q") € E;. 0

PROOF Algorithm 1 always terminates since all of its loops, which are originated from Algorithm 2
calls, range over some finite set and all recursive calls in Algorithm 2 increments the index of the input
layer L;, which will eventually reach the last layer L, and break the recursion by falsifying the condi-
tional statement in line 1 of Algorithm 2. Let Z; be an entry in Zy; all inequalities added to regions
in Z; determine half-spaces in [0, 1]/, Indeed, this is the case in the first step of the construction of
regions (Algorithm 1, line 3). This is also the case for the remaining half-spaces, whose corresponding
inequalities are recursively added in lines 3, 9, 11 and 13 of Algorithm 2 and depend on its input tuple
of linear functions f, which, in turn, are inductively defined over [0, 1}|L0|: first by 7 (Algorithm 1, line

S. Preto & M. Finger 73

Algorithm 2 NN2PWL-R: recursive routine called by NN2PWL

Input: A tuple Ey = (&y,...,Z);,|), a ReLU-TId neural network N, for which .y = {Lo,...,Ls}, with

a distinguished layer L; # Ly, a set of inequalities Q and a tuple of linear functions f = (fi,..., fir,_|)-
1. if L; 75 L, then

2. for e {<, >}l do

3: QL :=QU{fiof(x)p<; 0| j=1,...,|L[}

4 fl>l<1 = <X|L0|(D<]1) : (fll Of)’ s 7%|L()|(D<]|L,-\) : (f‘lLl‘ Of)>;
5: NN2PWL-R(Zy || Liv1, QL fL);

6: end for

7: else

8: fork=1,...,|Ls| do

o 0= aU{e /() <Ok

0 Ee=E0{(g,e0k

11: Qg QU{fkof(x)>O fhof(x) <1}

12: Er: —ukU{<fk Of,Q'§>}
13: Qs =QU{fof(x)>1};

— —_ L
4 o= o))
15: end for
16: end if

4) in the first call of NN2PWL-R (Algorithm 1, line 5); then, by f;q, forie {2,...,A} (Algorithm 2, line
4) in the following A — 1 calls of NN2PWL-R (Algorithm 2, line 5). Let x € [0, 1]I0/; note that among
the possibilities for inequalities to be added in each step of the construction of regions, there is certainly
one that is satisfied by x. Thus, with the suitable configuration of symbols, there is a region Q of &
built such that x € Q. Now, in the construction of two regions Q' and Q" of Ey, with Q' # Q" there is
some step where the added inequalities differ for Q' and Q" for the first time. Such differing inequalities
guarantee that Q"° NQ"° = &, whether they appear in an intermediate step or the final one. n
Lemma 2 Let a ReLU-TId neural network N, for which £y = {Lo,...,Ls}, be given as input to Al-
gorithm 1 and let Ey be an entry in the outputted tuple Ey for which (p,Q) € E. If X € Q, then
N(X)i = p(x). 0
PROOF Let x € Q. Note that Q = Qp yNQLN---NQL T NQ and Q2 QL 2---2Q ' D Q...
where QI is such that € {<, >}l and Q. € {Q<,Q<,Q-}. Then, asx € Q1> x € [0, 1]1%ol . Also,
asx € Q, forie {l,...,A— 1}, the tuples of functions f., defined in line 4 of Algorithm 2, given as
arguments in the recursive call of NN2PWL-R, are such that f’ (x) = L;o---oL;(x). Indeed, as x € QL
x satisfies the inequalities

LX) = flom(x) 10, ..y fir /(%) = fiz, o 7(x) >y, 0.
Then, we have that
fia(x) = (2 (<) - fi 0 (%), X (<11y)) - fir, 0 F(X)) = (ReLU(f] (%)), ... ,ReLU(fiz, (%)) = Li(x).

Now, let us assume that f7(x) = L;o---oL;(x), for x € Q. As, in particular, x € Qf!, x satisfies the
inequalities

’+lof[><](x) ’H jo---oLj(x)> 0, ..., fliLJ;l”of;q(X) = f\L 1‘oL o---oLi(x) >z, 0

74 Regional, Lattice and Logical Representations of Neural Networks

it follows that

f;jl(x):O((N])- fHoLio'--oLl(X), ceey X(N\LI\)']C‘[ELI‘IOLiO"'OLl(X)>
= (ReLU(fi oLio---0Li(x)), ..., ReLU(f"'LJ:‘1 oLjo---oLi(x)))
:Li+1 O-uOLl(X).

Finally, in case €, = Q< (Algorithm 2, line 11), as, in particular, x € Q<, we have that

0<fAoLy jo---oLi(x)<1.

Therefore,

N(x)x = TId(f o La—10---0Li(x)) = fit o La—1 0+ 0 Li(x) = p(x).
The other cases where Q is either Q< or Q> are similar. m
Theorem 1 (Correctness) Let a ReLU-TId neural network N, for which £y = {Ly,...,La}, be given
as input to Algorithm 1 and let Ey = (E1,...,E,) be its output. Then, each entry Ey in Ey codifies a
rational McNaughton function in the pre-closed regional format which is exactly the function computed
by N through the path to its k-th output node. 0

PROOF By construction and Lemma 1, regions in E; comply to the properties of pre-closed regional
format. Lemma 2 establishes that evaluation via Z; is the same as via the k-th output node. Since
the function computed via the k-th output node is a composition of continuous functions—both linear
functions associated to nodes of N and activation functions—, it is a continuous function. Therefore,
entries in the tuple Ey codify continuous functions which are rational McNaughton functions. m

Corollary 1 ReLU-TId neural networks are v-rational McNaughton neural networks, where v = |Ly|.c

3.1 Decreasing the execution time of the base algorithm

The base algorithm just introduced has the downside to be exponential in the number of nodes of a
given neural network. For a neural network N with %y = {Lo,...,La}, we have seen that it computes
3|La| x 21l +Laal regions. However, many of such regions may be the empty set, which makes the
outputs of the base algorithm examples of degenerate codification in pre-closed regional format.

Example 3 In a configuration of symbols where we associate > to n{ and < to n} in the neural network
E in Example 1, the corresponding inequalities %xl —x—2>0and x; —xy + % < 0 together, related to
the first layer L, determine the empty set. O

In the step-by-step construction of a region = & by the base algorithm, there is some step from the
second when equations are added to the current polyhedron turning it into the empty set. In view of that,
the first addition proposed for decreasing the execution time of the base algorithm consists in:

¢ Conditioning the call of NN2PWL-R in line 5 of Algorithm 2 by placing it within the scope of an
if-statement that verifies whether Qéq #* J;

¢ Conditioning the addition of new pairs (p,Q.), for all x € {<, <, >}, to tuple Ey in lines 10, 12
and 14 of Algorithm 2 by placing these commands within the scope of if-statements that verify
whether Q< # &, Q< # @ and Q> # 2.

Veritying whether Q. # @& might significantly decrease the running time of the translation algorithm
in practice. Indeed, each true statement Q., # @ occurring in the the i-th step of the construction of
regions, for i € {1,...,A— 1}, avoids a call of NN2PWL-R that, in the pure base algorithm, would yield

S. Preto & M. Finger 75

the computation of 3|L| x 2/Li+11++IEa-1] pairs (p, Q). On the other hand, verifying whether Q- # @,
Q< # @ or Q> # & in the last step of the construction of regions only prevents the algorithm to add pairs
with empty regions to the regional format codification, which, nevertheless, makes the final representative
tuple Ey smaller.

A possible way to verify whether a polyhedron Q given as in (3) is nonempty is by applying the
known polynomial techniques used to verify whether a linear optimization program constrained by Q is
feasible [2].

For another method for easing the execution time of the base algorithm, observe that, for a layer L;,
fori e {1,...,A— 1}, each of the hyperplanes fj’:(x) = 0 related to nodes n’j of L, for j € {1,...,|Li|},
divides the euclidean space R/™| in two half-spaces determined by the inequalities f}(x) > 0and f]’(x) <
0. Each of these inequalities is added to half of the 2!1l polyhedra generated in the first for-loop of
Algorithm 2 (lines 2 to 6); these are the polyhedra generated in the i-th step of the construction of regions.
Now, note that if the hyperplane f;(x) = 0 does not intercept the interior of the unit cube [0, 1]'%!, half of
the new generated polyhedra are certainly empty. For instance, the hyperplane x| +x; —2 = 0 does not
intercept [0, 1] Lol Thus, although the half-space given by x| 4+x, — 2 < 0 contains the entire unit cube
[0, 1}|L°|, the half-space given by x; +x, —2 > 0 does not intersect it; so, if x; +x —2 > 0 is added to a
polyhedron in some step of the construction of regions by the base algorithm, the regions generated from
such polyhedron will be the empty set.

Thus, for the step related to layer L;, for i € {1,...,A}, in the construction of regions, the proposed
method consists in building a set I C {<, Z}'Lf | to be iterated instead of the set {<, Z}‘Li | in the for-loop
beginning in line 2 of Algorithm 2, so avoiding the generation of empty polyhedra. For that, we compute
I=1; x--- xT, where, for j € {1,...,|L;[},

{>,<}, if fi(x) = 0 intercepts the interior of [0, 1]kl
I=¢ {<}, if fJ’:(x) < 0 contains the entire [0, l]w
{>}, if f}(x) > 0 contains the entire [0, 1]Zo!

Determining which is the case for each I; may be done by solving both of the following maximization
and minimization linear programs, which are known to be solvable in polynomial time [2]:

max /min fi(x)
subject to [0, 1]/%e!

Let M and m respectively be the maximum and the minimum optimum values of the linear programs
above. Then: if M >0and m <O orif M <0 and m > 0, f;(x) = 0 intercepts |0, 1}'14)'; if M >0 and
m >0, fj(x) > 0 contains [0, 1]‘L0‘; and if M <0 and m <0, f}(x) < 0 contains [0, 1}'1‘0'. The overall
execution time of the translation algorithm, even with an additional routine for building I, might be
significantly smaller than the time for the original base algorithm. In fact, let J C {1,...,|L;|} be the set
of indexes such that I; # {<, >} if, and only if, j € J; then, the for-loop beginning in line 2 of Algorithm
2 has 2/Li1=Vl jterations instead of 2/,

Combining both of the methods described in this section with the base translation algorithm makes
it compute exactly the same pairs (p, Q) that it would compute without such methods with the exception
of the ones for which Q = &. Therefore, we are able to establish the following result.

Theorem 2 Replacing the routine NN2PWL-R for a version of it that includes the methods proposed in
this section maintains the correctness of Algorithm 1 established in Theorem 1. 0

76 Regional, Lattice and Logical Representations of Neural Networks

4 neurons per layer
25

20
15

10

Average of regions

-
8]

3 4 5

@

Number of layers

5 neurons per layer
80
70
50

40
30

Average of regions

20
10

[
(&)
w
IS
o
@
-
©
-]
g

Number of layers

Figure 5: Experiments increasing the number of layers

4 Experiments and Results

We perform experiments for measuring the complexity of pre-closed regional format encodings of ran-
domly generated ReLU-TId neural networks by counting the number of nonempty regions in them. All
weights of the neural networks have the form i + d, where both i and d are uniformly generated from
{-=1,0,1} and [0, 1), respectively.

For each encoding in pre-closed regional format, we also evaluate its degree of satisfiability of the
lattice property by counting the number of pairs of regions (Q;,€;) for which there is no linear piece
Pk such that p; is above py over Q; and py is above p; over Q;, that is the number of pairs (Q;, ;) that
falsifies lattice property. If the counting is O, such an encoding completely satisfies lattice property; the
higher the count the further from satisfying lattice property the encoding is.

Implementations of NN2PWL, including the methods for decreasing its execution time, and a neural
network generator were developed for the experiments; the source code is publicly available.?

In the first batch of experiments, for a fixed value 7, ReLU-TId neural networks with / input neurons,
h neurons in each hidden layer and one output neuron are generated. Such random generation is done
in such a way that the neural networks are partitioned in L classes, each containing n neural networks
with / hidden layers, for / € {1,...,L}. We ran such experiment for two parameter setups: h =4, L = 6,
n=150and h =5, L =10, n =25. Figure 5 depicts the average number of regions extracted from the
neural networks in each class of / hidden layers.

In order to analyze whether the results of the previous experiments depend on the distribution of

Zhttp://github.com/spreto/reluka

S. Preto & M. Finger 77

4 layers
80
70
60
@
s 50
=
2
S 40
@
g a
@
Z 20
10
0
1 2 3 4 5 6
Neurons per layer
5 layers
450
400
350
2 300
S
g 250
o 200
g
g 1s0
< 100
50
0
1 2 3 4 5 6 7 8 9 10

Neurons per layer

Figure 6: Experiments increasing the number of neurons per layer

neurons per layer, in the second batch of experiments, ReLU-TId neural networks with a fixed number
[of hidden layers and one output neuron are generated. Now, the randomly generated neural networks
are partitioned in M classes, each containing n neural networks with m input neurons and /m neurons in
each of their hidden layers, for m € {1,...,M}. We ran such experiment for two parameter setups: / = 4,
M =6,n=50and ! =5, M = 10, n = 25. Figure 6 depicts the average number of regions extracted from
the neural networks in each class of m neurons in the input layer and per hidden layer.

Note that the first experiment in both batches of experiments are related: for / = m, neural networks
in a class with [layers (first experiment, first batch) have the same number of neurons than the neural
networks in a class with m nodes per layer (first experiment, second batch). The same relation may be
seen between the second experiments of each batch.

In all experiments, we may see that the average number of regions increases as long as the number
of neurons increases. However, while such variation in the number of regions is smooth for varying the
number of layers, a sharp variation may be perceived for varying the number of neurons per layer. A
neural network with 5 hidden layers and 10 neurons in each of them (50 neurons in all hidden layers)
achieved the maximum number of 1852 regions among all neural networks generated. For comparison,
among the neural networks with 50 neurons distributed in 10 hidden layers (5 neurons per hidden layer),
the maximum number of regions achieved is 228. And among all the neural networks with more than 5
hidden layers, but only 5 neurons in each of them, the maximum number of regions achieved is 446 (in
a neural network with 7 hidden layers).

Regarding lattice property, among all 1100 ReLU-TId neural networks that were generated in all
experiments, only one failed to satisfy it. Such neural network has 5 neurons in each of its 5 hidden
layers (25 neurons in all hidden layers) and its pre-closed regional format encoding has 91 regions and

78 Regional, Lattice and Logical Representations of Neural Networks
fails to fulfill lattice property for 36 pairs of regions (Q;,Q;).

5 Conclusions

We have proposed an algorithm for translating Re[.LU-T1d neural networks into the pre-closed regional
format, which is a more interpretable representation than the traditional graph one. We also proposed
methods for decreasing the computation time of the base algorithm and proved that ReLU-TId neural
networks are v-rational McNaughton neural networks.

Empirically, we measured the complexity of pre-closed regional format encodings of randomly gen-
erated ReLU-TId neural networks by counting the number of nonempty regions in such encodings. We
could verify a bigger increase in the number of regions in the encodings with wider, but fewer, layers
than in the encodings with more, but thinner, layers. The fast increase of curves in Figure 6, related to the
variation in the size of a fixed number of layers, points to the high complexity of regional representation.
Therefore, the reported results foresee scaling issues in the regional representation of real-world neural
networks, which often are larger than those generated in our investigation.

We have also investigated the degree of satisfiability of the lattice property by the neural networks
generated in our experiments. The results empirically indicate that the outputs of NN2PWL lacking lattice
property are a very rare event. Only one of the neural networks generated do not fulfill such a property.

For the future, approximate and less complex regional representations might be pursued. A possible
path is to establish the reasonability of allowing encodings not satisfying lattice property as approxi-
mations of neural networks. From an exact perspective, one might investigate efficient procedures for
turning a rational McNaughton function encoding in pre-closed regional format into closed regional for-
mat.

Funding

This work was carried out at the Center for Artificial Intelligence (C4AI-USP), with support by the Sao
Paulo Research Foundation (FAPESP) [grant #2019/07665-4] and by the IBM Corporation. This study
was financed in part by the Sdo Paulo Research Foundation (FAPESP) [grants #2021/03117-2 to S.P,,
#2015/21880-4 and #2014/12236-1 to M.E.]; and the National Council for Scientific and Technological
Development (CNPq) [grant PQ 303609/2018-4 to M.E.].

References

[1] Brendon G. Anderson, Samuel Pfrommer & Somayeh Sojoudi (2023): Tight Certified Robustness via Min-
Max Representations of ReLU Neural Networks. In: 2023 62nd IEEE Conference on Decision and Control
(CDC), pp. 6348-6355, doi:10.1109/CDC49753.2023.10383700.

[2] Dimitris Bertsimas & John N. Tsitsiklis (1997): Introduction to linear optimization. Athena scientific series
in optimization and neural computation, Athena Scientific.

[3] Davide Castelvecchi (2016): Can we open the black box of AI? Nature 538(7623), pp. 20-23,
doi:10.1038/538020a.

[4] Roberto L.O. Cignoli, Itala M.L. D’Ottaviano & Daniele Mundici (2000): Algebraic Foundations of Many-
Valued Reasoning. Trends in Logic, Springer Netherlands, doi:10.1007/978-94-015-9480-6.

[5] Marcelo Finger (2020): Logic in Times of Big Data. In J. Acacio de Barros & Décio Krause, editors: A True
Polymath: A Tribute to Francisco Antonio Doria, College Publications, pp. 184-198.

S. Preto & M. Finger 79

(6]

(7]

(8]
(9]

[10]

[11]

Marcelo Finger & Sandro Preto (2020): Probably Partially True: Satisfiability for Lukasiewicz Infinitely-
Valued Probabilistic Logic and Related Topics. Journal of Automated Reasoning 64(7), pp. 1269-1286,
doi:10.1007/s10817-020-09558-9.

Brunella Gerla (2001): Rational Lukasiewicz Logic and DMV-algebras. Neural Network World 11(6), pp.
579-594, doi:10.48550/arXiv.1211.5485

Ian Goodfellow, Yoshua Bengio & Aaron Courville (2016): Deep Learning. MIT Press.

R. McNaughton (1951): A Theorem About Infinite-Valued Sentential Logic. Journal of Symbolic Logic 16,
pp. 1-13, doi:10.2307/2268660.

Daniele Mundici (1994): A constructive proof of McNaughton's theorem in infinite-valued logic. The Journal
of Symbolic Logic 59(2), pp. 596-602, doi:10.2307/2275410.

Sandro Preto & Marcelo Finger (2020): An Efficient Algorithm for Representing Piecewise Lin-
ear Functions into Logic. Electronic Notes in Theoretical Computer Science 351, pp. 167-186,
doi:10.1016/j.entcs.2020.08.009. Proceedings of LSFA 2020, the 15th International Workshop on Logical
and Semantic Frameworks, with Applications (LSFA 2020).

Sandro Preto & Marcelo Finger (2022): Efficient representation of piecewise linear functions into
Lukasiewicz logic modulo satisfiability. Mathematical Structures in Computer Science 32(9), pp. 1119-1144,
doi:10.1017/S096012952200010X.

Sandro Preto & Marcelo Finger (2023): Effective Reasoning over Neural Networks Using Lukasiewicz Logic.
In Pascal Hitzler, Md Kamruzzaman Sarker & Aaron Eberhart, editors: Compendium of Neurosymbolic
Artificial Intelligence, chapter 28, Frontiers in Artificial Intelligence and Applications 369, IOS Press, pp.
609-630, doi:10.3233/FATA230160.

Sandro Preto & Marcelo Finger (2023): Proving properties of binary classification neural networks via
Ltukasiewicz logic. Logic Journal of the IGPL 31(5), pp. 805-821, doi:10.1093/jigpal/jzac050.

Haakon Robinson, Adil Rasheed & Omer San (2019): Dissecting deep neural networks. arXiv preprint
arXiv:1910.03879, doi:10.48550/arXiv.1910.03879

	iniciais
	3254973 (1).pdf

