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1-2-3 conjecture

1. Introduction

We assume that all the graphs in this text are finite and simple. Terminology and notation used here are standard, and
for missing definition we refer the reader to [5-7]. Given a graph G, a collection D = {Hq, ..., H,} of subgraphs of G is a
decomposition of G if {E(H,), ..., E(Hy)} is a partition of E(G). A graph is locally irregular if any pair of adjacent vertices have
distinct degrees. A locally irregular decomposition of a graph G is a decomposition D of G such that every subgraph H € D
is locally irregular. Not all graphs admit a locally irregular decomposition; take for example the complete graph with
three vertices. We say that a graph is decomposable if it admits a locally irregular decomposition. Given a decomposable
graph G, the irregular chromatic index of G, denoted by x;.(G), is the smallest size of a locally irregular decomposition of
G. Alternatively, one can see a locally irregular decomposition of a graph G as an edge coloring of G such that each color
induces a locally irregular graph. We call such coloring of a locally irregular edge coloring.

The problem of determining the irregular chromatic index of graphs is closely related to the 1-2-3 Conjecture posed
by Karénski, tuczak and Thomason [8], which states that a graph G = (V, E) can be made locally irregular by changing
some edges in E by two or three parallel edges.

Locally irregular decomposition as defined above was introduced by Baudon, Bensmail, Przybyto, and WozZniak [1]. As
noticed before, not all graphs admit a locally irregular decomposition. In their seminal work, Baudon, Bensmail, Przybyto,
and Wozniak [1] characterized all decomposable graphs. Before stating their characterization, we need a few definitions.
Given a positive integer n, we denote by K, and P,, respectively, the complete graph with n vertices and the path with n
vertices. We denote by F the set of graphs defined as follows.
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® Py € Fforallk e Z*; and
o G Fif G=K3UPy, for k € Z*, V(K3) N V(Py) = {v}, and v has degree 1 in Py.

Note that every graph in F has an even number of edges and it is subcubic. Now we define recursively the set of graphs
T as follows.

e 5€T;

e let G € T, F € F, G+ F be the disjoint union of the graphs G’ and F, u be a vertex of G’ with degree 2 belonging
to some copy of K3 in G/, and v be a vertex of F with degree 1. If G is the graph obtained by identifying u and v in
the graph G’ + F, then G € 7.

Note that every graph in 7 has an odd number of edges and it is subcubic. Next theorem characterizes decomposable
graphs.

Theorem 1.1 (Baudon, Bensmail, Przybyto, and WoZniak [1]). A graph G is decomposable if and only if G is neither (i) a path
or cycle with an odd number of edges, nor (ii) a graph in T.

By Theorem 1.1, it follows that every graph that cannot be decomposed into locally irregular subgraphs has an odd
number of edges, it is subcubic, and its circumference is 3. Moreover, they have a “tree-like” structure.

Besides the characterization of decomposable graphs, Baudon, Bensmail, Przybyto, and WoZniak [1] (i) describe a
locally irregular 3-edge coloring for decomposable trees and for complete graphs with at least four vertices, (ii) show
a locally irregular 2-edge coloring for regular bipartite graphs with minimum degree at least 3, and (iii) prove that
Xi:(G) < LIE(G)|/2] for all decomposable graphs G. Furthermore, they posed the following conjecture.

Conjecture 1.2 (Baudon, Bensmail, Przybyto, and Wozniak, 2015 [1]). If G is a decomposable graph, then x| .(G) < 3.

Although one can check in polynomial time whether a graph G is locally irregular, deciding if there exists a locally
irregular 2-edge coloring of G is NP-complete, even when restricted to planar graphs with maximum degree at most
6 [2]. Note that proving Conjecture 1.2 would show that deciding whether there exists a locally irregular k-edge coloring
for k > 3 is in P.

A result from Przybylo [ 10] shows that every graph with minimum degree at least 10'° admits a locally irregular 3-edge
coloring. Bensmail, Merker, and Thomassen [4] gave the first constant upper bound on /. (G) for general decomposable
graphs G, showing that x; (G) < 328. They also showed that y; (G) < 2 for every 16-edge-connected bipartite graph G,
and for bipartite graphs G they obtained the bound x; (G) < 10. LuZar, Przybyto, and Sotdk [9] improved these results
by showing that x/ (G) < 220 for any decomposable graph G, and that x; (G) < 7 for any bipartite graph G. They also
showed that if G is subcubic, then x;.(G) < 4.

1.1. Split graphs

A graph G is split if there exists a partition {X, Y} of V(G) such that G[X] is a complete graph and Y is a stable set.
We show that every decomposable split graph G has x/,(G) < 3 and we characterize all split graphs G with ;. .(G) = 1,
Xi(G) =2 and x/ (G) = 3.

When defining a split graph G, it may be useful to write G(X, Y) to also define a partition {X, Y} of V(G), where X is a
maximal clique and Y = V(G) \ X is a stable set.

Let G(X, Y) be a split graph with X = {vq, ..., v,}. For any v; € X, we denote by d¢(v;, Y) the number of neighbors of
v;in'Y, i.e., dg(vi, Y) = [Ng(v;) N Y|. For simplicity we just write d; for dg(v;, Y) whenever the graph G and the stable set
Y are clear from the context.

It is easy to verify that for split graphs G(X, Y) with X = {vy, ..., vy}, we have x; (G) = 1 ifand only if dy > --- > d,.
In fact, since X is a maximal clique, dg(y) < n — 1 for all y € Y, which implies that dg(y) is smaller than the degree of
all its neighbors in X. Therefore, G is locally irregular if and only if the vertices in X have distinct degrees in G, which is
possible if and only if d; > --- > d,;, and hence the result follows. We state this in the following fact.

Fact 1.3. Let G(X,Y) be a split graph with X = {v4, ..., v} where dy > --- > d,; and n > 2. We have x;.(G) = 1 if and
onlyifdy > -+ > dp.

Our main result is the following theorem.

Theorem 1.4. Let G be a split graph. If G is decomposable, then x| (G) < 3. Otherwise, G is isomorphic either to K, K3, or Pa.

Our proof for Theorem 1.4 provides a full characterization of the irregular chromatic index of split graphs. In Section 2,
we prove Theorem 1.5, which together with Fact 1.3, fully characterizes x;..(G) for all split graphs with a maximal clique
containing at least ten vertices. In Section 3, we characterize ;. (G) for the remaining split graphs.

Theorem 1.5. Let G(X,Y) be a split graph with X = {vq, ..., vy} where dy > --- > d,. If n > 10, then the following holds.
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Fig. 1. Normal colorings of E(K,) with sequence (v,..., vy), for n = 10, 11. The vertices of the conflicting edge are highlighted. For better
visualization, we omit all blue edges. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

(i) xi(G) < 2ifand only ifdy > [n/2] ordy > 1;
(ii) x.(G) =3 ifand only if dy < |n/2] and d, = 0.

In the remainder of the paper, given a graph G and a coloring ¢: E(G) — {red, blue}, we denote the two edge-disjoint
spanning monochromatic subgraphs under ¢ by Greq , and Gpje,,,. Formally,

Gredp = (V(G), ¢~ '(red)) and Gpje = (V(G), ¢~ '(blue)) .

We may omit the term ¢ from Gieq,, and Gpiye , Whenever ¢ is clear from the context. This notation naturally extends to
colorings that use more than two colors.

2. Decomposing split graphs with a large maximal clique

In this section we give a characterization of the irregular chromatic index of all split graphs with a maximal clique
that has at least 10 vertices.

Let G(X, Y) with X = {v1, ..., vy} with n > 10. In Lemma 2.3 we prove that d; < [n/2] and d, = 0 implies y/,(G) = 3.
We also prove that if d; > [n/2] or d, > 1, then x;(G) < 2, which follows directly from Lemmas 2.6 and 2.9. Therefore,
note that Theorem 1.5 follows from Lemmas 2.3, 2.6 and 2.9.

In Section 2.1 we prove Lemmas 2.3 and 2.6. The starting point for proving these lemmas is a specific coloring of E(K;,),
which we call normal, given in Definition 2.1. In Section 2.2 we prove Lemma 2.9. For proving this result, we start with
an intricate coloring of E(K,), which we call strange (see Definition 2.7).

Given a graph G, we say that the edge uv € E(G) is a conflicting edge if dg(u) = dg(v).

2.1. Normal colorings of complete graphs

We start this section by defining normal colorings of complete graphs. See Fig. 1 for example.

Definition 2.1 (Normal Colorings). Given a complete graph G with n vertices and a sequence V= (v1, ..., vy) of V(G),
the normal coloring for V is the 2-edge coloring ¢: E(G) — {red, blue} defined as follows, where X; = {v1, ..., vrp/21} and
Xy = V(G) \ Xi:

(i) Gred[X1] is a complete graph;
(ii) Greq[X2] contains no edges;
(iii) Noyog (vr) = (V1. ... vaipr) for [n/2] +1<i<n.

Note that in a normal coloring of a complete graph G for a sequence V= (v1, ..., vq), we have

o dg 4, (vi)=n—1ifor 1 <i<[n/2];
° dGred_go(Ui) =n—i+1for[n/21+1<i<n

Therefore, we know that, for a normal coloring ¢ of G,

the only vertices with same degree in Gred,, (and Gplue,,) are vpny2y and vpn2q41 - (2.1)
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From the definition of normal colorings and (2.1), since there is a (unique) conflicting edge vin/21Vn 2141, We know
that if n is even (resp. odd), then Gpjye (resp. Greq) is locally irregular and Geq (resp. Gpye) is not locally irregular.
The following proposition will be useful for proving Lemma 2.3.

Proposition 2.2. Let G be a connected graph with V(G) = {uq, Uy, ..., uy} and dg(u1) > --- > dg(uy). If G contains only
one pair of vertices u, v with dg(u) = dg(v), then the following holds:

(i) de(u) = dg(v) = [n/2];
(ll) U = Um/2 and v = Urn/21+15

(iit) X = {uy, ..., Upy21—1} is a clique and Y = {ury2142, - - ., Un} iS a stable set;

(iv) X € Ng(u )ﬂ Ne(v);

(v) (Ng(u)UNg(v))NY = ¢;

(vi) uv € E(G) if and only if n is even.

Proof. The proof follows by induction on n. If n = 2, then G >~ K3, and if n = 3, then G >~ Ps. In both cases, (i)-(vi) hold.
Thus, we may assume that n > 4.

Since G is a connected graph with n vertices and u and v are the only vertices of G with the same degree, there are
n — 1 distinct values of degrees in G. Moreover, since G is connected, for any vertex w of G we have 1 < dg(w) <n — 1,
and as a result of this, we know that the set of degrees of all vertices in G is {1, 2, ..., n — 1}. Therefore, dg(u;) =n —1
and dg(u,) = 1. Let G = G — {uy, u,}. Note that dg(w) = dg(w) — 1 for all w € V(G) \ {u1, u,}.

We will show that G’ is a connected graph with only one pair of vertices with the same degree. If dg(u) € {1,n — 1},
then the vertices of G’ have distinct degrees. In particular, there exists a non-trivial component of G’ where all vertices
have distinct degrees, which is an absurd. Thus, we may assume that dg/(u) ¢ {1, n — 1}, and hence G’ has precisely two
vertices with the same degree. Now note that graph G’ has no trivial components, since u, is the only vertex of G with
degree 1. Also, if G’ had more than one component, then it would contain a component where all vertices have distinct
degrees, which is an absurd. Therefore, the graph G’ is connected and contains precisely two vertices with the same degree
(u and v), and hence, by induction hypothesis, (i)-(vi) hold for G'.

For clarity, let V(G') = {u},u),...,u;,} = {up, us, ..., us1}. Since (i) holds for G, and dg(w) = dg(w) — 1 for all
w € V(G)\{uq, uy}, we have dg(u) = dg(v) = dg(u)+1 = [n'/2] = |[(n—2)/2]+1 = |[n/2]. Thus, (i) holds for G. Since (ii)
holds for G, the vertices u = u/(n’/ﬂ = Ufn—2)/2141 = Upny21 and v = u/(n//ZHl = U([(n—2)/2]+1)+1 = U[n/21+1 have the same
degree in G, and consequently in G, and hence (ii) holds for G. Since (iii) holds for G, the set X" = {u,, ..., Upp/21-1} is a
clique of G, the set Y’ = {un/2142, . . ., Un—1} is a stable set of G, and hence X = {u1}UX" is a clique of Gand Y = {u,}UY’
is a stable set of G, from where we conclude that (iii) holds for G. Since (iv) holds for G/, and X’ € Ng(u) N Ng(v),
and since dg(u;) = n — 1, we have X C Ng(u) and X C Ng(v). Therefore, (iv) holds for G. Since (v) holds for G/, and
(Ng/(u) U Ng(v))NY' = @, and since u, has degree 1 in G and u u, € E(G), we have Ng(u)N'Y = @ and Ng(v)NY = @.
Therefore, (v) holds for G. Finally, since (vi) holds for G/, and G’ has n — 2 vertices, (vi) holds for G, which finishes the
proof. O

Lemma 2.3. Let G(X,Y) be a split graph with X = {vy, ..., vy} whered; > --->d,andn > 4.Ifdy < [n/2] and d; =0,
then x;.(G) = 3.

Proof. Let G(X,Y) be a split graph with X = {vy,...,v,},dy > --- > dy, n > 4,d; < [n/2], and d; = 0. We start by
proving that x;.(G) = 3, and then we exhibit a coloring showing that x/.(G) < 3.

Claim 24. [ .(G) > 3.

Proof. Since d; > ---d, > 0,n > 4, and d, = 0, then by Fact 1.3 we have x/.(G) > 2. Towards a contradiction,
suppose that x; (G) = 2, and let ¢: E( ) = {red, blue} be a locally irregular 2-edge coloring of G. Let Hreq = Gred,[X] and
Hppue = Gblue,<p [X].

Suppose that there exists a pair of vertices vy and v, such that dy,(vx) = dy,,(vy) and 2 < x < y. Since Greq is locally
irregular and

dGl‘ed(UX) = dHred(UX) = dHred(Uy) = dGred(Uy) ’
@(vxvy) is blue, but
dGblue(vX) =n—1- dGred( ) =n—1- dGred(Uy) = dGblue(vy) ’

a contradiction to the fact that Gy is locally irregular. Therefore, for every pair of vertices vy and vy, with 2 < x <y, we
have dy, ,(vx) # dh,.4(vy). As a result, if Hreq contains a pair of vertices of same degree, then it is unique and one of them
must be v;. By the Pigeonhole Principle, every connected graph with at least two vertices has at least one pair of vertices
with the same degree. Thus H;.q can have at most one trivial component and, since n > 4, it has precisely one non-trivial
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component. Similarly, Hpue has precisely one pair of vertices of same degree, one of these vertices being vy, and it has
precisely one non-trivial component and at most one trivial one.

Let vy and vy, be the vertices with the same degree as v; in the color red and blue, respectively. Note that if two vertices
v, # v1 have the same degree in the color red, then they also have the same degree in the color blue and vice-versa, and
since both Heq and Hyje have only one pair of vertices with the same degree, vy = v,. This means that the edge v;vy is
conflicting in Hy(y,.,). Therefore, we must have d; > 1, as otherwise Gpjye and Greq would not be locally irregular.

Suppose, without loss of generality, that ¢(v;vy) is red. Let K be the component of Heq4 containing the edge v;vy. Since
H,eq contains precisely one non-trivial component and at most one trivial component, K has n’ vertices where n’ > n— 1.
By Proposition 2.2, we have that dg(v{) = |n’'/2] and, since the edge v, vy exists in K, we know that n’ is even. Moreover,
if X’ is the set of vertices with degree at least n’/2 + 1 in K, then X’ C X, |X'| = n’/2 — 1 and X" C N(v;) also by
Proposition 2.2. Since

dg,eq(v1) = dy,q(v1) +dy
on one hand we have
de . (v1)=n'/2+1,
and, on the other hand,
de.q (v1) <n'/2+ n/2] =n".

But since dg,,(w) = dx(w) for any w € X’, this means that vy has the same degree in Gq as some vertex of X', a
contradiction to the fact that Gyeq is locally irregular. <

Claim 2.5. x/.(G) < 3.

Proof. Let ¢ be a normal coloring for the sequence (vy, ..., Vfn/21, V1, Ufn/2141s - - - » Un). Consider the coloring ¢': E(G) —
{red, blue, green} defined as follows: ¢'(v1y) = green for all y € Y, ¢'(v1vn/21+1) = green, and any other edge e of G has
¢'(e) = ¢(e). If d; = 0, then we also do ¢'(vivn/21) = green if n is even or ¢'(vin/214+1Vn/214+2) = green otherwise. See
Fig. 2 for examples of ¢’ withn =8 and n = 11.

Recall that the edge v1vry 2141 is the only one conflicting in Greq,,, if 11 is even, or in Gpjue,, otherwise. In ¢’, such edge
has color green and clearly there is no conflicting edge in Ggeen,¢-

The degrees of vy and vry141 have decreased by one from G, , to G, o, for y = @(vivpm241)- If y = red, then
Vrn/21+2 is the only vertex of G with the same degree as vy and v 2141 in Greq, . HoWever, vy, 2142 is not a neighbor of
V1 OF Vpp/2141 iN Greq . Otherwise, if y = blue, then vy, is the only vertex of G with the same degree as vy and vjn/2141
in Gpye,o. Likewise, vry 27 is not a neighbor of vy or vn/2141 in Gplue,or-

If di = 0 and n is even, then the degree of vy, has also decreased by one from Greqy t0 Greq,,. However,
dGrede,(vWﬂ) = [n/2] = dGrew(m) and so it is the only vertex with such degree in Geq, . If di = 0 and n is odd, then

the degree of vn/2142 has decreased by one from Gpjue, t0 Gpiue, o/ Similarly, dGbmw/(”fn/ﬂﬂ) =[n/21—1= dGblue.(p(Ul)
and so it is the only vertex with such degree in Gpjye,¢'
Therefore, we conclude that ¢’ is a locally irregular 3-edge coloring of G, which implies x/,(G) < 3. ©

Claims 2.4 and 2.5 conclude the proof of Lemma 2.3. O

In the proof of Lemma 2.6 the reader may find it useful to refer to Fig. 1.

Lemma 2.6. Let G(X,Y) be a split graph with X = {v1,..., vy} whered; > --- > dy and d\nj2) > 1. If n > 3, then,
Xi,rr(c) <2

Proof. There are two cases to consider depending on the parity of n, but the only difference in the proofs is the coloring
we give to E(G[X]), which are symmetric. For n even, we start with a normal coloring ¢: E(G[X]) — {red, blue} for

the sequence (v1, ..., Un/2, Un, Un—1, - . ., Un/241). In case n is odd we consider a normal coloring of E(G[X]) for sequence
(Vn/21s « -+ » Uns Uiny2)s - - - » V1). Thus, for the rest of this proof, we may assume, without loss of generality, that n is even.
Let X = {v1, v2, ..., U2} and X, = X\ Xq. From (2.1) we know that the only vertices with the same degree in Greq[X]

or Gpie[X] are v,/ and vp.

We will obtain a locally irregular 2-edge coloring of G from ¢. We start by extending ¢ to a coloring ¢’ of E(G) with
colors red and blue in the following way. For all edges xy between X; and Y let ¢’(xy) = red, and for all edges xy between
X, and Y let ¢(xy) = blue.

Let us first analyze the graph Greq,,r. Since d;; > 1, for every vertex x € X; we have dGred,q;’ (x) > dGred.w(x) >n/2, and
since d; > - -+ > dy,, the degree of any two vertices of X; remain different in Geq .. Also, since there are no red edges
between v, and Y, we have dGredyz/(vn) =n/2 < dGred.<p’ (x) for every x € X;. The red degree of vertices vy241, ..., vy are
the same in ¢ and ¢’, and the red degree of any vertex y € Y is at most n/2, since there are no red edges between X,
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Fig. 2. Coloring ¢’ described in the proof of Claim 2.5 for n = 8, 11 when d; = 0 and d; # 0. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

and Y. Therefore, since the degrees of the vertices of X; in Greq . are at least n/2 + 1, we conclude that Geq o is locally
irregular.

It remains to show that Gpye o is locally irregular. Since ¢ is a normal coloring and n is even, we know that Gpje o/ [X]
is locally irregular. If there is no y € Y that has a neighbor x € X, with dGbluw, (y) = dcbmw, (x), then the result follows.
Thus we may assume the opposite, i.e., there exist y € Y and x € X; with the same degree in Gpjye ,. Since the maximum
possible degree of a vertex of Y in Gpiye o is /2 and the minimum degree of a vertex of X, in Gpue o/ [X] is n/2 — 1, we
conclude that

A6y1e V) = Aoy o (Un) = 1/2.

Therefore, because of the pair y, v,, the graph Gpyye, o is not locally irregular. In this case, we can change the color of one
or two edges in ¢’ to obtain a locally irregular 2-edge coloring ¢” for G, as we explain next.

If dyj2 > 2, then let ¢” be the coloring obtained from ¢’ by changing the color of yv, from blue to red. We claim that
the graphs Gieq o7 and Gpiye o are locally irregular. In fact, this holds since v, has degree n/2 + 1 in Greq and every
vertex in X; has degree at least n/2 + 2 in Greg ¢

Now assume that d,, = 1 and let z € Y be the only neighbor of v,/ in Y. In this case consider the coloring
¢” obtained from ¢’ by changing the color of yv, from blue to red and the color of zv,/,; from red to blue. Although
dGbluew y) = dGblue.w”(Un) = (n/2) — 1, they are not neighbors in Gpjye, o7 Also, any vertex in X; \ {v,} has degree at least
(n/2) + 1 in Gpjye ¢, SO there are no conflicts in Gyiye o involving y or v,. Note that we have dg_, w”(v“) = (n/2) + 1,
but since dGred,w”(U"/z) = n/2 and every vertex in X; \ {vn/2} has red degree at least (n/2) 4 2 in Cred,W: there are no
conflicts in Greq,,» involving vy,. This also implies that, since dGre d.w(”"/Z) = n/2, there are no conflicts involving vy, in
Gred,. Furthermore, since dGb]ue,w”(vn/Z) = n/2 and any vertex in X, \ {v,} has degree at least (n/2) + 1 in Gpiye,o”, W€

conclude that there are no conflicts involving vy, in Gpjue 7. Therefore, Greq o7 and Gpiue,,# are locally irregular, and the
result follows. O
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V12 (2, 10) L i V4 (10, 2)

1 1
A 1
V12 (1, 1(}))3 (10, 1) V13 (1, 1]1'33 (11, 1)
Fig. 3. Strange colorings of E(K,) with n € {10, 11, 12, 13}, where V(K,) = {vy, ..., vy} and the sequence is (vs, ..., Vin/2)+1s V1, Vin/2]42> Vln/2143»
V2, Uln/2j44, - - -» Un) if [1/2] is even, and it is (vs, ..., Vjn/2j41, V1, Vinj2)42, V2, Vjnj2)43s - - - » V) Otherwise. Strange edges are highlighted, as well as

the vertices of the conflicting edges. For better visualization, we omit the other blue edges.

2.2. Strange colorings of complete graphs

As in Section 2, we start by defining the colorings of complete graphs that are the starting point for proving the results
in this section. The following definition is technical, so we refer the reader to Fig. 3 for a better understanding of it.

Definition 2.7 (Strange Coloring). Given a complete graph G with n vertices and a sequence V= (v1, ..., vy)of V(G), first
consider a coloring ¢': E(G) — {red, blue} defined as follows, where X; = {v1, ..., vn21} and X, = V(G) \ Xi:

(i) Greq[X1] is @ complete graph;
(ii) Greq[X2] contains no edges;
(iii) Ncrew/(vi) ={v,...,vp g} for [n/2]1+1<i<n-1;
(iv) ¢'(vivn) = red;
(v) @' (Vin2141V(ns2)) = Ted;
(vi) All other edges are blue.

The strange coloring of G for V is the coloring ¢ obtained from ¢’ by changing the color of the following edges, which we
call strange edges:

® U|;/2)Vn/2)—1 becomes blue;

® VU|n/2)—1Un—1 becomes red;

® VU141 for [n/2] even becomes blue;

® V1V|n2)+1 for [n/2] odd becomes blue;

® Uy _Un_3, Un—4Vn_5, - . ., Un/244Vn/2+3 fOr n = 0 (mod 4) become red;

® Up_1V|n/2)—1, Un—2V|n/2)» Un—3V|n/2)+1> Un—4Vn—5, Un—6VUn—7, - - - » V|n/2]+3Vn/2]+2 forn=1 (mod 4) become red;
® Up_3Un_3, Un—4VUn_5, . . ., Un/243Vn/242 fOr n = 2 (mod 4) become red,;

® Up_3Un_3, Un—4Un_s, - . ., U|n/2)+4V|n/2)+3 for n = 3 (mod 4) become red.
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Note that in a strange coloring of a complete graph G for a sequence V= (v1, ..., vy), we have
dcred,gz(vi) =n—i+1for3<i<n,
Ao, (v1) =n—[n/2] — 1,
and
- {n —|n/2] —2 if [n/2] is even
n—[n/2] —1 otherwise
Therefore, we know that, for a strange coloring ¢ of G,
the only vertices with same degree in Greq , are vy and vjy2j42 , (2.2)
and
vy and vy 243 if [n/2] is even

. 2.3
v, v1, and vip41  otherwise (2.3)

the only vertices with same degree in Gpyye,, are {
From the definition of strange coloring and by (2.2) and (2.3), we conclude that Gq has exactly one conflicting edge
V1V|n/2|+2 while

one conflicting edge vvn/2)+3 if [n/2] is even

Gpiue has exactl L. .
blue y {two conflicting edges v,v|n/2j+2 and vyv;  otherwise

Given a graph G and a 2-edge coloring ¢: E(G) — {red, blue}, we say an even cycle C = (uq, ..., Uy, Ugrq = U7p) iS
an alternating cycle in ¢ if p(uui1) # @(uiy1Uic2), for any 1 < i < k, and dg, (1) # dg, (uiy1), for any 1 < i < k and
y € {red, blue} \ ¢(u;u;1). In other words, an alternating cycle has incident edges with different colors and the endpoints
of a red edge (resp. blue edge) have different blue degrees (resp. red degrees). Let ¢’ be the 2-edge coloring of E(G) such
that ¢’(uv) € {red, blue} \ p(uv) if uv € E(C) and ¢'(uv) = ¢(uv) otherwise. We say ¢’ is obtained from ¢ by inverting C.

Lemma 2.8 shows that an inversion on an alternating cycle does not create conflicting edges. It will be used in the
proof of Lemma 2.9.

Lemma 2.8. Let G be a graph, ¢: E(G) — {red, blue} be a 2-edge coloring of G. Let C be an alternating cycle in ¢ and let
¢’ be obtained from ¢ by inverting C. The set of conflicting edges of G, . is a subset of the conflicting edges of G, ,, for any
y € {red, blue}.

Proof. First note that, in ¢, every vertex of V(C) has one incident blue edge and one incident red edge, which remains
valid in ¢’. No other edge has its color changed. Thus, d¢, ,(v) = dcy w,(v) for any v € V(G) and y € {red, blue}.

Let y € {red, blue}, € {red, blue} \ {y}, and consider any edge uv € E(G). If uv ¢ E(C), then uv is conflicting in Gy
(resp. Gy ,) if and only if it is conflicting in G, .+ (resp. Gy o). So let uv € E(C) and let ¢(uv) = y. From the definition of
alternating cycle, dgw(u) #* dcw(v). This means that uv is not conflicting in G; ,, no matter if it is conflicting in G, , or
not. OJ

Lemma 2.9. Letn > 10 and let G(X, Y) be a split graph with X = {vy, ..., vy} wheredy > --- > d, and d|nj2) = 0. If
dy > [n/2] ordy > 1, then x].(G) = 2.

Proof. First note that since d|;;2; = 0 we have x/ (G) > 2 due to Fact 1.3.
Let ¢’: E(G[X]) — {red, blue} be the strange coloring of E(G[X]) for the sequence

_ {(UE,, e Uln/2)415 V1, Uin/2j425 Uinj2j+3s V2, Uinj2j+4 - - -» Un) if [n/27 is even (2.4)

(V35 + s Vlnj2)+1> V1, V[nj2j42> V2, V[nj2j+3s - - - » Un) otherwise .

We will show how to obtain a locally irregular 2-edge coloring of G from ¢’. We start by extending ¢’ to a coloring ¢
of E(G) with colors red and blue. Let Xeq = {v1, v3, v4, ..., Vjnj2)—1}. We give color red to all edges between Xeq and Y,
and color blue to all edges between v, and Y. Note that this is a coloring of E(G) because d|/,; = 0.

We start by showing that, in both Greq, and Gpe,,, there is no conflicting edge xy for x € X and y € Y. By the
construction of ¢ and since d|;/2; = 0, the neighborhood of any vertex y € Y in Geeq,, is contained in Xeq, and hence
dcrede(Y) < |n/2] — 2. Since d; > 1, we have dcrew(x) > |n/2] for all x € Xieq. Therefore, dGred.go(X) > dcrede(}’) for any

x € X and y € Y. Now note that, also by the construction of ¢, the only vertex in X which can have a neighbor in Y is v,
which implies that Ay, (V) <1 for ally € Y. Since d, > 1, we have dcblue,w(UZ) > [n/2] + 1, so the graph Gpjue,, has no
conflicting edge xy with x € X and y € Y. Therefore, if ¢ is not a locally irregular edge coloring, it is because there is a
conflicting edge between a pair of vertices in X.

Remark that the only difference between the sequence 7 used to build ¢ is the amount of vertices between v; and
v in it. To avoid being repetitive, in the remainder of this proof we will consider that [n/2] is odd. The case where n is
even is analogous.
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Now we show that there exists a 2-edge coloring ¢ such that Geq,; is locally irregular. If Greq,, is locally irregular, then
let ¢ = . Thus, suppose that Geq,, has at least one conflicting edge uv. Since

6oy (V3) > gy (Va) > -+ > dg ,  (Vinj2)41) > dg (V1)
=de, ,(Vinp242) = dc, g ,(v2) > dgy (Vinj243) > -+ > dg, (Un)
di>dy>dz3>--->21>dyp =-=d; =0,
di>d > 1,
and
A6eq , (Vi) = dg g (Vi) +difori#2 and de, (v2) =dc, (v2) .

we have that

AGreq , (V3) > g, (V4) > -+ > dgoy , (Vinj2)41)

2.5
> oy (Vin2112) = Aoy (82) > iy, (Vinass3) = <+ > day, (U0) (2:5)

and

AGreq , (V1) > e, (Vinj2)42) - (2.6)

By (2.5) and since @(v|n/2j42v2) is blue, we may assume that u = wvy, and by (2.5) and (2.6), we have v €
{vs, ..., Vn/2j+1}. As a result, viv is the only conflicting edge of Geq,,. Moreover, note that the edge v v|;/2;+1 cannot be
a conflicting edge, since @(viv|n2)+1) is blue. Therefore, v € {vs, ..., v5/2)}, and thus d; > 2.

We will show that there exists an alternating cycle C such that Geq, is locally irregular, where ¢ is the coloring
obtained from ¢ by inverting C. We start remarking that

e ¢(vyv) is red, dcb]ue,(p(v]) = |n/2], and dGblue,(p(U) < |n/2] -2,
° <P(an/2j+1U1) is blue, dGred,w(vL”/2J+1) = |—Tl/2-| + dLn/2J+l = |—Tl/2-| +0 (because d\_n/ZJ =0anddy = --- > dn), and
AGoq, (V1) = [n/2] — 1 +dy = [n/2] + 1, since d; > 2.

We claim that if v # w3, then C; = (v1,v, Uy_1, Unj2)+1, V1) iS an alternating cycle in ¢, otherwise ¢, =
(v1, v3, Uk, Vns2)+1, V1), Where vy is the only neighbor of v in Gpe, is an alternating cycle in ¢. First, suppose that
v # v3, and note that g(vv,_;) is blue for any v € {vs, ..., vn2}, dcred.w(v) > |n/2] + 1, and dGreW(vn_]) = 2. In
addition, note that ¢(v,_q1v|n/2)+1) is red, dGblue_w(vn,Q =n-3, dGblue‘w(an/ZJH) = |n/2] — 1. Therefore, C = C; is the
desired alternating cycle if v # vs.

Suppose that v = v3, and note that dcred<w(v3) > n— 2 and dGred,w(Uk) < |n/2]. Moreover, note that @(viv|n/2)+1) is
red, dGblue,w(vk) = |[n/2], and dGblue,¢(v|.”/2J‘H) = |n/2] — 1. Hence, C = (; is the desired alternating cycle. Thus, let ¢ be
the coloring obtained from ¢ by inverting C. By Lemma 2.8, we have dgm(v) = dg, ,(v) for every vertex v € V(G) and
y € {red, blue} and no new conflicting edge in red was created. Since ¢(vqv) is blue, Greq,; is locally irregular.

Now we show how to build a locally irregular 2-edge coloring 6 from ¢. Since Geq,; is locally irregular, if Gpje ¢ is also
locally irregular, then let & = ¢ and the result follows. Thus, Gyjue,; has at least one conflicting edge uv.

Note that

red,¢

dGblue.;(v) = dGblue.w(v) = dGb]ue_w,(v) for any v # v,
and

Gppe, (V2) = Aoy, (V2) = dayy, (V2) + 2
Therefore,

Aepe (Vn) > Aoy (Un1) > -+ > daye  (Vinj2)43)

2.7
> dGb]ue,[(an/2J+2) = dGque.[(vl) > dGblue,{(ULn/zJ"J) > > dGblue,{(v3) . ( )

Since {(vin/2j42v1) is red, the conflicting edges in Gpjee , must involve v,. By (2.7), there can be only one conflicting
edge in Gpe,; between vy and v € {v|n2)43, . . ., vn}. Moreover, note that the edge v,v|n/2)+3 cannot be a conflicting edge,
since ¢(vav|n/2)+3) is red. Therefore, v € {v|y/2)43, ..., vy}, and thus d, > 2.

We will show that there exists an alternating cycle C such that Gy is locally irregular, where 6 is the coloring
obtained from ¢ by inverting C. We start by remarking that v; has precisely one neighbor vy in Gpjue,¢ (it is either v or
Vin/2)+2) and that ¢ (viv|n/2)+1) is red. Also,

e dg,,. . (vk) = [n/2], and dg,,.  (Vinj2)+1) = (/2] — 1,
° dcmdg(v3) > n — 2 and either vy = vy, in which case the construction of ¢ guarantees dcred,{(vl) # dcred_g(v3), or
Vk = U|n/2]+2, in which case dcblue‘[(vln/zj_ﬂ) = Ln/2J

Note that C = (v, v, v3, Uk, Vjn/2j+1, Vin/2)+3, V2) is an alternating cycle in ¢:
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e ¢(vyv) = blue, dGred,g(UZ) = |n/2], and dcmd‘:(v) < |n/2];

o ¢(vvs3) =red, dcblue@(v) > |n/2], and dcblue,[(v3) =1;

® £(V{nj2)+1V|n/2)+3) = blue, dG,ed_c(U[n/ZJ-H) > [n/2], and dG,«edvc(ULn/2J+3) <|[n/2] —1; and

® {(vin2)43v2) = red, dey.  (Vinj2j+3) < deye (v2) + 1.

Thus, let 6 be the coloring obtained from ¢ by inverting C. By Lemma 2.8, we have dg, ,(v) = ch(v) for every vertex

v € V(G) and y € {red, blue} and no new conflicting edge in red or blue was created. Since 6(v,v) is red, Gpjye ¢ is locally
irregular. It follows that 0 is a locally irregular 2-edge coloring of G. O

3. Decomposing split graphs with a small maximal clique

In this section we give a characterization of the irregular chromatic index of all split graphs with a maximal clique
that has less than 10 vertices.

Theorem 3.1. Let G(X,Y) be a split graph with X = {vq, ..., vy} where dy > --- > d,. If n <9, then the following holds

(i) G is not decomposable if G is the K3, K3 or, Py;
(ii) If G is decomposable, then

(a) Ifdy > dy > --- > dy, then x/ (G) = 1;
(b)If3<n<9and ) ! di > [n/2], then x (G) =2;
(©)If8<n=<9 Y. d=3andd, > 1, then x/,(G) = 2;
(d) Ifn=9and dy =d, =1, then x;.(G) = 2;

(e) For all the other cases, it follows that x;.(G) = 3.

Proof. If |V(G)] = 2, then G ~ K3, and hence (i) holds. Thus, we may assume that |V(G)| > 3. By Fact 1.3, we may
assume that n > 2 and that there is an i with 1 < i < n — 1, such that d; = d;;, otherwise (ii)a holds. Moreover, from
now on we know that if G is decomposable, then y; .(G) > 2.

First suppose that n = 2, and hence d; = d,. If d; = d; = 1, then G >~ P, since X is a maximal clique, and, as a
result, (i) holds. Otherwise, d; = d, > 2, and hence G is a bistar, and it is not hard to see that there exists a locally
irregular 2-edge coloring for G. Thus, x;.(G) = 2 and (ii)b holds. Suppose n = 3. If d; = 0, then G >~ K3, and hence (i)
holds. If d; > 1, then x/,(G) < 2 by Lemma 2.6, and hence (ii)b follows.

Letn € {4,5}.1fd, > 1, then x/ (G) = 2 by Lemma 2.6, and hence (ii)b follows. So we may assume that d, = 0.1f d; =
1, then by Lemma 2.3, we have x(G) = 3 and thus (ii)e follows. If d; > 2, then let ¢: E(G[X]) — {red, blue} be a normal
coloring to the sequence (vy, v1, v4, v3) if 1 = 4, or the sequence (vy, vs, v1, vg, vs) if n = 5. Let ¢": E(G) — {red, blue}
be the coloring obtained from ¢ by giving the color ¢(vqv4) to all the edges in E(vq, Y). Note that the largest degree in
Gy(vyvs).0 1S 3, and d%(vlv (v1) > 4. Thus, ¢’ is a locally irregular 2-edge coloring for G, i.e., x;.(G) = 2 and hence (ii)b
follows.

Letn € {6,7}). If d3 > 1, then x;,(G) = 2 by Lemma 2.6, and hence (ii)b follows. So we may assume that d; = 0.
If di < 3 and d, = 0, then x;(G) = 3 by Lemma 2.3 and thus (ii)e follows. Thus, d; > 3ord, > 1. Ifd; > 3,
then let ¢: E(G[X]) — {red, blue} be a normal coloring to the sequence (v,, vs, v4, v1, Vs, Vg) if n = 6, or the sequence
(v2, v3, V4, V1, U5, U, v7) if N = 7. Let ¢:E(G) — {red, blue} be the coloring obtained from ¢ by giving the color
@(v1vUn/2141) to all edges in E(vq, Y) and the remaining color to all edges in E(v,, Y). It is easy to see that ¢’ is a locally
irregular 2-edge coloring for G, and hence (ii)b follows. Thus, we may consider 1 <d, <d; < 3.1fdy =d, =2 ord; =2
and d, = 1, then let ¢ be defined as above and let ¢”: E(G) — {red, blue} be the coloring obtained from ¢ by giving the
color ¢(v1vpy/21+1) to all edges in E(vy, Y) and in E(v, Y). It is easy to see that ¢” is a locally irregular 2-edge coloring for
G, and hence (ii)b follows. The last case is when d; = d, = 1. Aided by a computer program, we verified that x; (G) = 3
in this case, and thus (ii)e follows.

At last, suppose that n € {8,9}. If d4 > 1, then x/,(G) = 2 by Lemma 2.6, and hence (ii)b follows. So we may assume
thatd, = 0.If d; < 4 and d, = 0, then x/.(G) = 3 by Lemma 2.3 and thus (ii)e follows. Thus, d; > 4ord, > 1. If
di > 4, then let ¢: E(G[X]) — {red, blue} be a normal coloring to the sequence (v, v4, vs, V1, Vg, U7, Vg, U3) if n = 8, or
the sequence (v,, vs3, v4, Us, V1, Vg, V7, Vg, Vg) if n = 9. Let ¢’: E(G) — {red, blue} be the coloring obtained from ¢ by giving
the color ¢(vqve) to all edges in E(vy, Y) and the remaining color to all edges in E(v,, Y) and in E(vs3, Y). It is easy to see
that ¢’ is a locally irregular 2-edge coloring for G, and hence (ii)b follows. Thus, we may consider 0 < d; <d, <d; < 4
and also d, > 1. Note that there are 16 combinations of values for dy, d,, and ds3, which we divide in four cases. For each
of the first three cases, we obtain a normal coloring ¢: E(G[X]) — {red, blue} to some sequence S of vertices, which we
describe below:

(1) if dy = 3, then we have

4).9"

(@) S = (v2, va, U5, V1, V6 = W, V7, Vg, v3) if n =8, or
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ve (6,1) w5 (7,0)

qu (2, 5)

vg (5, 2)@ ~evs (4, 3)
) %7
y2 (0, 2) ve (4, 4)
® @

y1 (0, 1) v (3,6)

Fig. 4. Each figure illustrates a locally irregular 2-edge coloring. We use a square to denote one or more vertices, for example, in (B) y; could be
a single vertex, a pair of vertices, or a triple of vertices with the same neighborhood of y;. In any possible configuration, the coloring presented in
(B) is locally irregular.

(b) S = (v3, va, vs, Vg, V1, V7 = W, Vg, Vg, V) if n = 9.
(2) if dy = d; = 2, then we have

(a) S = (va, v2, s, V1, V6 = W, V7, Vg, v3) if n =8, or
(b) S = (v3, v4, Vs, V6, V1, V7 = W, Vg, V2, Vg) if n = 9.

(3) if dy = 2 and dy = d3 = 1, then we have

(a) S = (vq, v3, Vg, V1, Vs = W, Vg, U7, vg) if n = 8, or
(b) S = (v4, v5, V6, V7, V1, Vg = W, Vg, V2, V3) if =09,

Then we obtain ¢’ from ¢ by giving the color ¢(v1, vfs/2142) to all edges in E(vq, Y) and in E(vz, Y) and the remaining
color to all edges in E(vs, Y). It is not hard to see that ¢’ is a locally irregular 2-edge coloring for G, and hence (ii)b follows
for the first three cases. The last case considers (i) dy = 2,d, = 1,and d3 =0, (ii)d;y = d, = d; = 1,and (iii)d; = d, = 1
and d; = 0. Figs. 4a and 4b show that ; .(G) = 2 for (i) and (ii), and hence (ii)c holds for these case. Fig. 4c shows that
Xi:(G) = 2 for (iii) when n = 9 and hence (ii)d holds for this case. Also aided by a computer program, we verified that
X+.(G) = 3 for (iii) when n = 8, and thus (ii)e follows. O
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4. Concluding remarks

In their seminal work, Baudon, Bensmail, Przybyto, and WozZniak [1] characterized all decomposable graphs and posed
Conjecture 1.2, which states that the irregular chromatic index of all decomposable graphs is at most 3. The current best
upper bound for the irregular chromatic index of an arbitrary graph is 220 due to LuZar, Przybyto, and Sotak [9]. So far the
list of graph classes for which Conjecture 1.2 has been confirmed is short: trees, complete graphs, regular bipartite graphs
with minimum degree at least 3, and 16-edge-connected bipartite graphs. In this paper, we have added split graphs to
such list. Moreover, we characterize the split graphs with irregular chromatic index 1, 2, and 3. To achieve these results,
we exhibit suitable canonical 2-edge colorings for the split graphs and then we show how to fix the color conflicts by
constructing alternating cycles and inverting their colors.

We believe that the techniques developed in this work could be extended to verify Conjecture 1.2 for chordal graphs
(or even perfect graphs). We remark that it is well-known that almost every chordal graph is a split graph (see [3]).
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