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a b s t r a c t

A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A
locally irregular decomposition of a graph G is a decomposition D of G such that every
subgraph H ∈ D is locally irregular. A graph is said to be decomposable if it admits
a locally irregular decomposition. We prove that any decomposable split graph can be
decomposed into at most three locally irregular subgraphs and we characterize all split
graphs whose decomposition can be into one, two or three locally irregular subgraphs.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We assume that all the graphs in this text are finite and simple. Terminology and notation used here are standard, and
or missing definition we refer the reader to [5–7]. Given a graph G, a collection D = {H1, . . . ,Hk} of subgraphs of G is a
ecomposition of G if {E(H1), . . . , E(Hk)} is a partition of E(G). A graph is locally irregular if any pair of adjacent vertices have
istinct degrees. A locally irregular decomposition of a graph G is a decomposition D of G such that every subgraph H ∈ D
s locally irregular. Not all graphs admit a locally irregular decomposition; take for example the complete graph with
hree vertices. We say that a graph is decomposable if it admits a locally irregular decomposition. Given a decomposable
raph G, the irregular chromatic index of G, denoted by χ ′

irr(G), is the smallest size of a locally irregular decomposition of
. Alternatively, one can see a locally irregular decomposition of a graph G as an edge coloring of G such that each color
nduces a locally irregular graph. We call such coloring of a locally irregular edge coloring.

The problem of determining the irregular chromatic index of graphs is closely related to the 1-2-3 Conjecture posed
y Karónski, Łuczak and Thomason [8], which states that a graph G = (V , E) can be made locally irregular by changing
ome edges in E by two or three parallel edges.
Locally irregular decomposition as defined above was introduced by Baudon, Bensmail, Przybyło, and Woźniak [1]. As

oticed before, not all graphs admit a locally irregular decomposition. In their seminal work, Baudon, Bensmail, Przybyło,
nd Woźniak [1] characterized all decomposable graphs. Before stating their characterization, we need a few definitions.
iven a positive integer n, we denote by Kn and Pn, respectively, the complete graph with n vertices and the path with n
ertices. We denote by F the set of graphs defined as follows.
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• P2k+1 ∈ F for all k ∈ Z+; and
• G ∈ F if G = K3 ∪ P2k, for k ∈ Z+, V (K3) ∩ V (P2k) = {v}, and v has degree 1 in P2k.

ote that every graph in F has an even number of edges and it is subcubic. Now we define recursively the set of graphs
as follows.

• K3 ∈ T ;
• Let G′

∈ T , F ∈ F , G′
+ F be the disjoint union of the graphs G′ and F , u be a vertex of G′ with degree 2 belonging

to some copy of K3 in G′, and v be a vertex of F with degree 1. If G is the graph obtained by identifying u and v in
the graph G′

+ F , then G ∈ T .

ote that every graph in T has an odd number of edges and it is subcubic. Next theorem characterizes decomposable
raphs.

heorem 1.1 (Baudon, Bensmail, Przybyło, and Woźniak [1]). A graph G is decomposable if and only if G is neither (i) a path
r cycle with an odd number of edges, nor (ii) a graph in T .

By Theorem 1.1, it follows that every graph that cannot be decomposed into locally irregular subgraphs has an odd
umber of edges, it is subcubic, and its circumference is 3. Moreover, they have a ‘‘tree-like’’ structure.
Besides the characterization of decomposable graphs, Baudon, Bensmail, Przybyło, and Woźniak [1] (i) describe a

ocally irregular 3-edge coloring for decomposable trees and for complete graphs with at least four vertices, (ii) show
locally irregular 2-edge coloring for regular bipartite graphs with minimum degree at least 3, and (iii) prove that
′

irr(G) ≤ ⌊|E(G)|/2⌋ for all decomposable graphs G. Furthermore, they posed the following conjecture.

onjecture 1.2 (Baudon, Bensmail, Przybyło, and Woźniak, 2015 [1]). If G is a decomposable graph, then χ ′

irr(G) ≤ 3.

Although one can check in polynomial time whether a graph G is locally irregular, deciding if there exists a locally
rregular 2-edge coloring of G is NP-complete, even when restricted to planar graphs with maximum degree at most
[2]. Note that proving Conjecture 1.2 would show that deciding whether there exists a locally irregular k-edge coloring

or k ≥ 3 is in P.
A result from Przybyło [10] shows that every graph with minimum degree at least 1010 admits a locally irregular 3-edge

oloring. Bensmail, Merker, and Thomassen [4] gave the first constant upper bound on χ ′

irr(G) for general decomposable
raphs G, showing that χ ′

irr(G) ≤ 328. They also showed that χ ′

irr(G) ≤ 2 for every 16-edge-connected bipartite graph G,
nd for bipartite graphs G they obtained the bound χ ′

irr(G) ≤ 10. Lužar, Przybyło, and Soták [9] improved these results
y showing that χ ′

irr(G) ≤ 220 for any decomposable graph G, and that χ ′

irr(G) ≤ 7 for any bipartite graph G. They also
howed that if G is subcubic, then χ ′

irr(G) ≤ 4.

.1. Split graphs

A graph G is split if there exists a partition {X, Y } of V (G) such that G[X] is a complete graph and Y is a stable set.
e show that every decomposable split graph G has χ ′

irr(G) ≤ 3 and we characterize all split graphs G with χ ′

irr(G) = 1,
′

irr(G) = 2 and χ ′

irr(G) = 3.
When defining a split graph G, it may be useful to write G(X, Y ) to also define a partition {X, Y } of V (G), where X is a

aximal clique and Y = V (G) \ X is a stable set.
Let G(X, Y ) be a split graph with X = {v1, . . . , vn}. For any vi ∈ X , we denote by dG(vi, Y ) the number of neighbors of

i in Y , i.e., dG(vi, Y ) = |NG(vi) ∩ Y |. For simplicity we just write di for dG(vi, Y ) whenever the graph G and the stable set
are clear from the context.
It is easy to verify that for split graphs G(X, Y ) with X = {v1, . . . , vn}, we have χ ′

irr(G) = 1 if and only if d1 > · · · > dn.
n fact, since X is a maximal clique, dG(y) ≤ n − 1 for all y ∈ Y , which implies that dG(y) is smaller than the degree of
ll its neighbors in X . Therefore, G is locally irregular if and only if the vertices in X have distinct degrees in G, which is
ossible if and only if d1 > · · · > dn, and hence the result follows. We state this in the following fact.

act 1.3. Let G(X, Y ) be a split graph with X = {v1, . . . , vn} where d1 ≥ · · · ≥ dn and n ≥ 2. We have χ ′

irr(G) = 1 if and
nly if d1 > · · · > dn.

Our main result is the following theorem.

heorem 1.4. Let G be a split graph. If G is decomposable, then χ ′

irr(G) ≤ 3. Otherwise, G is isomorphic either to K2, K3, or P4.

Our proof for Theorem 1.4 provides a full characterization of the irregular chromatic index of split graphs. In Section 2,
e prove Theorem 1.5, which together with Fact 1.3, fully characterizes χ ′

irr(G) for all split graphs with a maximal clique
ontaining at least ten vertices. In Section 3, we characterize χ ′

irr(G) for the remaining split graphs.
heorem 1.5. Let G(X, Y ) be a split graph with X = {v1, . . . , vn} where d1 ≥ · · · ≥ dn. If n ≥ 10, then the following holds.
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Fig. 1. Normal colorings of E(Kn) with sequence (v1, . . . , vn), for n = 10, 11. The vertices of the conflicting edge are highlighted. For better
visualization, we omit all blue edges. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

(i) χ ′

irr(G) ≤ 2 if and only if d1 ≥ ⌊n/2⌋ or d2 ≥ 1;
(ii) χ ′

irr(G) = 3 if and only if d1 < ⌊n/2⌋ and d2 = 0.

In the remainder of the paper, given a graph G and a coloring ϕ: E(G) → {red, blue}, we denote the two edge-disjoint
spanning monochromatic subgraphs under ϕ by Gred,ϕ and Gblue,ϕ . Formally,

Gred,ϕ =
(
V (G), ϕ−1(red)

)
and Gblue,ϕ =

(
V (G), ϕ−1(blue)

)
.

e may omit the term ϕ from Gred,ϕ and Gblue,ϕ whenever ϕ is clear from the context. This notation naturally extends to
olorings that use more than two colors.

. Decomposing split graphs with a large maximal clique

In this section we give a characterization of the irregular chromatic index of all split graphs with a maximal clique
hat has at least 10 vertices.

Let G(X, Y ) with X = {v1, . . . , vn} with n ≥ 10. In Lemma 2.3 we prove that d1 < ⌊n/2⌋ and d2 = 0 implies χ ′

irr(G) = 3.
e also prove that if d1 ≥ ⌊n/2⌋ or d2 ≥ 1, then χ ′

irr(G) ≤ 2, which follows directly from Lemmas 2.6 and 2.9. Therefore,
ote that Theorem 1.5 follows from Lemmas 2.3, 2.6 and 2.9.
In Section 2.1 we prove Lemmas 2.3 and 2.6. The starting point for proving these lemmas is a specific coloring of E(Kn),

hich we call normal, given in Definition 2.1. In Section 2.2 we prove Lemma 2.9. For proving this result, we start with
n intricate coloring of E(Kn), which we call strange (see Definition 2.7).
Given a graph G, we say that the edge uv ∈ E(G) is a conflicting edge if dG(u) = dG(v).

.1. Normal colorings of complete graphs

We start this section by defining normal colorings of complete graphs. See Fig. 1 for example.

efinition 2.1 (Normal Colorings). Given a complete graph G with n vertices and a sequence V⃗ = (v1, . . . , vn) of V (G),
he normal coloring for V⃗ is the 2-edge coloring ϕ: E(G) → {red, blue} defined as follows, where X1 = {v1, . . . , v⌈n/2⌉} and
X2 = V (G) \ X1:

(i) Gred[X1] is a complete graph;
(ii) Gred[X2] contains no edges;
(iii) NGred (vi) = {v1, . . . , vn−i+1} for ⌈n/2⌉ + 1 ≤ i ≤ n.

Note that in a normal coloring of a complete graph G for a sequence V⃗ = (v1, . . . , vn), we have

• dGred,ϕ (vi) = n − i, for 1 ≤ i ≤ ⌈n/2⌉;
• dGred,ϕ (vi) = n − i + 1, for ⌈n/2⌉ + 1 ≤ i ≤ n.

Therefore, we know that, for a normal coloring ϕ of G,

the only vertices with same degree in G (and G ) are v and v . (2.1)
red,ϕ blue,ϕ ⌈n/2⌉ ⌈n/2⌉+1
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From the definition of normal colorings and (2.1), since there is a (unique) conflicting edge v⌈n/2⌉v⌈n/2⌉+1, we know
that if n is even (resp. odd), then Gblue (resp. Gred) is locally irregular and Gred (resp. Gblue) is not locally irregular.

The following proposition will be useful for proving Lemma 2.3.

Proposition 2.2. Let G be a connected graph with V (G) = {u1, u2, . . . , un} and dG(u1) ≥ · · · ≥ dG(un). If G contains only
ne pair of vertices u, v with dG(u) = dG(v), then the following holds:

(i) dG(u) = dG(v) = ⌊n/2⌋;
(ii) u = u⌈n/2⌉ and v = u⌈n/2⌉+1;
(iii) X = {u1, . . . , u⌈n/2⌉−1} is a clique and Y = {u⌈n/2⌉+2, . . . , un} is a stable set;
(iv) X ⊆ NG(u) ∩ NG(v);
(v) (NG(u) ∪ NG(v)) ∩ Y = ∅;
(vi) uv ∈ E(G) if and only if n is even.

roof. The proof follows by induction on n. If n = 2, then G ≃ K2, and if n = 3, then G ≃ P3. In both cases, (i)–(vi) hold.
hus, we may assume that n ≥ 4.
Since G is a connected graph with n vertices and u and v are the only vertices of G with the same degree, there are

− 1 distinct values of degrees in G. Moreover, since G is connected, for any vertex w of G we have 1 ≤ dG(w) ≤ n − 1,
nd as a result of this, we know that the set of degrees of all vertices in G is {1, 2, . . . , n − 1}. Therefore, dG(u1) = n − 1
nd dG(un) = 1. Let G′

= G − {u1, un}. Note that dG′ (w) = dG(w) − 1 for all w ∈ V (G) \ {u1, un}.
We will show that G′ is a connected graph with only one pair of vertices with the same degree. If dG′ (u) ∈ {1, n − 1},

hen the vertices of G′ have distinct degrees. In particular, there exists a non-trivial component of G′ where all vertices
ave distinct degrees, which is an absurd. Thus, we may assume that dG′ (u) /∈ {1, n − 1}, and hence G′ has precisely two
ertices with the same degree. Now note that graph G′ has no trivial components, since un is the only vertex of G with
egree 1. Also, if G′ had more than one component, then it would contain a component where all vertices have distinct
egrees, which is an absurd. Therefore, the graph G′ is connected and contains precisely two vertices with the same degree
u and v), and hence, by induction hypothesis, (i)–(vi) hold for G′.

For clarity, let V (G′) = {u′

1, u
′

2, . . . , u
′

n′} = {u2, u3, . . . , un−1}. Since (i) holds for G′, and dG′ (w) = dG(w) − 1 for all
w ∈ V (G)\{u1, un}, we have dG(u) = dG(v) = dG′ (u)+1 = ⌊n′/2⌋ = ⌊(n−2)/2⌋+1 = ⌊n/2⌋. Thus, (i) holds for G. Since (ii)
holds for G′, the vertices u = u′

⌈n′/2⌉ = u⌈(n−2)/2⌉+1 = u⌈n/2⌉ and v = u′

⌈n′/2⌉+1 = u(⌈(n−2)/2⌉+1)+1 = u⌈n/2⌉+1 have the same
egree in G′, and consequently in G, and hence (ii) holds for G. Since (iii) holds for G′, the set X ′

= {u2, . . . , u⌈n/2⌉−1} is a
lique of G′, the set Y ′

= {u⌈n/2⌉+2, . . . , un−1} is a stable set of G′, and hence X = {u1}∪X ′ is a clique of G and Y = {un}∪Y ′

s a stable set of G, from where we conclude that (iii) holds for G. Since (iv) holds for G′, and X ′
⊆ NG′ (u) ∩ NG′ (v),

nd since dG(u1) = n − 1, we have X ⊆ NG(u) and X ⊆ NG(v). Therefore, (iv) holds for G. Since (v) holds for G′, and
(NG′ (u) ∪ NG′ (v)) ∩ Y ′

= ∅, and since un has degree 1 in G and u1un ∈ E(G), we have NG(u) ∩ Y = ∅ and NG(v) ∩ Y = ∅.
Therefore, (v) holds for G. Finally, since (vi) holds for G′, and G′ has n − 2 vertices, (vi) holds for G, which finishes the
proof. □

Lemma 2.3. Let G(X, Y ) be a split graph with X = {v1, . . . , vn} where d1 ≥ · · · ≥ dn and n ≥ 4. If d1 < ⌊n/2⌋ and d2 = 0,
then χ ′

irr(G) = 3.

Proof. Let G(X, Y ) be a split graph with X = {v1, . . . , vn}, d1 ≥ · · · ≥ dn, n ≥ 4, d1 < ⌊n/2⌋, and d2 = 0. We start by
proving that χ ′

irr(G) ≥ 3, and then we exhibit a coloring showing that χ ′

irr(G) ≤ 3.

Claim 2.4. χ ′

irr(G) ≥ 3.

Proof. Since d1 ≥ · · · dn ≥ 0, n ≥ 4, and d2 = 0, then by Fact 1.3 we have χ ′

irr(G) ≥ 2. Towards a contradiction,
suppose that χ ′

irr(G) = 2, and let ϕ: E(G) → {red, blue} be a locally irregular 2-edge coloring of G. Let Hred = Gred,ϕ[X] and
Hblue = Gblue,ϕ[X].

Suppose that there exists a pair of vertices vx and vy such that dHred (vx) = dHred (vy) and 2 ≤ x < y. Since Gred is locally
irregular and

dGred (vx) = dHred (vx) = dHred (vy) = dGred (vy) ,

ϕ(vxvy) is blue, but

dGblue (vx) = n − 1 − dGred (vx) = n − 1 − dGred (vy) = dGblue (vy) ,

a contradiction to the fact that Gblue is locally irregular. Therefore, for every pair of vertices vx and vy with 2 ≤ x < y, we
have dHred (vx) ̸= dHred (vy). As a result, if Hred contains a pair of vertices of same degree, then it is unique and one of them
must be v1. By the Pigeonhole Principle, every connected graph with at least two vertices has at least one pair of vertices

with the same degree. Thus Hred can have at most one trivial component and, since n ≥ 4, it has precisely one non-trivial
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component. Similarly, Hblue has precisely one pair of vertices of same degree, one of these vertices being v1, and it has
recisely one non-trivial component and at most one trivial one.
Let vx and vy be the vertices with the same degree as v1 in the color red and blue, respectively. Note that if two vertices

w ̸= v1 have the same degree in the color red, then they also have the same degree in the color blue and vice-versa, and
ince both Hred and Hblue have only one pair of vertices with the same degree, vx = vy. This means that the edge v1vx is
onflicting in Hϕ(v1vx). Therefore, we must have d1 ≥ 1, as otherwise Gblue and Gred would not be locally irregular.
Suppose, without loss of generality, that ϕ(v1vx) is red. Let K be the component of Hred containing the edge v1vx. Since

Hred contains precisely one non-trivial component and at most one trivial component, K has n′ vertices where n′
≥ n− 1.

y Proposition 2.2, we have that dK (v1) = ⌊n′/2⌋ and, since the edge v1vx exists in K , we know that n′ is even. Moreover,
f X ′ is the set of vertices with degree at least n′/2 + 1 in K , then X ′

⊂ X , |X ′
| = n′/2 − 1 and X ′

⊆ NK (v1) also by
Proposition 2.2. Since

dGred (v1) = dHred (v1) + d1 ,

on one hand we have

dGred (v1) ≥ n′/2 + 1 ,

nd, on the other hand,

dGred (v1) < n′/2 + ⌊n/2⌋ = n′ .

ut since dGred (w) = dK (w) for any w ∈ X ′, this means that v1 has the same degree in Gred as some vertex of X ′, a
contradiction to the fact that Gred is locally irregular. ⋄

Claim 2.5. χ ′

irr(G) ≤ 3.

Proof. Let ϕ be a normal coloring for the sequence (v2, . . . , v⌈n/2⌉, v1, v⌈n/2⌉+1, . . . , vn). Consider the coloring ϕ′: E(G) →

{red, blue, green} defined as follows: ϕ′(v1y) = green for all y ∈ Y , ϕ′(v1v⌈n/2⌉+1) = green, and any other edge e of G has
ϕ′(e) = ϕ(e). If d1 = 0, then we also do ϕ′(v1v⌈n/2⌉) = green if n is even or ϕ′(v⌈n/2⌉+1v⌈n/2⌉+2) = green otherwise. See
Fig. 2 for examples of ϕ′ with n = 8 and n = 11.

Recall that the edge v1v⌈n/2⌉+1 is the only one conflicting in Gred,ϕ if n is even, or in Gblue,ϕ otherwise. In ϕ′, such edge
has color green and clearly there is no conflicting edge in Ggreen,ϕ .

The degrees of v1 and v⌈n/2⌉+1 have decreased by one from Gγ ,ϕ to Gγ ,ϕ′ , for γ = ϕ(v1v⌈n/2⌉+1). If γ = red, then
v⌈n/2⌉+2 is the only vertex of G with the same degree as v1 and v⌈n/2⌉+1 in Gred,ϕ′ . However, v⌈n/2⌉+2 is not a neighbor of
v1 or v⌈n/2⌉+1 in Gred,ϕ′ . Otherwise, if γ = blue, then v⌈n/2⌉ is the only vertex of G with the same degree as v1 and v⌈n/2⌉+1
in Gblue,ϕ′ . Likewise, v⌈n/2⌉ is not a neighbor of v1 or v⌈n/2⌉+1 in Gblue,ϕ′ .

If d1 = 0 and n is even, then the degree of v⌈n/2⌉ has also decreased by one from Gred,ϕ to Gred,ϕ′ . However,
dGred,ϕ′ (v⌈n/2⌉) = ⌈n/2⌉ = dGred,ϕ (v1) and so it is the only vertex with such degree in Gred,ϕ′ . If d1 = 0 and n is odd, then
the degree of v⌈n/2⌉+2 has decreased by one from Gblue,ϕ to Gblue,ϕ′ . Similarly, dGblue,ϕ′ (v⌈n/2⌉+2) = ⌈n/2⌉ − 1 = dGblue,ϕ (v1)
and so it is the only vertex with such degree in Gblue,ϕ′ .

Therefore, we conclude that ϕ′ is a locally irregular 3-edge coloring of G, which implies χ ′

irr(G) ≤ 3. ⋄

Claims 2.4 and 2.5 conclude the proof of Lemma 2.3. □

In the proof of Lemma 2.6 the reader may find it useful to refer to Fig. 1.

Lemma 2.6. Let G(X, Y ) be a split graph with X = {v1, . . . , vn} where d1 ≥ · · · ≥ dn and d⌊n/2⌋ ≥ 1. If n ≥ 3, then,
χ ′

irr(G) ≤ 2.

Proof. There are two cases to consider depending on the parity of n, but the only difference in the proofs is the coloring
we give to E(G[X]), which are symmetric. For n even, we start with a normal coloring ϕ: E(G[X]) → {red, blue} for
the sequence (v1, . . . , vn/2, vn, vn−1, . . . , vn/2+1). In case n is odd we consider a normal coloring of E(G[X]) for sequence
(v⌈n/2⌉, . . . , vn, v⌊n/2⌋, . . . , v1). Thus, for the rest of this proof, we may assume, without loss of generality, that n is even.

Let X1 = {v1, v2, . . . , vn/2} and X2 = X \X1. From (2.1) we know that the only vertices with the same degree in Gred[X]

or Gblue[X] are vn/2 and vn.
We will obtain a locally irregular 2-edge coloring of G from ϕ. We start by extending ϕ to a coloring ϕ′ of E(G) with

colors red and blue in the following way. For all edges xy between X1 and Y let ϕ′(xy) = red, and for all edges xy between
X2 and Y let ϕ′(xy) = blue.

Let us first analyze the graph Gred,ϕ′ . Since dn/2 ≥ 1, for every vertex x ∈ X1 we have dGred,ϕ′ (x) > dGred,ϕ (x) ≥ n/2, and
since d1 ≥ · · · ≥ dn/2, the degree of any two vertices of X1 remain different in Gred,ϕ′ . Also, since there are no red edges
between vn and Y , we have dGred,ϕ′ (vn) = n/2 < dGred,ϕ′ (x) for every x ∈ X1. The red degree of vertices vn/2+1, . . . , vn are

′
the same in ϕ and ϕ , and the red degree of any vertex y ∈ Y is at most n/2, since there are no red edges between X2
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f

a

Fig. 2. Coloring ϕ′ described in the proof of Claim 2.5 for n = 8, 11 when d1 = 0 and d1 ̸= 0. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

nd Y . Therefore, since the degrees of the vertices of X1 in Gred,ϕ′ are at least n/2 + 1, we conclude that Gred,ϕ′ is locally
irregular.

It remains to show that Gblue,ϕ′ is locally irregular. Since ϕ is a normal coloring and n is even, we know that Gblue,ϕ′ [X]

is locally irregular. If there is no y ∈ Y that has a neighbor x ∈ X2 with dGblue,ϕ′ (y) = dGblue,ϕ′ (x), then the result follows.
Thus we may assume the opposite, i.e., there exist y ∈ Y and x ∈ X2 with the same degree in Gblue,ϕ′ . Since the maximum
possible degree of a vertex of Y in Gblue,ϕ′ is n/2 and the minimum degree of a vertex of X2 in Gblue,ϕ′ [X] is n/2 − 1, we
conclude that

dGblue,ϕ′ (y) = dGblue,ϕ′ (vn) = n/2.

Therefore, because of the pair y, vn, the graph Gblue,ϕ′ is not locally irregular. In this case, we can change the color of one
or two edges in ϕ′ to obtain a locally irregular 2-edge coloring ϕ′′ for G, as we explain next.

If dn/2 ≥ 2, then let ϕ′′ be the coloring obtained from ϕ′ by changing the color of yvn from blue to red. We claim that
the graphs Gred,ϕ′′ and Gblue,ϕ′′ are locally irregular. In fact, this holds since vn has degree n/2 + 1 in Gred,ϕ′′ and every
vertex in X1 has degree at least n/2 + 2 in Gred,ϕ′′ .

Now assume that dn/2 = 1 and let z ∈ Y be the only neighbor of vn/2 in Y . In this case consider the coloring
ϕ′′ obtained from ϕ′ by changing the color of yvn from blue to red and the color of zvn/2 from red to blue. Although
dGblue,ϕ′′ (y) = dGblue,ϕ′′ (vn) = (n/2) − 1, they are not neighbors in Gblue,ϕ′′ . Also, any vertex in X2 \ {vn} has degree at least
(n/2) + 1 in Gblue,ϕ′′ , so there are no conflicts in Gblue,ϕ′′ involving y or vn. Note that we have dGred,ϕ′′ (vn) = (n/2) + 1,
but since dGred,ϕ′′ (vn/2) = n/2 and every vertex in X1 \ {vn/2} has red degree at least (n/2) + 2 in Gred,ϕ′′ , there are no
conflicts in Gred,ϕ′′ involving vn. This also implies that, since dGred,ϕ′′ (vn/2) = n/2, there are no conflicts involving vn/2 in
Gred,ϕ′′ . Furthermore, since dGblue,ϕ′′ (vn/2) = n/2 and any vertex in X2 \ {vn} has degree at least (n/2) + 1 in Gblue,ϕ′′ , we
conclude that there are no conflicts involving vn/2 in Gblue,ϕ′′ . Therefore, Gred,ϕ′′ and Gblue,ϕ′′ are locally irregular, and the
result follows. □
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v

Fig. 3. Strange colorings of E(Kn) with n ∈ {10, 11, 12, 13}, where V (Kn) = {v1, . . . , vn} and the sequence is (v3, . . . , v⌊n/2⌋+1 , v1 , v⌊n/2⌋+2 , v⌊n/2⌋+3 ,
2 , v⌊n/2⌋+4, . . . , vn) if ⌈n/2⌉ is even, and it is (v3, . . . , v⌊n/2⌋+1 , v1 , v⌊n/2⌋+2 , v2 , v⌊n/2⌋+3, . . . , vn) otherwise. Strange edges are highlighted, as well as

the vertices of the conflicting edges. For better visualization, we omit the other blue edges.

2.2. Strange colorings of complete graphs

As in Section 2, we start by defining the colorings of complete graphs that are the starting point for proving the results
in this section. The following definition is technical, so we refer the reader to Fig. 3 for a better understanding of it.

Definition 2.7 (Strange Coloring). Given a complete graph G with n vertices and a sequence V⃗ = (v1, . . . , vn) of V (G), first
consider a coloring ϕ′: E(G) → {red, blue} defined as follows, where X1 = {v1, . . . , v⌈n/2⌉} and X2 = V (G) \ X1:

(i) Gred[X1] is a complete graph;
(ii) Gred[X2] contains no edges;
(iii) NGred,ϕ′ (vi) = {v1, . . . , vn−i} for ⌈n/2⌉ + 1 ≤ i ≤ n − 1;
(iv) ϕ′(v1vn) = red;
(v) ϕ′(v⌈n/2⌉+1v⌊n/2⌋) = red;
(vi) All other edges are blue.

The strange coloring of G for V⃗ is the coloring ϕ obtained from ϕ′ by changing the color of the following edges, which we
call strange edges:

• v⌊n/2⌋v⌊n/2⌋−1 becomes blue;
• v⌊n/2⌋−1vn−1 becomes red;
• v1v⌈n/2⌉+1 for ⌈n/2⌉ even becomes blue;
• v1v⌊n/2⌋+1 for ⌈n/2⌉ odd becomes blue;
• vn−2vn−3, vn−4vn−5, . . . , vn/2+4vn/2+3 for n = 0 (mod 4) become red;
• vn−1v⌊n/2⌋−1, vn−2v⌊n/2⌋, vn−3v⌊n/2⌋+1, vn−4vn−5, vn−6vn−7, . . . , v⌊n/2⌋+3v⌊n/2⌋+2 for n = 1 (mod 4) become red;
• vn−2vn−3, vn−4vn−5, . . . , vn/2+3vn/2+2 for n = 2 (mod 4) become red;
• vn−2vn−3, vn−4vn−5, . . . , v⌊n/2⌋+4v⌊n/2⌋+3 for n = 3 (mod 4) become red.
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Note that in a strange coloring of a complete graph G for a sequence V⃗ = (v1, . . . , vn), we have

dGred,ϕ (vi) = n − i + 1, for 3 ≤ i ≤ n ,

dGred,ϕ (v1) = n − ⌊n/2⌋ − 1 ,

and

dGred,ϕ (v2) =

{
n − ⌊n/2⌋ − 2 if ⌈n/2⌉ is even
n − ⌊n/2⌋ − 1 otherwise .

Therefore, we know that, for a strange coloring ϕ of G,

the only vertices with same degree in Gred,ϕ are v1 and v⌊n/2⌋+2 , (2.2)

and

the only vertices with same degree in Gblue,ϕ are
{
v2 and v⌊n/2⌋+3 if ⌈n/2⌉ is even
v2, v1, and v⌊n/2⌋+1 otherwise .

(2.3)

From the definition of strange coloring and by (2.2) and (2.3), we conclude that Gred has exactly one conflicting edge
v1v⌊n/2⌋+2 while

Gblue has exactly
{
one conflicting edge v2v⌊n/2⌋+3 if ⌈n/2⌉ is even
two conflicting edges v2v⌊n/2⌋+2 and v2v1 otherwise .

Given a graph G and a 2-edge coloring ϕ: E(G) → {red, blue}, we say an even cycle C = (u1, . . . , uk, uk+1 = u1) is
n alternating cycle in ϕ if ϕ(uiui+1) ̸= ϕ(ui+1ui+2), for any 1 ≤ i < k, and dGγ (ui) ̸= dGγ (ui+1), for any 1 ≤ i ≤ k and
∈ {red, blue} \ϕ(uiui+1). In other words, an alternating cycle has incident edges with different colors and the endpoints
f a red edge (resp. blue edge) have different blue degrees (resp. red degrees). Let ϕ′ be the 2-edge coloring of E(G) such
hat ϕ′(uv) ∈ {red, blue} \ ϕ(uv) if uv ∈ E(C) and ϕ′(uv) = ϕ(uv) otherwise. We say ϕ′ is obtained from ϕ by inverting C .

Lemma 2.8 shows that an inversion on an alternating cycle does not create conflicting edges. It will be used in the
roof of Lemma 2.9.

emma 2.8. Let G be a graph, ϕ: E(G) → {red, blue} be a 2-edge coloring of G. Let C be an alternating cycle in ϕ and let
′ be obtained from ϕ by inverting C. The set of conflicting edges of Gγ ,ϕ′ is a subset of the conflicting edges of Gγ ,ϕ , for any
∈ {red, blue}.

roof. First note that, in ϕ, every vertex of V (C) has one incident blue edge and one incident red edge, which remains
alid in ϕ′. No other edge has its color changed. Thus, dGγ ,ϕ (v) = dGγ ,ϕ′ (v) for any v ∈ V (G) and γ ∈ {red, blue}.
Let γ ∈ {red, blue}, γ̄ ∈ {red, blue} \ {γ }, and consider any edge uv ∈ E(G). If uv /∈ E(C), then uv is conflicting in Gγ ,ϕ

resp. Gγ̄ ,ϕ) if and only if it is conflicting in Gγ ,ϕ′ (resp. Gγ̄ ,ϕ′ ). So let uv ∈ E(C) and let ϕ(uv) = γ . From the definition of
lternating cycle, dGγ̄ ,ϕ

(u) ̸= dGγ̄ ,ϕ
(v). This means that uv is not conflicting in Gγ̄ ,ϕ , no matter if it is conflicting in Gγ ,ϕ or

ot. □

emma 2.9. Let n ≥ 10 and let G(X, Y ) be a split graph with X = {v1, . . . , vn} where d1 ≥ · · · ≥ dn and d⌊n/2⌋ = 0. If
1 ≥ ⌊n/2⌋ or d2 ≥ 1, then χ ′

irr(G) = 2.

roof. First note that since d⌊n/2⌋ = 0 we have χ ′

irr(G) ≥ 2 due to Fact 1.3.
Let ϕ′: E(G[X]) → {red, blue} be the strange coloring of E(G[X]) for the sequence

π =

{
(v3, . . . , v⌊n/2⌋+1, v1, v⌊n/2⌋+2, v⌊n/2⌋+3, v2, v⌊n/2⌋+4, . . . , vn) if ⌈n/2⌉ is even
(v3, . . . , v⌊n/2⌋+1, v1, v⌊n/2⌋+2, v2, v⌊n/2⌋+3, . . . , vn) otherwise .

(2.4)

We will show how to obtain a locally irregular 2-edge coloring of G from ϕ′. We start by extending ϕ′ to a coloring ϕ
f E(G) with colors red and blue. Let Xred = {v1, v3, v4, . . . , v⌊n/2⌋−1}. We give color red to all edges between Xred and Y ,
nd color blue to all edges between v2 and Y . Note that this is a coloring of E(G) because d⌊n/2⌋ = 0.
We start by showing that, in both Gred,ϕ and Gblue,ϕ , there is no conflicting edge xy for x ∈ X and y ∈ Y . By the

onstruction of ϕ and since d⌊n/2⌋ = 0, the neighborhood of any vertex y ∈ Y in Gred,ϕ is contained in Xred, and hence
Gred,ϕ (y) ≤ ⌊n/2⌋ − 2. Since d1 ≥ 1, we have dGred,ϕ (x) ≥ ⌊n/2⌋ for all x ∈ Xred. Therefore, dGred,ϕ (x) > dGred,ϕ (y) for any
∈ X and y ∈ Y . Now note that, also by the construction of ϕ, the only vertex in X which can have a neighbor in Y is v2,
hich implies that dGblue,ϕ (y) ≤ 1 for all y ∈ Y . Since d2 ≥ 1, we have dGblue,ϕ (v2) ≥ ⌊n/2⌋ + 1, so the graph Gblue,ϕ has no
onflicting edge xy with x ∈ X and y ∈ Y . Therefore, if ϕ is not a locally irregular edge coloring, it is because there is a
onflicting edge between a pair of vertices in X .
Remark that the only difference between the sequence π used to build ϕ is the amount of vertices between v1 and

2 in it. To avoid being repetitive, in the remainder of this proof we will consider that ⌈n/2⌉ is odd. The case where n is
ven is analogous.
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Now we show that there exists a 2-edge coloring ζ such that Gred,ζ is locally irregular. If Gred,ϕ is locally irregular, then
et ζ = ϕ. Thus, suppose that Gred,ϕ has at least one conflicting edge uv. Since

dGred,ϕ′ (v3) > dGred,ϕ′ (v4) > · · · > dGred,ϕ′ (v⌊n/2⌋+1) > dGred,ϕ′ (v1)

= dGred,ϕ′ (v⌊n/2⌋+2) = dGred,ϕ′ (v2) > dGred,ϕ′ (v⌊n/2⌋+3) > · · · > dGred,ϕ′ (vn) ,

d1 ≥ d2 ≥ d3 ≥ · · · ≥ 1 > d⌊n/2⌋ = · · · = dn = 0 ,

d1 ≥ d2 ≥ 1 ,

nd

dGred,ϕ (vi) = dGred,ϕ′ (vi) + di for i ̸= 2 and dGred,ϕ (v2) = dGred,ϕ′ (v2) ,

e have that
dGred,ϕ (v3) > dGred,ϕ (v4) > · · · > dGred,ϕ (v⌊n/2⌋+1)

> dGred,ϕ (v⌊n/2⌋+2) = dGred,ϕ (v2) > dGred,ϕ (v⌊n/2⌋+3) > · · · > dGred,ϕ (vn)
(2.5)

nd

dGred,ϕ (v1) > dGred,ϕ (v⌊n/2⌋+2) . (2.6)

By (2.5) and since ϕ(v⌊n/2⌋+2v2) is blue, we may assume that u = v1, and by (2.5) and (2.6), we have v ∈

v3, . . . , v⌊n/2⌋+1}. As a result, v1v is the only conflicting edge of Gred,ϕ . Moreover, note that the edge v1v⌊n/2⌋+1 cannot be
conflicting edge, since ϕ(v1v⌊n/2⌋+1) is blue. Therefore, v ∈ {v3, . . . , v⌊n/2⌋}, and thus d1 ≥ 2.
We will show that there exists an alternating cycle C such that Gred,ζ is locally irregular, where ζ is the coloring

btained from ϕ by inverting C . We start remarking that

• ϕ(v1v) is red, dGblue,ϕ (v1) = ⌊n/2⌋, and dGblue,ϕ (v) ≤ ⌊n/2⌋ − 2,
• ϕ(v⌊n/2⌋+1v1) is blue, dGred,ϕ (v⌊n/2⌋+1) = ⌈n/2⌉ + d⌊n/2⌋+1 = ⌈n/2⌉ + 0 (because d⌊n/2⌋ = 0 and d1 ≥ · · · ≥ dn), and

dGred,ϕ (v1) = ⌈n/2⌉ − 1 + d1 ≥ ⌈n/2⌉ + 1, since d1 ≥ 2.

We claim that if v ̸= v3, then C1 = (v1, v, vn−1, v⌊n/2⌋+1, v1) is an alternating cycle in ϕ, otherwise C2 =

v1, v3, vk, v⌊n/2⌋+1, v1), where vk is the only neighbor of v3 in Gblue,ϕ , is an alternating cycle in ϕ. First, suppose that
̸= v3, and note that ϕ(vvn−1) is blue for any v ∈ {v3, . . . , v⌊n/2⌋}, dGred,ϕ (v) ≥ ⌊n/2⌋ + 1, and dGred,ϕ (vn−1) = 2. In

ddition, note that ϕ(vn−1v⌊n/2⌋+1) is red, dGblue,ϕ (vn−1) = n − 3, dGblue,ϕ (v⌊n/2⌋+1) = ⌊n/2⌋ − 1. Therefore, C = C1 is the
esired alternating cycle if v ̸= v3.
Suppose that v = v3, and note that dGred,ϕ (v3) ≥ n − 2 and dGred,ϕ (vk) ≤ ⌊n/2⌋. Moreover, note that ϕ(vkv⌊n/2⌋+1) is

ed, dGblue,ϕ (vk) = ⌊n/2⌋, and dGblue,ϕ (v⌊n/2⌋+1) = ⌊n/2⌋ − 1. Hence, C = C2 is the desired alternating cycle. Thus, let ζ be
he coloring obtained from ϕ by inverting C . By Lemma 2.8, we have dGγ ,ζ

(v) = dGγ ,ϕ (v) for every vertex v ∈ V (G) and
∈ {red, blue} and no new conflicting edge in red was created. Since ζ (v1v) is blue, Gred,ζ is locally irregular.
Now we show how to build a locally irregular 2-edge coloring θ from ζ . Since Gred,ζ is locally irregular, if Gblue,ζ is also

ocally irregular, then let θ = ζ and the result follows. Thus, Gblue,ζ has at least one conflicting edge uv.
Note that

dGblue,ζ (v) = dGblue,ϕ (v) = dGblue,ϕ′ (v) for any v ̸= v2

nd

dGblue,ζ (v2) = dGblue,ϕ (v2) = dGblue,ϕ′ (v2) + d2 .

herefore,

dGblue,ζ (vn) > dGblue,ζ (vn−1) > · · · > dGblue,ζ (v⌊n/2⌋+3)
> dGblue,ζ (v⌊n/2⌋+2) = dGblue,ζ (v1) > dGblue,ζ (v⌊n/2⌋+1) > · · · > dGblue,ζ (v3) .

(2.7)

Since ζ (v⌊n/2⌋+2v1) is red, the conflicting edges in Gblue,ζ must involve v2. By (2.7), there can be only one conflicting
dge in Gblue,ζ between v2 and v ∈ {v⌊n/2⌋+3, . . . , vn}. Moreover, note that the edge v2v⌊n/2⌋+3 cannot be a conflicting edge,
ince ζ (v2v⌊n/2⌋+3) is red. Therefore, v ∈ {v⌊n/2⌋+3, . . . , vn}, and thus d2 ≥ 2.
We will show that there exists an alternating cycle C such that Gblue,θ is locally irregular, where θ is the coloring

btained from ζ by inverting C . We start by remarking that v3 has precisely one neighbor vk in Gblue,ζ (it is either v1 or
⌊n/2⌋+2) and that ζ (vkv⌊n/2⌋+1) is red. Also,

• dGblue,ζ (vk) = ⌊n/2⌋, and dGblue,ζ (v⌊n/2⌋+1) = ⌊n/2⌋ − 1,
• dGred,ζ (v3) ≥ n − 2 and either vk = v1, in which case the construction of ζ guarantees dGred,ζ (v1) ̸= dGred,ζ (v3), or

vk = v⌊n/2⌋+2, in which case dGblue,ζ (v⌊n/2⌋+2) = ⌊n/2⌋.

Note that C = (v , v, v , v , v , v , v ) is an alternating cycle in ζ :
2 3 k ⌊n/2⌋+1 ⌊n/2⌋+3 2
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• ζ (v2v) = blue, dGred,ζ (v2) = ⌊n/2⌋, and dGred,ζ (v) < ⌊n/2⌋;
• ζ (vv3) = red, dGblue,ζ (v) > ⌊n/2⌋, and dGblue,ζ (v3) = 1;
• ζ (v⌊n/2⌋+1v⌊n/2⌋+3) = blue, dGred,ζ (v⌊n/2⌋+1) ≥ ⌊n/2⌋, and dGred,ζ (v⌊n/2⌋+3) ≤ ⌊n/2⌋ − 1; and
• ζ (v⌊n/2⌋+3v2) = red, dGblue,ζ (v⌊n/2⌋+3) ≤ dGblue,ζ (v2) + 1.

Thus, let θ be the coloring obtained from ζ by inverting C . By Lemma 2.8, we have dGγ ,θ
(v) = dGγ ,ζ

(v) for every vertex
v ∈ V (G) and γ ∈ {red, blue} and no new conflicting edge in red or blue was created. Since θ (v2v) is red, Gblue,θ is locally
irregular. It follows that θ is a locally irregular 2-edge coloring of G. □

3. Decomposing split graphs with a small maximal clique

In this section we give a characterization of the irregular chromatic index of all split graphs with a maximal clique
that has less than 10 vertices.

Theorem 3.1. Let G(X, Y ) be a split graph with X = {v1, . . . , vn} where d1 ≥ · · · ≥ dn. If n ≤ 9, then the following holds

(i) G is not decomposable if G is the K2, K3 or, P4;
(ii) If G is decomposable, then

(a) If d1 > d2 > · · · > dn, then χ ′

irr(G) = 1;
(b) If 3 ≤ n ≤ 9 and

∑n
i=1 di ≥ ⌊n/2⌋, then χ ′

irr(G) = 2;
(c) If 8 ≤ n ≤ 9,

∑3
i=1 di = 3, and d2 ≥ 1, then χ ′

irr(G) = 2;
(d) If n = 9 and d1 = d2 = 1, then χ ′

irr(G) = 2;
(e) For all the other cases, it follows that χ ′

irr(G) = 3.

Proof. If |V (G)| = 2, then G ≃ K2, and hence (i) holds. Thus, we may assume that |V (G)| ≥ 3. By Fact 1.3, we may
assume that n ≥ 2 and that there is an i with 1 ≤ i ≤ n − 1, such that di = di+1, otherwise (ii)a holds. Moreover, from
now on we know that if G is decomposable, then χ ′

irr(G) ≥ 2.
First suppose that n = 2, and hence d1 = d2. If d1 = d2 = 1, then G ≃ P4, since X is a maximal clique, and, as a

result, (i) holds. Otherwise, d1 = d2 ≥ 2, and hence G is a bistar, and it is not hard to see that there exists a locally
irregular 2-edge coloring for G. Thus, χ ′

irr(G) = 2 and (ii)b holds. Suppose n = 3. If d1 = 0, then G ≃ K3, and hence (i)
holds. If d1 ≥ 1, then χ ′

irr(G) ≤ 2 by Lemma 2.6, and hence (ii)b follows.
Let n ∈ {4, 5}. If d2 ≥ 1, then χ ′

irr(G) = 2 by Lemma 2.6, and hence (ii)b follows. So we may assume that d2 = 0. If d1 =

1, then by Lemma 2.3, we have χ (G) = 3 and thus (ii)e follows. If d1 ≥ 2, then let ϕ: E(G[X]) → {red, blue} be a normal
coloring to the sequence (v2, v1, v4, v3) if n = 4, or the sequence (v2, v3, v1, v4, v5) if n = 5. Let ϕ′: E(G) → {red, blue}
be the coloring obtained from ϕ by giving the color ϕ(v1v4) to all the edges in E(v1, Y ). Note that the largest degree in
Gϕ(v1v4),ϕ is 3, and dGϕ(v1v4),ϕ′ (v1) ≥ 4. Thus, ϕ′ is a locally irregular 2-edge coloring for G, i.e., χ ′

irr(G) = 2 and hence (ii)b
follows.

Let n ∈ {6, 7}. If d3 ≥ 1, then χ ′

irr(G) = 2 by Lemma 2.6, and hence (ii)b follows. So we may assume that d3 = 0.
If d1 < 3 and d2 = 0, then χ ′

irr(G) = 3 by Lemma 2.3 and thus (ii)e follows. Thus, d1 ≥ 3 or d2 ≥ 1. If d1 ≥ 3,
then let ϕ: E(G[X]) → {red, blue} be a normal coloring to the sequence (v2, v3, v4, v1, v5, v6) if n = 6, or the sequence
(v2, v3, v4, v1, v5, v6, v7) if n = 7. Let ϕ′: E(G) → {red, blue} be the coloring obtained from ϕ by giving the color
ϕ(v1v⌈n/2⌉+1) to all edges in E(v1, Y ) and the remaining color to all edges in E(v2, Y ). It is easy to see that ϕ′ is a locally
irregular 2-edge coloring for G, and hence (ii)b follows. Thus, we may consider 1 ≤ d2 ≤ d1 < 3. If d1 = d2 = 2 or d1 = 2
and d2 = 1, then let ϕ be defined as above and let ϕ′′: E(G) → {red, blue} be the coloring obtained from ϕ by giving the
color ϕ(v1v⌈n/2⌉+1) to all edges in E(v1, Y ) and in E(v2, Y ). It is easy to see that ϕ′′ is a locally irregular 2-edge coloring for
G, and hence (ii)b follows. The last case is when d1 = d2 = 1. Aided by a computer program, we verified that χ ′

irr(G) = 3
in this case, and thus (ii)e follows.

At last, suppose that n ∈ {8, 9}. If d4 ≥ 1, then χ ′

irr(G) = 2 by Lemma 2.6, and hence (ii)b follows. So we may assume
that d4 = 0. If d1 < 4 and d2 = 0, then χ ′

irr(G) = 3 by Lemma 2.3 and thus (ii)e follows. Thus, d1 ≥ 4 or d2 ≥ 1. If
d1 ≥ 4, then let ϕ: E(G[X]) → {red, blue} be a normal coloring to the sequence (v2, v4, v5, v1, v6, v7, v8, v3) if n = 8, or
the sequence (v2, v3, v4, v5, v1, v6, v7, v8, v9) if n = 9. Let ϕ′: E(G) → {red, blue} be the coloring obtained from ϕ by giving
the color ϕ(v1v6) to all edges in E(v1, Y ) and the remaining color to all edges in E(v2, Y ) and in E(v3, Y ). It is easy to see
that ϕ′ is a locally irregular 2-edge coloring for G, and hence (ii)b follows. Thus, we may consider 0 ≤ d3 ≤ d2 ≤ d1 < 4
and also d2 ≥ 1. Note that there are 16 combinations of values for d1, d2, and d3, which we divide in four cases. For each
of the first three cases, we obtain a normal coloring ϕ: E(G[X]) → {red, blue} to some sequence S of vertices, which we
describe below:

(1) if d1 = 3, then we have
(a) S = (v2, v4, v5, v1, v6 = w, v7, v8, v3) if n = 8, or
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Fig. 4. Each figure illustrates a locally irregular 2-edge coloring. We use a square to denote one or more vertices, for example, in (B) y1 could be
a single vertex, a pair of vertices, or a triple of vertices with the same neighborhood of y1 . In any possible configuration, the coloring presented in
(B) is locally irregular.

(b) S = (v3, v4, v5, v6, v1, v7 = w, v8, v9, v2) if n = 9.

(2) if d1 = d2 = 2, then we have

(a) S = (v4, v2, v5, v1, v6 = w, v7, v8, v3) if n = 8, or
(b) S = (v3, v4, v5, v6, v1, v7 = w, v8, v2, v9) if n = 9.

(3) if d1 = 2 and d2 = d3 = 1, then we have

(a) S = (v2, v3, v4, v1, v5 = w, v6, v7, v8) if n = 8, or
(b) S = (v4, v5, v6, v7, v1, v8 = w, v9, v2, v3) if n = 9.

hen we obtain ϕ′ from ϕ by giving the color ϕ(v1, v⌈n/2⌉+2) to all edges in E(v1, Y ) and in E(v2, Y ) and the remaining
olor to all edges in E(v3, Y ). It is not hard to see that ϕ′ is a locally irregular 2-edge coloring for G, and hence (ii)b follows
or the first three cases. The last case considers (i) d1 = 2, d2 = 1, and d3 = 0, (ii) d1 = d2 = d3 = 1, and (iii) d1 = d2 = 1
and d3 = 0. Figs. 4a and 4b show that χ ′

irr(G) = 2 for (i) and (ii), and hence (ii)c holds for these case. Fig. 4c shows that
χ ′

irr(G) = 2 for (iii) when n = 9 and hence (ii)d holds for this case. Also aided by a computer program, we verified that
χ ′

irr(G) = 3 for (iii) when n = 8, and thus (ii)e follows. □
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4. Concluding remarks

In their seminal work, Baudon, Bensmail, Przybyło, and Woźniak [1] characterized all decomposable graphs and posed
onjecture 1.2, which states that the irregular chromatic index of all decomposable graphs is at most 3. The current best
pper bound for the irregular chromatic index of an arbitrary graph is 220 due to Lužar, Przybyło, and Soták [9]. So far the
ist of graph classes for which Conjecture 1.2 has been confirmed is short: trees, complete graphs, regular bipartite graphs
ith minimum degree at least 3, and 16-edge-connected bipartite graphs. In this paper, we have added split graphs to
uch list. Moreover, we characterize the split graphs with irregular chromatic index 1, 2, and 3. To achieve these results,
e exhibit suitable canonical 2-edge colorings for the split graphs and then we show how to fix the color conflicts by
onstructing alternating cycles and inverting their colors.
We believe that the techniques developed in this work could be extended to verify Conjecture 1.2 for chordal graphs

or even perfect graphs). We remark that it is well-known that almost every chordal graph is a split graph (see [3]).
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