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Objetivos 

Aplica-se o Método do Lagrangiano Aumentado 
em problemas da Elasticidade Linear Clássica. 
Em especial, deseja-se obter o campo de 
deslocamento de um disco anisotrópico 
comprimido radialmente que minimiza a energia 
potencial total do disco sujeita a uma restrição 
de injetividade. Visa-se comparar os resultados 
obtidos pelo Método do Lagrangiano 
Aumentado com resultados da literatura obtidos 
pelo Método das Penalidades.  

Métodos e Procedimentos 

Considera-se o problema de minimização do 
potencial de energia da Elasticidade Linear 
Clássica sujeito à restrição de injetividade, o 
qual é dado por 

min
ℋ

ℰ[𝑢] =
1

2
∫ 𝐶[𝐸] ⋅ 𝐸 𝑑𝐴

𝐵
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𝜕𝐵

 

 
onde a região admissível ℋ é um espaço de 
funções que satisfazem a restrição de 
injetividade 𝑐(𝑢) = (1 + 𝑢′)(1 + 𝑢/𝜌) − 𝜀 ≥ 0. 
Na formulação acima, 𝜌 é o raio do disco, 𝐶[𝐸] 
fornece a tensão no disco, 𝐸 é o tensor 

deformação infinitesimal e 𝑝 é uma pressão 
uniforme aplicada no bordo do disco. Além 
disso, 𝑢 representa o campo de deslocamento 

do disco e 𝜀 é uma constante pequena maior do 
que zero. 
Empregou-se a formulação do Lagrangiano 
Aumentado, dada por (NOCEDAL,2006)  

𝐿𝑎(𝑢, 𝜇, 𝑟) = 𝐹(𝑢) + ∑𝜓(𝑐(𝑢), 𝜇, 𝑟) 
onde 
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−𝜇 𝑐(𝑢) +

𝑟

2
𝑐(𝑢)2,   𝑠𝑒 𝑐(𝑢) −

𝜇

𝑟
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−
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sendo 𝑐(𝑢) = (1 + 𝑢′)(1 + 𝑢/𝜌) − 𝜀 a restrição 
de injetividade do problema. 
Os parâmetros 𝜇 e 𝑟 representam, 
respectivamente, o vetor de Lagrange e o termo 
de penalidade. No caso em estudo, adotou-se 
que cada grau de liberdade da malha gerada 
apresentava um valor de 𝜇, sendo necessário 

aproximar esse vetor por 𝜇ℎ. Além disso, a 
função 𝐹(𝑢) representa a função objetivo 
original do problema, a qual é obtida do 
potencial de energia após discretização por 
elementos finitos. 
Sendo assim, considerando a Lei de Hooke 
Generalizada para um material ortotrópico em 
relação a um sistema de coordenadas 
cilíndricos e sabendo-se que o deslocamento do 
disco é radialmente simétrico, construiu-se a 
seguinte formulação discreta 

𝐿𝑎ℎ(𝑢ℎ, 𝜇ℎ, 𝑟) = 𝜋 ∫ ([𝜌 𝑐11 𝑢ℎ
′ 2

+ 2 𝑐12 𝑢′ 𝑢
𝜌𝑒

0

+ 𝑐22

𝑢2

𝜌
] + 2𝜌 𝜓(𝑢ℎ, 𝜇ℎ, 𝑟)) 𝑑𝜌

− 2𝜋 𝑢ℎ(𝜌𝑒) 𝑝 𝜌𝑒 

onde 𝜓(𝑢ℎ, 𝜇ℎ, 𝑟) foi dado acima. Os termos 

𝑢ℎ, 𝑢ℎ
′  𝑒 𝜇ℎ representam, respectivamente,  
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aproximações de 𝑢, 𝑢′ 𝑒 𝜇 obtidas pelo Método 
dos Elementos Finitos, sendo iguais a 

𝑢ℎ = 𝒔 ⋅ 𝒈    ;    𝑢′ℎ = 𝒔 ⋅ 𝒈′    ;    𝜇ℎ = 𝒘 ⋅ 𝒈 

onde 𝒔 = {𝑠1, 𝑠2, … , 𝑠𝑁} é o vetor que contém o 
valor do deslocamento radial em cada grau de 
liberdade, 𝒘 = {𝑤1, 𝑤2, … , 𝑤𝑁} o vetor que 
contém o valor do parâmetro de Lagrange em 
cada grau de liberdade, 𝒈 = {𝜙1, 𝜙2, … , 𝜙𝑁} 
representa o vetor das funções de forma 
lineares adotadas e 𝒈′ = {𝜙′1, 𝜙′2, … , 𝜙′𝑁} 
representa o vetor das derivadas dessas 
funções de forma as quais são constantes por 
partes. 
A busca de uma solução do problema de 
minimização com restrição consiste em resolver 
numericamente problemas de minimização sem 
restrição utilizando o Método de Newton-
Raphson. A convergência era verificada se a 
atualização de 𝜇ℎ fosse pequena o suficiente. 

Nesse caso, adotava-se 𝑢ℎ como solução do 
problema. Se não, atualizava-se o termo de 
penalidade e o vetor dos parâmetros de 
Lagrange e resolvia-se o problema irrestrito para 
os parâmetros atualizados. 
A formulação discreta foi implementada em um 
código C++ e utilizou-se a biblioteca de 
elementos finitos Deal.II (ARNDT et al.., 2020) 
para gerar os resultados numéricos. 

Resultados 

Utilizando os valores de 𝑐11 = 105, 𝑐12 = 𝑐22 =
103, 𝜌𝑒 = 1 e 𝑝 =  −500 (ROCHA, 2021), obteve-
se o gráfico da Figura 1, em que se mostra o 
deslocamento radial 𝑢 na ordenada da esquerda 

e o determinante do gradiente de deformação 𝐽 
na ordenada da direita versus o raio 𝜌 no 

intervalo (0,0.008) para malhas de 𝑁 elementos 
finitos. 

 
Figura 1: Deslocamento radial 𝑢 e  determinante 𝐽 vs 

𝜌 ∈ (0,0.008)  

Comparando o gráfico acima com os valores 
obtidos por Rocha (2021), observou-se uma 

concordância entre os resultados obtidos. É 
interessante notar que o campo de 
deslocamento obtido não cruza a reta 𝑢(𝜌) = 𝜌 
em nenhum ponto, ou seja, a solução 
encontrada nesse trabalho não apresenta 
intersecção de material no centro do disco como 
ocorre na Elasticidade Linear Clássica. 
Ademais, obteve-se o gráfico da Figura 2, que 
mostra o multiplicador de Lagrange 𝜇 versus o 
raio 𝜌 ∈ (0,0.008). Conforme esperado 
teoricamente, 𝜇 assume valores não nulos 
somente na região onde a restrição é ativa, ou 
seja, próximo ao centro. Além disso, 𝜇 tende ao 

infinito à medida que 𝜌 → 0. 

 
Figura 2: Multiplicador de Lagrange 𝜇 vs 𝜌 ∈

(0,0.008) 

Conclusões 

O Método do Lagrangiano Aumentado 
representa uma boa ferramenta na resolução de 
problemas de minimização da Elasticidade com 
restrição, apresentando resultados coerentes 
com valores obtidos por outros métodos, tal 
como o Método das Penalidades. Sendo assim, 
esse método apresenta grande potencial para a 
solução aproximada de problemas mais 
complexos. 
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