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Abstract

The accurate determination of the absolute energy scale in cosmic ray
measurements is both a challenging and fundamentally important task. We
present how measurements of radio pulses from extensive air
showers with the Auger Engineering Radio Array, combined with per-event
simulations of radio emission using the CoREAS extension of CORSIKA, allow us
to determine the energy scale of cosmic rays between  eV and
several  eV.
Our analysis accounts for many factors, each of which is controlled on the 5%
level or better. The absolute calibration of the antennas and the entire
analog signal chain builds on a Galactic calibration in combination with a
detailed understanding of the antenna-gain patterns. Additional key elements
include compensation for temperature-dependent signal amplification,
continuous detector health monitoring, an active veto for thunderstorm
conditions, an unbiased event reconstruction, and per-event atmospheric
modeling in the simulations. The analysis benefits from a high-statistics
dataset of over 800 measured cosmic ray showers.
We describe our analysis method, perform multiple cross-checks, and evaluate
systematic uncertainties. We find that absolute energies determined with AERA are 12% higher
than those established with the Auger Fluorescence Detector, a result well in
agreement within systematic uncertainties and thus a strong independent confirmation
of the absolute energy scale of the Pierre Auger Observatory.
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The accurate determination of the absolute energy scale in cosmic ray measurements is both a
challenging and fundamentally important task. We present how measurements of radio pulses
from extensive air showers with the Auger Engineering Radio Array, combined with per-event
simulations of radio emission using the CoREAS extension of CORSIKA, allow us to determine
the energy scale of cosmic rays between 3 · 1017 eV and several 1018 eV. Our analysis accounts
for many factors, each of which is controlled on the 5% level or better. The absolute calibration
of the antennas and the entire analog signal chain builds on a Galactic calibration in combina-
tion with a detailed understanding of the antenna-gain patterns. Additional key elements include
compensation for temperature-dependent signal amplification, continuous detector health moni-
toring, an active veto for thunderstorm conditions, an unbiased event reconstruction, and per-event
atmospheric modeling in the simulations. The analysis benefits from a high-statistics dataset
of over 800 measured cosmic ray showers. We describe our analysis method, perform multiple
cross-checks, and evaluate systematic uncertainties. We find that absolute energies determined
with AERA are 12% higher than those established with the Auger Fluorescence Detector, a result
well in agreement within systematic uncertainties and thus a strong independent confirmation of
the absolute energy scale of the Pierre Auger Observatory.
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1. Introduction

A major challenge in the measurement of ultra-high-energy cosmic rays through air showers
is the accurate determination of the absolute energy scale of the measured particles. At the
Pierre Auger Observatory, the energy scale is determined with the Fluorescence Detector (FD).
This approach avoids relying on simulations suffering from uncertainties in hadronic interaction
models. In short, a well-calibrated measurement of the fluorescence light, directly proportional
to the energy deposited by the air-shower particles in the atmosphere, is combined with precision
atmospheric monitoring to determine the calorimetric energy of individual air showers and then use
this measurement to cross-calibrate the measurements with the water-Cherenkov detectors of the
Surface Detector (SD) [1]. The FD energy scale underlying this work is the one underlying our most
recent energy spectrum [2], with the difference that here it is applied to the SD-750 array instead of
the SD-1500 array. It reflects minor improvements over the most recent published SD-750 energy
spectrum [3].

With the availability of radio antennas in the form of the Auger Engineering Radio Array
(AERA), consisting of 153 autonomous detector stations covering an area of 17 km2 and measuring
signals in the 30–80MHz band [4], an independent possibility arises to determine and validate
the energy scale of the observatory. Fundamentally, the approach is similar to the one based on
the FD, as also the total radiation energy emitted by an air shower1, after applying well-known
density corrections, is a calorimetric measurement of the energy in the electromagnetic cascade
[5]. A well-calibrated radio detector and knowledge of the expected radiation energy for a given
electromagnetic energy, either from first-principles microscopic Monte-Carlo simulations or from
laboratory measurements, can then provide an independent measure of the energy scale of the
observatory [6]. In the following, we describe how we establish the energy scale of cosmic-ray
measurements from radio signals in the energy range of 3 ·1017 to several 1018 eVwith a high-quality
data set of air showers measured with AERA and simulated with the CoREAS [7] code.

2. Determination of the energy scale with AERA

The logic of the analysis is shown in Fig. 1. For an air shower measured with the SD, we
reconstruct the shower energy SD, the absolute scale of which has previously been established
with the FD. This energy, also called cosmic-ray energy, estimates the total energy in the air shower,
including contributions which are visible neither to the FD nor to radio antennas. The so-called
invisible energy has previously been determined in a data-driven way as a function of cosmic-ray
energy [8]. After subtracting the invisible energy from the shower energy, we have an estimate of
the calorimetric energy, i.e., the total energy deposited in the atmosphere by the electromagnetic
cascade, on the energy scale set by the FD. Using the air-shower geometry and this calorimetric
energy estimate from the SD, we then set up a CORSIKA [9] simulation of the corresponding
air shower, along with radio-emission simulations with the CoREAS [7] extension, such that the
resulting simulated shower will have the target calorimetric energy.

In a final step, we reconstruct the radiation energy measured with AERA [10] for both the
measured shower (which is on the radio energy scale) as well as for the simulated shower (which is

1The total energy radiated in the form of radio waves, in the case of AERA in the 30–80MHz band.
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Figure 1: Logic for event-by-event comparison of measured and simulated air showers, determining the
agreement between the FD and radio energy scales. Observables depicted in red are on the FD energy scale.
The orange and green colors represent SD and radio measurements, respectively.

on the FD energy scale, as the input energy for the simulation is based ultimately on the FD energy
scale). The ratio of the reconstructed radiation energies reconstructed from the measurements and
simulations then determines the ratio between the radio energy scale and the FD energy scale.

While the logic of this analysis is seemingly simple, the challenge lies in the fact that systematic
uncertainties on all involved detectors and their corresponding event reconstructions need to be
understood on a 5% level or better to provide a result with the desired accuracy. In terms of the
absolute calibration of AERA, this requires in particular knowledge of the frequency-dependent
antenna-gain patterns of the used LPDA and butterfly antennas [4] (known to within 5%) and the
absolute calibration of the radio measurements from a comparison of the Galactic radio emission
(known at a level of 6%) with the measured radio emission over full local sidereal days [11, 12].
The AERA event reconstruction [10] of the radiation energy has previously been demonstrated to
be bias-free irrespective of the type of primary particle. The signal processing with the Offline
analysis framework [13] is carried out in the exact same way on simulations and data, so that any
minor biases possibly arising from analysis steps such as bandpass filtering or signal cleaning affect
data and simulations in the same way and thus cancel out in the final ratio.

3. Event selection and simulation production

We begin with a data set of 3,245 air showers measured in the period from 2014 to 2020 with
the 750m array of the SD, passing standard SD quality cuts, having their cores contained within the

3
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geometrical area of the AERA stations capable of accepting an SD trigger, and having reconstructed
SD energies of at least 3 · 1017 eV, thus ensuring full detection efficiency of the SD. Exclusion of
confirmed thunderstorm periods [14] or periods with no data on thunderstorm activity reduces the
data set to 3,015 air showers. For these 3,015 events, we perform a reconstruction of the radiation
energy rad from the data of the AERA stations that are able to receive an external trigger from
the SD and were fully functional at the time of measurement. The main criterion that 5 AERA
stations had a signal amplitude a factor of

√
10 above the noise-RMS reduces the data set to 1,096

air showers. Requiring some quality cuts on reconstructed uncertainties results in a data set of 902
air showers with a valid rad reconstruction. Applying further cuts to ensure high data quality as
listed in the upper half of Tab. 1 results in a data set of 844 air showers on which the remainder of
the analysis builds.

For each of these 844 air showers we prepare one CoREAS simulation each with a proton and an
iron primary according to the logic described above. The chosen interaction models are Sybill 2.3d
and UrQMD.We note, however, that our result does not depend on the choice of hadronic interaction
model as the radio emission is purely sensitive to the electromagnetic cascade of the air shower and
we subtract the invisible energy of the chosen hadronic interacion model in a self-consistent way.
For the simulations, we adopt a per-event atmospheric density and refractivity gradient [15] derived
from the Global Data Assimilation System (GDAS). Furthermore, particle thinning at the 10−6

level with optimized weight limitation and a fine-grained treatment of multiple scattering (STEPFC
parameter of 0.05) [16] ensure absolute signal predictions with the highest-possible accuracy. The
simulated radio signals are then fed through a detailed detector simulation with the Offline analysis
framework [13], including the addition of measured background noise taken at a given antenna
station within 10 minutes of the measured event, before being reconstructed in the exact same way
as the data.

As expected, not all simulations pass the rad reconstruction, since AERA is not fully efficient
at the lower end of this energy range. In particular, deep low-energy showersmight not illuminate the
required 5 AERA stations with sufficient signal strength. The survival probability for iron-induced
showers is higher than that of proton showers. The AERA data set will thus no longer be unbiased.
As the radio emission is only associated with the electromagnetic energy, this is not a critical
problem, in a similar way that the chosen hadronic interaction model does not influence the result
of the analysis. However, this potential shift towards a heavier mass composition could introduce
second-order effects on the mean of the reconstructed SD energies, which we have estimated from
simulations to be less than 2.4%, and which we thus account for with a corresponding systematic
uncertainty. The same additional quality cuts previously applied to the measured data and listed in
Tab. 1 reduce the total number of usable simulations to 537 and 674 for proton- and iron-induced
air showers, respectively. The distributions of SD, arrival azimuth angle and arrival zenith angle
for the 844 selected events as well as the surviving simulations for proton and iron primaries are
shown in Fig. 2.

We note that during the complete development of the analysis (concerning the choice of cuts,
optimization of the event reconstruction, etc.), we applied an unknown, global “blinding factor”
to the measured radiation energies, as to not unconsciously influence the result in a “favorable”
direction. This blinding factor was only lifted after the analysis was completely defined.
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Figure 2: Left: Distribution of the logarithmic SD-reconstructed energies of the quality event set of 844
air showers and the proton and iron simulation sets after reconstruction and quality cuts. Middle and
Right: Distributions of the azimuth angle, counter-clockwise from geographic East, and the zenith angle, as
reconstructed with the SD for the same data and simulation sets.

Table 1: Quality selection cuts for the event set. Survival fractions relate to the previous selection step.
2/ndf refers to the quality of the LDF fit,  is the geomagnetic angle.

Cut or requirement events Survival fraction
After SD cuts & base cuts (see text) 902
Additional radio cuts on data

No saturated stations within 500m 873 96.8%
2/df < 10 854 97.8%
 > 20◦ 844 98.8%

Radio cuts on simulations
stations,signal ≥ 5 549 / 684 65.0% / 81.0%
rad reconstructed 542 / 678 98.7% / 99.1%
rad reconstructed 538 / 677 99.3% / 99.9%
Radio core reconstructed 538 / 676 100.0% / 99.9%
No saturated stations within 500m 538 / 676 100.0% / 100.0%
2/ndf < 10 537 / 676 99.8% / 100.0%
 > 20◦ 537 / 674 100.0% / 99.7%

4. Results on the energy scale

In Fig. 3, we present histograms of the ratios of radiation energies for measured and simulated
events, once for the proton and once for the iron simulations. The square root of the ratio is
taken because the radiation energy scales with the square of the electromagnetic energy due to
the coherent nature of the radio emission. We bin in log10 of the ratios rather than simple ratios,
thereby ensuring symmetry between ratios smaller and larger than unity. The linear scale factors
resulting from the means of the shown distributions for proton and iron simulations are indicated
at the top axes of the diagrams. The two scale factor are compatible within statistical uncertainties
– as expected, there is no systematic difference induced by the type of primary particle. Averaging
the two mean values and afterwards compensating for the log10 operation yields that

Radio energy scale
FD energy scale

= 1.120 +0.009
−0.008 (stat), (1)
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Figure 3: Distribution of the logarithm of the square root ratios of the reconstructed radiation energies for
measured events with the two simulation sets. Left: result for proton simulations, Right: result for iron
simulations. The resulting mean scale factors are indicated on the top axes.

where the quoted ∼ 0.8% uncertainty refers to statistical uncertainties only. This result signifies
that the energy scale determined from radio data is 12% higher than the FD energy scale. In other
words: A 1018 eV air shower measured on the FD energy scale has an energy of 1.12 · 1018 eV on
the energy scale determined from radio data.

We have stratified our data in many different ways to check for potential correlations with
arrival direction, core position, ambient temperature, year of data taking, number of signal stations
and SD-reconstructed shower energy. None of the tests showed any significant correlations. In Fig.
4, we show the log10 of the square root ratios as a function of time (left) and SD (right). The fact
that there is no time-evolution confirms that the radio measurement is not suffering from detector
ageing [12]. The fact that the scale factor remains constant over a decade in energy means that there
is no slope between the FD and radio energy scales, another important and non-trivial result.

Figure 4: Left: Evolution of the mean of the logarithmic square root ratio of radiation energies across the
years covered by the event set, for proton simulations. Right: Dependence of the mean logarithmic square
root ratio of radiation energies on the SD-reconstructed shower energy.

5. Systematic uncertainties

We have performed an in-depth investigation of systematic uncertainties affecting the result,
listed in Tab. 2. Of the experimental uncertainties, the most important ones are the accuracy of the
Galactic calibration arising from performing the calibration with a total of 7 available sky models,
interpreting the spread of the resulting calibration constants as a systematic uncertainty amounting
to 6.1%. Uncertainties still remaining in our understanding of the antenna response pattern, in
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particular for the butterfly antennas, add an additional 5%. Drone-based calibration campaigns are
ongoing and have the potential to lower this uncertainty in the future. The systematic uncertainty
resulting from a potential bias of the mass composition towards heavier elements due to inefficiency
of AERA in detecting deep showers is conservatively estimated to 2.4%. All other investigated
uncertainties are negligible in comparison.

Of the uncertainties related to predicting the absolute strength of the radio emission, the
dominant one with 5.0% is the “radio emission yield”, i.e., the relation between the absolute radio-
emission strength and the energy in the underlying electromagnetic cascade. This value results
from in-depth comparisons of independent implementations of both the simulations of extensive
air showers and their associated radio emission with first-principle classical electrodynamics within
CORSIKA 7, ZHAireS, CORSIKA 8 [16, 17] and with the “endpoints” and ZHS formalisms [17].
In terms of experimental verification, the only measurement available so far is that of the SLAC
T-510 experiment, which showed agreement between measured and simulated signals on the level
of 5% with a systematic uncertainty of ∼ 10% [18]. Again, other systematic uncertainties related
to the signal prediction are negligible.

If one accepts the spread on the radio-emission between differentmicroscopic simulations as the
systematic uncertainty on the “radio emission yield”, the total systematic uncertainty on the energy
scale determined from AERA amounts to 10.2%. Taking a more conservative approach based on
the SLAC T-510 measurement results in a total systematic uncertainty of 13.4%. The systematic
uncertainty of the FD energy scale amounts to 14%. Statistical uncertainties amount to 0.8% and
are thus negligible in comparison with systematic uncertainties. Assuming the uncertainties of the
FD and AERA-determined energy scales to be uncorrelated and thus summing them in quadrature,
for the case of the simulations-based radio-emission yield uncertainty, thus results in

Radio energy scale
FD energy scale

= 1.120 ± 0.173 (sys) +0.009−0.008 (stat). (2)

The energy scales determined from the FD and AERA are thus well in agreement within systematic
uncertainties.

6. Conclusions

We have used a high-quality data set of 844 air showers measured with AERA in the energy
range from 3 · 1017 eV to several 1018 eV in comparison with simulations of the same air showers
using the CoREAS code to independently determine the absolute energy scale of cosmic-ray
measurements at the Pierre Auger Observatory using radio signals. Particular care has been taken
in crafting an analysis that does not suffer from biases and in which all individual systematic
uncertainties are under control at the 5% level. The analysis was developed using a blinded data
set to avoid subconscious influence on the analysis and the choice of selection cuts. The end
result is that the energy scale determined from AERA is 12% higher than the one from the FD, a
constant factor over the investigated energy range and the period from 2014 to 2020. The systematic
uncertainty on the energy scale determined from radio data amounts to 10.2% when building
on the “radio emission yield” uncertainty estimated from simulations, or 13.4% when relying on
the measurement uncertainty reported by the SLAC T-510 experiment. The energy scale derived

7
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Table 2: Summary of uncertainties on the radio energy scale.

Source of uncertainty Size
Experimental uncertainties 8.8 %

Galactic calibration 6.1 %
Antenna response pattern 5 %
LDF model 0.5 %
Atmosphere <1.25 %
Ground conditions <1.8 %
Quiet sun 0.5 %
Simulation primary bias 1.9 %
Mass composition bias w.r.t. Auger mix 2.4 %

Theoretical uncertainties 5.1 % / ∼10.1 %
Radio emission yield 5.0 % / ∼10 %
Choice of hadronic interaction model 0.13 %
Thinning <0.15 %
Energy thresholds of shower particles <0.5 %

Stat. unc. of energy scale comparison 0.8 %
Total absolute scale uncertainty Stat.: 0.8 % Syst.: 10.2 % / ∼13.4 %

from AERA is well in agreement with the Auger energy scale determined from measurements
with the Fluorescence Detector, a strong and independent confirmation of the FD energy scale
within systematic uncertainties. In the future, we will use the Auger Radio Detector covering the
full 3,000 km2 of the observatory to also independently determine the energy scale at the highest
energies from radio measurements.
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