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Abstract. We study non-standard Verma type modules over the Kac–Moody queer
Lie superalgebra q(n)(2). We give a sufficient condition under which such modules are
irreducible. We also give a classification of all irreducible diagonal Z-graded modules over
certain Heisenberg Lie superalgebras contained in q(n)(2).

Introduction

Kac–Moody algebras and their representations play a very important role in
many areas of mathematics and physics. The “super” version of these algebras was
introduced in [Kac77]. Affine Kac–Moody superalgebras are those of finite growth.
Affine symmetrizable superalgebras were described in [Ser11] and [vdL89]. Theory
of Verma type modules for affine Lie superalgebras was developed in [ERF09] and

[CF18]. In particular, given a Borel subsuperalgebra b̂ of the affine Lie superalgebra

ĝ and a 1-dimensional representation Cλ of b̂ for some weight λ of the Cartan
subalgebra of ĝ, one can construct the Verma type module

Mb̂(λ) := Indĝ

b̂
Cλ.

This module admits a unique maximal proper submodule, and thus, a unique
simple quotient. The Verma type module is non-standard if b̂ does not contain
all positive root subspaces for some basis of the root system of ĝ. In the case in
which the finite-dimensional Lie superalgebra associated to ĝ is a contragredient
Lie superalgebra, all Borel subsuperalgebras of ĝ were described in [CF18], see
also [DFG09]. The paper [CF18] also gives a criterion for the irreducibility for
non-standard Verma type module.

Non-symmetrizable affine Lie superalgebras were classified in [HS07]. In parti-
cular, this classification includes a degenerate family of affine Lie superalgebras,
series q(n)(2). These superalgebras are twisted affinizations of queer Lie superal-
gebras q(n). Structure of Verma modules (= standard Verma type modules) over
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the twisted affine superalgebra q(n)(2) with n ≥ 3 was studied in [GS08]. The
current paper advances the theory of Verma type modules for the affine queer Lie
superalgebra. We establish sufficient conditions for the irreducibility of all non-
standard Verma type modules (Theorem 9 and Theorem 15). We also consider
modules induced from analogs of Heisenberg subsuperalgebra and give a criterion
of their irreducibility (Theorem 7, Corollary 16).

Acknowledgments. The second author is grateful to the University of California
Berkeley for hospitality. The authors are very grateful to Vera Serganova for very
stimulating discussions.

Notation. The ground field is C. All vector spaces, algebras, and tensor products
are considered to be over C, unless otherwise stated. For a vector space V we denote
by Λ(V ) its Grassmann algebra (i.e., its exterior algebra). For any Lie superalgebra
a we let U(a) denote its universal enveloping algebra.

1. Preliminaries

Let q = q(n) for n ≥ 3, be the queer Lie superalgebra, that is,

q :=

{(
A B
B A

) ∣∣∣ A ∈ gl(n+ 1), B ∈ sl(n+ 1)

}
.

Let q0 and q1 be the even and odd parts of q, respectively. Choose a Cartan
subalgebra hq = h0 ⊕ h1 of q (i.e., h0 a Cartan subalgebra of q0) and let q =
hq ⊕

(⊕
α∈∆̇ qα

)
be the root space decomposition of q, where qα denotes the root

space associated to the root α ∈ ∆̇ ⊆ h∗0. Recall that every root of ∆̇ is both even
and odd, meaning that, for any α ∈ ∆̇, qα ∩ qi 6= 0, for i = 0, 1. Recall also that
∆̇ = ∆̇0 = ∆̇1 = {εi − εj | i 6= j}.

Although neither q nor its affinization q(1) are Kac–Moody Lie superalgebras,
i.e., admit a set of simple generators, after a twist of q(1) by an involution we
obtain a regular quasisimple Kac–Moody superalgebra ĝ := q(2) (see [Ser11]). As
a super vector space we have that

ĝ = L(sl(n))⊕CK⊕CD, ĝ0 = sl(n)⊗C[t±2]⊕CK⊕CD, and ĝ1 = sl(n)⊗tC[t±2],

where for any Lie superalgebra k, L(k) := k ⊗ C[t1, t−1] is its associated loop
superalgebra, K is a central element, and, for all x(k) := x⊗ tk ∈ L(k) with x ∈ k
and k ∈ Z, we have [D,x(k)] = kx(k). Let g = sl(n). Then for any x, y ∈ g, the
bracket of ĝ is given as follows:

[x(k), y(m)] = (xy − yx)(k +m),

if km is even; and if we define

ι : gl(n)→ sl(n), x 7→ x− tr(x)

n
In

where In is the n× n identity matrix, then

[x(k), y(m)] = ι(xy + yx)(k +m) + 2δ−k,m tr(xy)K,
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if km is odd. Notice that K does not lie in [ĝ0, ĝ], but it lies in [ĝ1, ĝ1]. For
convenience we set

(xy − yx) := [x, y]0, and ι(xy + yx) := [x, y]1.

Hence, in this notation we have that

[x(k), y(m)] = [x, y]0(k +m), and [x(k), y(m)] = [x, y]1(k +m) + 2δ−k,m tr(xy)K,

if km is even/odd, respectively.

Remark 1. Notice that if we assume m ∈ 2Z, then the bracket between any two
elements x(m), y(k) ∈ L(g) reduces to the bracket in the loop Lie algebra L(g).

Fix a Cartan subalgebra of ĝ

ĥ := h⊗ 1⊕ CK ⊕ CD

where h is the Cartan subalgebra of diagonal matrices in g, and for each α ∈ ∆̇,
choose fα ∈ g−α, eα ∈ gα and hα ∈ h such that [fα, eα]0 = hα.

Notice that, for gεi−εj ∈ gεi−εj , we have

[h, gεi−εj ]1 = (εi + εj)(h)gεi−εj , for all h.

For simplicity, if α = εi − εj , then we set ᾱ := εi + εj . Thus, in this notation, we
have that

[h, gα]1 = ᾱ(h)gα, for all h ∈ h.

Moreover, if αi 6= −αj , then

[eαi , fαj ]1 = gαi+αj ,

where gαi+αj = 0 if αi + αj /∈ ∆̇, gαi+αj = fαi+αj if αi + αj ∈ ∆̇− and gαi+αj =

eαi+αj if αi + αj ∈ ∆̇+. Finally, for α = εi − εj we have

[eα, fα]1 = ι(h′α),

where h′α = Ei,i + Ej,j .
If we identify K with (1/n)In, then h⊗1⊕CK can be identified with the Cartan

subalgebra of diagonal matrices of gl(n). Let H1, . . . ,Hn denote the standard basis

of it (i.e., Hi = Eii). The root system of ĝ with respect to ĥ is given by ∆ =
{α + kδ, mδ | α ∈ ∆̇, k ∈ Z, m ∈ Z \ {0}}. Moreover, p(α + kδ) = p(k) and
p(mδ) = p(m), where p(k) denotes the parity of k, and by abuse of notation we
are denoting the parity of a root β also by p(β). Finally, for a subalgebra a ⊆ ĝ we
set

∆(a) := {α ∈ ∆ | ĝα ⊆ a}.

Consider the subalgebra Ĥ = Ĥ0 ⊕ Ĥ1 generated by the imaginary root spaces
of ĝ. Then

Ĥ0 =
∑
r∈Z

h⊗ t2r ⊕ CK, Ĥ1 =
∑
r∈Z

h⊗ t2r+1.

Notice that the center of Ĥ equals Ĥ0, the odd part Ĥ1 is spanned by {(Hi −
Hi+1)(2r + 1) | r ∈ Z} and the relations in Ĥ1 are given by
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[x(2r + 1), y(−2r − 1)] = 2xy, [x(2r + 1), y(2s+ 1)] = ι(2xy)(2(r + s+ 1))

for r + s + 1 6= 0. In particular, differently from the case of basic classical Lie
superalgebras, the subalgebra Ĥ is not isomorphic to a Heisenberg algebra.

2. Generalized Verma type modules

Since the root system ∆ of ĝ is the same as that of ŝl(n), the sets of positive
roots of ∆ are obtained in the same way: fix Π ⊆ ∆̇ a set of simple roots, pick a
subset X ⊆ Π, and let W denote the Weyl group of ŝl(n). Let ∆̇+ = 〈Π〉Z>0

∩ ∆̇,

∆̇(X)+ = 〈X〉Z>0
∩ ∆̇, and ∆̇(X) = 〈X〉Z ∩ ∆̇. Associated to X we define

∆(X)+ := {α+ kδ | α ∈ ∆̇+ \ ∆̇(X)+, k ∈ Z}
∪ {α+ kδ | α ∈ ∆̇(X) ∪ {0}, k ∈ Z>0} ∪ ∆̇(X)+.

Then ∆(X)+ is a set of positive roots of ∆, and up to W × {±1}-conjugation,
every set of positive roots is of this form for some set of simple roots Π and some
subset X ⊆ Π.

Consider the following subalgebras associated to X:

m(X) := m(X)− ⊕ h⊕m(X)+, m(X)± :=
⊕

α∈∆̇(X)±

gα,

u(X)± :=
⊕

α∈∆̇±\∆̇(X)±

gα.

Thus

g = u(X)− ⊕m(X)⊕ u(X)+ and ĝ = L(u(X)−)⊕ m̂(X)⊕ L(u(X)+),

where m̂(X) = L(m(X))⊕ CK ⊕ CD.
Consider now the subalgebra

k(X) := m(X)− ⊕ hX ⊕m(X)+, where hX :=
⊕

α∈∆̇(X)+

[g−α, gα].

Then m(X) = k(X) ⊕ hX , where hX := {h ∈ h | α(h) = 0, ∀α ∈ ∆̇(X)} is the
center of m(X). Set

k̂(X) := L(k(X))⊕ CK ⊕ CD ⊕ hX

with standard triangular decomposition

k̂(X) = k̂(X)− ⊕ ĥ⊕ k̂(X)+, k̂(X)± = (k(X)⊗ t±1C[t±1])⊕m(X)±.

In particular, we have that

m̂(X) = hX ⊗ t−1C[t−1]⊕ (̂k(X)− ⊕ ĥ⊕ k̂(X)+)⊕ hX ⊗ tC[t]

and

ĝ = (L(u(X)−)⊕hX ⊗ t−1C[t−1])⊕ k̂(X)−⊕ ĥ⊕ k̂(X)+⊕ (hX ⊗ tC[t]⊕L(u(X)+)).
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Remark 2.
(1) Differently from the case of basic classical Lie superalgebras (this includes

all simple Lie algebras), the imaginary subalgebra

H(X) := (hX ⊗ t−1C[t−1])⊕ (hX ⊕ CK)⊕ (hX ⊗ tC[t])

is not a Heisenberg algebra. Another difference (from the Lie algebra case) is that

we do not have that [H(X), k̂(X)] = 0. In fact,

[H0(X), k̂(X)] = [H(X), k̂(X)0] = 0, but [H1(X), k̂(X)1] 6= 0.

Compare also with the isotropic case of [CF18].
(2) Heisenberg algebras admit a family of triangular decompositions paramet-

rized by maps ϕ : N → {±}d, where d is a certain dimension. It is worth noting
that the algebra H(X) does not admit such decompositions, except the trivial ones
(i.e., when ϕ(i) = (+, . . . ,+) for all i ∈ N, or ϕ(i) = (−, . . . ,−) for all i ∈ N).

Consider the triangular decomposition of H(X)

H(X) = H(X)− ⊕ (hX ⊕ CK)⊕H(X)+,

where
H(X)± := hX ⊗ t±1C[t±1],

and define H(X)±i := H(X)i ∩ H(X)±, for i ∈ Z2. Then we have a commutative
algebra

S(X) := U(H(X)−0 ),

and we let S(X)+ denote the augmentation ideal of S(X).
Consider the triangular decompositions

m̂(X) = m̂(X)− ⊕ ĥ⊕ m̂(X)+, where m̂(X)± = H(X)± ⊕ k̂(X)±

and

ĝ = ĝ(X)− ⊕ ĥ⊕ ĝ(X)+, where ĝ(X)± = L(u(X)±)⊕ m̂(X)±.

Fix the subalgebra b̂(X) := ĥ⊕ĝ(X)+ of ĝ. Notice that ĝ(X)+∩m̂(X) = m̂(X)+,

ĝ(X)+ ∩ k̂(X) = k̂(X)+, and ĝ(X)+ ∩ H(X) = H(X)+. In what follows, we fix a
set X ⊆ Π and we drop the X from the notation above (for instance, we write m̂+

instead of writing m̂(X)+).

Let λ ∈ ĥ∗, ŝ ∈ {ĝ, m̂, k̂,H}, and r̂ = ŝ ∩ b̂. Then we define the Verma ŝ-module

M(ŝ, λ) := U(ŝ)⊗U(̂r) Cvλ,

where Cvλ is the r̂-module whose action of ĥ is determined by λ and the action of
the nilpotent radical of r̂ is trivial. The unique irreducible quotient of M(ŝ, λ) will
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be denoted L(ŝ, λ). Also, for ŝ, r̂ such that either r̂ = k̂ and ŝ = m̂, or r̂ = m̂ and
ŝ = ĝ, and an r̂-module N we define the module

M(ŝ, r̂;N) := U(ŝ)⊗U(̂r) N,

where H(X)+ is assumed to act trivially on N if r̂ = k̂ and ŝ = m̂, and L(u+) is
assumed to act trivially on N if r̂ = m̂ and ŝ = ĝ. Notice that

M(ĝ, λ) ∼= M(ĝ, m̂;M(m̂, λ)) and M(m̂, λ) ∼= M(m̂, k̂;M (̂k, λ)).

Using the terminology of [Fut97], the module M(ĝ, m̂;N) is called a generalized
Verma type module, or a generalized Imaginary Verma module. When N is an
irreducible weight r̂-module, M(ŝ, r̂;N) admits a unique irreducible quotient which
will be denoted by L(ŝ, r̂;N).

3. Irreducible H-modules

Consider the triangular decomposition

H = H− ⊕ CK ⊕H+.

Then we have the following character formula

ch M(H, λ) = eλ
∏

α∈∆(H−)0

(1− e−α)−1
∏

α∈∆(H−)1

(1 + e−α).

Notice that the subalgebra S lies in the center of U(H) and acts freely on
M(H, λ). Then any ideal J of S defines the H-submodule JM(H, λ) of M(H, λ).
On the other direction, for any H-submodule N ⊆M(H, λ) we define an ideal JN
of S by requiring the equality:

N ∩ Svλ = JNvλ.

In other words, JN = {a ∈ S | avλ ∈ N}.
Let DX

δ be the matrix determined by the pairing

(hX ⊗ Ct)× (hX ⊗ Ct−1)→ ĥ, (x, y) 7→ [x, y],

and consider detDX
δ as an element of the symmetric algebra S(ĥ).

Example 1. If n = 3 and X = {ε1 − ε2}, then hX = Ch1, where h1 = H1 +
H2 − 2H3. In particular, detDX

δ = 2(H1 +H2 − 2H3)2. If X = ∅ and n ≥ 3, then
hX = h, and detDX

δ = 2n−1H1 · · ·Hn(1/H1 + · · ·+ 1/Hn) (see [GS08]).

Proposition 1. The H-module M(H, λ) is reducible. If detDX
δ (λ) 6= 0, then

there is a bijection between submodules of M(H, λ) and ideals of S. In particular,
L(H, λ) ∼= Λ(H−1 ) as vector spaces.
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Proof. The fact that H−0 is in the center of H implies that any ideal J of S defines
a submodule of M(H, λ), namely, JM(H, λ). Thus the first statement follows.

Now, if we assume detDX
δ (λ) 6= 0, then we can use similar arguments to those

of [GS08, Proposition 3] to prove that there is a bijection between ideals of S and
submodules of M(H, λ). Namely, let M = M(H, λ), and let N be a submodule of
M . We claim that N = JNM . Indeed, let jm ∈ JNM . Then, writing m = uvλ
with u ∈ U(H−), we get that

jm = juvλ = ujvλ ∈ uN ⊆ N.

Thus JNM ⊆ N . In order to prove the other inclusion, we consider the canonical
projection π : M → V := M/JNM , W = π(N), and R = S/JN . Notice that V is
free as an R-module, and that W ∩ Rvλ = π(N ∩ Svλ) = π(JNvλ) = 0. Now we
suppose that W 6= 0 to get a contradiction.

Let h1, . . . , ht be any fixed basis of hX , and set Xi,m := hi(m), and Yi,m :=
hi(−m). Recall from the commutation relations ofH that [Xi,m, Yk,m]=[Xi,0, Yk,0],
and since we are assuming that detDX

δ (λ) 6= 0, we may consider that the basis
elements h1, . . . , ht were chosen so that λ([Xi,j , Yk,j ]) = δi,k. Notice that the
elements Xi,j for i = 1, . . . , r and m ≥ 0 form a basis for H−1 . In particular, if we let
Xi,m ≥ Xk,n if m ≥ n or m = n and i ≥ k, then the monomials Xi1,m1

· · ·Xis,ms

with Xi1,m1
> · · · > Xis,ms form a basis B of V over R.

Since we are assuming W 6= 0, and since W ∩Rvλ = 0, we can choose a nonzero
v ∈ W such that the maximal Xi,m that occurs in the expression of v as a linear
combination of elements of B is minimal among all nonzero vectors of W . Now we
write v = Xi,mw+ u for nonzero w and u such that all factors occurring in w and
u are less than Xi,m. Thus

Yi,mu = Yi,mw = 0 and Yi,mv = w,

as [Xi,m, Yi,m] is in the center of H and it acts as λ([Xi,m, Yk,m]) = 1 on vλ. But
this implies 0 6= w ∈ W , and all factors occurring in w are less than Xi,m, which
is a contradiction. �

Corollary 2. Suppose that detDX
δ (λ) 6= 0. Then we have the character formula

ch L(H, λ) = ch Λ(H−1 ) = eλ
∏

α∈∆(H−)1

(1 + e−α).

Proof. This follows from the isomorphism of vector spaces L(H, λ) ∼= Λ(H−1 ). �

1. Modules for Heisenberg Lie superalgebra

In this section we consider the special case where X = ∅, and, in particular,
hX = h and H = H(X) = L(h)⊕ CK.

Define
H′0 :=

⊕
r∈Z

h⊗ t2r.

It is clear that H′0 is an ideal of H, and K /∈ H′0. Define

H̃ := H/H′0.
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Lemma 3. Let π : H → H̃ be the canonical projection. Then there exists a basis
{h1, . . . , hn−1} of h such that π(hihj) = δijK.

Proof. The set {H1 + · · · + Hi − iHi+1 | 1 ≤ i ≤ n − 1} is a basis of h such that
HiHj ∈ h if and only if i 6= j. Then a suitable normalization of this basis gives
the required one. �

Now we have the following result:

Proposition 4. H̃ is an infinite-dimensional Heisenberg Lie superalgebra such
that

H̃ ∼= CK ⊕
⊕
r∈Z

h⊗ t2r+1

as vector spaces, where [h⊗t2r+1, h′⊗t−2r−1] is a multiple of K and [h⊗t2r+1, h′⊗
t2s+1] = 0 for all h, h′ ∈ h and all integer r, s with r + s+ 1 6= 0.

Fix a basis h1, . . . , hn−1 of h as in Lemma 3, and let ϕ : N→ {±}n−1 be a map

of sets. Then ϕ induces a triangular decomposition on H̃:

H̃ = H̃−ϕ ⊕ CK ⊕ H̃+
ϕ ,

where

H̃±ϕ =

 ⊕
n∈N, 1≤i≤t,
ϕ(n)i=±

Chi ⊗ t2n+1

⊕
 ⊕
m∈N, 1≤i≤t,
ϕ(m)i=∓

Chi ⊗ t−(2m+1)

 ,

and ϕ(n) = (ϕ(n)1, . . . , ϕ(n)n−1). The Verma module associated to such a decom-

position is called the ϕ-Verma module and it is denoted by Mϕ(H̃, a), where a ∈ C
is the value of K on Mϕ(H̃, a). The module Mϕ(H̃, a) is isomorphic (as a vector

space) to U(H̃−ϕ ) which is nothing but the Grassmann algebra Λ(H̃−ϕ ). Finally let

Lϕ(H̃, a) denote the unique irreducible quotient of Mϕ(H̃, a).

Remark 3. Notice that every H̃-module can (and will) be regarded as an H-module

via the canonical projection H� H̃.

Corollary 5. If λ(h) = 0, then the action of H on L(H, λ) factors through the
epimorphism

H� H̃.
In particular, if λ(K) := a 6= 0, then L(H, λ) ∼= Mϕ(H̃, a) as H̃-modules, where

ϕ(i) = (+, . . . ,+) for all i ∈ N (i.e., Mϕ(H̃, a) is nothing but the standard Verma

module of H̃).

Proof. We have (h⊗ t2C[t])L(H, λ) = 0, since h⊗ t2C[t] is in the center of H and
it acts trivially on vλ. Next, h⊗ t−2C[t−1] is contained in the maximal ideal S+ of
S, and then, by Proposition 1, we must have (h⊗ t−2C[t−1])L(H, λ) = 0. Finally,
since λ(h) = 0, we conclude that H′0L(H, λ) = 0 and the first statement follows.

Using similar arguments as those of [BBFK13, Proposition 3.3] one easily shows

that Mϕ(H̃, a) is an irreducible H̃-module if and only if a 6= 0. Thus the result
follows. �
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Let N be an irreducible H-module such that hN = 0. We are interested in the
case when N is Z-graded. Then we can define the action of D on N by D|Ni =
i Id. Notice that under such conditions H′0 must act trivially on N (indeed, N is
irreducible and Z-graded, H′0 is central in H, hN = 0 and any element of h ⊗ t2r
with r ∈ Z× has degree different from 0).

Set xjk = hj ⊗ tk, k ∈ Z, j = 1, . . . , n− 1, so that

H̃ ∼= CK ⊕
⊕
r∈Z,

j=1,...,t

Cxj2r+1

and [xj2r+1, x
i
2s−1] = δijδr,−sK, after suitable rescaling (see Lemma 3 and Propo-

sition 4). Also set

dj2r+1 := xj−2r−1x
j
2r+1, r ∈ Z≥0, j = 1, . . . , n− 1.

Since K is central and N is irreducible, we have that K acts on N =
∑
i∈ZNi

via multiplication by some a ∈ C. Assume that a 6= 0, and fix a nonzero v ∈ Ni
for some i. Then

(dj2r+1)2v = (xj−2r−1x
j
2r+1)(xj−2r−1x

j
2r+1)

= xj−2r−1(K − xj−2r−1x
j
2r+1)xj2r+1 = adj2r+1v,

that is, dj2r+1 is diagonalizable on Ni and has eigenvalues a or 0. Now we have:

Lemma 6. If dj2r+1v = av, then xj−2r−1v = 0. On the other hand, if dj2r+1v = 0,

then xj2r+1v = 0.

Proof. The fact that xj−2r−1d
j
2r+1 = 0 implies the first statement. For the second

statement observe that dj2r+1v = 0 implies xj2r+1x
j
−2r−1v = av. Hence the result

follows. �

A non-zero Z-graded H-module N is diagonal if all dj2r+1 are simultaneously
diagonalizable for r ∈ Z≥0, j = 1, . . . , n − 1. Let Ni be a graded component of
a diagonal Z-graded H-module N . We associate to Ni a t-tuple (µ1, . . . , µn−1)
of infinite sequences µj = (µj2r+1) consisting of the eigenvalues µj2r+1 of dj2r+1,
r ∈ Z≥0, j = 1, . . . , n − 1. In what follows we classify all diagonal irreducible
modules with trivial action of h, and we describe their structure.

Theorem 7. Let N be an irreducible diagonal Z-graded H-module, such that hN =
0 and Kv = av for some a ∈ C and all v ∈ N . Then the following hold:

(1) H′0 acts trivially on N , which is an irreducible H̃-module.
(2) If v ∈ N is a nonzero homogeneous element, then v is ϕµ-highest vector,

where ϕµ is determined by the eigenvalues of dj2r+1 on v, and N ' Lϕµ(H̃, a)

up to a shift of gradation. In particular, if a 6= 0, then N ' Mϕµ(H̃, a) up
to a shift of gradation.

(3) If a = 0, then N is the trivial 1-dimensional module.

(4) If a 6= 0, then Mϕµ(H̃, a) has finite-dimensional graded components if and

only if ϕµ differs from ϕν only in finitely many places, where νj2k+1 = 0 for

all k ∈ Z≥0, j = 1, . . . , n−1, or νj2k+1 6= 0 for all k ∈ Z≥0, j = 1, . . . , n−1.
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Proof. Part(a): this follows from the fact that N is irreducible and Z-graded, H′0
is central and its elements have degree different from 0. Part(b): let Ni 6= 0 such
that all dj2r+1 are simultaneously diagonalizable with eigenvalues µj2r+1. Set µj =

(µj2r+1), r ∈ Z≥0, j = 1, . . . , n − 1. By Lemma 6, each (µ1, . . . , µn−1) defines

a function ϕµ : N → {±}n−1, where ϕµ(k)j = + if µj2k+1 = 0 and ϕµ(k)j =

− if µj2k+1 = a. Then v is a ϕµ-highest vector and N ' Lϕµ(H̃, λ) up to a
shift of gradation. Part(c) is clear. Part(d): without loss of generality we assume

that νj2k+1 = 0 for all k ∈ Z≥0, j = 1, . . . , n − 1. Clearly, Mϕν (H̃, λ) has finite-
dimensional graded components. Suppose that ϕµ differs from ϕν only in s places.

Consider a nonzero ϕµ-highest vector v. If w = xj2k+1v 6= 0 for some k ≥ 0 and j =

1, . . . , n− 1, then xj2k+1w = 0 and thus w is a ϕµ′ -highest vector where ϕµ′ differs

from ϕν in s−1 places. Continuing we find a ϕν-highest vector in Mϕµ(H̃, λ). Since

Mϕµ(H̃, λ) is irreducible when a 6= 0 we conclude that Mϕµ(H̃, λ) ' Mϕν (H̃, λ)
and hence it has finite-dimensional graded components. Conversely, assume that
Mϕµ(H̃, λ) has finite-dimensional graded components and let v be a nonzero ϕµ-
highest vector. Denote by Ωµ the subset of odd integers defined as follows: k ∈ Ωµ
if xjkv 6= 0 for at least one j = 1, . . . , n − 1. A sequence (k1, . . . , kr) of Ωµ is
called cycle if

∑r
i=1 ki = 0. Suppose Ω contains infinitely many positive as well as

negative odd integers. Then one can form infinitely many cycles. Each such cycle
(k1, . . . , kr) yields a basis element Πr

i=1x
ji
ki
v of Mϕµ(H̃, λ) which is a contradiction.

Hence, Ω contains only finitely many positive or only finitely negative odd integers.
This means that ϕµ differs from ϕν only in finitely many places, where νj2k+1 = 0

for all k ∈ Z≥0, j = 1, . . . , n − 1, or νj2k+1 6= 0 for all k ∈ Z≥0, j = 1, . . . , n − 1.
�

Remark 4. We conjecture that any irreducible Z-graded H̃-module is diagonal.

We also have the following isomorphism criterion.

Proposition 8. We have that Mϕµ(H̃, a) ' Mϕµ′ (H̃, a
′) (up to a shift of grada-

tion ) if and only if a = a′ and ϕµ and ϕµ′ differ only in finitely many places.

Proof. The condition a = a′ is clear. Assume that for some r and j, dj2r+1 has an

eigenvector v ∈ Mϕµ(H̃, a) with eigenvalue µj2r+1 = a. Set w = xj2r+1v 6= 0. Then

xj2r+1w = 0 and hence w is a ϕν-highest vector where νi2k+1 = µi2k+1 if k 6= r or

i 6= j, while νj2r+1 = 0. We have Mϕν (H̃, a) 'Mϕµ(H̃, a). Similarly, we can change
finitely many nonzeros µ’s to zeros.

Conversely, if we have the isomorphism, then one can obtain a ϕµ′ -highest

weight vector by finitely many actions of elements xj±(2r+1) on a ϕµ-highest weight

vector. This implies the statement. �

4. Irreducibility of generalized Verma type modules

In this section we prove our main result which is the following theorem.
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Theorem 9.

(1) M(m̂, k̂;L(̂k, λ)) and M(ŝ, λ) are reducible for any ŝ ∈ {ĝ, m̂, k̂,H}.
(2) If detDX

δ (λ) 6= 0, then there is a bijection between submodules of the module

M(m̂, k̂;L(̂k, λ)) and ideals of the algebra S.
(3) If detDX

δ (λ) 6= 0, then M(ĝ, m̂;L(m̂, λ)) is irreducible.

The next two results imply Theorem 9 items (1) and (2).

Corollary 10. M(ŝ, λ) is reducible for any ŝ ∈ {ĝ, m̂, k̂,H}.

Proof. It follows from Proposition 1. �

Proposition 11. Let M = M(m̂, k̂;L(̂k, λ)), L = L(̂k, λ), and assume that we
have detDX

δ (λ) 6= 0. Then there is a bijection between submodules of M and ideals

of S; S+M is a maximal proper submodule of M ; and L(m̂, k̂;L) ∼= Λ(H−1 ) ⊗C L
as vector spaces.

Proof. Let J be an ideal of S. Since [H0, m̂] = 0, it is clear that JM defines a
submodule of M . In the other direction, for a submodule N ⊆M , we consider the
ideal JN ⊆ S such that N ∩ SL = JNL. We claim that JN = {a ∈ S | avλ ∈ N}.
Indeed, let a ∈ JN , and write an arbitrary v ∈ L as uvλ for some u ∈ U(̂k−).
Then we have av = auvλ = uavλ ∈ N , and hence JNL ⊆ N ∩ SL. For the other
inclusion, write a general element v =

∑m
i=1 aivi ∈ N ∩SL with ai ∈ S and assume

that v1, . . . , vm ∈ L are linearly independent. The fact that [H0, k̂] = 0 along with

the fact that L is a simple k̂-module with countable dimension allows us to apply
the Jacobson density theorem to find, for each i = 1, . . . ,m, an element ui ∈ U(̂k+)
for which uiv = aivλ ∈ N ∩ SL. In particular, ai ∈ JN for every i, and the claim
is proved.

Now we claim that N = JNM . Indeed, let jm ∈ JNM . Then, writing m = ul
with u ∈ U(H−) and l ∈ L, we get that

jm = jul = ujl ∈ uN ⊆ N.

Thus JNM ⊆ N . For the other inclusion, consider the canonical projection π :
M → V := M/JNM , W = π(N), and R = S/JN . Notice that V is free as an
R-module, and that W ∩RL = π(N ∩SL) = π(JNL) = 0. Now if we suppose that
W 6= 0, then we can use the fact that detDX

δ (λ) 6= 0, and that [H0, m̂] = 0, to get
a contradiction just as in the proof of Proposition 1. Thus W = 0 and the proof is
complete. �

Corollary 12. If detDX
δ (λ) 6= 0, then L(m̂, λ) ∼= Λ(H−1 ) ⊗C L(̂k, λ) as vector

spaces.

Proof. This follows from L(m̂, λ) ∼= L(m̂, k̂;L(̂k, λ)) and Proposition 11. �

Corollary 13. Suppose that detDX
δ (λ) 6= 0. Then we have the character formula

ch L(m̂, λ) = eλ
∏

α∈∆(X)+re,0

(1− e−α)−1
∏

α∈∆(X)+1

(1 + e−α)
∏

α∈∆(H−)1

(1 + e−α),

where ∆(X)+
re,0 denotes the set of real positive even roots of k̂.



L. CALIXTO, V. FUTORNY

Proof. This follows from the results of [GS08] along with the fact that L(m̂, λ) ∼=
Λ(H−1 )⊗C L(̂k, λ). �

From now on we assume that

detDX
δ (λ) 6= 0, and hence, by Corollary 12,

L(m̂, λ) ∼= Λ(H−1 )⊗C L(̂k, λ) as vector spaces.

Before proving the irreducibility of M(ĝ, m̂;L(m̂, λ)), we introduce an ordered
basis of M(ĝ, m̂;L(m̂, λ)). Recall that for a subalgebra a ⊆ ĝ we defined ∆(a) =
{α ∈ ∆ | ĝα ⊆ a}. Let B(u−) = {fi ∈ gαi | αi ∈ ∆̇(u−)} be a basis of u− such that

fi < fj if αi < αj .

Now we order the basis B(L(u−)) = {fi(m) | m ∈ Z} of L(u−) so that

(1) if m is odd and n is even, then fi(m) < fj(n),

(2) if m,n are both even or both odd, then fi(m) < fj(n) if m < n, or m = n
and fi < fj .

For r ≥ 1 and (i, 2m,p) = (i1, . . . , ir,m1, . . . ,mr, p1, . . . , pr) ∈ Zrt × 2Zr ×Zr≥0,

we set fi,2m,p := fi1(m1)p1 · · · fir (mr)
pr ∈ U(L(u−)0) and we define deg fi,2m,p :=∑

pi. For monomials of the different degree we let fi,2m,p< fi′,2m′,p′ if deg fi,2m,p<
deg fi′,2m′,p′ ; for monomials of same degree we define fi,2m,p<fi′,2m′,p′ if (i, 2m,p)
< (i′, 2m′,p′), where the latter order is the reverse lexicographical order. This
provides us a totally ordered basis B(U(L(u−)0))={fi,2m,p :=fi1(m1)p1 · · ·fir(mr)

pr}
of U(L(u−)0). For r ≥ 1 and (i,m) = (i1, . . . , ir,m1, . . . ,mr) ∈ Zrt × (2Zr + 1),
we set fi,m := fi1(m1) · · · fir (mr) and we define deg fi,m := r. For monomials of
the different degree we let fi,m < fi′,m′ if deg fi,m < deg fi′,m′ ; for monomials
of same degree we define fi,m < fi′,m′ if (i,m) < (i′,m′), where the latter order
is the reverse lexicographical order. Finally, we let fi′,m′ < fi,2m,p for all such
monomials. By PBW Theorem, we have that B(U(L(u−))) = {fi,2m,pfi′,m′} is a
totally ordered basis of U(L(u−)).

Let h1, . . . , ht be a basis of hX . Then Hi,m := hi(−m) for i = 1, . . . , t and
m ∈ {2Z≥0+1} form a basis forH−1 . In particular, if we let Hi,m ≥ Hk,n ifm ≥ n or
m = n and i ≥ k, then the monomials Hi1,m1

· · ·His,ms with Hi1,m1
> · · · > His,ms

form a basis B(H−1 ) of Λ(H−1 ).

Since we are assuming detDX
δ (λ) 6= 0, we have by Corollary 12 that L(m̂, λ) ∼=

Λ(H−1 ) ⊗C L(̂k, λ) as vector spaces. Let {vi | i ∈ I} be an ordered basis of
L(m̂, λ), where the order is induced by the order of Λ(H−1 ). We say fi,m,pfi′,m′vi <
fi1,m1,p1fi′1,m′1vj if fi,m,pfi′,m′ < fi1,m1,p1fi′1,m′1 or if fi,m,pfi′,m′ = fi1,m1,p1fi′1,m′1
and i < j. Finally, for an element

u =
∑

uji,m,pfi,m,pfi′,m′vj , with uji,m,p ∈ C,
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we define

LinSpan(u) := Span{fi,m,pfi′,m′ | uji,m,p 6= 0}.

For the next result recall that L(m̂, λ) ∼= Λ(H−1 ) ⊗C L(̂k, λ) as vector spaces
when det(DX

δ (λ)) 6= 0. Also recall that for αi ∈ ∆̇ we have a triple fi ∈ g−αi ,
ei ∈ gαi , hi ∈ h such that [fi, ei]0 = hi.

Lemma 14. Let f̄=f̄0f̄1=fi1(m1)p1· · ·fir (mr)
prfi′1(m′1)· · ·fi′

r′
(m′r′)∈B(U(L(u−))),

v ∈ L(m̂, λ) be a nonzero vector, and assume that all factors occurring in f̄ are
simple. For any such factor fil , we consider eil ∈ n+ = m+⊕u+. If detDX

δ (λ) 6= 0,
then the following hold:

(1) If deg f̄1 = 0, then there is 0 � ml ∈ {2Z + 1} or 0 � m ∈ {2Z + 1} such
that

eil(m)f̄v ≡
r∑

1≤j≤r
ij=il

−pj(pj − 1)fij (m+ 2mj)f̄
ĵĵv

+
r∑

1≤j≤r
ij=il

r∑
ξ=j+1

pjpξαiξ(hil)fiξ(mj +mξ +m)f̄ ĵξ̂v

+
r∑

1≤j≤r
ij=il

pj f̄
ĵhil(m+mj)v mod U(L(u−))(p−2) ⊗ L(m̂, λ).

(2) If deg f̄1 ≥ 1, then there is 0� m ∈ 2Z or 0� m ∈ 2Z such that

eil(m)f̄v ≡
( r∑

1≤j≤r
ij=il

−pj(pj − 1)fij (m+ 2mj)f̄
ĵĵv

+

r∑
1≤j≤r
ij=il

r∑
ξ=j+1

pjpξαiξ(hil)fiξ(mj +mξ +m)f̄ ĵξ̂v

)

+

( r′∑
1≤j≤r′
ij=il

r′∑
ξ=j+1

(−1)ξ−(j+1)ᾱiξ(hil)f̄0fiξ(m
′
j +m′ξ +m)f̄ ĵξ̂1 v

+

r′∑
1≤j≤r′
ij=il

(−1)(r′−j)f̄ ĵhil(m+m′j)v

)
mod U(L(u−))(p+r′−2) ⊗ L(m̂, λ).

Proof. We prove part (b) first, as part (a) follows from it. Choose 0 � m ∈ 2Z or
0� m ∈ 2Z such that hil(m+m′j) is in B(H−1 ). Since ad(eil(m)) is a derivation
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of even degree, we have that

eal(m)f̄v

=

r∑
j=1

pj−1∑
γ=0

fi1(m1)p1· · ·fij (mj)
γ [eil , fij ]0(m+mj)fij (mj)

pj−γ−1· · ·fir (mr)
pr f̄1v

+

r′∑
j=1

f̄0fi′1(m′1) · · · fi′j−1
(m′j−1)[eil , fi′j ]0(m+m′j)fi′j+1

(m′j+1) · · · fi′
r′

(m′r′)v

=

r∑
1≤j≤r
ij=il

pj−1∑
γ=0

fi1(m1)p1 · · · fij (mj)
γhij (m+mj)fij (mj)

pj−γ−1 · · · fir (mr)
pr f̄1v

+

r′∑
1≤j≤r′
ij=il

f̄0fi′1(m′1) · · · fi′j−1
(m′j−1)hij (m+m′j)fi′j+1

(m′j+1) · · · fi′
r′

(m′r′)v

≡
( r∑

1≤j≤r
ij=il

−pj(pj − 1)fij (m+ 2mj)f̄
ĵĵv

+

r∑
1≤j≤r
ij=il

r∑
ξ=j+1

pjpξαiξ(hil)fiξ(mj +mξ +m)f̄ ĵξ̂v +

r∑
1≤j≤r
ij=il

pj f̄
ĵhil(m+mj)v

)

+

( r′∑
1≤j≤r′
ij=il

r′∑
ξ=j+1

(−1)ξ−(j+1)ᾱiξ(hil)f̄0fiξ(m
′
j +m′ξ +m)f̄ ĵξ̂1 v

+

r′∑
1≤j≤r′
ij=il

(−1)(r′−j)f̄ ĵhil(m+m′j)v

)
mod U(L(u−))(p+r′−2) ⊗ L(m̂, λ)

≡
( r∑

1≤j≤r
ij=il

−pj(pj − 1)fij (m+ 2mj)f̄
ĵĵv

+

r∑
1≤j≤r
ij=il

r∑
ξ=j+1

pjpξαiξ(hil)fiξ(mj +mξ +m)f̄ ĵξ̂v

)

+

( r′∑
1≤j≤r′
ij=il

r′∑
ξ=j+1

(−1)ξ−(j+1)ᾱiξ(hil)f̄0fiξ(m
′
j +m′ξ +m)f̄ ĵξ̂1 v

+

r′∑
1≤j≤r′
ij=il

(−1)(r′−j)f̄ ĵhil(m+m′j)v

)
mod U(L(u−))(p+r′−2) ⊗ L(m̂, λ),
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where the first equivalence follows from the fact that ad(hil(m + mj)) is an even
derivation, ad(hij (m + m′j)) is an odd derivation, and fi′ξ(m

′
ξ) is an odd element

for any m′ξ; and the second equivalence follows from the fact that hil(m+mj)v = 0

for all 1 ≤ j ≤ r, since either hil(m+mj) ∈ H+
0 that implies hil(m+mj)v = 0, or

hil(m+mj) ∈ S+, and hence hil(m+mj)v lies in the maximal proper submodule

of M (̂k, λ).
For part (a), we notice that the second parentheses above does not appear

in the expression of eal(m)f̄v. Moreover, despite the fact that ad(eil(m)) and
ad(hil(m + mk)) are odd derivations (as m ∈ {2Z + 1} and mj ∈ 2Z for all
1 ≤ j ≤ r), they behave as regular derivations when applied on factors of f̄0, since
mj ∈ 2Z for all 1 ≤ j ≤ r. Thus the proof follows from the above equation. �

We now state our key result.

Theorem 15. If detDX
δ (λ) 6= 0, then M(ĝ, m̂;L(m̂, λ)) is irreducible.

Proof. We claim that any non-trivial submodule N of M(ĝ, m̂;L) intersects L(m̂, λ)
non-trivially. Assuming that the claim holds, the result follows from the simplicity
of L(m̂, λ).

To prove the claim, let 0 6= v ∈ Nµ, and let f̄maxxmax = fa,2b,cfa′,b′xd be the
maximal monomial occurring in v. We now reduce the proof to the case where all
factors fij of maximal degree monomials occurring in v are simple root vectors.
Indeed, consider all factors fij that occur in the monomials of maximal degree of
v, and let fik be the minimal among them (i.e., its associated root αik is such
that |αik | is maximal among them). Let f̄minxmin = fd,2g,kfd′,g′hd′′,g′′xmin =
f̄0,minf̄1,minxmin be an element (occurring in v) of maximal degree having fik as a
factor, and let z ∈ n+ = m+ ⊕ u+ be such that 0 6= [z, fik ] ∈ u− (such z exists by
[Cox94, Lem. 4.2]). Let Jmin the set of indexes j for which fij is a factor of f̄min

and [z, fij ] ∈ u−. Let 0 � m ∈ 2Z (if z ∈ u+) or 0 � m ∈ 2Z (if z ∈ m+) (here
m � 0 (resp. m � 0) means m so that for every fixed j, m + mj /∈ {gk, g′l | 1 ≤
k ≤ r, 1 ≤ l ≤ r′}). Then, using that ad(z(m)) is an even derivation, we obtain

z(m)f̄minxmin

=
r∑
j=1

kj−1∑
γ=0

fd1(g1)k1· · ·fdj (gj)γ [z, fdj ]0(m+ gj)fdj (gj)
kj−γ−1· · ·fdr (gr)kr f̄1,minxmin

+

r′∑
j=1

f̄0,minfd′1(g′1) · · · fd′j−1
(g′j−1)[z, fd′j ]0(m+ g′j)fd′j+1

(g′j+1) · · · fd′
r′

(g′r′)xmin

≡
∑
j∈J−

kj [z, fij ]0(m+ gj)f̄
ĵ
minxmin

+
∑
j∈J−

(−1)j−1f̄0,min[z, fij ]0(m+g′j)f̄
ĵ
1,minxmin mod U(L(u−))(k+d′−1)⊗L(m̂, λ),

where k + d′ = deg f̄min. Now if S1 denotes this summation, then it is nonzero
since [z, fik ]0 6= 0 and m + mj /∈ {gk, g′l | 1 ≤ k ≤ r, 1 ≤ l ≤ r′}. Moreover, if
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f̄x = f̄0f̄1x is a different monomial occurring in v, then, similarly we have that

z(m)f̄x ≡
∑
j∈J−

pj [z, fij ]0(m+mj)f̄
ĵx

+
∑
j∈J−

(−1)j−1f̄0[z, fij ]0(m+m′j)f̄
ĵ
1x mod U(L(u−))(p+r−1)⊗L(m̂, λ),

where p + r = deg f̄ . Since f̄min has maximal degree among monomials in v,
we have that p + r ≤ k + d′. Hence, if T1 is the summation above, then S1 /∈
LinSpan(T1) + U(L(u−))(p−1) ⊗ L(m̂, λ), since this could happen only if p + r =

k + d′; C[z, fij ]` = C[z, fil ]` for ` = 0, 1; mj = gl; f̄
ĵ
min = f̄ l̂; and xmin = x.

But this would imply f̄min = f̄ , and xmin = x, which contradicts the fact that
f̄x 6= f̄minxmin.

We may now assume that factors of all maximal degree monomials occurring in
v are simple. In particular, this is the case for

f̄maxxmax = f̄0,maxf̄1,maxxmax = fa1(b1)c1 · · · fas(bs)csfa′1(b′1) · · · fas′ (bs′)xmax.

Moreover, we may also assume that deg f1,max ≥ 1 (as otherwise the proof is
the same as that of [Cox94, Proposition 4.5], using Lemma 14 and a suitable
e ∈ {2Z + 1} in his notation). By Lemma 14, for each simple root factor fal of
f̄max, there is 0� m ∈ 2Z or 0� m ∈ 2Z for which

eal(m)f̄maxxmax

≡
( s∑

1≤j≤s
ij=il

−cj(cj − 1)faj (m+ 2bj)f̄
ĵĵ
maxxmax

+

r∑
1≤j≤s
ij=il

r∑
ξ=j+1

cjcξαaξ(hal)faξ(bj + bξ +m)f̄ ĵξ̂maxxmax

)

+

( s′∑
1≤j≤s′
ij=il

s′∑
ξ=j+1

(−1)ξ−(j+1)ᾱaξ(hal)f̄0,maxfaξ(b
′
j + b′ξ +m)f̄ ĵξ̂1,maxxmax

+

s′∑
1≤j≤s′
ij=il

(−1)(s′−j)f̄ ĵmaxhil(m+ b′j)xmax

)
mod U(L(u−))(c+s′−2) ⊗ L(m̂, λ)

Finally, it is not hard to prove that for any fixed index l, the summand

wl = f̄ l̂maxhl(m+ b′l)xmax

is not in the LinSpan of the remaining monomials occurring in el(m)v. Therefore,
el(m)v 6= 0, the maximal monomial occurring in el(m)v has degree less than that
of the maximal monomial occurring in v, and thus the result follows by induction.
�

Applying Theorem 15 in the case X = ∅ gives:
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Corollary 16. If detD∅
δ (λ) 6= 0, then M(ĝ,H;L(H, λ)) is irreducible.

Remark 5. Notice that differently from the other cases studied in the literature, we
do not need the central charge to be nonzero in order to have M(ĝ, m̂;L(m̂, λ)) be
irreducible (compare with [Cox94, Fut94, CF18]). This is due to the fact that the
central element K does not play a role in the action of the imaginary subalgebra
H on L(m̂, λ). On the other hand, the condition detDX

δ (λ) 6= 0 is essential in
our context. Without this condition we do not necessarily have that L(m̂, λ) ∼=
Λ(H−1 )⊗C L(̂k, λ) as vector spaces (see Corollary 12).
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