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Abstract. We study non-standard Verma type modules over the Kac-Moody queer
Lie superalgebra q(n)(Q). We give a sufficient condition under which such modules are
irreducible. We also give a classification of all irreducible diagonal Z-graded modules over
certain Heisenberg Lie superalgebras contained in q(n)(2)

Introduction

Kac-Moody algebras and their representations play a very important role in
many areas of mathematics and physics. The “super” version of these algebras was
introduced in [Kac77]. Affine Kac-Moody superalgebras are those of finite growth.
Affine symmetrizable superalgebras were described in [Ser11] and [vdL89]. Theory
of Verma type modules for affine Lie superalgebras was developed in [ERF09] and
[CF18]. In particular, given a Borel subsuperalgebra b of the affine Lie superalgebra
g and a 1-dimensional representation C, of b for some weight A of the Cartan
subalgebra of g, one can construct the Verma type module

Mz(A) == Ind% Ca.
This module admits a unique maximal proper submodule, and thus, a unique
simple quotient. The Verma type module is non-standard if b does not contain
all positive root subspaces for some basis of the root system of g. In the case in
which the finite-dimensional Lie superalgebra associated to g is a contragredient
Lie superalgebra, all Borel subsuperalgebras of g were described in [CF18], see
also [DFG09]. The paper [CF18] also gives a criterion for the irreducibility for
non-standard Verma type module.

Non-symmetrizable affine Lie superalgebras were classified in [HS07]. In parti-
cular, this classification includes a degenerate family of affine Lie superalgebras,
series q(n)®). These superalgebras are twisted affinizations of queer Lie superal-
gebras q(n). Structure of Verma modules (=standard Verma type modules) over
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the twisted affine superalgebra q(n)® with n > 3 was studied in [GS08]. The
current paper advances the theory of Verma type modules for the affine queer Lie
superalgebra. We establish sufficient conditions for the irreducibility of all non-
standard Verma type modules (Theorem 9 and Theorem 15). We also consider
modules induced from analogs of Heisenberg subsuperalgebra and give a criterion
of their irreducibility (Theorem 7, Corollary 16).

Acknowledgments. The second author is grateful to the University of California
Berkeley for hospitality. The authors are very grateful to Vera Serganova for very
stimulating discussions.

Notation. The ground field is C. All vector spaces, algebras, and tensor products
are considered to be over C, unless otherwise stated. For a vector space V' we denote
by A(V) its Grassmann algebra (i.e., its exterior algebra). For any Lie superalgebra
a we let U(a) denote its universal enveloping algebra.

1. Preliminaries

Let g = q(n) for n > 3, be the queer Lie superalgebra, that is,

o= {(412) [acaits b et}

Let qo and gq; be the even and odd parts of g, respectively. Choose a Cartan
subalgebra by = bo @ by of q (i.e., hp a Cartan subalgebra of qo) and let q =
hg ® (@aeA qo‘) be the root space decomposition of q, where q® denotes the root
space associated to the root a € A C b5 Recall that every root of A is both even
and odd, meaning that, for any a € A, q*Ngq; # 0, for i = 0, 1. Recall also that
A:AOZAlz{éi—€j|i7éj}.

Although neither g nor its affinization q(*) are Kac-Moody Lie superalgebras,
i.e., admit a set of simple generators, after a twist of q(") by an involution we
obtain a regular quasisimple Kac-Moody superalgebra g := q(? (see [Ser11]). As
a super vector space we have that

9= L(sl(n))®CKa&CD, g = sl(n)oC[t*?|oCK®CD, and §; = sl(n)@tC[t*?],

where for any Lie superalgebra & L(£) := £ ® C[t!,t7!] is its associated loop
superalgebra, K is a central element, and, for all 2(k) := 2 ® t* € L(£) with z € £
and k € Z, we have [D,z(k)] = kx(k). Let g = sl(n). Then for any =,y € g, the
bracket of g is given as follows:

[2(k),y(m)] = (zy — yz)(k + m),
if km is even; and if we define

tr(z)

t:gl(n) = sl(n), xz—x— I,

where [, is the n x n identity matrix, then

[2(k),y(m)] = v(zy + ya)(k +m) + 20y m tr(zy) K,
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if km is odd. Notice that K does not lie in [go,g], but it lies in [g1,g1]. For
convenience we set

(zy — yx) := [x,9]o, and t(zy + yz) := [z,y]1-
Hence, in this notation we have that
[2(k),y(m)] = [z, ylo(k +m), and [z(k),y(m)] = [z, y]1(k + m) + 20_gm tr(zy) K,
if km is even/odd, respectively.
Remark 1. Notice that if we assume m € 27Z, then the bracket between any two
elements xz(m), y(k) € L(g) reduces to the bracket in the loop Lie algebra L(g).

Fix a Cartan subalgebra of g
h=h®1®CK & CD

where b is the Cartan subalgebra of diagonal matrices in g, and for each o € A,
choose f, € g7%, eq € g* and h, € h such that [f,, eq]o = ha-
Notice that, for g., ., € g%/, we have

[h,gei_gjh = (61‘ +(€j)(h)gai_€j7 for all h.

For simplicity, if a = €; — €5, then we set & := ¢; + ;. Thus, in this notation, we
have that
[h, ga]1 = @(h)ga, for all h €.

Moreover, if a; # —a;, then
[eaq‘, ; fOéj]l = Yo, +aj>

where go; 4o, = 0 if ; +a; ¢ A, Gaita; = faita; i i+ a5 € A~ and Jaita; =
Caita, if a; +a; € AT, Finally, for o = ¢; — &5 we have

[eaa fa]l = L<h:1)7

where h:l = Ezz + Ej,j~

If we identify K with (1/n)I,,, then h®@ 1@ CK can be identified with the Cartan
subalgebra of diagonal matrices of gl(n). Let Hy, ..., H, denote the standard basis
of it (i.e., H; = Ej;). The root system of g with respect to 6 is given by A =
{a+ ko, mé | o€ A, keZ meZ\{0}}. Moreover, p(a + kd) = p(k) and
p(md) = p(m), where p(k) denotes the parity of k, and by abuse of notation we
are denoting the parity of a root 3 also by p(f3). Finally, for a subalgebra a C g we

set
Aa) :={a € A|gs Ca}.
Consider the subalgebra H= ’;qo ® ’iql generated by the imaginary root spaces
of g. Then
Ho=)» h@t" ®CK, Hi=)Y hatt
rez reZ
Notice that the center of H equals 7—70, the odd part Hy is spanned by {(H; —
Hi11)(2r + 1) | r € Z} and the relations in H; are given by
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[z(2r +1),y(=2r — 1)] =22y, [z(2r+1),y(2s+1)] =(2zy)2(r+ s+ 1))

for r + s+ 1 # 0. In particular, differently from the case of basic classical Lie
superalgebras, the subalgebra H is not isomorphic to a Heisenberg algebra.

2. Generalized Verma type modules

Since the root system A of g is the same as that of E[(n), the sets of positive
roots of A are obtained in the same way: fix II C A ~a set of simple roots, pick a
subset X C II, and let W denote the Weyl group of sl(n). Let At = (I)z_, N A,
AX)t = (X)z., NA, and A(X) = (X)z N A. Associated to X we define

AX)Y ={a+ki|ac AT\AX)T, keZ}
U{a+ké|ae AX)U{0}, k€ Zoot UAX)T.

Then A(X)™ is a set of positive roots of A, and up to W x {41}-conjugation,
every set of positive roots is of this form for some set of simple roots Il and some
subset X C II.

Consider the following subalgebras associated to X:

m(X):=mX)" ohomX)", mX)F:= P o
acA(X)*
uw(X)* = @ Ja-
a€AT\A(X)*E

Thus
g=uX)  em(X)ouX)" and g=LwX))eomX)o LX),
where m(X) = L(m(X)) & CK & CD.
Consider now the subalgebra
{(X) :=m(X)" @bx dm(X)", where hx := P [9-a,0a)-

aEA(X)+

Then m(X) = €(X) @ bX, where b := {h € h | a(h) = 0, Va € A(X)} is the
center of m(X). Set

¥(X) := L(¢(X)) ® CK & CD @ h~
with standard triangular decomposition
FX)=8X)" @hat(X)T, FX)E = (¢X) @ tFIC[tF]) ® m(X)*.
In particular, we have that
A(X)=p @t 'Ct e E(X) ahat(X)") ah¥ @ C[t
and

§=CLuX))op¥Xet 'ICt ) otX) ahat(X)" @ (¥ @tC[t]® Lu(X)1)).
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Remark 2.
(1) Differently from the case of basic classical Lie superalgebras (this includes
all simple Lie algebras), the imaginary subalgebra

H(X) ="t 'Ct™ ") & (b¥ & CK) ® (h™* @ (C[t])

is not a Heisenberg algebra. Another difference (from the Lie algebra case) is that
we do not have that [H(X),#(X)] = 0. In fact,

~

[Ho(X), B(X)] = [H(X),e(X)o] = 0, but [H;(X),8(X)] # 0.

Compare also with the isotropic case of [CF18].

(2) Heisenberg algebras admit a family of triangular decompositions paramet-
rized by maps ¢ : N — {£}?, where d is a certain dimension. It is worth noting
that the algebra H(X) does not admit such decompositions, except the trivial ones
(i.e., when (i) = (+,...,+) foralli € N, or (i) = (—,...,—) for all i € N).

Consider the triangular decomposition of H(X)
H(X)=H(X)” @ (h* @ CK) o H(X)T,
where
H(X)F = b~ @tC[t*!),

and define H(X)F := H(X); N H(X)F, for i € Zy. Then we have a commutative
algebra
S(X) :==U(H(X), ),

and we let S(X)T denote the augmentation ideal of S(X).
Consider the triangular decompositions

m(X)=m(X)" ohom(X)t, where m(X)*=H(X)F pe(X)*

and

o~
o~

9=0(X)"@h@g(X)", where FX)T =Lu(X)F)omX)E.

Fix the subalgebra b(X) := h@&§(X) T of §. Notice that §(X) T NM(X) = m(X)",
(X)) NE(X) = E8(X)T, and §(X)T NH(X) = H(X)T. In what follows, we fix a
set X C II and we drop the X from the notation above (for instance, we write mt
instead of writing m(X)™).

Let A € b*, 5 € {g,m, ¢, %}, and T =8N b. Then we define the Verma s-module

M(g, A) = U(/S\) Qu) Cuy,

where Cuvy, is the T-module whose action of 6 is determined by A and the action of
the nilpotent radical of T is trivial. The unique irreducible quotient of M (5, \) will
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be denoted L(5, \). Also, for 5,7 such that either T = Tand 5=, or t = m and
5 =1, and an t-module N we define the module

M(5, % N) :=U(s) @y N,

where H(X)" is assumed to act trivially on N if T = € and § = m, and L(uy) is
assumed to act trivially on N if T=m and 5 = §. Notice that

M (G, \) 2 M (g, m; M (M, \)) and M (@, \) = M (@, & M(E,\)).

Using the terminology of [Fut97], the module M (g, m; N) is called a generalized
Verma type module, or a generalized Imaginary Verma module. When N is an
irreducible weight T-module, M (5,7; N) admits a unique irreducible quotient which
will be denoted by L(s,T; N).

3. Irreducible H-modules

Consider the triangular decomposition
H=H oCKaoH".

Then we have the following character formula

ch M@, N = J[ @—e)™ J[ @+e™).

a€EA(H)o a€A(H )1

Notice that the subalgebra S lies in the center of U(H) and acts freely on
M(H, ). Then any ideal J of S defines the H-submodule JM(H, ) of M(H, \).
On the other direction, for any H-submodule N C M (#, \) we define an ideal Jy
of § by requiring the equality:

N NSvy = Jnvy.

In other words, Jy = {a € S| avy € N}.
Let Dg( be the matrix determined by the pairing

OX@Ct) x (WX @Ct™) =b, (2,9)~ [z,

and consider det Dg( as an element of the symmetric algebra S (H)

Example 1. If n = 3 and X = {e; — &3}, then hX = Ch!, where h! = H; +
Hy — 2Hj3. In particular, det Dgf =2(H; + Hy —2H3)?. If X = @ and n > 3, then
bX = b, and det D = 2""'H;--- H,(1/Hy +--- + 1/H,) (see [GS08]).

Proposition 1. The H-module M(H,)) is reducible. If det DF(X) # 0, then
there is a bijection between submodules of M (H,\) and ideals of S. In particular,
L(H,\) =2 A(H{) as vector spaces.
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Proof. The fact that H; is in the center of H implies that any ideal J of & defines
a submodule of M (#, \), namely, JM (#, A). Thus the first statement follows.

Now, if we assume det Di* (\) # 0, then we can use similar arguments to those
of [GS08, Proposition 3] to prove that there is a bijection between ideals of S and
submodules of M (H, A). Namely, let M = M(#H, ), and let N be a submodule of
M. We claim that N = JyM. Indeed, let jm € JyM. Then, writing m = wwv)
with v € U(H ™), we get that

Jjm = juvy = ujvy € ulN C N.

Thus JyM C N. In order to prove the other inclusion, we consider the canonical
projection 7 : M — V := M/JyM, W = n(N), and R = §/Jn. Notice that V is
free as an R-module, and that W N Ruy = 7(N N Svy) = w(Jyvy) = 0. Now we
suppose that W # 0 to get a contradiction.

Let h',... k! be any fixed basis of h*, and set X, := hi(m), and Y, ,, =
ht(—m). Recall from the commutation relations of H that [X; s, Yi.m] =[Xi.0, Yk.0],
and since we are assuming that det Dg( (M) # 0, we may consider that the basis
elements h',... h' were chosen so that A([X;;,Vs;]) = &ir. Notice that the
elements X; ; fori =1,...,7 and m > 0 form a basis for H; . In particular, if we let
Xim = Xgn if m > norm=n and ¢ > k, then the monomials X, p,, -+ Xi, m,
with X,y > -+ > X;_ ., form a basis B of V over R.

Since we are assuming W # 0, and since W N Rvy, = 0, we can choose a nonzero
v € W such that the maximal X; ,, that occurs in the expression of v as a linear
combination of elements of B is minimal among all nonzero vectors of W. Now we
write v = X; ,,w + u for nonzero w and w such that all factors occurring in w and
u are less than X ,,. Thus

Yimu=Y;,w=0and Y, ,v=uw,

as [X; m, Yim] is in the center of H and it acts as A([X; m, Yi.m]) = 1 on vy. But
this implies 0 # w € W, and all factors occurring in w are less than X ,,, which
is a contradiction. [

Corollary 2. Suppose that det DX (X) # 0. Then we have the character formula
ch L(H, ) =ch A(Hy)=¢* [ (1+e).
a€A(H )1
Proof. This follows from the isomorphism of vector spaces L(H,\) 2 A(H{). O
1. Modules for Heisenberg Lie superalgebra

In this section we consider the special case where X = &, and, in particular,
hX =h and H = H(X) = L(h) ® CK.

Define
Hy=Pbhet™.
reZ

It is clear that 7{ is an ideal of H, and K ¢ ;. Define

H = H/Hj.
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Lemma 3. Let m: % — H be the canonical projection. Then there exists a basis
{h',...,h""1} of b such that m(h'h7) = 6;; K.
Proof. The set {Hy + -+ H; —iH;41 | 1 <i<n—1} is a basis of §j such that
H'HJ € b if and only if ¢ # j. Then a suitable normalization of this basis gives
the required one. [

Now we have the following result:
Proposition 4. H is an infinite-dimensional Heisenberg Lie superalgebra such
that B

H=CKo@Phat> !
reZ

as vector spaces, where [h@t?" 1 W' @t=27=1] is a multiple of K and [h@t*" T W/ @
125t =0 for all h,h' € b and all integer r,s with r + s + 1 # 0.

Fix a basis h!,...,h" ! of h as in Lemma 3, and let ¢ : N — {£}"~! be a map
of sets. Then ¢ induces a triangular decomposition on H:

H=H,&CKaH],

where
ﬁi: — @ (Ch’b ® t2’ﬂ+1 ey @ (Chz ® t7(2m+1)
neN, 1<i<t, meN, 1<i<t,
p(n);==% p(m)i=F
and p(n) = (p(n)1,...,9(n)n—1). The Verma module associated to such a decom-

position is called the ¢-Verma module and it is denoted by M, (ﬁ, a), where a € C
is the value of K on M,(H,a). The module M, (H,a) is isomorphic (as a vector

space) to U(H_) which is nothing but the Grassmann algebra A(H ). Finally let
LS@(??[, a) denote the unique irreducible quotient of M, (H,a).

Remark 3. Notice that every H-module can (and will) be regarded as an H-module
via the canonical projection H — H.

Corollary 5. If A(h) = 0, then the action of H on L(H,\) factors through the
eptmorphism _
H— H.

In particular, if A(K) := a # 0, then L(H,)\) = Mw(ﬁ,a) as H-modules, where
o) =(+,...,+) foralli €N (i.e., Mw(ﬁ,a) is nothing but the standard Verma
module of H).
Proof. We have (h @ t2C[t])L(H,\) = 0, since h @ t2C[t] is in the center of H and
it acts trivially on vy. Next, h @ t~2C[t~!] is contained in the maximal ideal ST of
S, and then, by Proposition 1, we must have (h ® t=2C[t~'])L(#, \) = 0. Finally,
since A\(h) = 0, we conclude that HyL(H, ) = 0 and the first statement follows.

Using similar arguments as those of [BBFK13, Proposition 3.3] one easily shows
that M¢(7?[,a) is an irreducible H-module if and only if a # 0. Thus the result
follows. [
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Let N be an irreducible H-module such that HN = 0. We are interested in the
case when N is Z-graded. Then we can define the action of D on N by D|y, =
iId. Notice that under such conditions Hj must act trivially on N (indeed, N is
irreducible and Z-graded, H}, is central in H, hN = 0 and any element of h @ 2"
with 7 € Z* has degree different from 0).

Set z;, =h ®t*, k€Z,j=1,...,n— 1, so that

H=CKe  Cub,,
re’l,
F=Tenst
and [xérﬂ, xh_ 1] = 8;j0, _s K, after suitable rescaling (see Lemma 3 and Propo-
sition 4). Also set

J e d J o
dy, 1 =T 9. Ty q, TEZL>o, j=1,...,n—1

Since K is central and N is irreducible, we have that K acts on N =% ., N;
via multiplication by some a € C. Assume that a # 0, and fix a nonzero v € N;
for some 4. Then

J 2, — (] J J J
(dopy1)™v = (g, 129, 1) (@0 125, 41)
— J J J — 0dl
=l (K —alg, @9, 1)05, ) = ady, v,
that is, d,, is diagonalizable on N; and has eigenvalues a or 0. Now we have:

Lemma 6. If d%r+1v = av, then 2’ ,,_ v =0. On the other hand, if dgH_lv =0,
then x3,. v = 0.

Proof. The fact that 2r_1d%r 41 = 0 implies the first statement. For the second

statement observe that dJ, +1v = 0 implies ), +1xj_ 9r—1V = av. Hence the result
follows. [

A non-zero Z-graded H-module N is diagonal if all dér 41 are simultaneously
diagonalizable for r € Z>p, j = 1,...,n — 1. Let IN; be a graded component of
a diagonal Z-graded H-module N. We associate to N; a t-tuple (ul, . ,u‘"’l)
of infinite sequences p/ = (ud, ) consisting of the eigenvalues pd, | of dj, .,
r € Z>0, j = 1,...,n — 1. In what follows we classify all diagonal irreducible
modules with trivial action of b, and we describe their structure.

Theorem 7. Let N be an irreducible diagonal Z-graded H-module, such that hN =
0 and Kv = av for some a € C and all v € N. Then the following hold:

(1) H} acts trivially on N, which is an irreducible H-module.

(2) If v € N is a nonzero homogeneous element, then v is @, -highest vector,
where @,, is determined by the eigenvalues ofalg,q_|r1 onv,and N >~ L, (7;, a)
up to a shift of gradation. In particular, if a # 0, then N ~ M, (’;q, a) up
to a shift of gradation.

(3) If a =0, then N is the trivial 1-dimensional module.

(4) If a # 0, then M, (ﬁ,a) has finite-dimensional graded components if and
only if ¢, differs from @, only in finitely many places, where ng-&-l =0 for
allk € Zso, j=1,...,n—1, or vl ., #0 forallk € Zso, j=1,...,n—1.
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Proof. Part(a): this follows from the fact that N is irreducible and Z-graded, H;,
is central and its elements have degree different from 0. Part(b): let N; # 0 such
that all dJ,,, are simultaneously diagonalizable with eigenvalues .. Set p/ =
(Mgr+l>7 r € Zso, j = 1,...,n — 1. By Lemma 6, each (u',...,u" ') defines
a function ¢, : N = {£}"~! where ¢, (k); = + if ugkﬂ = 0 and ¢, (k); =
— if Mék-&-l = a. Then v is a ,-highest vector and N ~ L, (7—7,)\) up to a
shift of gradation. Part(c) is clear. Part(d): without loss of generality we assume
that ng+1 =0forall k € Z>p, j = 1,...,n — 1. Clearly, M%(ﬁ,)\) has finite-
dimensional graded components. Suppose that ,, differs from ¢, only in s places.
Consider a nonzero ¢,,-highest vector v. If w = xgk+1v # 0 for some k > 0 and j =
) .

from ¢, in s—1 places. Continuing we find a ¢, -highest vector in M, , (ﬁ, A). Since
M,, (H, A) is irreducible when a # 0 we conclude that My, (H, ) ~ M,, (H,\)
and hence it has finite-dimensional graded components. Conversely, assume that
My, (H,)) has finite-dimensional graded components and let v be a nonzero ¢,,-
highest vector. Denote by €2, the subset of odd integers defined as follows: k € €2,
if xiv # 0 for at least one j = 1,...,n — 1. A sequence (ki,...,k,) of Q, is
called cycle if "', k; = 0. Suppose § contains infinitely many positive as well as
negative odd integers. Then one can form infinitely many cycles. Each such cycle
(K1, ..., k) yields a basis element IT;_, x;’ v of M, (H, A) which is a contradiction.
Hence, €2 contains only finitely many positive or only finitely negative odd integers.
This means that ¢, differs from ¢, only in finitely many places, where 3, 1=0
forall k € Z>g, j=1,...,n—1, or ng-&-l #0forallk € Z>g,j=1,....,n—1
O

.,m—1, then mékHw = 0 and thus w is a ¢,/-highest vector where ¢, differs

g

Remark 4. We conjecture that any irreducible Z-graded H-module is diagonal.

We also have the following isomorphism criterion.

Proposition 8. We have that M, (H,a) ~ M, (H,a') (up to a shift of grada-
tion) if and only if a = ' and ¢, and @, differ only in finitely many places.

Proof. The condition a = a’ is clear. Assume that for some r and j, dJ. 41 has an
eigenvector v € M, (H,a) with eigenvalue ,u%r_H =a. Set w = x%H_lv # 0. Then
x},,yw = 0 and hence w is a ¢, -highest vector where v4, = pb, ., if k # r or
i # j, while v3, | = 0. We have M, (H,a) ~ M, (#,a). Similarly, we can change
finitely many nonzeros p’s to zeros.

Conversely, if we have the isomorphism, then one can obtain a ¢, -highest

weight vector by finitely many actions of elements x]i ( on a ¢,-highest weight

2r+1)
vector. This implies the statement. [J

4. Irreducibility of generalized Verma type modules

In this section we prove our main result which is the following theorem.
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Theorem 9.
(1) M(@, e L(e N) and M(5,\) are reducible for any s € {§, ™, €, H}.
(2) Ifdet DX( ) # 0, then there is a bijection between submodules of the module

o~

M (m, 3 L(¢, X)) and ideals of the algebra S.

(3) If det DX( ) # 0, then M (g, m; L(m, X)) is irreducible.

The next two results imply Theorem 9 items (1) and (2).
Corollary 10. M (5, )\) is reducible for any s € {g,m, €, H}.
Proof. Tt follows from Proposition 1. O
Proposition 11. Let M = M(nALE;L(@, A), L = L(E, A), and assume that we
have det Dg(()\) % 0. Then there is a bijection between submodules of M and ideals
of 8; StM is a maximal proper submodule of M; and L(m, & L) = A(H]) ®c L
as vector spaces.
Proof. Let J be an ideal of S. Since [Ho,m| = 0, it is clear that JM defines a
submodule of M. In the other direction, for a submodule N C M, we consider the
ideal Jy C S such that NNSL = JyL. We claim that Jy = {a € S | av) € N}.
Indeed, let a € Jy, and write an arbitrary v € L as uvy for some u € U(¢7).

Then we have av = auvy = uavy € N, and hence JyL C N NSL. For the other
inclusion, write a general element v = 2111 a;v; € NNSL with a; € § and assume

that vy,...,v,, € L are linearly independent. The fact that [’HO,E] = 0 along with
the fact that L is a simple £&-module with countable dimension allows us to apply

the Jacobson density theorem to find, for each i = 1,...,m, an element u; € U(£T)
for which u;v = a;vy € N NSL. In particular, a; € Jy for every 7, and the claim
is proved.

Now we claim that N = JyM. Indeed, let jm € JyM. Then, writing m = ul
with w € U(H ™) and | € L, we get that

Jjm = jul =ujl € uN C N.

Thus JyM C N. For the other inclusion, consider the canonical projection 7 :
M —V :=M/IJyM, W = n(N), and R = S§/Jn. Notice that V is free as an
R-module, and that WNRL = 7(NNSL) = n(JyL) = 0. Now if we suppose that
W # 0, then we can use the fact that det DX (X) # 0, and that [Ho,m] = 0, to get
a contradiction just as in the proof of Proposition 1. Thus W = 0 and the proof is
complete. [

Corollary 12. If det DX(X\) # 0, then L(m,\) = A(H]) ®c L(e, A) as vector
spaces.

~

Proof. This follows from L(, \) = L(@, t; L(€, \)) and Proposition 11. [
Corollary 13. Suppose that det D (\) # 0. Then we have the character formula

aI@N=¢ J[ a-et [ G+e) [ @+e),

aeA(X)E aEA(X)T a€EA(H )

re,0

where A(X)E , denotes the set of real positive even roots ofE

re,0
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Proof. This follows from the results of [GS08] along with the fact that L(m,\) =

o~

A(HT) @c L(e,\). O

From now on we assume that

det D (\) # 0, and hence, by Corollary 12,

o~

L(m, \) = A(H) ®@c L(E, \) as vector spaces.

Before proving the irreducibility of M (g, m; L(m, \)), we introduce an ordered
basis of M (g, m; L(m, \)). Recall that for a subalgebra a C g we defined A(a) =
{a € A|go Ca}. Let B(u™) ={fi € ga, | @ € A(u7)} be a basis of u~ such that

fi< fj if o < Q.

Now we order the basis B(L(u™)) = {fi(m) | m € Z} of L(u™) so that

(1) if m is odd and n is even, then f;(m) < f;(n),
(2) if m,n are both even or both odd, then f;(m) < f;(n)if m <n,orm=n
and f; < f;.

For r > 1 and (i,2m,p) = (41,...,%r, M1, ..., My, D1,...,Dr) € L] X 2L" X ZZ,,
we set fiom,p = fi, (m1)P* -+ fi, (my)Pr € U(L(u™)o) and we define deg fi om,p :=
>~ pi. For monomials of the different degree we let fi om p< fir,2m’ p’ if deg fi2m p<
deg fir 2m’,p’; for monomials of same degree we define f; om p < fir 2m’,p’ if (i, 2m, p)
< (',2m’,p’), where the latter order is the reverse lexicographical order. This
provides us a totally ordered basis B(U(L(u™)o))={ fi,2m,p := fi,(m1)P*- - - fi (m,)Pr}
of U(L(u")p). For r > 1 and (i,m) = (41,...,%r,m1,...,m,) € Z7 x (2Z" + 1),
we set fim = fi,;(m1)--- fi,(m,) and we define deg fim := r. For monomials of
the different degree we let fim < fir,m if deg fim < deg fi m’; for monomials
of same degree we define fim < fir.m if (i,m) < (i’,m’), where the latter order
is the reverse lexicographical order. Finally, we let fi/m' < fiomp for all such
monomials. By PBW Theorem, we have that B(U(L(u™))) = {fi2m.pfir,m’} is a
totally ordered basis of U(L(u™)).

Let hi,...,ht be a basis of h*. Then H; ., := h;y(—m) for i = 1,...,t and
m € {2Z>o+1} form a basis for #; . In particular, if we let H; ,,, > Hy, , if m > nor
m =n and ¢ > k, then the monomials H;, ,, - - - Hy, yn, With H;, ppy > - > Hy .,
form a basis B(H ) of A(H7).

Since we are assuming det D (\) # 0, we have by Corollary 12 that L(m, \) =

A(H]) ®c L(E,\) as vector spaces. Let {v; | i € I} be an ordered basis of
L(m, \), where the order is induced by the order of A(H] ). We say fi.m,pfir,m Vi <
fil,ml,pl fi’l,m’lvj if fi,m,pfi’,m’ < fi17m1,p1 fi/l,m’1 or if fi,m,pfi’,m’ = fil,ml,pl fi’l,m/l
and i < j. Finally, for an element

_ J : : . : J
u = E ui7m7pf1_,m,pf,/1m/vj, with Ui mp € C,
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we define
LinSpan(u) := Span{ fi m p fi' m’ | Uf,m,p # 0}.

For the next result recall that L(m,\) = A(H|) ®c L(E, A) as vector spaces
when det(D(\)) # 0. Also recall that for a; € A we have a triple f; € g~

e; € g, h; € b such that [f;, e;]o = h;.

Lemma 14. Let f=fofi=fi, (m1)" - fi, (my)P" fir (m}) - fir, (my, )€B(U(L(u™)),
v € L(m,\) be a nonzero vector, and assume that all factors occurring in f are
simple. For any such factor f;,, we consider e;, € n = m*aut. Ifdet DX (X\) # 0,
then the following hold:

(1) If deg f1 = 0, then there is 0> m; € {2Z + 1} or 0 < m € {2Z + 1} such
that

s

ci(m)fo="Y" —pi(p; = 1) fi, (m +2m;) fv

+ Y pipeaic(hi)) fi.(mj + me +m) f5
1<j<re=j+1
’Lj:ll

+ > pif hi(m+my)v mod U(L(u™))p-2) ® L@, N).

1<j<r
=0

(2) If deg fi > 1, then there is 0 > m € 27Z or 0 < m € 27Z such that

ei,(m)fv = < Z —p;(pj — 1) fi;(m+ 2mj)f3?@

1<j<r

=1 r

Y mpg%(hmfig(mj+mg+m>fﬂfv)
1<j<re=jt+1
ij:il

+< SN () ay (hi) fofi (m + mi +m) it
1<j<r’ §=j+1
1= ’
+ Y (—1)(T,_j)f3hil(m+m;)v)
1<5<r!

=l mod U(L(u7)) (p4r—2) ® L(m, X).

Proof. We prove part (b) first, as part (a) follows from it. Choose 0 > m € 2Z or
0 < m € 2Z such that h; (m +m}) is in B(H ). Since ad(e;, (m)) is a derivation
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of even degree, we have that

ea,(m)fv
“1

Z Fir (ma)Ph - fy (mg)eq, fi, Jo(m +my) fi, (mg)Pi =75 ofy (me )P fro
= =

+ ) fofu (my) - fur_ (mj_y)leq, firlolm +mi) fir  (mf) - fir, (my)v
j=1

r PJ*l

= > D fulma)P o i (mg)Vhiy (momy) i, (mg)P 77 f (mg)P fro

1<j<r v=0
i;=1

+ Z Fofu(mb) -~ fir_ 0y gy (m ) iy (my0) - fr, (mla)o

1<5<r’
ij:’il
s
= ( Z —p;(pj )fl (m+2mj)f”
1<<r
’Ljiil
T T PN T N
S pipear, (hi) fio(m + me + m) 0+ 5" py ik, (m + m;—)v)
1<j<ré=j+1 1<5<r
i =i =i

+< oY (0TI a (ki) fo fie (m) + mi +m) f] Pty

1<5<r’ €=5+1
ij=1

Y D0 et m)o ) mod UL ez © L
= (X “piloy 05 (m  2m)

1<j<r
ij:il

+ 37 S ppeaic (hi) fig(my +me +m) ﬁ;,)

1<j<ré=j+1

’L]—Zl

Z Z U ay (hiy) fo oo () + mi +m) %
1<5<r’ €=5+1

ij:il

+ Z (,1)(r’7j)f?hil (m + m})v) mod U(L(u7))p4r—2) @ L(M,\),

1< <
ij:il
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where the first equivalence follows from the fact that ad(h;, (m + m;)) is an even
derivation, ad(h;; (m + m/)) is an odd derivation, and fi, (mg) is an odd element
for any mg; and the second equivalence follows from the fact that h;, (m-+m;)v =0
for all 1 < j < r, since either h;,(m+m;) € H¢ that implies h;, (m +m;)v =0, or
hi,(m+m;) € 8T, and hence h;,(m + m;)v lies in the maximal proper submodule
of M(E,N).

For part (a), we notice that the second parentheses above does not appear
in the expression of e, (m)fv. Moreover, despite the fact that ad(e; (m)) and
ad(h;, (m + my)) are odd derivations (as m € {2Z + 1} and m; € 2Z for all
1 < j <), they behave as regular derivations when applied on factors of fo, since
m; € 27 for all 1 < j < 7. Thus the proof follows from the above equation. [

We now state our key result.
Theorem 15. If det DX (\) # 0, then M (g, m; L(m, \)) is irreducible.

Proof. We claim that any non-trivial submodule N of M (g, m; L) intersects L(m, \)
non-trivially. Assuming that the claim holds, the result follows from the simplicity
of L(m, \).

To prove the claim, let 0 # v € Ny, and let fmaxscmax = fa2b,cfar b’ Tq be the
maximal monomial occurring in v. We now reduce the proof to the case where all
factors f;, of maximal degree monomials occurring in v are simple root vectors.
Indeed, consider all factors f;, that occur in the monomials of maximal degree of
v, and let f;, be the minimal among them (i.e., its associated root «;, is such
that |05ik| is maximal among them). Let fmin:cmin = fd,2g,kfd/,g’hd”,g”zmin =
f 0,min f_'lymjnl'min be an element (occurring in v) of maximal degree having f;, as a
factor, and let z € nt = m* @ u™ be such that 0 # [z, f;,] € u™ (such z exists by
[Cox94, Lem. 4.2]). Let Jiin the set of indexes j for which f;; is a factor of Fomin
and [z, fi,] € u™. Let 0> m € 2Z (if z € uT) or 0 < m € 2Z (if z € m™) (here
m < 0 (resp. m > 0) means m so that for every fixed j, m+m; ¢ {gx, g, | 1 <
k<7, 1<1<7r'}). Then, using that ad(z(m)) is an even derivation, we obtain

Z(m)fminxmin

= Z Z fdl(gl)kl...fdj(gj)‘y['z?fd]] (m + g;) fa; (g ) =7 qu-(gr)krfl,minzmin

7j=1 'y—O

+ Z fO rmnfd/ gl) fd/~_1(gg‘71)[za fd;]O(m + g;)fd;_H (gngl) e fd’r, (g;’)ajmin

J

- Z k fl] m+ g.])fl’l'llllxmln

JjeJ_

+ Z(_l)jilfo,min[za fij]o(m+g§)ff,mm$min mod U(L(u™)) (4 —1)y@L(M, A),
jeJ

where k + d' = deg fmin. Now if S; denotes this summation, then it is nonzero
since [z, fi,Jo # 0 and m+m; ¢ {gk, 9, | 1 < k <r, 1 <1 <r'}. Moreover, if
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fx = fofix is a different monomial occurring in v, then, similarly we have that

fx_zp] fL] m"'mj)fjx

jeJ_
+ ) (=1 folz, i, Jo(mAm)) flz mod U(L(w™)) g r—1@L(H, N),
jeJ_
where p + 7 = deg f. Since fiin has maximal degree among monomials in v,

we have that p +r < k + d'. Hence, if T is the summation above, then S; ¢
LinSpan(T1) + U(L(u™))p—1) ® L(m, A), since this could happen only if p + r =

k+d; Clz, fi,]le = Clz, file for £ = 0,1; mj = gi; fli, fl and Tmin = .
l%ut th_ls would imply fmm = f, and xni, = =, which contradicts the fact that
fl. 7é fminxmin~

We may now assume that factors of all maximal degree monomials occurring in
v are simple. In particular, this is the case for

jinaxaknax = fbﬂnaxjaﬂnaxlknax = fa1(b1)C1" 'fﬁs(bs)csfﬁﬁ(bi)" 'fﬁsl(bs')ahnax~

Moreover, we may also assume that deg fimax > 1 (as otherwise the proof is
the same as that of [Cox94, Proposition 4.5], using Lemma 14 and a suitable
e € {2Z + 1} in his notation). By Lemma 14, for each simple root factor f,, of

Fmax, there is 0> m € 27 or 0 < m € 27 for which

€aq, (m)fmaxxmax

. ( S° —es(es — 1) fu, (m+ 20)) [T

1<5<s
=0

T T
+ Y % cjcm%(hal)fag(bj+bg+m>fﬁ;§axxmax)
1<j<s&=j+1
15=1

EE: ji: _1)e—u+4)@a (h m)fbnmxjgg(b’4—b§—+7n)f1nwxxmax

1<5<s" §=5+1
’Lj_ll

+ Z (s'—4) maxhlz (m+ b;-):rmax> mod U(L(u™))(es—2) @ L(m, A)

1<5<s’
ij =1

Finally, it is not hard to prove that for any fixed index [, the summand

wy = frlnaxhl(m + bg)xmax

is not in the LinSpan of the remaining monomials occurring in e;(m)v. Therefore,
er(m)v # 0, the maximal monomial occurring in e;(m)v has degree less than that
of the maximal monomial occurring in v, and thus the result follows by induction.
(]

Applying Theorem 15 in the case X = & gives:
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Corollary 16. If det DY ()) # 0, then M (g, H; L(H,\)) is irreducible.

Remark 5. Notice that differently from the other cases studied in the literature, we
do not need the central charge to be nonzero in order to have M (g, m; L(m, \)) be
irreducible (compare with [Cox94, Fut94, CF18]). This is due to the fact that the
central element K does not play a role in the action of the imaginary subalgebra
H on L(m,)). On the other hand, the condition det DX(X) # 0 is essential in
our context. Without this condition we do not necessarily have that L(m,\) &

o~

A(H7) ®c L(E, ) as vector spaces (see Corollary 12).
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