
NOTEBOOK OF ABSTRACTS

AND 

OTHER RELEVANT INFORMATION

School of Applied Mathematics of Fundação Getúlio Vargas, Rio de Janeiro, Brazil



CONTRIBUTED TALKS

investigation, we present several innovative properties of the intrinsic κ-projection into convex sets
of κ-hyperbolic space forms. These properties are crucial for analyzing the method and also hold
independent significance.  We discuss the relationship between the intrinsic κ-projection and the
Euclidean orthogonal projection, as well as the Lorentz projection. Moreover, we provide formulas
for the intrinsic κ-projection into specific convex sets, using the Euclidean orthogonal projection
and the Lorentz projection. Regarding the convergence results of the gradient projection method,
we  establish  two  main  findings.  Firstly,  we  demonstrate  that  every  accumulation  point  of  the
sequence generated by the method with backtracking step sizes is a stationary point for the given
problem. Secondly, assuming the Lipschitz continuity of the gradient of the objective function, we
show that each accumulation point of the sequence generated by the gradient projection method
with a constant step size is also a stationary point. Additionally, we provide an iteration complexity
bound  that  characterizes  the  number  of  iterations  needed  to  achieve  a  suitable  measure  of
stationarity for both step sizes. Finally, we explore the properties of the constrained Fermat-Weber
problem, demonstrating that the sequence generated by the gradient projection method converges to
its unique solution.
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Abstract
We are interested in practically solving a nonlinear conic programming (NCP) problem stated as

( NCP)    {minimize  f ( x )
subject to g (x )∈ K

where f : Rn →R and g : Rn → E are continuously differentiable functions, E is a finite-dimensional
vector space with an inner product, and K  ⊆ E is a closed convex cone. Particular cases when f (x )
and g (x ) are convex functions and K is the semidefinite symmetric matrix cone or the second-order
cone can be solved efficiently [1, 4]; or when f (x ) is a linear function and K is the copositive cone
has a better treatment [3]. Recently, Andreani et al. [2] extended a sequential optimality condition
from nonlinear programming [5] to the NCP. In this study, we propose a variant of these methods,
which  satisfies  these  conditions  based  on  an  augmented  Lagrangian  method  with  continuous
approximations of K. In particular, we consider an implementation with a polyhedral approximation
Kk of the copositive cone  K, which compensates the numerous expensive projection onto  Kk per
iteration required by these methods. Numerical results confirm our finding on some small examples.
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Abstract

Stochastic Dual Dynamic Programming (SDDP) is a widely used and fundamental algorithm for
solving multistage stochastic optimization problems. Although SDDP has been frequently applied to
solve risk-averse models with the Conditional Value-at-Risk (CVaR), it is known that the estimation
of upper bounds is a methodological challenge, and many methods are computationally intensive. In
practice, this leaves most SDDP implementations without a practical and clear stopping criterion. In
this paper, we propose using the information already contained in a multicut formulation of SDDP
to  solve  this  problem with  a  simple  and  computationally  efficient  methodology.  The  multicut
version of SDDP, in contrast with the typical average cut, preserves the information about which
scenarios give rise to the worst costs, thus contributing to the CVaR value.  We use this fact to
modify  the  standard  sampling  method  on  the  forward  step  so  the  average  of  multiple  paths
approximates the nested CVaR cost. We highlight that minimal changes are required in the SDDP
algorithm and there is no additional computational burden for a fixed number of iterations. We
present multiple case studies to empirically demonstrate the effectiveness of the method. First, we
use a small hydrothermal dispatch test case, in which we can write the deterministic equivalent of
the entire scenario tree to show that the method perfectly computes the correct objective values.
Then, we present results using a standard approximation of the Brazilian operation problem and a
real hydrothermal dispatch case based on data from Colombia. Our numerical experiments showed
that  this  method consistently  calculates  upper bounds higher  than lower bounds for those risk-
averse  problems  and  that  lower  bounds  are  improved  thanks  to  the  better  exploration  of  the
scenarios tree.


