
Boletim Técnico da Escola Politécnica da USP

Departamento de Engenharia de Telecomunicações
e Controle

{
ISSN 151 7-3550

BT/PTC/0011

Estudo de Caso: Tornando um
Projeto Testável Utilizando

Ferramentas Synopsys
Reinaldo Silveira

José Roberto A. Amazonas

São Paulo – 2000

FICHA CATALOGRÁFICA

Silveira. Reinaldo
Estudo de caso : tornando um projeto testável utilizando

ferramentas
Synopsys / R. Silveira, J.R.A. Amazonas. – São Paulo : EPUSP, 2000.

16 p. – (Boletim Técnico da Escola Politécnica da USP, Departa-
mento de Engenharia de Telecomunicações e Controle, BT/PTC/0011)

1. Testabilidade 2. Síntese automática 1. Amazonas. José Roberto
de Almeida II. Universidade de São Paulo_ Escola Politécnica.
Departamento de Engenharia de Telecomunicações e Controle III_
Título IV. Série

ISSN 1517-3550 CDD 005.14
621.3815

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS.

Estudo de Caso:
Tornando um Projeto Testável utilizando

Ferramentas Synopsys.
Reinaldo Silveira.

Prof. José Roberto. A. Amazonas

Abstract– Este trabalho é um estudo de caso que visa mos-
trar os passos de implementação que são necessários para
tornar um projeto testável. Tomamos como exemplo dois
projetos de média complexidade, a Hm de demonstrar as
condições reais de utilização das ferramentas de testabili-
dade. Ambos os projetos foram concebidos sem considerar
nenhum aspecto de t;estabilidade, portanto as coberturas de
falhas obtidas serão muito próximas às condições médias en-
contradas em diversas aplicações.

KeutvoTds– Testabilidade, Synopsys, Scan, BoundaTU Scan,
DF T

erarquia. o processo de realinhamento é necessário para
diminuir a latência do sinal El que está sendo transmitido.

Na seção II, será feita uma apresentação dos circuitos
para que seja possível o entendimento dos procedimentos
utilizados na implementação. Na seção III serão apresen-
tados os resultados das implementações sem utilizar testa-
bilidade. Estes resultados serão tomados como referência
para avaliar o impacto da síntese automática de testabili-
dade sobre o sistema. Na seção IV o procedimento para
inserção de cadeias de scan será apresentado, bem como os
resultados obtidos. Na seção V será abordado o problema
do Boundury Scan e finalmente na seção VI será apresenta-
do a comparação dos resultados e a apresentação dos testes
finais

I. INTRODUÇÃO

STE trabalho tem por objetivo apresentar o design
flow de síntese de um projeto escrito em VHDL[1],

visando especialmente a testabilidade do mesmo. Será ba-
sicamente um trabalho exploratório dos recursos de síntese
automática disponíveis no pacote da Synopsys 12]. Foram
escolhidos dois blocos funcionais de complexidade e funcio-
nalidade diferentes, ambos utilizados em sistemas SDH[3].

O sistema SDH ÇSynchrono ILS Digital Hierarchy) é um
sistema de multiplexação síncrona utilizado principalmen-
te para transmissão em fibras ópticas. O modelo de muI-
tiplexação foi concebido para ser simples e facilmente con-
figurável. Entretanto, para ser possível a transmissão de
sinais provenientes de outros sistemas que não possuem as
mesrnas características, foram criados esquemas de mapea-
mento que permitem absorver as disparidades de sincronis-
mo e alinhamento. Esses esquemas receberam o nome de
Virtual Containers de ordem inferior (VC). Os VCs de or-
dem inferior são posteriormente agrupados em Containers
de ordem superior e assim por diante, até compor o qua-
dro completo a ser transmitido. Os Containers de ordem
inferior são localizados em relação à hierarquia imediata-
mente superior através de ponteiros. Ao conjunto VC mais
os ponteiros a ele associados damos o nome de Tributary
Unit (TU)

Um dos circuitos que utilizaremos neste trabalho é um
mapeador/demapeador de TU12. TU12 é a unidade tribu-
tária associada ao virtual container VC;12, que por sua vez
encapsula um sinal do tipo El de 2,048Mb/s definido na
recomendação ITU-T G-703[4] .

O outro circuito é um realinhador de TU12. A função
do realinhador é, como o nome sugere, a de realinhar um
tributário do tipo TU12 a fim de inserí-lo numa dada hi-

E
II. APRESENTAÇÃO DOS BLOCOS

O sistema SDH emprega um esquema de multiplexação
simplificada para tributários1 de ordem mais elevada, e um
esquema mais complexo para tributários de ordem inferi-
or, pois muitas vezes estes são provenientes de outros ti-
pos de hierarquia, apresentando características diversas do
SDH. Os tributários de um modo geral precisam ser for-
matados convenientemente para poderem ser inseridos na
hierarquia; este “envelope“ inicial é chamado normalmente
de virtual container (VC). Os uãrttra! containers já possuem
todas as características normais à hierarquia SDli; estes são
divididos em octetos com funções específicas, contendo in-
formações de manutenção da conexão e da informação a ser
transmitida. Ao conjunto de octetos que contém a informa-
ção a ser transmitida dá-se o nome de Püyload, ao conjunto
de octetos que contém informações de gerenciamento e ma-
nutenção da conexão da-se o nome de Pat,h Overhead. O
virtval container é inserido na hierarquia SDH através de
um ponteiro que assinala o primeiro octeto do tributário.
Este mecanismo permite que sejam compensadas pequenas
variações de sincronismo entre os diversos equipamentos
que compõem o sistema. Quando um virtual container é
associado a um ponteiro, esta estrutura recebe o nome de
TributaTU Unit (TU)

TU12 é a unidade tributária que encapsula um sinal do
tipo El de 2,048Mb/s definido na recomendação ITU-T
G.703, através de um V(112. A estrutura de um V(112
pode ser vista na figura 1.

silveira©lsi . usp . br
jra©lcs.poli .usp. br

1 Um tributário, falando de forma simplificada, é a informação que
trafega na rede devidamente formatada nos padrões do SDH

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS

são intercalados sucessivamente até ocupar todo o espaço
disponível no tributário de ordem imediatamente superior.
Como já foi dito anteriormente, os tributários que estive-
rem sendo multiplexados precisam estar alinhados entre si
e sincronizados com o tributário superior para que os pon-
teiros sejam posicionados sempre em posições conhecidas
Entretanto, se a implementação for um multiplexador do
tipo add- drop-: , os TU12 obtidos de outras hierarquias não
apresentarão necessariamente sincronismo coerente com a
hierarquia local. Desta forma há a necessidade da imple-
mentação de um bloco que realinhe os ponteiros de um
TU12 para um novo valor especificado. Uma forma trivial
de resolver o problema é passar o TU12 por um buljet do
tipo FIFO inserindo tantos atrasos quantos forem neces-
sários até obter o sincronismo desejado. No entanto, esta
solução é inaceitável pois implicaria no aumento da latência
do sinal transportado em até 125pseg em cada ponto onde
a operação for necessária. Uma outra solução, um pou-
co mais complexa mas muito mais inteligente, implica no
recálculo dos ponteiros de TU12 de forma a introduzir o mí-
nimo de latência necessário aos dados transportados. Esta
função pode ser melhor compreendida através da figura 3.
Se for tomado o eixo vertical como eixo de tempo, pode-se
observar que apesar do realinhamento, a posição temporal
de VS praticamente não se altera. Será visto portanto qual
é o circuito que implementa essa função.

32 byte\ dc tnft»nn:Kan

12Suscp

Path Overhead

Informação

Enchimento fixo

Canais de comunicação

D] Controle de Justificação 1

Controle de Justificação 2

Oport. de just. negativa

Oport. de just. positiva

n
H
a
=

[2]
E
8

1 40
octetos

32 byleç de infonnuçúo

Fig. 1, Esquema de mapeamento de um El em um VC12.

Normalmente, os ponteiros estão localizados numa posi-
ção fixa bem determinada em relação ao nível hierárquico
imediatamente superior, enquanto o VC fica 'Tiutuando“ no
espaço a ele reservado. No caso do TU12 o overtlead dos
ponteiros é de quatro bytes sobre os 140 bytes do VC12,
que são inseridos na sua estrutura a cada 125pseg. Na re-
alidade nem todo este overhead é usado para os ponteiros,
neste espaço também se encontram bits de sinalização, es-
paço para justificação e reserva. Além de apontar para o
início de VC12 o o vertlead de TU12 também permite ajus-
tar pequenas variações de sincronismo entre o equipamento
que gerou o VC12 e o equipamento de hierarquia superior,
através do processo de justificação- Os bytes de ouerhea(1
de TU12 são denominados de Vl, V2, V3 e V4. Quando há
necessidade de justificação, os butes Vl e V2 sinalizam que
o frame corrente vai receber um byte a mais ou a menos
dependendo da necessidade que foi detectada. Caso haja
necessidade de receber um byte de informação adicional,
este ocupará a posição de V3, caso a necessidade seja um
byte a menos, o byte vago será a primeira posição após V3.
A estrutura de um TU12 bem como o significado dos bytes
de overhead pode ser vista na figura 2.

„'„Í
Alu\lc de ju\tlllt .r\ Jlt llJlr llccc\\árnr

TU 12
VI

Fig. 3. Representação ilustrativa da função de realinharnento de
TU 12

VI
V2

N N IN

a) T1)1)

New data flag (normalmente 01 10)

llrcrenrenta poillter (just. positIva)

E]1

[1]

[D] Decrementíl pointer (just.negativa)

A. ReaLirttt(rdor de TU12

A idéia básica por trás do circuito realinhador consiste
em separar o pauloaci do overhead, guardando a informação
de alinhamento, e inserir um novo ouerhead quando a infor-
mdção de sincronismo de saída estiver disponível. Uma pe-
quena FIFC) é utilizada para absorver eventuais processos
de justificação do virtual container e a latência de recálculo
de ponteiros. O diagrama de blocos do circuito realinhador
pode ser visto na figura 4

Para efeito didático o circuito será dividido em quatro
partes principais: a fifo, o controle de entrada, o controle

NDF - lnverte os 4 bits N

Just. Nes. - lllverte os bits D

Just. Pos. - lnverte os bits 1

Fig. 2. Estrutura de um Tt;12.
ZUm multiplexador do tipo add-dTop é um equipamento que inse-

re(add) e retira(drop) tributários, sem contudo demultiplexar toda a
hierarquia. Esta é, aliás, uma das grandes vantagens apregoadas pelo
SDH

Na multiplexação de tributários de ordem inferior, co-
mo é o caso do TU12, octetos de cada um dos tributários

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS. 3

TU12 de
ferença de 100 bits (quase 13 bytes) entre o equipamento
fonte e o destino de El. É necessário portanto que o tri-
butário VC12 ofereça a possibilidade de absorver eventuais
variações na taxa nominal de transmissão de El sem que
haja perda de dados, isto é conseguido através do processo
de justificação.

É possível ajustar a th\a de recepção do sinal El alocan-
do um lugar dentro do frame de VC12 para que a região
de dados possa crescer ou diminuir. Esta região está re-
presentada na figura pelos bits hachurados diagonalmente.
Quando há um aumento nominal na taxa de transmissão, o
bit assinalado como oportunidade de justificação positiva é
utilizado para transportar um bit de informação. Quando
há uma diminuição na taxa nominal, o bit assinalado como
oportunidade de justificação negativa e que normalmente é
utilizado para transporte de informação, é deixado de lado,
sendo preenchido com um enchimento qualquer. A ocupa-
ção dos bits de oportunidade de justificação é assinalada
através dos bits 1 e 2 da figura 1. Os bits aparecem três
vezes dentro do frame para garantir a correta leitura dos
mesmos através da simples redundância3 .

A forma usual de resolver este problema é através de uma
FiFO, uma vez que os bits seriais de El são escritos na sua
taxa nominal e são posteriormente processados numa taxa
muito maior, intercalada por períodos de inatividade. O
principal problema num sistema digital que trabalha com
cLocks diferentes, é o problema de meta-estabilidade que
pode ocorrer nos elementos de armazenamento. A leitura
dos bits de El, que é seguramente o canal de mais bai-
xa velocidade, poderia ser feita através da amostragem na
freqüência mais elevada. Entretanto, esta técnica não é
a mais conveniente pois apresenta a desvantagem de au-
mentar o consumo de potência e o projeto ficar atrelado à
freqüência de amostragem, ou seja, se uma outra freqüên-
cia de operação precisasse ser utilizada o circuito precisaria
ser redesenhado. Como o intuito do projeto, além de funci-
onar de maneira eficiente, é poder ser reutilizado em vários
subsistemas SDH, foi adotada uma outra técnica descrita
a seguIr.

A solução adotada pode ser vista na figura 5. Nela é
possível ver a implementação como um banco de memó-
rias de um bit, arranjadas como uma RAM (memória de
acesso aleatório). A escrita dos bits de entrada é feita na
posição apontada por um contador e é controlada por uma
base de tempo do próprio sinal de entrada. A saída, de
forma semelhante, é feita lendo-se a posição apontada por
um outro contador segundo a base de tempo do sistema
que irá mapear o El. A meta-estabilidade nunca ocorrerá
se for garantido que os apontadores nunca apontem para
uma mesma posição simultaneamente, ou que nunca um
apontador “rode“ sobre o outro, o que acarretaria também
a perda de dados. Se for escolhido um tamanho conveniente
para a FIFO e os valores iniciais (de reset) dos apontadores,
esta condição é plenamente satisfeita.

Vle

V2e

V4e

Vls

V2s

V4s

de
Ponteiros

Controle
de
Entrada

Fig. 4. Diagrama de blocos do circuito realinhador de TU12.

de saída e o bloco de recálculo de ponteiros. O controle
de entrada implementa a parte do algoritmo que separa o
overheüd do TU12 do VC12. Esta função é implementa-
da, basicamente, através de uma máquina de estados que
conta os bytes do tributário independentemente do estado
dos seus apontadores, Evidentemente para que a funcio-
nalidade seja completa é preciso levar em consideração as
condições de exceção, como justiâcações, mudanças volun-
tárias de ponteiros, e etc. A informação de offset também
é armazenada em duas etapas: através do armazenamento
de V2 e do cálculo do offset entre os dois alinhamentos.
Estas informações são utilizadas pelo bloco de recálculo de
ponteiros para o cálculo dos novos valores de Vl e V2.

O controle de saída passa a funcionar no momento em
que existe requisições de saída. Evidentemente, a informa-
ção de sincronismo deve ter sido fornecida. Nesse momento
os dados são fornecidos à saída à medida que são requisi-
tados. A montagem do novo TU12 é feita nesse momento,
também levando-se em consideração possíveis justiôcações,
desta vez ditadas pelo nível de ocupação da FIFO. O re-
cálculo de ponteiros, por sua vez, é feito no momento em
que o sincronismo de saída é fornecido. Como todos os
subsistemas funcionam sob um mesmo clock e ainda as-
sim seu funcionamento está sujeito a eventos totalmente
assíncronos, são utilizados circuitos para arbitrar o acesso
a determinados elementos,

B. Mapeador/De'müpeatior €1e TU12

O sinal El é um sinal serial cujas características são de-
finidas pela recomendação ITU-T G.703. Este sinal é nor-
malmente codificado em HDB3, mas para efeito do exemplo
vamos supor que o sinal El já passou por um decodificador
de HDB3 para NltZ. O processo de mapeamento no VC12
está representado na figura 1. Nela podemos ver a porção
destinada ao ou erh,ead do tributário, a área de informa-
ção7 enchimentos fixos, canais de comunicação e controle.
Considerando que não haja justificação, pode-se ver que é
possível alojar 1024óáÉ5 de informação eni fT-aTnes que se
repetem a cada 300pseg, resultando na taxa nominal do
sinal El (2,048Mbit/s). Entretanto, de acordo com a reco-
mendação ITU-T G.703, o sinal El pode apresentar uma
variação nominal de ü50 ppm (partes por milhão, ü102,4
bit/s), ou seja, a cada segundo pode-se apresentar uma di-

3É fácil ver que um esquema assim caracterizado é capaz de ade-
quar variações de até É2000 bit/s, muito superior a necessária para
acomodar o El. Daí pode-se concluir que a freqüência de justiâcações
é bem inferior à freqüência do VC12.

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS. 4

a existência de uma biblioteca de células descritas e carac-
terizadas sob uma dada tecnologia de fabricação. Sobre o
Design Compiler agregam-se todas as outras ferramentas
Synopsys. O fluxo de trabalho genérico recomendado para
a ferramenta pode ser visto na figura 6.

apontador de
leitura

gerador de
statusn

cheio
'llover

4

Fig. 5. Diagrama de blocos da FIFO

A montagem do TU12, segue uma seqüência bastante
parecida com aquela usada no circuito realinhador. Uma
diferença significativa em relação à operação do realinhador
é que neste último manipula-se 8 bits de dados, enquanto no
mapeador a fifo é de bits. Utiliza-se, então, um bloco shi[
ter especial que além de fazer a conversão serial/paralelo,
pode ser configurado para fornecer palavras de 1, 7 e 8
bits. Isto é necessário para o processo de mapeamento com
justificação, que será função do índice de utilização da fifo

O processo inverso, o de demapear o TU12 e recuperar o
sinal El, segue procedimento semelhante. Através do mes-
mo procedimento utilizado no bloco realinhador, separa-se
o overtlead de TtJ12 do \’C12, armazenando somente as
informações relevantes. Em seguida procede-se a separa-
ção do overhead de VC12 do tributário El, de maneira
inversa a descrita anteriormente. através de um conversor
paralelo/serial que admite palavras de 1. 7 e 8 bits. Os
dados seriais são então inseridos numa FIFO semelhante à
da figura 5, A saída se dá através de um bloco chamado
pscalerv (vide fig, 7). Este bloco sintetiza, d partir do
clock do sistema, um clock, de aproximadamente 2,048Mhz
que esvaziará os bits da FIFO de saída. o cLock será leve-
mente acelerado se a FIFO estiver muito cheia e retardado
se a FIFO estiver muito vazia. Este procedimento produz
um El com um pequeno jitLer de saída que pode ser facil-
mente eliminado com os procedimentos convencionais.

Fig. 6. Processo de Síntese.

C) Design (1 ompiLeT possui duas interfaces, o dc_shell e
o design_analyzer. o dc_shell, como o nome sugere, é
um shell onde os comandos do Desigrt Compiler são ativa-
dos e as mensagens e informações do processo são enviadas
O design_analyzer é a contrapartida gráfica das ferra-
mentas de síntese. Nele pode-se acessar todos os comandos
e variáveis da ferramenta, com a vantagem de oferecer re-
presentações gráficas (esquemas elétricos) dos sistemas em
desenvolvimento correlacionados com os eventos de inte-
resse. Por exemplo, durante uma verificação, ao “clicar”
sobre uma indicação de erro o ponto correspondente na re-
presentação esquemática é imediatamente ressaltada. Esse
recurso é muito útil na fase de desenvolvimento, tendo sido
utilizado com grande freqüência durante este trabalho.

Apesar de ter sido utilizado com maior freqüência o
design_analyzer, os comandos serão apresentados como
se tivessemos utilizado o dc_shell, simplesmente por ser
uma representação mais cômoda, a exemplo aliás do que é
feito nos próprios tutoriais da Synopsys.

III. SÍNTESE DOS BLOCOS

A síntese dos circuitos não apresentou grandes dificulda-
des J uma vez que todo o projeto visava a síntese automáti-
ca, Algumas modificações for,un necessárias para compa-
tibilizar os pacAages de VHDL da ferramenta de síntese da
Synopsys4 .

A ferramenta básica para síntese no ambiente Synopsys é
o Design C OTnpiler- , C) Desi9It Contpiler sintetiza uma des-
crição RTL num Tl,etlist de portas lógicas dependentes de
tecnologia, ou seja, o processo completo de síntese requer

A. S('rttese do Bloco Reatinhü(ior

O projeto original é composto por onze módulos:
count 144, en_just, f if o, inpctrt, of counter, outctrt,
pcalc, pointer. pointer_gen, realin e reqarbt , sendo o
de mais alta hierarquia o módulo realin. Como foi dito an-
teriormente, alguns blocos precisaram de algumas adapta-
ções devido à incompatibilidade entre funções de conversão

4 O projeto foi desenvolvido utilizando-se basicamente as ferramen-
tas da Mentor Graphics [3], algum hs funções de conversão de tipos
utilizadas nesta não são compatíveis com as ferranlentas Synopsys.

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS, 5

de dados do VHDL da Synopsys e o da Mentor Graphics3.
Uma destas adaptações é mostrada a seguir:

série de variáveis internas do Design COTnpiler . Por como-
didade estas variáveis podem ser ajustadas automaticamen-
te através de um arquivo de configuração. Um exemplo do
arquivo de configuração de nome “ . synopsys_dc . setup” é
mostrada a seguir:

[autel©cynthia] dif f begin/of counter .vhd scanbsd/of counter .vhd
10c13 , 14
< LIBRARY ÂRITHMETIC;

> --LIBRARY ARITHMETIC;
>
12c16 , 17
< USE ARiTaHETiC. STD_LOGiC_ARiTH . ALL ;

search_path = { . ams_synopsys_lib/cub33
/usr/local/t ools/synopsys/1998.08/libraries/syn
/home /proj ects/bia/fuzzy/bibliotecas/synopsys/synopsys/cub33/} ;
link_library = {cub33. db} ;
target_library = {cub33 . db} ;
symbol_library = {cubs33 . sab} ;
define_design_lib york -path WORK;
synthetic_library = {dv_foundation.sldb}
link_library = target_library + synthetic_library
search_path = search_path + {synopsys_root + "/du/sim_ver"}
synlib_wait_for_design_license = {"DesignWare-Foundation'1}

> --USE ARITHMETIC . STD_LOGIC_ARITH . ALL ;
> USE IEEE . STD_LOGIC_ARITH . ALL ;
36 , 37c41 , 43
< offset <= to_stdlogicvector (ist;ate ,8) ;
<

> -- offset <= to_stdlogicvector (ist;ate , 8) ;
> offset <= conv_std_logic_vector (ist;ate ,8) ; o comando compile é usado para fazer a síntese, trans-

formando a representação estrutural de componentes gené-
ricos, numa representação estrutural otimizada de compb
nentes da tecnologia de trabalho.
dc_shell > compile

O comando compile possui diversos argumentos para di-
recionar a síntese e otimização, por exemplo:

Os blocos que precisaram de modificações semelhantes
formam: of counter, pcalc, pointer e realin. Por serem
modificações apenas de caráter específico da ferramenta, ou
seja, não introduzindo nenhuma mudança na arquitetura
original, não serão detalhadas as demais modificações.

Seguindo a seqüência sugerida pelo diagrama da figura
6, é executada a seguinte seqüência de comandos para car-
regar o projeto:

dc_shell > compile [-no_map] [-map_eff ott low 1 medium
[-area_effort low | medium 1 high]
[-incremental_mapping] [-exact_map]
[-in_place] [-rout;ability [-add_porosity]]
[-scan] [-verify] [-verify_hierarchically]
[-verify_effort lou | medium | high]
[-ungroup_all] [-boundary_optimization]
t-no_design_rule | -only_design_rule]
[-background run_name] [-host machine_name]
[-arch architecture] [-xt:era] [-top]

high]

dc_shell>
dc_shell>
dc_shell>
dc_shell>
de_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_she:Ll>
dc_shell>

read -f vhdl count:144 .vhd
read -f vhd1 en_ just .vhdread -f vhdl fifo.vhd
read -f vhd1 inF>ctrt. IFhd
read -f vhdl of counter .vhd
read -f vIldl out:ctrt.vhd
read -f vhdl pcalc.vhd
read -f vhdl pointer .vhd
read -f vhd1 pointer_gen. vh
read -f vhd1 reqarbt . vba
read -f vhd1 realin.vhd
uniquif y
remove_constraint -a:LI
remove_clock -all

E possível agora tirar alguns relatórios com o resultado
da síntese.

dc_shell > report_area

Report : area
Design : realin
Version: 1999.05
Date : Thu Dec 2 14 : 59 : 38 1999O comando uniquiíy cria, para blocos que são usados

mais de uma vez, instâncias de blocos distintas para cada
uma das chamadas. Como o projeto opera em uma ve-
locidade relativamente baixa e também não ser objetivo
deste trabalho explorar os recursos de síntese e otimização
particulares do Synopsys foram removidos quaisquer cons-

Library(s) Used
cut>33 (File -fuzzy/bibliotecas/synopsys/synopsys/cub33/cub33 . db)

Number of ports
Number of nets
Number of cells
Number of references

22
220
160

28
traint s .

O processo de síntese com Design CompiLer funciona da
seguinte forma: toda vez que um elemento é lido, num dos
formatos admitidos, o bloco é traduzido para uma repre-
sentação interna, onde os elementos de hardware principais
já estão identificados. Elementos seqüenciais como banco
de registradores e Hip-fiops são inferidos e separados dos
elementos puramente combinatórios, e primitivas de cará-
ter combinatório. como somadores. incrementadores. etc....
são inferidas e usadas com todos os demais para coInpor o
bloco recém lido. Estes componentes constituem a repre-
sentação estrutural da descrição de entrada e é a partir dela

Cornbinationa1 area : 365 . 290009
Noncombinationa:L area: 427 . 500000
Net lnterconnect area: 1424.875610

Total cell area
Total area

792 . 790039
2217 . 665527

Tomando o tamanho de uma porta Nand de duas entra-
das como uma célula padrão6, conclui-se que o componen-
te possui A = 1933, 7 portas equivalentes. Em seguida
pode-se executar o comando check_test para verificar o
estado em relação à síntese de cadeias de scan.

que são feitas as etapas posteriores de síntese, mapeamento
tecnológico e otimização.

6 É possível discriminar o tamanho de cada célula da biblioteca usa-
da para a síntese, desta forma elegemos uma Nand de duas entradas
como célula de tamanho padrão. cujo tamanho é igual 0,41. A docu-
mcntação da biblioteca não é clara quanto à unidade de área usada
para esta medida. mas tudo indica que a unidade seja 10–3mm2,
urna vez que a biblioteca em questão é da technologia AMS cub33 de
0.Gum

Neste ponto basta indicar a tecnologia e proceder à sín-
tese. A indicação da tecnologia depende do ajuste de uma

3Ferrarnenta onde foi desenvolvido originariamente o projeto.

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS 6

dc_shell > check_test Writing test program realin (without vectors) to file
autel/Synopsys/realinhador/xuork/begin/re alia . vdb

Test Design Rule Violation Summary Este resultado dá uma visão da potencialidade do teste
com cadeias de scan se estas forem utilizadas com um mí-
nimo de esforço. Note no final do report que os vetores não
são salvos no arquivo de vetores, obviamente o resultado
da geração não faz o menor sentido se a cadeia não existir
de fato. Por isso, a ferramenta Synopsys nunca salva os
vetores gerados se o bloco analisado não possuir cadeias de
scan, caso possua elementos seqüenciais.

Total vio:Lations : 17
++ 8++++++++++++++++++#++++ 4444++++++++++++++++++ 84

MODELING VIOLATIONS
4 Cell has no scan equivalent violations (TEST-120)

TOPOLOGY VIOLATIONS
10 Unconnected input pin violations (TEST-332)

PROTOCOL VIOLATIONS
3 Asynchronous pins uncontrol:Lab:Le violations (TEST-116)

O Design COTnpiler possui um gerador de vetores de tes-
te automático (ATPG), capaz de gerar um conjunto de ve-
tores baseando-se exclusivamente na topologia do circuito.
Para isso a ferramenta identifica todos os elementos seqüen-
ciais do netlist e assinala-os como elementos da cadeiade
;can: dei-tá-forma–iuas–entradas podem ser caracterizadas
como saídas padrão (nós observáveis) e suas saídas como
entradas padrão (nós controláveis), ficando o resto da lógica
caracterizado como puramente combinatório. O processo
de geração dos vetores calcula uma cobertura baseada nes-
tas premissas, e continua até que uma cobertura desejada
seja alcançada ou que um certo tempo de CPU seja exce-
dão, A geração é disparada através do seguinte comando:

B. SÍrbtese do Bloco Mapea(lor/Demapealíor de TU12
O bloco mdpeador/demapeador é composto por dezeno-

ve módulos. As adaptações de conversão de tipos abstra-
tos. mencionadas no ítem anterior foram necessárias em
nove blocos. A síntese foi conduzida seguindo o seguinte
script

dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>
dc_shell>

read -f vhdl count:144 .vhd
read -f vhd1 E164mem.vhd
read -f vhd1 bip2.vhd
read -f vhd1 crc7.vhd
read -f vhd1 justm.vhd
read -f vhd1 loopback.vhd
read -f vh<11 pscalerv.vhd
read -f vhd1 shifter_in.vhd
read -f vhd1 shift:er_out .vhd
read -f vhd1 tm12.vhd
read -f vIldl tu12c.vhd
read -f vhd1 tu12dm.vhd
read -f vhd1 vc12c.vhd
read -f vhdl vd12.vhd
read -f vhdl fifotu12.vhd
read -f vhd1 tu:12mp.vhd
read -f vhdl fifotu12_out . vIld
read -f vhd1 vc12drn.vhd
read -f vhd1 tu12.vhd
uni qu if y
remove_constraint -all
remove_clock -all

dc_shell > create_test_patterns

Combinational Test Pattern Generation start:s

Start random pattern generation

60 . 47'Z
70 . 26'/.
71 . 40'Z
71 . 84%
72 . 54%
72 . 79'Z
72 . 92'/.
73 . 30%
73 . 39'/.
73 _ 60'Z
73 e 648/6
73 .1 4%
74 o 1078
74 . 25%

fault s
f au:Lts
f au:Lts
fault s
:fault s
fault s
f au:Lts
fault s
fault s
fault s
fault s
fault s
fault s
fault s

processed
processed
processed
processed
processed
processed
processed
processed
processed
processed
processed
prQcessed
processed
pr ocessed

curnu:Lat i ve
cumulat i ve
curou:Lat i ve
curnulat i ve
curnulat i ve
cumulative
cumulat i ve
curau:Lat i ve
cumulat i ve
cumulat i ve
cumu:Lat i ve
curnulat i ve
curnu:Lat i ve
cumulat ive

fault
fault
fault
f au:Lt
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault

coverage
c average
c average
c average
c average
c average
c average
coverage
c average
coverage
coverage
c average
c average
coverage

60
70
71
71
72
72
72
73
73
73
73
73
74
74

478/:

26%
4076

8478
54'/.
797.
927.
307.
3978

6078

64%
7478
10%
257:

As mesmas condições iniciais utilizadas no bloco reali-
nhador foram usadas na síntese do mapeador. Nestas con-
dições temos:

dc_shell> compile
dc_shell> report_area
+++++++++ 48+++ 444+ 4444++++ 444++++++ 4++++
Report : area
Design : tu12Version: 1999.05
Date : Mon Dec 6 15 : 22 : 15 1999
+++++++++++++++++ 44+++++++++++++++++++++

End random pattern generation

Start deterministic pattern generation

98.54% faults processed ; cumulative fault coverage = 84.37'/,
99.62% faults processed ; cumulative fault coverage = 85.56'/6

100.00% faults processed ; curnulative fault coverage = 85.92'/,

End deterministic pattern generation\
Library (s) Used

cub33 (File -fuzzy/bibliotecas/synopsys/synopsys/cut>33/cub33 . db)

No . of detected faults
No . of abandone(i faults
No . of tied íaults
No . of redundant faults
No . of untested faults
Total no . of faults
Fault coverage

Non-collapsed
5602
0
482
21
1101
7206
83 . 57

Collaps ed
3642
0
482
17
597
4738
85 . 92

Number of ports
Number of nets
Number of cells
Number of references :

44
344
224

33

Cornbinationa1 area: 1359 . 389893
Noncombinational area : 1494 . 360107
Net lnterconnect area : 5264 . 945801

No . of test patterns 136 Total cel:L area
Total area

2853 . 750000
8118.695801

Test Generation Time (CPU) 7.41 sec

Start compact:ion
Mais uma vez tomando uma porta equivalente como re-

ferência, temos: = = 6960 portas equivalentes. Em
seguida pode-se verificar o estado do componenteEnd coalpaction

No . of compact:ed patterns 120

o . 65 secCompact:ion Time (CPU)
dc_shell> check_test

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS. 7

++++++++++++++++++++++++ 4+++++++++++++++++ 84444444
Test Design Rule Violation Summary

No . of detected faults
No . of abandoned faults
No . of tied faults
No . of redundant faults
No . of unI:est:ed faults
Total no . of faults
Fault coverage

8335
0
1504
0
16871
26710
33 . 07

5616
0
1504
0
10792
17912
34 . 23

Total violations : 130
+++ 448++++++++++++++++++++++++++++++ 88+++++++ 84444

MODELING VIOLATIONS
60 Cell has no scan equivalent violations (TEST-120)

TOPOLOGY VIOLATIONS
8 Improperty driven three-state net violations (TEST-115)

37 Uncoanected input pin violations (TEST-332)
PROTOCOL VIOLÂTIONS

14 Uncontrollable clock violations (TEST-169)
CAPTURE VIOLATIONS

11 Clock used as data violations (TEST-131)

No . of test patterns 339

Test Generation Time (CPU) 44.29 sec

Start compact;ion. . .

End compact3ion

48++ 844+ 8448+ 44+ 4484++ 44+++++ 44+++ 4444++++ 44444+++
Sequential Cell Summary

No . of compact:ed patterns 310

Compact;ion Time (CPU) 3.35 sec
. . . Writing test program tu12 (without vectors) to file

aute1/Synopsys/tu12/xvork/begin/tu12 . vdb74 out of 745 sequential cells have violations+

SEQUENTIÂL CELLS WITH VIOLATIONS
+ 74 cells are black boxes

SEQUENTI AL CELLS WITHOUT VIOLATIONS
+ 671 cells are valid scan cells

Pode-se notar um esforço muito maior para conseguir
alguma cobertura, obviamente em função do número de
violações encontrado anteriormente. O que será feito a se-
guir é, sistematicamente, verificar uma a uma as violações
encontrada nos projetos e corrigí-las. Este processo será
detalhado na próxima seção.

Note que o número de violações das regras de testabilida-
de da ferramenta é muito maior neste bloco. Provavelmente
a estimativa de cobertura também será pior, como pode ser
vista a seguir: IV. INSERINDO Scan

Antes de começar a corrigir as violações de testabilidade
indicadas na análise anterior, foi feita a inserção do scan no
bloco realinhador sem nenhuma modificação e verificado se
o resultado correspondeu a estimativa.

Combinational Test Pattern Generation start:s

Start random pattern generation

20 . Og% faults processed
21.77% faults processed
23.00% faults processed
23.53% faults processed
24.22% faults processed
24.54% faults processed
24 . 787, lau:Lts processed
25.02% faults processed
25.87% faults processed
25.95% faults processed
26.09% faults processed
26.17% faults processed
26.27% faults processed
26.36'Z faults processed
26.43% faults processed
26.477, faults processed
26.53% faults processed
26.57% faults processed
26.61% faults processed

cumulative íault
cumulative íault
cumulative fault
cumulative fault
cumulative fault
cumulative fault:
curnulative íault;
cumulative fault
cumulatlive fault
cumulatlive fault
curnulative fault
cumu:Lative fault
curou:Lative fault
curnulative f au:Lt
cumulative fault
cumu:Lative fault
cumu:Lative fault
cumulatlive fault
cumulatlive fault

coverage
c average
coverage
coverage
cover age
c average
coverage
coverage
c average
c average
coverage
c average
coverage
coverage
c average
coverage
covetrage
coverage
coverage

20 . 09%
21 . 77%
23 . OO'/.
23 . 53%
24 . 22%
24 . 547.
24 . 78%
25 . 02%
25 . 877.
25 . 95%
26 . 09%
26 . 177.
26 . 277.
26 . 36%
26 . 43%
26 . 47%
26 . 53%
26 . 57%
26.61%

A. Bloco Realinhador
Sem introduzir nenhuma modificação, o bloco realinha-

dor foi compilado com a seguinte seqüência de comandos:

dc_shell> read -f vhdl count:144 .vhd
dc_shell> compile -scandc_shell> insert_scan
dc_shell> read -f vhd1 en_just .vhd
dc_shell> conpile -scan
dc_shell> insert_scan
dc_shell> read -f vhd1 filo .vba
dc_shell> compile -scan
dc_she:LI> insert_scan
dc_shell> read -f vhdl inpctrt.vhd
dc_shell> compile -scan
dc_shell> insert_scan
dc_shell> read -f vhdl of counter .vhd
dc_shell> compile -scan
dc_shell> insert_scan
dc_shell> read -f vhdl outctrt.vhd
dc_shell> compile -scan
dc_shell> insert_scan
dc_shell> read -f vhd1 pcalc.vhd
dc_shell> compile -scan
dc_shell> insert_scan
dc_shell> read -f vhdl pointer .vhd
dc_shell> compile -scan
dc_shell> insert_scan
dc_shell> read -f vhd1 pointer_gen .vhd
dc_shell> compile -scan
dc_shell> insert_scan
dc_shell> read -f vhdl reqarbt.vhd
dc_shell> compile -scan
dc_shell> insert_scan
dc_shell> read -f vhdl realin.vhd
dc_shell> uniquify
dc_shell> remove_constraint: -all
dc_shell> remove_c:Lock -all
dc_shell> compile -scan
dc_shell> insert_scan

. . . End random pattern generation

Start deterministic pattern generation .

72.09% faults processed ; cumulative f ault coverage = 29 . 15%

73.59% faults processed ; cumulative fault coverage = 29.15%
76.19% faults processed ; cumulative fault coverage = 31.28%

79.88% f au:Lts processed ; cumulative fault coverage = 31.28%
81.25'Z faults processed ; cumulative fault coverage ; 32.54%
82.157, fan:Lts processed ; cumulative fault coverage = 33.527,

89.05% faults processed ; cumulative fault coverage = 33.52%
89.431 faults processed ; cumulatlive fault coverage = 33.907,

92.52% faults processed ; cumulative fault coverage = 33.90%
92.83% íaults processed ; cumulative f au:Lt coverage = 34.12%

99.56% faults processed ; cumulative fault coverage = 34.12%
100.00% faults processed ; cumu:Lative f au:Lt coverage = 34.23%

. . End deterministic pattern generation

Non-co11apsed Co11apsed
Note que desta vez foi utilizado o argumento -scan junto

com o comando compile. Este argumento instrui o com-

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS 8

pilador a utilizar em todos os elementos seqüenciais (Flip-
fiops), os seus equivalentes de sccrn. Desta forma todas
as otimizações, de área e espaço, levam em consideração o
novo componente. Outra particularidade é que cada mó-
dulo foi compilado separadamente, assim como a inserção
da cadeia de scan. Isto foi necessário pois a inserção global
produzia um erro desconhecido que abortava a ferramenta.
O resultado da síntese é visto a seguir:

ma elétrico gerado. Entretanto, a menos que se conheça
muito bem o design e as possíveis variações sintetizadas,
este procedimento pode ser confuso. É útil na verificação
dos elementos inferidos, ou na determinação de inferências
indesejadas por erro de codificação.

A segunda técnica é mais simples, porém parece ser mais
trabalhosa. Consiste em compilar, checar as violações e
corrigí-las, inserir o scan, módulo a módulo. Nesta técnica
é possível manter um controle rígido da síntese e do esta-
do geral do circuito. Foi usada esta segunda técnica onde
foram identificados problemas que acabavam por induzir
muitos outros

o primeiro problema foi encontrado no módulo f if o.
Neste módulo foi utilizado um elemento seqüencial (Flip-
Hop) com set e reset assíncrono. Nestes casos a ferramenta
não pode utilizar o componente na cadeia de scan, pois
uma dada combinação de teste poderia modificar o valor
interno do flip-flop e portanto corrompendo a cadeia de
scart. Por outro lado, se o componente for deixado de fora
um nó incontrolável aparecerá no circuito, propagando essa
incontrolabilidade para vários outros nós do sistema. No
módulo f if o este recurso foi utilizado inicialmente, confor-
me pode ser visto no trecho VHDL, a seguir:

dc_shell> report_area

Corabinationa1 area: 436 . 300049
Noncombinationa1 area: 328 . 100006
Net lnterconnect area : 1495 . 801636

Total cell area
Total area

764 . 400024
2260 . 201660

Pode-se ver que o aumento de área é extremamente pe-
queno, apesar da área das células ter diminuído. Entretan-
to, ao se verificar as reais condições de testabilidade tem-se

dc_shell> create_test_patterns

Combinationa1 Test Pattern Generation starts

Start random pattern generation . .

40.44% faults processed ; cumulative fault coverage =
41.32% faults processed ; cumulative fault coverage =
41.44'Z faults processed ; cumulative fault coverage =
41.50% faults processed ; cumulative fault coverage =
41.52% faults processed ; cumulative lau:Lt coverage =

40 . 441
41 . 32%
41 . 44%
41 . 50%
41 . 52%

IF ((ISt = ’O’) or (NDF_rst = ’ 1 ’)) THEN
pointer <= 3 ;
first <= ’ 1 ’ ;

ELSIF Vls_reg = ’ 1 ’ THEN
first <= ’0 ’

El,SIF rising_edge (clk) THEN
IF (ctin = :’ 1 :’ and first = ’0 ’) THEN

IF pointer = 7 THEN

E:nd random pattern generation

Start deterministic pattern generation

92.45'Z faults processed ; cumulative fault coverage =
93.45% faults processed ; cumulative íault coverage =

94.45% faults processed ; cumulative fault coverage =
95.31% faults processed ; cumulative fault coverage =
96.48% faults processed ; cumu:Lative fault coverage =
97 _ 94% faults processed ; cumulative fault coverage =
98.86'Z faults processed ; cumulative fault coverage =

100 .00% faults processed ; cumulative fault coverage =

41 . 52%
41 . 52'Z
41 . 52%
41 . 70%
41 . 70%
41 . 70'Z
42 . 627.
42 . 647.

A correção pode ser vista a seguir:

IF rising_edge (clk) THEN
IF ((Ist = ’O’) or (KDF_rst = ’ 1 ’)) THEN

pointer <= 3 ;
first <= ’ 1 ’ ;

ELSIF Vls_reg = ’ 1 ’ THEN
first <= ’0 ’ ;

END IF;
IF (ctin = ’ 1 ’ and first = :’0 :’) THEN

IF pointer = 7 THEN

End deterministic pattern generation

No . of detected faults
No . of abandoned faults
No . of tied faults
No . o:f redundant fault;s
No . of untested faults
Total no . of faults
Fault coverage

Non-collapsed
2786
0

0
0
5058
7844
35 + 52

Col laps ed
2135
0
0
0
2872
5007
42 . 64

Após a modificação o modulo passou a apresentar 100%
de cobertura. Um outro problema ocorreu no módulo
outctr1. Alguma diferença entre a síntese Synopsys e a
síntese Mentor Graphics, induz numa diferente inferência
dos elementos seqüenciais, fazendo com que alguns latches
sejam sintetizados indevidamente com a codificação utili-
zada. Na verdade este é um tipo de problema que pode
passar despercebido, uma vez que a utilização destes lat-
cttes não modifica a funcionalidade do circuito.

Revendo a funcionalidade do circuito, foram explicitadas
as condições irrelevantes, principalmente quando era utili-
zado o comando VHDL CASE, solucionando o problema

Após estas pequenas modificações o bloco foi sintetizado
com a mesma seqüência de comandos apresentada anteri-
ormente e o resultado pode ser visto a seguir:

No . of test patterns 44

Test Generation Time (CPU) 5.74 sec

Start compact:ion

. . . End compact:ion

No . of compact:ed patterns 35
Compact:ion Time (CPU) 0.25 sec

Writing test program realin to file
aut el/Synopsys/re alinhador /xwork/begin/realin.vdb

Note que um retrabalho é necessário a fim de alcançar
os níveis desejados de cobertura. Dois procedimentos po-
dem ser utilizados para corrigir as violações de um projeto.
A primeira é utilizar o relatório produzido pelo comando
check_test. Este comando quando chamado de dentro
do design_analizer, permite uma ligação entre a mensa-
gem/violação apresentada e seu correspondente no esque-

dc_shell> report_area

Combinational area : 435 . 890045
Noncombinational area : 327 . 839996
Net lnterconnect area: 1494.743042

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS 9

Total cell area :
Total area:

763 . 730042
2258 . 473145

agravante. Foi utilizado então, o procedimento menciona-
do anteriormente, cada submódulo foi analisado individu-
almente, hierarquicamente dos mais inferiores até a topcett
e onde foram identificados os seguintes problemas.

Os módulos problemáticos foram: fifotu12_out,
vc12dm e tu12, respectivamente seguindo a ordem hierár-
quica, sendo tu12 a topcell. De fato, esta é a listagem dos
módulos que necessitam de modificações; na realidade os
problemas se restringem a fifotu12_out e tu12

o módulo fifotu12_out (fig. 7) é muito parecido com a
fifo de entrada, com exceção da geração local do sinal clk2
que estará regendo a saída dos bits da fifo. A utilização
deste cLock sintetizado faz com que, durante o teste, este e
os demais nós dependentes fiquem incontroláveis, tornando
o teste muito difícil.

dc_shell> create_test_patterns

Combinational Test Pattern Generation start;s

Start random pattern generation. .

82.86% faults processed ; cumulative fault coverage =
91.67% faults processed ; cumulative fault coverage =
94.24% faults processed ; cumulative fault coverage =
95 . 10% faults processed ; cunulative fault coverage =
95.46% faults processed ; cunulative fault coverage =
95.70% faults processed ; cunulative fault coverage =
95.89% faults processed ; cumulative fault coverage =
96.12% faults processed ; cumulative fault coverage =
96.39% faults processed ; cumulative fault coverage =
96.49% faults processed ; cumulative fault coverage =
96.557, faults processed ; cumulative fault coverage =
96.57'Z faults processed ; cumulative fault coverage =

82 . 867.
91 . 67%
94 . 247.
95 . 10%
95 . 46%
95 . 707.
95 . 89'Z
96 . 12%
96 . 39%
96 . 49'Z
96 . 55%
96 . 57%

End random pattern generation

Start deterministic pattern generation. . .

98.31% faults processed ; cumulative fault coverage = 98.31%
99.22% faults processed ; cumulative fault coverage = 99.22%

100. 00% faults processed ; cumulative fault coverage = 100.00%

End deterministic pattern generation

No . of detected faults
No . of abandoned faults
No . of t:ted faults
No . of redundant faults
No . of untested faults
Total no . of faults
Fault coverage

Non-collapsed
7807
0
0
23
0
7830
100 . oo

Co11aps ed
5142
0
0
17
0
5159
100 . oo

No. of test patterns 148

Test Generation Time (CPU) 6.07 sec

Start conpaction Fig. 7. Diagrama de blocos da FIFO de saída

End compact;ion

No . of compact:ed patterns 132

A solução nestes casos é introduzir artificialmente sinais
que controlern o nó clk2, conforme pode ser visto na figu-
ra 8. Um muz é introduzido entre o ponto de geração do
sinal clk2 e a sua utilização. o sinal clk3 é multiplexado
entre clk2 e o sinal clktest, através do sinal test_mode.
Estes novos sinais são utilizados somente durante o teste,
portanto em operação normal test_mode deve ser “0“. A
modificação melhora em muito as condições de teste do bIo-
co, evidentemente a testabilidade não chega a 100% pois,
da forma que ficou, o bloco pscalerv não é observável.
O sinal clk2 poderia ser levado a uma saída, entretanto
concluiu-se que o overhead produzido não justificaria a co-
bertura.

Os sinais adicionais introduzidos na modificação da figu-
ra 8, obviamente, precisaram ser encaminhado'; para fora
do módulo e hierarquicamente para fora do circuito. Por-
tanto, foi necessário acrescentar pinos extras no módulo
fifotu12_out, no seu superior imediato o módulo vc12dm
e na topceLI o módulo tu12. Esta foi a única modificação
do módulo vc12dm.

O módulo tu12, por sua vez, apresentou uma série de
problemas. A primeira diz respeito à uniformidade dos ele-
mentos seqüenciais. Para se consolidar uma cadeia de scan
é necessário que todos os elementos seqüenciais sejam com-
patíveis, ou seja, não é desejável que se misture fUp-ftops
sensíveis a borda com latches sensíveis a nível. Algumas ve-

Compact:ion Time (CPU) 0.63 sec
Writing test program realin to file

- aut el/Synopsys/realinhador/xvork/begin/realin.vdb

Note que após a inserção da cadeia de scan, os vetores de
teste são efetivamente escritos no arquivo de saída. Pos-
teriormente este arquivo pode ser convertido para VHDL,
Verilog e alguns outros formatos de testadores comerciais.
Os vetores em formato VHDL/Verilog, são normalmente
utilizados para simulação e verificação dos tempos do cir-
cuito em condições de teste.

B- Mapeü(lor /DeTrtapeüdo'r

Foi visto no ítem anterior que não basta a pura e simples
inserção do scan no circuito sintetizado. Se não forem cor-
rigidas as violações indicadas, somente coberturas muito
baixas são conseguidas. Portanto, neste segundo circuito
será ornitida a síntese preliminar e serão analisados direta-
mente os problemas do projeto.

O bloco mapeador/demapeador além de maior é também
mais complexo que o realinhador. Uma diferença básica é
a utilização de diferentes clocks em diferentes partes do
circuito. A presença de 1}or-ts bidirecionais também é um

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS 10

de

leitura

pscalerv
clk2

clk3

apontador de

leitura

pscalerv
clk2

clkhigh clktest

instância, atribuição aleatória de valores. Isto pode fazer
com que o estado do barramento bidirecional seja indeter-
minado quando a atribuição não corresponder nem a read.
nem a tvrite. Por outro lado, se atribuição ativar ambos
os sinais, pode-se ter contenção no barramento. O modelo
“68HCll“ usa por sua vez um único sinal para sinalizar re-
a(1 e write. o sentido da transação é determinada em todo
o ciclo de acesso, e a temporização ditada por um sinal de
stTObe separado. Esta forma de operação mostrou-se mais
conveniente como poderá ser vista nos resultados seguintes.

dc_shell> report_area
+++ 4444444+++++++++++++++++++++ 444444++
Report : area
Design : tu12
Version: 1999.05
Date : Wed Dec 8 16 : 23 : 16 1999
+ 4444484444444444+ 4444+ 44444++++++ 44++++clkhigh test mode

antes depois
Library(s) Used

cut>33 (File -fuzzy/bibliotecas/synopsys/synopsys/cut>33/cub33 . db)

Fig. 8. Solução utilizada no bloco fifotu12 out Number of ports
Number of nets
Number of cells
Number of references

53
377
246

43
zes lütches são inferidos indesejavelmente, outras, são utili-
zados indevidamente. Tem-se os dois exemplos no módulo
tu12: na primeira, é implementado um interface para con-
trolador semelhante ao “8051”, onde dados e endereços são
multiplexados num mesmo barramento. Na fase de endere-
çamento, os endereços são armazenados internamente num
registro especial. Foi utilizado inicialmente, um lütct L de 8
bits para esta função, A correção imediata foi a substitui-
ção do tatclt por elementos síncronos, conforme pode ser
visto no código VHDL a seguir:

Combinational area
Noncombinationa1 area
Net Interconnect area

1495 . 089966
1311.549927
5406 . 796387

Total cell area
Total area

2806 . 639893
8213.436523

dc_shell> set_test_hold 1 test_mode
Períorming set_test_hold on port ’test_mode ’
dc_shell> set_test_hold O csl
Períorming set_test_hold on port ’ csl ’
dc_shell> create_test_patterns

_ . <<antes»
- - Lat:ch de enderecos
adr_lat:ch : PROCESS (clk , ale ,
BEGIN

IF (ale = ’ 1 ’ and csl = ’0 ’)
madr(O) <= ad (O) ;
macir(1) <= ad(1) ;

. . <<depois>>
- n Lat ch de ende rec os
adr_latch : PROCE:SS (clk)
BEGIN

IF rising_edge (clk) THEN
IF (ale = ’ 1 ’ and csl = ’0

rnadr (O) <= ad(O) ;
madr(1) <= ad(1) ;

Cornbinational Test Pattern Generation start:s :

csI, ad)
THEN

Start random pattern generation

End random pattern generation

Start deterministic pattern generation

48
56
58
65
77
78
79
79
79
79
79
79
80
80
80
81
84
85
87
87
89
90
90
91
92
92
93
94
94
94
95
96
96

24+/+

12'/.
197+

62'/.
877.
617.
037.
34'/.
527e

7371

81%
9871

197+

34'Z
39%
8278
30'/e

88'Z

07'/.
93'Z
427.
097.
847.
337.
04'/.
79%

708/8

199/8

548/8

72'Á
12+/e

27+/e

53'/.

fault s
fault s
fault; s
íault; s
f a tIlt s
fault s
f au:Lts
f au:Lts
fault s
fault s
f au ILts
faultis
fault s
fault s
fault s
fault s
fault s
fault s
fault s
fault s
íault: s
f ault; s
fault s
:fault s
íault s
:f ault; s
íault s
:f au:Lts
íault s
fault s
fault s
íault s
fault s

pr ocessed
processed
processed
processed
pr ocessed
pr ocessed
proçessed
processed
processed
processed
processed
processed
processed
processed
processed
processed
processed
processed
processed
processed
processed
pr ocessed
processed
pr ocessed
processed
processed
processed
processed
processed
processed
processed
pr ocessed
processed

cumulat ive
cumulat ive
cumulative
cumulat ive
curnu:Lative
cumulative
cumulat ive
curaulative
cumulative
cumulative
curaulat ive
cumu1 ative
curnu:Lat ive
cumulat ive
cumulat ive
cumu1 at ive
cumul at ive
cumul at i ve
cumulat ive
curnulat ive
cumulat ive
cumulat ive
cumulative
curnul at ive
cumulat ive
curnu1 at ive
cumul at ive
cumulat ive
curnu:Lat ivc
cumulat ive
cunulat ive
cumulat ive
cumul at ive

fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
f au:Lt
f au:Lt
fault
fault
f au:Lt
fault
f au:Lt
fault
f au:Lt
fault
f au:Lt
fault
f au:Lt
fault
fault
fault
fault
fault
f au:Lt
f au:Lt
fault
fault
fault

coverage
coverage
coverage
coverage
coverage
coverage
coverage
coverage
coverage
cover age
cover age
coverage
cover age
coverage
coverage
cover age
coverage
coverage
cover age
cover age
cover age
cover age
coverage
c average
coveTage
coverage
co vet age
cover age
cover age
coverage
c average
cover age
coverage

48 . 18%
56 . 06%
58 . 147.
65 . 58%
77 . 821
78 . 567.
78 . 987.
79 . 29'/.
79 . 47'/.
79 . 68'/.
79 . 76'/.
79 . 937.
80 . 147.
80 . 29%
80 . 347.
81 . 777.
84 . 217.
85 . 78%
86 . 98%
87 . 84'/.
89 . 32%
89 . 97'Z
90 . 71'/.
91 . 197.
91 . 777.
92 . 517.
93 . 38'Z
93 . 857.
94 . 16'Z
94 . 34%
94 . 757.
95 . 907.
96 . 167.

) THEN

O segundo caso, o de inferência indevida, foi detetado na
implementação de um multiplexador de acesso a registros
internos. Sendo o barramento de 8 bits, e alguns registros
de 7 bits, um Lat:ch indevido foi inferido quando era feita a
atribuição de valores de bits ao sinal de saída. Este é um
daqueles erros que não alteram a funcionalidade do circuito,
porém atrapalham em muito os esquemas de t;estabilidade.
Uma vez detetado o problema a solução é trivial

Um outro problema encontrado refere-se à inferência de
tri.state. Parece mais uma vez que os esquemas de inferên-
cia não são ri=idamente idênticos entre a síntese Mentor
Graphics e Svnopsys. Foi preciso reescre\’er a implemen-
ta(,ão do t,ristate mesmo porque a geração dos vetores de
teste é muito sensível aos barramentos bidirecionais. Pen-
sando nisso concluiu-se que a interface do tipo “8051” se-
ria problemática e foi decidido adaptar para uma do tipo
“68HCll“. A diferença que norteou esta decisão refere-se
aos sinais de read e write na interface tipo “8051’;. Na gera-
ção automática de teste os sinais recebem, numa primeira

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS, 11

96.79% faults processed
97.36% faults processed
97.65% faults processed
97.85% faults processed
98.15% faults processed
98.44% faults processed
98.62% faults processed
98.88% faults processed
99.11% faults processed
99.34% faults processed
99.57% faults processed
99.75% faults processed
99.98% faults processed
99.98% faults processed

cumulative fault
cumulative fault
cumulative fault
curnulative fault
cumulative fault
cumulative fault
cumulative fault
cumulative fault
cunulative fault
culnulative fault
cumulative fault
cunulative fault
cumulative fault
cuInulative fault;

coverage =

coverage =
coverage =
coverage =
coverage =
coverage =
coverage =

coverage =
coverage =
coverage =
coverage =
covetrage =
coverage =
coverage =

96 . 42%
96 . 99%
97 . 28%
97 . 47%
97 .ll'l.
97 . 98%
98 . 15%
98 . 37%
98 . 61%
98 . 83%
99 . 067.
99 . 24%
99 . 40%
99 . 40'Z

comando insert_jtag. Como resultado, o sistema será
reestruturado da seguinte forma:
• A antiga topce11 será renomeada para Core
• Será criado o bloco JTAG_BR, contendo o registrador de
bypass.
• Serão criados os blocos JTAG_BSRINBOTH, que serão usa-
dos como os registros de boundary-scan para todas as en-
tradas não clock
• Serão criados os blocos JTAG_BSRINCLKOBS, que serão
usados como os registros de boundary-scan para todas as
entradas do tipo clock,
e Serão criados os blocos JTAG_BSROUTBOTH, que serão usa-
dos como os registros de boundary -scan para todas as saí-

. . End deterministic pattern generation

No . of det;ect:ed faults
No . of abandoned faults
No . of tied fau:Lts
No . of redundant faults
No . of untested fault;s
Total no . of :faults
Fault coverage

Non-collapsed
27414
42
6
0
114
27576
99 . 43

Co11apsed
18410
22
6

0
90
18528
99 . 40

das

e Será criado o bloco JTÂG_IR2, contendo um registro de
instrução de dois bits7 .
• Será criado o bloco JTAG_TAP, contendo o controlador
TAP, com reset assíncrono.

No . of test patterns 647

Test Generation Time (CPU) 50.80 sec
A. Boundaru-Scan no Mapeador/Demapeador

Acompanhe os comando principais do processo:
Start compact;ion. .

End compactlion dc_shell> insert_scan

No . of compacted patterns 591 de_shell> report_area

Compact:ion Time (CPU) 7.78 sec
Writing test program tu12 to file

autel/Synopsys/tu12/xwork/begin/tu12 . vdb

Note que antes da geração dos vetores de teste, foi uti-
lizado um novo comando “ set test Ibot(P . Este comando
“seta” um determinado sinal num valor fixo durante o tes-
te. o sinalt est mode foi colocado em nível “1“, indicando
teste interno, e o sinal csI Q chip select) foi colocado em “0”,
indicando componente selecionado. Algumas informações
interessantes podem ser obtidas:

Report : area
Design : tu12
Version: 1999.05
Date : Fri Dec 10 18 : 42 :03 1999

Library (s) Used :

cub33 (File -fuzzy/bibliotecas/synopsys/synopsys/cub33/cub33 . db)

Number of ports
Number of nets
Number of cells
Number of references :

58
216

82
15dc_shell> report_test -scan_path

++++++++++ 44+++ 84
Report : test

- scan_path
Design : tu12
Version: 1999.05
Date : Wed Dec 8 16 : 32 : 07 1999

+

Combinational area
Noncombinationa1 area:
Net Interconnect area

1602 . 220215
1482 . 209961
5815 . 416016

Total cell area
Total area

3084 . 430176
8899 . 845703

(+) indicates change of polarity in scan data
(c) indicates cell is scan controllable only
(o) indicates cell is scan observable only
(x) indicates cell cannot capture

dc_shell> report_test -port

Complete scan chain #1 (test_sil --> t 1112_out (7)) contains 650 cells
(lista de sinais)

Complete scan chain #2 (test_si2 --> test_so2) contains 8 cells
. . (lista de sinais)

Complete scan chain #3 (test_si3 --> test_so3) contains 6 cells
. (lista de sinais)

Complete scan chain #4 (test_si4 --> test_so4) contains 70 cells
(lista de sinais)

Design

Data

-port
tu12
1999.05
Fri Dec 10 18:43:35 1999

Signal Type

Test Clocks

Rãs Fall Por ted
j tag_cck
j tag_tdi
jtag_tdo
j tag_ta:
j tag_t tst

j tag_tek
j tag_tdi
Jt&g_tdo
j tag_ta:
jta8_tr3t
test _scan_enable
to 3 t _ scan _ in
test _scan_in
test _scan_in
test _scan_in

Veja que este bloco apresenta quatro cadeias de scan.
Ist,o acontece por que o circuito utiliza quatro docks di-
ferentes, são eles: clk, clkin, clkhigh e o recém criado

test _ 511

test» si 2
tost_3i3
to st_si 4
te =t«=o2
test _so:3
test ws oq
tu12_out (7)

1

3

4

1

2

3

4

clktest ,

V . Bou,'rt(iaT'y-Scun

test ns ca:iw ou

to stM scan

o processo de inserção de Bourrílar ly- S cult, é independen-
te da inserção de cadeias de scan internas ao circuito. Pa-
ra sintetizar a lógica de BoundaT-ly- Scan, basta executar o

7 E possível definir-se novas instruções, além das exigidas pela norma
IEEE 1149.1, como veremos mais adiante

89o8

1

s oL11e:6::\:: o11|1|1o$t s

9

r

$o
$o
$o
80

)

Data

0

VoI

IOsS ão L

:e9 ot t : + ::; 8 A 4 1 41 1 9::+

1bJ1 81E1p 1E:

les
$o
163
\\o
6

x::sl

01

+1::::qc 1 9 BELo o

Goàe E SsD 1e
? is

B.

r\ trF

Ca !

Load
?\$

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS 13

instrução adicional ao que normalmente é sintetizado. Isto
é possível executando o comando: Cornbinational area

Noncombinational area
Net Interconnect area

519.519836
409 . 450043

1712 . 814941dc_shell> set_jtag_instruction instruction_name [-code code]

Antes de invocar a síntese BS, por exemplo, executando
o comando:

Total cell area:
Total area

928 . 969849
2641 . 784668

de_shell> set_jtag_instruction INTSCAN

adiciona-se uma nova instrução de nome INTSCAN. Execu-
tando o comando insert_jtag, o Test Compiter irá adici-
onar o controle necessário para a decodi6cação e a lógica de
controle da cadeia de scan e então criará dois pseudo-ports :
INTSCANCAPTURE de entrada, e INTSCANENABLE de saída. A

dc_shell> check_bsd
Loading design ’Core
.Starting IEEE 1149.1 Compliance Chockin8
Frnding set of soquentra1 oleaont3

,Analy2in8 TAP and TAP Cantro11or
,Analyzing TAP

Error: Na IEEE 1149.1 test ports havo been identif ied
Frnishod IEEE 1149.1 Conpliance Chocking

(TÊST-812)

ligação entre estes pseudo-ports e a cadeia interna de scan
deve ser feita manualmente.

IEEE 1149.1 Sunnary

e o sinal INTSCANCAPTURE deve ser ligado no port test_so
do bloco Core.

O cells found in the Instruction Register
O standard instructions found.
O user daf ined instructions found
Na TEST DATA REGiSTER
No b hd ary gi

e O sinal INTSCANENABLE deve ser ligado ao test_se do
bloco Core.
e E o sinal TDI deve ser ligado ao test_si do Core.

Obviamente, alguma lógica adicional precisará ser inse-
rida. Aplicando ao realinhador, temos:

IEEE 1149+ 1 Violation Sunnary

2_ Viol i f di r TAP c 11

Violatos Rule: 3.1.18 Corrosponds to Error3 : TEST-812
Oioli

RuI 4.1.1 ic pead E TEST- 812

design_analyzer> current_design "-autal/Synopsys/realinhador/xvork/begin/real
Currant design is ’roalin ’{"realin"}
design_analyzor> check_bsd

Loading design ’roalin ’
,Starting IEEE 1149.1 Coaplianco Checking
Fin cling set of sequencial olenents
Analyzing TAP and TAP Controller

Analyzing TAP
.Finding the set of TAP controllar 3equontial ol08eats
,Prunin8 set of TAP Controllor sequencial Elononts

,Checking cho TAP controller initi&lization
...Analyzing the TAP controller reset condition

Tr&versing the TAP controller states
lnferring TAP controller clock out:puts
An&lyzing TRST port

Yarning : Undriv8n input port TRST is float;ing. Yhen undrivon,
this port should bohavo as though it gas drivon by logic ano . (TEST-819)

Aa&lyzing TNS Port
Varning: Undriven Input port Tns is floatin8. Vhen undrivon ,

this port should b6havo as though it vas drivers by logic one .
,Analyzing TCE halt state

Varning: Undrivon input port TDI is floating. When undrivon,
this port should behavo as though it was drivers by logic one

Anüly:ing the instruction register
Findin8 cho update flops

Analyzing the BYPASS register
Analyzing Cha DIR register

Device Identif ication Register doesn’t 8xist;s
.Analy:ing cho baIxadary 3c an regIster

...Finding the update flops .
Finding t;ho BSR cells contro11in8 the design parts
Finding the BSR coIls 3ensing the design parts
Findin8 the BSR coIls driving the design parts

.Finding the set of IR docoding pina
..Analy:ing the different siBnat; tiros at the docodin8 pias

lnferring the different test data registar (TDR)s selected by instructions
Warning: No Register is selected to connect botv80n

TDI and TDQ during in3truction opcodo IO. (TEST-837)
.Chockin8 output conditionIng of the iaplenontod instructions
Inf errin8 cho inplenontad SAHPLE/PRELOAD Instructions .
Findin8 the BSR controlling calls PIs .
Finding the BSR controlling cells pas

..Finding the BSR nan-controlling cells PIs

..Finding the BSR cells POs

.Hodifying cho BSR controllin8/Output calls PIs
Infarring tha inplon8ntod INTEST in3truction
Inf errin8 the lnplenented CLAHP instruction
lnferrin8 the inpleaonted HIt;HZ instruction
lnferrin8 the inplenontad IDCODE & USERCODE instruction .
Inf orring the implenentod RUNBIST instruction

..Analy:ing the EXTEST instruction
,Analyzin8 the BYPASS instruction
An&lyzing cho SAHPLE/PRELOAD instruction
Analyzing the INTEST in3truction
Analyzin8 the CLAHP rnstruction
Analy=ing the RUNBIST instructian
Analyzrng the IDCODE and USERCODE instructions
Analyzrng Tost-Logic-Reset Tap Controller State
.Finrshed IEEE 1149.1 Conpli8nco CheckinB

dc_shell> set_jtag_instruction INTSCAN
dc_shell> insert_jtag
de-shell> current_design realin
dc_shell> write -format vhdl -hierarchy -output “realin_bsd.vhd“

Como o trabalho é todo feito em VHDL, a hierarquia em
VHDL é “salva” para efetuar as modificações necessárias.
Veja na figura 9 as modificações acrescentadas.

CoreChIa
t8st»so1851_SI

/!.„'\/„!„\ ant%antn

BSRgSR cellBsn ceU

(TÊST-819)

(TEST-819)

(a) (b) (c)

Fig. 9. Modificações necessárias para se ter acesso à cadeia de scan
interna, através do controlador de BoundaTu- scan.

dc_shell> read -f vhdl rea:Lin_bsd_intscan.vhd
dc_shell> uniquif y
dc_shell> compile -map_eff orc medium -verify -verify_eff ott low

-boundary_optimization
dc_shell> create_schematic -size mentor_maximum
dc_shell> create_schematic -size mentor_maximum -symbol_view
dc_shell> create_schematic -size mentor_maximum -schematic_view
dc_she11> report_area

- gen_database

Report : area
Design
Version
Date

area
real in
1999 . 05
Mon Dec 13 14 : 12 : 23 1999

Library (s) Used
IEEE 1149.1 Sunnary

cut>33 (File -fuzzy/bibliotecas/synopsys/synopsys/cub33/cub33 . db) 4 state elenents found in the TAP controller
2 cells found in the lnstruct;ion Register3 standard InstructIons found
O user de fi ned Instructions found

1 cells in BYPASS register
25 cells in boundary scan register

Number of ports :
Number of nets :
Number of ce:LIs
Number of references

30
106
43
38

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS, 14

IEEE 1149.1 Violat;ion Suma ary

TABLE I
R=SUMO DOS R=SULTADOS

2 Violations found in extraction of TAP Controller
Violatos Rule : 3.3. lb Corrosponds to Errors : TEST-819
Violatos Rule : 3.6. lb Corrogpands to Errors ; TEST-819

2 Boundary scan design Violations found
Violatos Rulo : 7.1. la Corre3ponds to Errors : TEST-837
Violate3 Rule : 7.1.1e Corrasponds to Error 3 : TEST-837

realin cobtu12
mse simples, sem DFT

2217.67 m6área
n'> de portas 1933,70 6960,00

;íntese simpTéFaR; as Inodi6caçM
2206.84área 8309,23
1924,02n'’ de portas 7119,12
m =m4 100%2258,47área

99,40%1862,76 6845,46na de portas
Após o s oundary-m

8899,842641,78área
7523,00no de portas 2265,78

O circuito pôde então ser recarregado e reotimizado. Vê-
se na figura 10 que a modificação apresentada na figura 9
foi implementada e simplificada corretamente. o multiple-
xador de test_si foi preservado e mapeado no componente
MU2, enquanto o multiplexador de test_so foi simplificado
e substituído pelo componente A021,

Neste ponto, o procedimento parece ter sido completa-
do com sucesso, entretanto quando se procede às verifi-
cações costumeiras nota-se um grande número violações.
As violações são decorrentes do fato do sistema não ser
capaz de reconhecer os elementos do botbntlary -scan inseri-
dos automaticamente no passo anterior. O netlást gerado
nos processos de síntese automático são armazenados nu-
ma base de dados, que entre outras coisas possui informa-
ções de quais elementos foram inseridos automaticamente
e quais as suas finalidades. As cadeias de scan e os bIo-
cos do boundary-scan são rápidamente destacáveis nesta
etapa. Para se efetuar as modificações necessárias para a
utilização da instrução adicional, foi necessário a conver-
são da base de dados interna da ferramenta Synopsys num
formato que pudesse ser manipulado, neste caso a lingua-
gem VHDL. Obviamente, estas propriedades úteis de ports ,
nets e gates foram perdidas, provocando o elevado name-
ro de violações observado quando o Tbetlist foi novamente
reintroduzido na ferramenta.

Apesar dos problemas, o circuito foi sintetizado corre-
tamente. A dificuldade entretanto consiste na elaboração
dos vetores de teste, uma vez que a ferramenta não permite
acoplar os testes gerados nas etapas anteriores ao circuito
com boundary-scan interligado à cadeia de scan interna.

TABLE II
O vertlead DAS iMPLnMENTAÇÕES

ouerhÊnd realiri tu12
Após o scan

2,3% 1,15%área
nc’ de portas -3,19% '3,84%

Após o bell=y-scan
19.71 %área 7,11%
17,76% 5,67%nc) de portas

mínimo, mesmo considerando circuitos pequenos como o
Realinhador. Curiosamente, o oil eThead foi negativo no

caso do mapeador/demapeador, talvez devido aos diferen-
tes algoritmos usados nos dois casos. Portanto, pode se
concluir que a ferramenta é capaz de produzir resultados
satisfatórios a custos relativamente baixos

Em relação ao boundary -scan, entretanto, a ferramenta
apresentou-se muito mais limitada. Como já era espera-
do, d inserção dos circuitos de boundary-scan, apresentou
ouertLeaci tanto maior, quanto menor o circuito. Entretan-
to, as limitações apareceram quanto tentou-se acessar a ca-
deia de scan interna, através da interface de bo'LrrLdary -scan.
O procedimento descrito nos manuais é pouco detalhado,
limita-se a apresentar os passos seguidos na seção anterior,
sem fazer referência de como fazer para recuperar as infor-
nrações do scan interno. Isto torna o procedimento difícil
e trabalhoso. Outra limitação bastante incômoda é que a
ferramenta não permite que seja escolhida a interface de
bOurrclary-scüll como meio de injeção dos vetores de teste
internos. Para isso, a ferramenta sugere a geração de uma
descrição adequada dos circuitos de boundary -scan, através
da linguagem BSDL, e em seguida, através de ferramentas
third-part formatar os vetores apropriadarnente

Neste aspecto. pode-se concluir que, a menos que tenha-
mos disponíveis estas ferramentas de formatação de vetores
utilizando as estruturas de bounciary-scan, o procedimento
é incompleto. e portanto inútil para efeitos práticos.

Como conclusão do trabalho, deve-se lembrar que um
projeto bem sucedido no aspecto testabilidade, além de se

VI. CONCLUSÕES

Foi visto nestes exemplos, que não basta que um projeto
seja concebido para síntese automática, para que a inser-
ção automática de circuitos de teste dê bons resultados. Foi
constatado, e já era de se esperar, que a natureza do proje-
to pode torná-lo mais fácil ou mais difícil de ser testado. C)
projeto do circuito realinhador, por exemplo, é um circuito
todo síncrono. usa um único sinal de clock. Portanto tudo
indica que a inserção de uma cadeia de scan pode resultar
numa cobertura extremamente interessante, como acabou
se confirmando. O mapeador/demapeador, por outro lado,
possui vários sinais de clock. ports bidirecionais, além de
ser um circuito mais conrplexo, exigindo muito mais trd-
balho. Mesmo assirn foi possível conseguir uma cobertura
muito interessante. Um resumo dos resultados deste exem-
pIo podem ser vistos na tabela I.

Na tabela II foram calculados os oveTtteu(Ls das imple-
mentações. tomando-se corno base o circuito já com todas
as modificações de testabili(lade. porém sintetizado sem as
estruturas de DFT,

Note que o impacto da inserção das cadeias de scan é

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS. 15

Fig. 10. Modificação após a otimização

adequar a todos os aspectos da especificação tanto funcio-
nais quanto econômicos, é necessário que o projetista tome
especial cuidado quanto aos seguintes aspectos:

cessário adicionar estruturas de teste para que a cobertura
pudesse ser aumentada.
+ Problema semelhante aos sinais bidirecionais: quando se
usa tristate deve-se ter em mente a possibilidade de algum
sinal tornar-se inalcançável durante a geração dos vetores
de teste. A ocorrência de condições de alta impedância
também provoca condições de imprevisibilidade, inviabili-
zando o teste. Em alguns casos resistores de p'u,11-up /pulL-
llouln são recomendados.
o É preciso considerar, que em alguns casos, o projeto deve
ser adaptado para melhor responder às condições de teste-
Quando considerada esta possibilidade nas etapas iniciais
do projeto é possível incorporar estas modificações com um
mínimo de ouerltead para o circuito e para o teste propri-
amente dito

, o Test (1 ompiler , ao gerar os vetores de teste, tenta testar
pOTtS bidirecionais em ambas as direções. No caso da gera-
ção aleatória de vetores, primeira fase da geração, é possível
que os sinais habilitantes sejam “setados“ em uma condição
contraditória, causando contenção. Por outro lado, se não
for possível para o gerador o teste nos dois sentidos. o nó
pode acabar sendo considerado como inalcançável, preju-
dicando a cobertura. Sinais habilitantes gerados em com-
ponentes seqüenciais podem também causar contenção, se
estes elementos pertencerem ao scan de teste.
+ Muito cuidado deve ser tomado na codificação do pro-
jeto. Lütches podem ser gerados inadvertidamente, e por
serem considerados como elementos seqüenciais podem ter
um efeito indesejado sobre d cobertura final. Caso o uso
seja inevitável, existem meios de aumentar a cobertura uti-
lizando estes componentes, mas ein fdvor da sinrplicidade
é recomendável evitá-los.
e Quando o uso de múltiplos clocl is é inevitável, e isto in-
clui também os q ate(1- docks . deve-se observar o compromis-
so entre a minimização desejada e a dificuldade na geração
dos vetores de teste. Viu-se num dos exemplos que foi ne-

REFERENCES

[l1 Douglas J, Smith, HDL Chip Design; A practical guide for de-
signing, sunthesiz.ing and simuLatling ASICs and FPC As using
VHDL or VCTãlOq, Doone Publications, 1997.

[2] Synopsys Inc., “Synopsys home page,’
http://www .synopsys.com/

[3] Sistema de Documentação Telebrãs, “Especificações gerais de sis-
temas SDH,” out 1993, 225-100-722 (padrão).

[41 CCITT. Características Físicas y Eléctricas de los Interfaces
Di9itaLes J erÚTquicos.

TESTABILIDADE DE CIRCUITOS INTEGRADOS E SISTEMAS ELETRÔNICOS. 16

[5] Mentor Graphics Inc, “Eda software from mentor graphics,”
http://www.mentorg.com/

[6} Synopsys Inc., Scan Synthesis USeT Guide, 1999, online docu-
ment at ion

[7] Synopsys Inc., Test Compiler RefeTence Manual, 1999, online
documentation

[8] Synopsys Inc., Design Analuzer Reference Manual, 1999, online
documentation

BOLrriNS TÉCNiCOS - TEXTOS PUBLiCADOS

BT/PTC/9901 - Avaliação de Ergoespirômetros Segundo a Norma NBR IEC 601-1- MARIA RUTH C. R. LEITE, JOSÉ
CARLOS TEIXEIRA DE B. MORAES

BT/PTC/9902 – Sistemas de Criptofonia de Voz com Mapas Caóticos e Redes Neurais Artificiais - MIGUEL ANTONIO
FERNANDES SOLER. EUVALDO FERREIRA CABRAL JR.

BT/PTC/9903 - Regulação Sincronizada de Distúrbios Senodais – VAIDYA INÉS CARRILLO SEGURA, PAULO SÉRGIO
PEREIRA DA SILVA

BT/PTC/99CH – Desenvolvimento e Implementação de Algoritmo Computacional para Garantir um Determinado Nível de
Letalidade Acumulada para Microorganismos Presentes em Alimentos Industrializados – RUBENS
GEDRAITE, CLÁUDIO GARCIA

BT/PTC/9905 - Modelo Operacional de Gestão de Qualidade em Laboratórios de Ensaio e Calibração de Equipamentos
Eletromédicos – MANUEL ANTONIO TAPIA LÓPEZ, JOSÉ CARLOS TEIXEIRA DE BARROS MORAES

BT/PTC/9906 – Extração de Componentes Principais de Sinais Cerebrais Usando Kartlunen – Loêve Neural Network –
EDUARDO AKiRA Kibrro. EUVALDO F. CABRAL JR,

BT/PTC/9907 - Observador PseudbDerivaüvo de Kalman Numa Coluna de Destilação Binária – JOSÉ HERNANDEZ LÓPEZ,
JOSÉ JAIME DA CRUZ, CLAUDIO GARCIA

BT/PTC/9908 – Reconhecimento Automático do Locutor com Coeficientes Mel-Cepstrais e Redes Neurais Artificiais – ANDRÉ
BORDIN MAGNI, EUVALDO F. CABRAL JÚNIOR

BT/PTC/9909 - Análise de Estabilidade e Sintese de Sistemas Hibridos – DIEGO COLÓN, FELIPE MIGUEL PAIT

BT/PTC/0001 – Alguns Aspectos de Visão Multiesmlas e Muttiresolução - JOÃO E. KOGLER JR.. MARCIO RILLO

BT/PTC/0002 – Placa de Sinalização E1 : Sinalização de Linha R2 Digital Sinalização entre Registradores MFC- PHILLIP
MARK SEYMOUR BURT. FERNANDA CARDOSO DA SILVA

BT/PTC/0003 – Estudo da Técnica de Comunicação FC>CDMA em Redes de Fibra Óptica de Alta Velocidade - TULIPA
PERSO, JOSÉ ROBERTO DE A.- AMAZONAS

BT/PTC/0004 – Avaliação de Modelos Matemáticos para Motoneurônios – DANIEL GUSTAVO GOROSO. ANDRÉ FÁBIO
KOHN

BT/PTC/0005 – Extração e Avaliação de Atributos do Eletrocardiograma para Classificação de Batimentos Cardíacos – ELDER
VIEIRA COSTA, JOSÉ CARLOS T. DE BARROS MORAES

BT/PTC/0006 – Uma Técnica de Imposição de Zeros para Auxílio em Projeto de Sistemas de Controle – PAULO SÉRGIO
PIERRI, ROBERTO MOURA SALES

BT/PTC/0007 – A Connected Mulüreüculated Diagram Viewer – PAULO EDUARDO PILON, EUVALDO F, CABRAL JÚNIOR

BT/PTC/0008 – Some GeometHc Properties of the Dynamic Extension Algorithm – PAULO SÉRGIO PEREIRA DA SILVA

BT/PTC/0009 – Comparison ofAltemaüves for Capacity Increase in Multiple-Rate Dual-Class DS/CDMA Systems - CYRO
SACARANO HESI, PAUL ETIENNE JESZENSKY

BT/PTC/0010 – Reconhecimento Automático de Ações Faciais usando FACS e Redes Neurais Artificiais - ALEXANDRE
TORNICE. EUVALDO F. CABRAL JÚNIOR

