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Abstract We study the existence of a global attractor in a reaction-diffusion system

which describes the interaction among n+1 species, amongst which n species of preda-

tors compete for a single prey. Also, we prove the persistence of the zip bifurcation

phenomenon for the reaction-diffusion system, which was introduced by Farkas [5] for

a three dimensional ODE prey-predator system.
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1. Introduction

The model to be studied is described by the differential equation system����
���
∂S

∂t
(x, t) = δ0ΔS + γ

�
1 − S

K

�
S −

n�
i=1

mifi(S)ui in Ω × (0,∞)

∂ui

∂t
(x, t) = δiΔui + (mifi(S) − di)ui, i = 1, 2, . . . , n,

(1.1)
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where Ω ⊂ IRN (N = 1, 2, 3) is an open connected bounded domain with smooth

boundary ∂Ω. We will assume that the functions S and ui satisfies the Neumann

boundary conditions

∂S

∂ν
(x, t) = 0,

∂ui

∂ν
(x, t) = 0, i = 1, 2, . . . , n, on ∂Ω × (0,∞), (1.2)

where ν = ν(x) denotes the outer unit normal to ∂Ω and Δ =
�N

j=1
∂

∂xj
is the Lapla-

cian operator. S is the population density of the prey, and ui, i = 1, 2, . . . , n, are the

population densities of n predators competing for the prey. δi > 0, i = 1, 2, . . . , n,

are the diffusion rates. We admit that the functional response fi is Holling type

II for each predator i that is, fi(S) = S/(ai + S), for each i = 1, 2, . . . , n, where

the constant a1, a2, . . . , an are nonnegative. The parameters compound the model

represent

• S: quantity of prey

• γ: intrinsic growth rate of prey

• K: carrying capacity of the environment

• ui: quantity of predator i

• mi: maximal birth rate of predator i

• di: mortality of predator i

• ai: half saturation constant of predator i.

In the second section of this work we prove that the positive cone R
n+1
+

= {(S, u1, . . . , un) : S ≥ 0, ui ≥ 0} is positively invariant for system (1.1), (1.2) in

accordance with the theorems given in [9] as well that the solutions for this system

there exist for all t > 0. In the third section, based in Alikakos [1] (see also Dung

and Smith [3]), we will show the existence of a global attractor for system (1.1), (1.2).

Finally, in the fourth section we prove the occurrence of the zip bifurcation phenom-

enon.

The zip bifurcation concept was introduced by Farkas [5] in connection with the

study of the ordinary differential version of (1.1) modeling the interaction between two

predator species competing for a single prey, that is, system (1.1) with n = 2 and

δ0 = · · · = δn = 0. In this case, if a1 > a2 and a1d1
m1−d1

= a2d2
m2−d2

, then, aside from the

‘trivial’ equilibrium points (S, u1, u2) = (0, 0, 0) and (S, u1, u2) = (K, 0, 0), the system

has also a family of equilibrium points contained in a line segment HK in R
3
+. Using the

carrying capacity K as a parameter, Farkas [5] has shown that there exists an interval

I such that, for each K ∈ I , there is a point (λ, ξ1(K), ξ2(K)) ∈ HK such that any

equilibrium point (λ, ξ1, ξ2) ∈ HK is unstable if ξ1 < ξ1(K) and stable if ξ1 > ξ1(K).

Farkas has called this situation as a zip or velcro bifurcation phenomenon. We will

describe this concept more carefully in Section 4..

2. Positivity and global existence of the solutions

Since S and ui are population densities, only non-negative solutions are of biological

interest, thus we will prove the local existence and positivity of solutions for the system

(1.1), (1.2). In the following, we will use some results about invariant region (cf. Smoller

[11] or [2]) and another conditions given in Morgan [9] to show that the solutions there
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exist for all time. First, we will write (1.1), (1.2) as an evolution equation on a Banach

space. Let |v| be the Euclidean norm of a vector v = (S,u1, . . . , un) ∈ R
n+1:

|v| =

	
|S|2 +

n�
i=1

|ui|2

1/2

.

Let p > max{1, N
2 } and X = Lp(Ω,Rn+1) be the Banach space of the functions

v : Ω → R
n+1 such that |v|p is integrable on Ω in the norm ‖v‖Lp = (

�
Ω |v(x)|p dx)1/p,

with obvious changes if p = ∞.

Let A : D(A) ⊂ X → X be the self-adjoint and nonnegative linear operator defined

by

D(A) =

�
v ∈W 2,p(Ω,Rn+1) :

∂v

∂ν
(x) = 0, x ∈ ∂Ω



, (2.3)

and

(Av)(x) = −DΔv = (−δ0ΔS(x),−δ1Δu1(x), . . . ,−δnΔun(x)), (2.4)

for v ∈ D(A) and x ∈ Ω.

Then, for every ρ > 0, the operator A + ρI is self-adjoint and positive, so the

fractional power spaces Xα = D((A+ρI)α), endowed with the graphic norm ‖v‖α,ρ =

‖(A + ρI)αv‖Lp , α ≥ 0, are well-defined. As different choice of ρ induce equivalent

norms in Xα, we will omit the dependence of ρ (see Henry [8], Def. 1.4.7). It is well

known (see Henry [8]) that −A is a generator of a analytic semi-group {e−At : t ≥ 0}
on X that satisfies ‖e−At‖L(X) ≤ 1, for all t ≥ 0.

In the next proposition, we collect some results whose proofs can be find in Henry

[8], Theorems 1.4.8 and 1.6.1.

Proposition 2.1

(1) For each α ≥ 0, Xα is a Banach space with the norm ‖v‖α = ‖(A + ρI)αv‖.
Furthermore, since A has compact resolvent, D(A) ↪→ Xα ↪→ X are compact for

each 0 ≤ α < 1.

(2) If 2α− N
p > k − N

q and q ≥ p, then Xα ↪→ W k,q(Ω);

(3) If 2α− N
p > ν ≥ 0, then Xα ↪→ Cν(Ω).

In sight of the Proposition 2.1, we will assume that p > max{1, N
2 } and we choose

max{1
2 ,

N
2p} < α < 1, so that Xα satisfies

(i) Xα ↪→ W 1,p(Ω) (2.5)

(ii) Xα ↪→ Cν(Ω), (2.6)

with compact embedding, where 0 ≤ ν < 2α − N
p . From Henry [8], Theorem 1.4.3, it

follows that e−At(Xα) ⊂ Xα, for all t ≥ 0 and ‖e−At‖L(Xα) ≤ t−α, for t > 0.

Next result is an immediate consequence of maximum principle.

Lemma 2.1 Let λ > 0, f ∈ Lp(Ω) and u be solutions of��
�
−Δu(x) + λu(x) = f(x), x ∈ Ω

∂u
∂ν (x) = 0, x ∈ ∂Ω.

If f(x) ≥ 0 for x ∈ Ω, then u(x) ≥ 0 for all x ∈ Ω.
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From Lemma 2.1 and (2.4), the resolvent (λ+A)−1 of −A is nonnegative for each

λ > 0. Since

e−Atv = lim
n→∞

�
I +

t

n
A

�−n

v

for all v ∈ X and t ≥ 0, e−At is a semigroup of nonnegative operators, so the cone of

nonnegative functions Xα
+ is closed and invariant by {e−At : t ≥ 0}.

Since fi are not defined for all values of S < 0, let us modify fi as a C∞ function in

the interval (−∞, 0) by taking fi(S) = 0 for S ≤ −ai
2 , i = 1, . . . , n; we still denote this

C∞ modified functions by fi. With these modifications, let F : Xα → X be defined

by

F (v)(x) =

	
γ

�
1 − S(x)

K

�
S(x) −

n�
j=1

mjfj(S(x))uj(x),

(m1f1(S(x)) − d1)u1(x), . . . , (mnfn(S(x)) − dn)un(x)



,

(2.7)

for x ∈ Ω. Then it holds the following

Proposition 2.2 F is Lipschitz continuous in bounded sets of Xα. Furthermore, for

each bounded set B = {v ∈ Xα : v ≥ 0 and ‖v‖α ≤ b}, there exists a real positive

constant β = β(B) such that F (v) + βv ≥ 0 for all v ∈ B.

Proof The first statement follows from Xα ↪→ Cν(Ω) and from the inequalities

|fi(S1) − fi(S2)| ≤ 1

ai
|S1 − S2|

and

|g(S1) − g(S2)| ≤ γ|S1 − S2|
�

1 +
1

K
|S1 + S2|

�
,

for all S1 ≥ 0, S2 ≥ 0, where g(S) = γ(1 − S
K )S. To proof the next statement, let

B = {v ∈ Xα : v ≥ 0 and ‖v‖α ≤ b}. If C is the immersion constant of Xα in Cν(Ω),

then

0 ≤ uj(x) ≤ C‖v‖α ≤ Cb,

for all x ∈ Ω, 0 ≤ j ≤ n and v ∈ B [we take u0 = S].

Let F = (F0, F1, . . . , Fn); if 1 ≤ j ≤ n, then, for all v = (S, u1, . . . , un) ∈ B, we

have

Fj(v) + βuj = (mjfj(S) − dj)uj + βuj ≥ (β − dj)uj ≥ 0,

for β ≥ dj . If j = 0, then

F0(v) + βu0 = g(S) + βS −
n�

j=1

mifi(S)uj

≥ g(S) + βS − max{m1, . . . ,mn}
min{a1, . . . , an} S(u1 + u2 + · · · + un)

≥
�
γ(1 − S

K
) − max{m1, . . . ,mn}

min{a1, . . . , an} nCb + β

�
S

≥
�
γ(1 − Cb

K
) − max{m1, . . . ,mn}

min{a1, . . . , an} nCb+ β

�
S,



Zip Bifurcation in a Competitive System 41

since fi(S) ≤ 1
ai
S, for all S ≥ 0 and 1 ≤ i ≤ n. Therefore, taking

β ≥ max

�
d1, . . . , dn,−γ(1 − Cb

K
) +

max{m1, . . . ,mn}
min{a1, . . . , an} Cnb



,

we get F (v) + βv ≥ 0, for all v ∈ B and the proof is complete.

With the previous notations (1.1), (1.2) can be written as an evolution equation

�
v̇(t) +Av(t) = F (v(t)), t > 0

v(0) = v0.
(2.8)

In the following we will study the well-posedness of (1.1), (1.2) on Xα
+. As usual,

we first study mild solutions of (2.8) before classical solutions. The proofs will be

omitted since they follow from the previous results and from Theorems 3.3.3 and 3.5.2

of Henry’s book [8].

Theorem 2.3 For each v0 ∈ Xα
+, there exist t1 > 0 and an unique continuous function

v : [0, t1) → Xα
+ such that v(0) = v0 and

v(t) = e−Atv0 +

� t

0
e−A(t−s)F (v(s)) ds,

for all 0 ≤ t < t1. If t1 < ∞, then lim supt→t1− ‖F (v(t))‖ = ∞. In addition, for each

t2 < t1, v is C1 on (0, t2), v(t) ∈ Xσ
+, for all 0 < σ < α and v is a classical solution

of (1.1), (1.2).

From Theorem 2.3, we conclude that solutions of (1.1), (1.2) exist in some interval

[0, t1), are nonnegative and classical, so that the hypotheses in p. 199 in the Smoller

book [11] are satisfied. Therefore, Σ = R
n+1
+ is an invariant rectangle by the flux of

(1.1), (1.2). To show that the solutions are globally defined, we use the following result

due to Morgan [9].

Theorem 2.4 Assume that D = diag (d1, . . . , dm) is a real matrix with entries dj > 0,

f : R
m → R

m is a C1 function and R
m
+ is invariant for

�����
����
vt(x, t) = DΔv(x, t) + f(v(x, t)), x ∈ Ω, t > 0

∂v

∂ν
(x, t) = 0, x ∈ ∂Ω, t > 0

v(x, 0) = v0(x), x ∈ Ω.

(2.9)

Suppose that v is a maximal solution of (2.9) defined on [0, t1) and that there exist

C2 functions H : R
m
+ → R and hi : R+ → R such that

1. H(z) =
m�

i=1

hi(zi) for all z ∈ R
m
+ ;

2. hi(zi) ≥ 0, h′′i (zi) ≥ 0 for all zi ∈ R+ and 1 ≤ i ≤ m;

3. H(z) → ∞ if and only if |z| → ∞ in R+;
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4. There exists a matrix A ∈ R
m×m satisfying aij ≥ 0 and aii > 0 such that, for

each 1 ≤ j ≤ m, there exist r ≥ 0, K1 ≥ 0, K2 ≥ 0, independent of j, such that
j�

i=1

ajih
′
i(zi)fi(z) ≤ K1(H(z))r +K2 for all z ∈ R

m
+ ;

5. There exist q1 ≥ 0, K5 ≥ 0, K6 ≥ 0 such that, for all 1 ≤ i ≤ m, it holds

h′i(zi)fi(z) ≤ K5(H(z))q1 +K6 for all z ∈ R
m
+ ;

6. There exist K7 ≥ 0 e K8 ≥ 0 such that ∇H(z) · f(z) ≤ K7H(z) + K8 for all

z ∈ R
m
+ .

Then, t1 = ∞.

Proposition 2.5 The solutions of (1.1), (1.2) are defined for t ≥ 0.

Proof We show that (1.1), (1.2) satisfy the hypotheses of Theorem 2.4. Indeed, let

v = (S, u1, . . . , un) be a solution of (1.1), (1.2). Let H(S, u1, . . . , un) = S+u1+· · ·+un,

hi = ui and A = (aij) ∈ R
(n+1)×(n+1) satisfying aij = 0 for i < j and aij = 1 for

i ≥ j, for 0 ≤ i, j ≤ n + 1. Hypotheses (1)-(3) are trivially satisfied. Taking r = 1,

K1 = γ and K2 = 0, we have

j�
i=1

ajih
′
i(ui)fi(u) = γu0 − γ

k
u2
0 − d1u1 − · · · − dnun

< γ(u0 + · · · + un) = K1H(u) +K2,

so that hypothesis (4) is satisfied. Now,

h′1f1(u) = γu0 − γ

K
u2
0 −

n�
i=1

mi
u0ui

ai + u0
≤ γH(u)

and

h′ifi(u) = mi
u0ui

ai + u0
− diui < miui < miH(u).

Therefore, by taking q1 = 1, K6 = 0 and K5 = max{γ,m1, . . . ,mn}, hypothesis (5) is

satisfied. Finally,

∇H(u) · f(u) = γu0 − γ

K
u2
0 −

n�
i=1

mi
u0ui

ai + u0
+

n�
i=1

mi
u0ui

ai + u0
−

n�
i=1

diui

≤ K7H(u) +K8,

so hypothesis (6) is satisfied for K7 = γ and K8 = 0, and the proof is complete.

As a consequence, we have the following

Corollary 2.6 The problem (1.1), (1.2) define a nonlinear semigroup T (t) : Xα
+ →

Xα
+.
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3. Global attractor

In this section we show that system (1.1), (1.2) has a compact global attractor. To this

end, we show that the semigroup associated to the problem is compact dissipative, that

is, there exists a bounded set which attracts all bounded sets. To get the estimates, we

apply the results due to Alikakos [1] (see also H. Smith [3] and Henry [8]). First, we

get uniform bounds of the first component.

Proposition 3.1 Let u = (S, u1, . . . , un) be a solution of (1.1), (1.2) with initial

condition u(·, 0) ≥ 0. Then, there exist 0 < d ≤ γ such that

0 ≤ S(x, t) ≤ 2Kγ

d
+ e−dt max

x∈Ω
S0(x).

for all (x, t) ∈ Ω × [0,∞).

Proof Let d = min{γ, d1, . . . , dn}. Observe that γ(1 − S
K )S ≤ −dS + 2Kγ, for all

S ∈ R. Therefore, S satisfies�����
����
St(x, t) ≤ δ0ΔS − dS + 2kγ, (x, t) ∈ Ω × (0,∞)

∂S

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞)

S(x, 0) = S0(x), x ∈ Ω, S0(x) ≥ 0,

(3.10)

so, by comparison, S(x, t) ≤ w(x, t), where w is solution of�����
����
wt(x, t) = δ0Δw − dw + 2kγ, (x, t) ∈ Ω × [0,∞)

∂w

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞)

w(x, 0) = S0(x), x ∈ Ω.

(3.11)

Writing w(x, t) = z(x, t)e−dt + 2Kγ
d (1 − e−dt), we conclude that z satisfies�����

����
zt(x, t) = δ0Δz (x, t) ∈ Ω × (0,∞)

∂z

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞)

c[.3pc]z(x, 0) = S0(x), x ∈ Ω, S0(x) ≥ 0.

(3.12)

By the Strong Maximum Principle (see [10] p. 174), z(x, t) assume its maximum

at t = 0. Hence, 0 ≤ z(x, t) ≤ maxx∈Ω z(x, 0) for all (x, t) ∈ Ω × [0,∞) and therefore

0 ≤ S(x, t) ≤ 2Kγ

d
(1 − e−dt) + e−dt max

x∈Ω
S0(x),

for (x, t) ∈ Ω × [0,∞).

Next, we get uniform bounds in the L1-norm.

Proposition 3.2 Let d = min{γ, d1, . . . , dn} and u(·, t) be a solution of (1.1), (1.2).

Then
n�

i=0

‖ui(·, t)‖L1 ≤ e−dt
n�

i=0

‖ui(·, 0)‖L1 +
|Ω|Kγ
d

(1 − e−dt),

for all t ≥ 0.
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Proof Let S = u0. Adding the equations of (1.1), integrating on Ω and using the

Green’s Identities we get

d

dt

�
Ω

n�
i=0

ui(x, t) dx =

�
Ω

n�
i=0

δiΔui +

�
Ω
γ(1 − u0

K
)u0 −

�
Ω

n�
i=1

diui

≤
�

Ω

�
−du0(x, t) + 2Kγ −

n�
i=1

dui(x, t)

�
dx

= −d
�

Ω

n�
i=0

ui(x, t) dx+ |Ω|Kγ.

By Gronwall’s inequality we have

n�
i=0

‖ui(·, t)‖L1 ≤ e−dt
n�

i=0

‖ui(·, 0)‖L1 +
|Ω|Kγ
d

(1 − e−dt)

for all t ≥ 0.

Remark 3.1 According to the previous Proposition, if ‖u(·, 0)‖L1 is bounded then

‖u(·, t)‖L1 is bounded for all t ≥ 0.

Proposition 3.3 Suppose that ui(x, t) ≥ 0, 0 ≤ i ≤ n, is a solution of (1.1), (1.2) and

assume that exist constant C > 0 such that sup t≥0

�
Ω ui(x, t) dx < C, for 1 ≤ i ≤ n.

Then, there exists a constant C∗, depending on C and ‖ui(·, 0)‖L∞ , 1 ≤ i ≤ n, such

that sup t≥0‖ui(·, t)‖L∞ ≤ C∗.

Proof We employ the ideas of Alikakos [1]. To simplify the notation, we write, for

1 ≤ i ≤ n, an equation of (1.1) as

ut = δΔu+ F (u),

where F (u) = m u0
a+u0

u− du and u0 = S. Multiplying the previous equation by u2k−1,

integrating, using the Green’s Identity and the fact that F (u) ≤ mu, for u ≥ 0, we

have

d

dt

�
1

2k

�
Ω
u2k

dx

�
= δ

�
Ω

(Δu)u2k−1 dx+

�
Ω
u2k−1F (u) dx

≤ −2k − 1

22k−2
δ

�
Ω
|∇(u2k−1

)|2 dx+m

�
Ω
u2k

dx. (3.13)

On the other hand, ∇u∇(u2k−1) = (2k − 1)u2k−2|∇u|2 and therefore

∇u∇(u2k−1) =
2k − 1

22k−2
|∇(u2k−1

)|2.

Since
d

dt

�
1

2k

�
Ω
u2k

dx

�
=

1

2k−1

d

dt

�
1

2

�
Ω

(u2k−1
)2 dx

�
,
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we have

d

dt

�
1

2

�
Ω

(u2k−1
)2 dx

�
≤ −2k − 1

2k−1
δ

�
Ω
|∇(u2k−1

)|2 dx

+ 2k−1m

�
Ω

(u2k−1
)2 dx.

(3.14)

Let

w = u2k−1
, δk = δ

2k − 1

2k−1
and mk = m2k−1. (3.15)

Thus, (3.14) can be written as

d

dt

�
1

2

�
Ω
w2 dx

�
≤ −δk

�
Ω
|∇w|2 dx+mk

�
Ω
w2 dx. (3.16)

By Nirenberg-Gagliardo and Young inequalities, for any ε > 0, there exists C > 0

such that �
Ω
w2 dx ≤ ε

�
Ω
|∇w|2 dx+ Cε

��
Ω
w dx

�2

, (3.17)

where Cε = ε+ Cε−
N
2 . Indeed, since

‖w‖W k,p ≤ C‖w‖θ
W m,q‖w‖(1−θ)

Lr

where p ≥ q, p ≥ r, 0 ≤ θ ≤ 1 and θ ≥ N
2+N , then

‖w‖2
2 =

�
Ω
w2 dx = ‖w‖2

W 0,2 ≤ C‖w‖2θ
W 1,2‖w‖2(1−θ)

L1 .

Changing ‖w‖2θ
W 1,2 by ( ε

C )
1
p ‖w‖2θ

W 1,2 , ‖w‖2(1−θ)
L1 by ε

C
− 1

p ‖w‖2(1−θ)
L1 and using the

Young inequality we obtain

C‖w‖2θ
W 1,2‖w‖2(1−θ)

L1 ≤ C

��� ε
c

� 1
p ‖w‖2θ

W 1,2

�p

+

�� ε
c

�− 1
p ‖w‖2(1−θ)

L1

�q
�

= ε‖w‖2θ 1
θ

W 1,2 + C
q
p ε−

q
p ‖w‖2(1−θ) 1

1−θ

L1

= ε‖w‖2
W 1,2 + Cε−

N
2 ‖w‖2

L1 (3.18)

= ε[‖∇w‖2
L2 + ‖w‖2

L1 ] + Cε−
N
2 ‖w‖2

L1

= ε‖∇w‖2
L2 +

�
ε+ Cε−

N
2

�
‖w‖2

L1

where p = 1
θ , q = 1

1−θ , Cε = Cε−
N
2 , θ = N

2+N and the equivalent norm ‖w‖W 1,2(Ω) =

[
�
Ω |∇w|2 dx+ (

�
Ω wdx)2]

1
2 on W 1,2(Ω) was used. Hence,

‖w‖2 = ε‖∇w‖2
L2 +Cε‖w‖2

L1

where Cε = ε+ Cε−
N
2 , as claimed.

Replacing ε by εk in (3.17), multiplying each side of (3.17) by (mk + εk) we have

−(mk + εk)εk

�
Ω
|∇w|2 dx ≤ −(mk + εk)

�
Ω
w2 dx+ (mk + εk)Cεk

��
Ω
w dx

�2

. (3.19)
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Choosing εk such that mkεk + ε2k ≤ δk, it follows from (3.16) and (3.19) that

d

dt

�
1

2

�
Ω
w2 dx

�
≤ −δk

�
Ω
|∇w|2 dx+mk

�
Ω
w2 dx

≤ −(mk + εk)

�
Ω
w2 dx+ (mk + εk)Cεk

��
Ω
w dx

�2

+mk

�
Ω
w2 dx

≤ −εk
�

Ω
w2 dx+ (mk + εk)Cεk

�
boundt≥0

�
Ω
wdx

�2
,

where boundt≥0

�
Ω w dx is an upper bound for

�
Ω w dx for all t ≥ 0. By Gronwall’s

inequality, we have

�
Ω
w2 dx ≤ e−2εkt|Ω| ‖w(·, 0)‖2

L∞(Ω) +
(mk + εk)Cεk

εk

�
boundt≥0

�
Ω
w dx

�2
(1− e−2εkt),

for all t ≥ 0, where |Ω| denotes the volume of Ω.

Replacing w by u2k−1
and assuming that |Ω| = 1 for simplicity, we obtain

�
Ω
u2k

dx ≤ e−2εkt‖u2k−1
(·, 0)‖2

L∞(Ω) +
(mk + εk)Cεk

εk

�
boundt≥0

�
Ω
u2k−1

dx

�2

≤ max

�
(mk + εk)Cεk

εk

�
boundt≥0

�
Ω
u2k−1

dx

�2
, ‖u(·, 0)‖2k

L∞(Ω)

�
,

(3.20)

for all t ≥ 0.

We can assume that
(mk+εk)Cεk

εk
≥ 1, for k = 1, 2, . . . , and that the constant C

bounding
�
Ω u(x, t) dx for t ≥ 0 is also an upper bound for ‖u(·, 0)‖L∞(Ω). We claim

that (3.20) implies

�
Ω
u2k

dx≤
�
(mk + εk)Cεk

εk

�20�
(mk−1 + εk−1)Cεk−1

εk−1

�21

. . .

�
(m1 + ε1)Cε1

ε1

�2k−1

C2k

,

(3.21)

for any t ≥ 0. Indeed, introducing the notations
�
Ω u2k

dx = Xk andCk =
(mk+εk)Cεk

εk
≥

1, we have X0 = ‖u(·, 0)‖L∞(Ω) ≤ C and inequalities (3.20) are equivalent to

X1 ≤ max{C1X
2
0 , C2}

X2 ≤ max{C2X
2
1 , C22} ≤ max{C2 max{C2

1X
22

0 , C22}, C22}

= max{max{C2C
2
1X

22

0 , C2C
22}, C22} = max{C2C

2
1X

22

0 , C2C
22}
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X3 ≤ max{C3X
2
2 , C23} ≤ max{max{C3C

2
2C

22

1 X23

0 , C3C
2
2C

23}, C23}

= max{C3C
2
2C

22

1 X23

0 , C3C
2
2C

23}
·
·
·

Xk ≤ max{CkC
2
k−1C

22

k−2 . . . C
2k−1

1 X2k

0 , CkC
2
k−1C

22

k−2 . . . C
2k−1

2 C2k}.

Since X0 ≤ C, we have X2k

0 ≤ C2k

, and therefore

Xk ≤ CkC
2
k−1C

22

k−2 . . . C
2k−1

1 C2k

,

as claimed.

We now choose εk as εk = 2δ
m2k . It is a simple matter to verify that εk(mk+εk) ≤ δk.

With this choice, we have

(mk + εk)Cεk

εk
=

�
1 +

mk

εk

��
ε
(N+2)/2
k + C

�
ε
−N/2
k

=

�
1 +

m2

4δ
22k
�

+
�
ε
(N+2)/2
k + C

�
ε
−N/2
k

≤ m2

2δ
22k 2C

�m
2δ

�N/2
2kN/2 (3.22)

=
m2C

δ

�m
2δ

�N/2
2k(N/2+2)

= 2k(λ+2)m̄,

where λ = N
2 and m̄ = m2C

δ ( m
2δ )N/2.

Hence, the right hand side of (3.21) becomes�
Ω
u2k

dx ≤ (2k(λ+2)m)2
0
(2(k−1)(λ+2)m)2

1
(2(k−2)(λ+2)m)2

2

× · · · × (2(k−(k−1))(λ+2)m)2
k−1 · C2k

(3.23)

= m̄2k−1 · 2(λ+2)(k+2(k−1)+22(k−2)+···+2k−1(k−(k−1))) · C2k

= m̄2k−1 · 2(λ+2)(−k+2k+1−2) · C2k

.

Taking 1
2k – power on both sides of (3.23) and taking limit for k → +∞, we obtain

‖u‖L∞(Ω) ≤ 22(λ+2)m̄C, (3.24)

and the proof is complete.

Theorem 3.4 Assume that the hypotheses of Proposition 3.3 hold. Then, there exists

a constant B > 0 such that

lim sup
t→∞

‖ui(t, ·)‖Xα < B.

Proof Let u(t) = (u0(t), u1(t), . . . , un(t)) be a solution of (2.8). By the variation of

constant formula



48 Jocirei D. Ferreira, Luiz A. F. Oliveira

u(t) = e−Atu(0) +

� t

0
e−A(t−s)F (u(s))ds, (3.25)

where A and F are as in section 2. Applying Aα on both sides of (3.25) we have

Aα(u(t)) = Aαe−Atu(0) +

� t

0
Aαe−A(t−s)F (u(s))ds.

From estimates gotten from Proposition (3.3), there exist constant C such that

lim sup
t→∞

‖F (u(s))‖p < C,

for all p ≥ 1. Hence,

‖u(t)‖Xα = ‖Aα(u(t))‖

≤ ‖Aαe−Atu(0)‖p +

� t

0
‖Aαe−A(t−s)‖X‖F (u(s))‖p ds (3.26)

≤ Cαt
−αe−δt‖u(0)‖p +

� t

0
CCα(t− s)−αe−δ(t−s) ds

≤ Cαt
−αe−δt‖u(0)‖p +

� ∞

0
CCαr

−αe−δr dr,

which implies the result.

Corollary 3.5 System (1.1), (1.2) generates a nonlinear semigroup T (t) : Xα
+ → Xα

+

satisfying:

i) T (t) is compact for t > 0;

ii) T (t) is point dissipative;

iii) Orbit of bounded sets are bounded.

As a consequence, system (1.1), (1.2) has a compact global attractor.

Proof Note that by the embedding

Xα ↪→ Cν(Ω) × · · · × Cν(Ω),

we can replace the uniform norm of the Proposition 3.3 by the norm Cν for some ν > 0.

On the other hand, Cν is compactly embedded into C(Ω), so we have (i). Assertions

(ii) and (iii) follow from Theorem 3.4. The last conclusion follows from results given

in J. Hale’s book [7].

4. Zip bifurcation in a reaction diffusion system

In this section we will examine the stability or instability of homogeneous equilibrium

for the problem (1.1), (1.2), tat is, solutions independent on x. We show that system

(1.1), (1.2) exhibits a zip bifurcation when the carrying capacity K is varied.

We consider the system (1.1), (1.2) and we assume that the nonnegative constants

a1, a2, . . . , an satisfy

0 < an < an−1 < · · · < a2 < a1. (4.27)
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Except by the ‘trivial’ solutions (S, u1, . . . , un) = (0, 0, . . . , 0) and (S,u1, . . . , un) =

(K, 0, . . . , 0), the system (1.1), (1.2) have solutions independent of x if and only if

mi > di and the solutions of fi(S) = di/mi, i = 1, 2, . . . , n, coincide, that is,

a1d1
m1 − d1

=
a2d2

m2 − d2
= · · · =

andn

mn − dn
. (4.28)

Let λi = aidi
mi−di

, for i = 1, 2, . . . , n. From now on, we assume that mi > di and

λ1 = · · · = λn. The common value of λi’s will be denoted by λ: λ1 = · · · = λn = λ.

It follows that ‘non-trivial’ homogeneous equilibrium points of (1.1), (1.2) belong to

the (n− 1) dimensional manifolds HK defined by

HK =

�
(λ, ξ1, . . . , ξn) ∈ R

n+1
+ :

n�
i=1

miξi
ai + λ

= γ

�
1 − λ

K

��
. (4.29)

The linearization of system (1.1), (1.2) at a point (λ, ξ1, . . . , ξn) ∈ HK is

�����
����
∂S(x, t)

∂t
= δ0ΔS +

	
−γλ
K

+ λ

n�
i=1

miξi
(ai + λ)2



S −

n�
i=1

miλ

ai + λ
ui in Ω × (0,∞)

∂ui(x, t)

∂t
= δiΔui +

βiξi
ai + λ

S, i = 1, 2, . . . , n, in Ω × (0,∞)

(4.30)

with boundary conditions (1.2), where βi = mi − di, i = 1, 2, . . . , n.

Let 0 = μ0 < μ1 < μ2 < · · · → ∞ and {ψk}∞k=0 be the eigenvalues and eigenfunc-

tions of the Laplacian operator in Ω with Neumann boundary on ∂Ω:���
��
Δψk = λkψk in Ω

∂ψk

∂ν
= 0 on ∂Ω.

(4.31)

We can assume that {ψk}∞k=0 is an orthonormal basis of L2(Ω).

Let w = (S,u1, . . . , un), D = diag(δ0, δ1, . . . , δn) and J be the matrix

J =

�
�����������������������

λ

n�
i=1

miξi
(ai + λ)2

− γλ

K
− m1λ

a1 + λ
− m2λ

a2+λ . . . − mn−1λ

an−1 + λ
− mnλ

an + λ

β1ξ1
a1 + λ

0 0 . . . 0 0

β2ξ2
a2 + λ

0 0 . . . 0 0

...
...

...
. . .

...
...

βn−1ξn−1

an−1 + λ
0 0 . . . 0 0

βnξn
an + λ

0 0 . . . 0 0

�
�����������������������

.

Then, (4.30), (1.2) can be written as

∂w

∂t
= DΔw + Jw,
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so, the solution of (4.30), (1.2) with initial condition w(·, 0) = w0 is given by

w(x, t) =
∞�

k=0

e(J−μkD)t〈w0, ψk〉ψk(x), (4.32)

where 〈w0, ψk〉 =
�
Ω w0(x)ψk(x) dx.

It follows from the linearization principle that a ‘non-trivial’ homogeneous solution

of (1.1), (1.2) is asymptotically stable if the eigenvalues of all matrix J − μkD have

negative real part; if there exists a k ≥ 1 such that J − μkD has an eigenvalue with

positive real part then the solution is unstable. Note that for μ0 = 0 and the matrix

J has zero as an eigenvalue of multiplicity (n − 1) and two eigenvalues with positive

(resp. negative) real part according to

n�
i=1

miξi
(ai + λ)2

>
γ

K
or <

γ

K
. (4.33)

The following result is an immediate consequence of this note and the proof can be

found in [6].

Proposition 4.1 If K > a1 + 2λ, then all equilibrium on HK are unstable.

4.1. The case n = 2

To simplify computations, from now on we consider n = 2 to study the persistence

of the zip bifurcation phenomenon in the reaction diffusion system (1.1), (1.2). The

corresponding ODE model was considered first by Farkas [5], where he studied the

competition between two predators for a single prey, given by

����
���
Ṡ = γ(1 − S

K )S −m1f1(S)x1 −m2f2(S)x2

ẋ1 = m1f1(S)x1 − d1x1

ẋ2 = m2f2(S)x2 − d2x2,

(4.34)

where the functional response and the parameters have the same meaning as those of

model (1.1) for the case n = 2. We keep the same notations and hypotheses as before.

In the next result, we collect the main results of [4,5].

Proposition 4.2 If λ < K < a2 + 2λ, each equilibrium (λ, ξ1, ξ2) ∈ HK of (4.34) is

asymptotically stable. If K > a1 + 2λ, (λ, ξ1, ξ2) is unstable.

When a2 + 2λ < K < a1 + 2λ, it also follows from [4] (see also [6]) that there

exist a point (λ, ξ1(K), ξ2(K)) ∈ HK such that the equilibrium on HU = {(λ, ξ1, ξ2) ∈
HK : ξ1 < ξ1(K)} are unstable for the flow of (4.34) and the equilibrium on HS =

{(λ, ξ1, ξ2) ∈ HK : ξ1 > ξ1(K)} are stable. The point (ξ1(K), ξ2(K)) is obtained

solving the system ����
���
m1ξ1
a1 + λ

+
m2ξ2
a2 + λ

=
γ(K − λ)

K

m1ξ1
(a1 + λ)2

+
m2ξ2

(a2 + λ)2
=

γ

K
.

(4.35)
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Now, if E is an unstable equilibrium for the flow of (4.34) then E is also an unstable

homogeneous equilibrium for the flow of (1.1), (1.2), since the subspace of the function

independent of x is invariant for the flow of (1.1), (1.2). We will show that if E is stable

for the flow of (4.34) then E is also stable for the flow of (1.1), (1.2) independently of

the diffusion diagonal matrix D = diag(δ0, δ1, δ2). This fact is surprisingly and shows

that the zip phenomenon is preserved by the introduction of diffusion in system (4.34).

Theorem 4.3 Suppose that E is an equilibrium of (1.1), (1.2) independent of x. If E

is stable for the flow of (4.34), then E is stable for the flow of (1.1), (1.2), independently

of D = diag(δ0, δ1, δ2).

Proof Let E = (λ, ξ1, ξ2) be an equilibrium of (1.1), (1.2) independent of x. Then

λ < K and (ξ1, ξ2) satisfies

m1ξ1
a1 + λ

+
m2ξ2
a2 + λ

=
γ(K − λ)

K
.

The hypothesis that E is stable for (4.34) is equivalent to

m1ξ1
(a1 + λ)2

+
m2ξ2

(a2 + λ)2
<

γ

K
(4.36)

(see [4] or [6] for detail).

Let us to write the characteristic polynomial Pk(ν) of J − μkD, where J is the

Jacobian matrix of (4.34) evaluated at E. To simplify the computations, we introduce

the notations

a = λ

2�
i=1

miξi
(ai + λ)2

− γλ

K
, b =

β1ξ1
a1 + λ

, c =
β2ξ2
a2 + λ

, d = − m1λ

a1 + λ

e = − m2λ
a2+λ , so that the condition (4.36) means that a < 0. Therefore, for each k ≥ 0,

the eigenvalues of J − μkD are the roots of the equation

Pk(ν) = ν3 +Akν
2 +Bkν + Ck, (4.37)

where

Ak = μk(δ0 + δ1 + δ2) − a,

Bk = μ2
k(δ0δ1 + δ0δ2 + δ1δ2) − aμk(δ1 + δ2) − bd− ec

Ck = μ3
kδ0δ1δ2 − μ2

kaδ1δ2 − μk(ecδ1 + bdδ2).

Since a < 0, bd < 0 and ec < 0, we have Ak > 0, Bk > 0 and Ck > 0, for all k ≥ 1.

At k = 0, the polynomial

P0(ν) = ν3 − aν2 − (bd+ ec)ν,

has zero as a single eigenvalue and two complex conjugate with negative real part.

We claim that, for any k ≥ 1, all eigenvalues of J − μkD have negative real part. This
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will follows from Routh-Hurwitz’s criterion if we show that AkBk > Ck, for any k ≥ 1.

To prove this, we consider the function AB − C = (AB − C)(μ) given by

(AB − C)(μ) = μ3[2δ0δ1δ2 + δ20(δ1 + δ2) + δ21(δ0 + δ2) + δ22(δ0 + δ1)]

− aμ2[δ0δ1 + δ0δ2 + (δ0 + δ1 + δ2)(δ1 + δ2)]

− μ[δ0(bd+ ec) + δ1bd+ δ2ec (4.38)

− a2(δ1 + δ2)] + a(bd+ ec),

obtained from the expression of AkBk −Ck, changing μk by μ.

Since a < 0, ec < 0 and bd < 0, the coefficients of (4.38) are all positive, and

therefore (AB−C)(μ) is positive for any nonnegative values of μ. Taking into account

that μk > 0 for any k ≥ 1, the claim is proved. Thus, for any k ≥ 1, we have AkBk −
Ck > 0 therefore, the roots of Pk(ν) has negative real part.

On the other hand, taking ν = μkz, the roots of Pk(ν) = 0 are roots of the equation

z3 +
Ak

μk
z2 +

Bk

μ2
k

z +
Ck

μ3
k

= 0. (4.39)

When k → ∞, the coefficients of (4.39) have limit and the limiting equation is

given by

z3 + (δ0 + δ1 + δ2)z
2 + (δ0δ1 + δ0δ2 + δ1δ2)z + δ0δ1δ2 = 0. (4.40)

If z1, z2 e z3 are roots of (4.40), then Rezj < 0, j = 1, 2, 3. By Rouché’s Theorem, there

exist neighborhoods V1, V2 and V3 of z1, z2 and z3, respectively, mutually disjoint, and

k0 ≥ 1 such that if k ≥ k0, the polynomial (4.39) has a root z
(j)
k in each neighborhood

Vj . Since zero is a simple eigenvalue of J and the roots of (4.37) are νk,j = μkz
(j)
k ,

for j = 1, 2, 3, k ≥ 1 and μk ≥ 0, there exists α > 0 such that the remainder of the

spectrum of the operator in (4.30) belongs to {ν : Re ν < −α}. Therefore, all the

hypotheses of Henry (see [8] p. 108) are satisfied, and therefore E is stable.

As a consequence, if λ < K < a2 + 2λ, the hyperplane of equilibrium points HK

of (4.34) is asymptotically stable for the flow of (1.1), (1.2). If K > a1 + 2λ, then HK

is unstable. If a2 + 2λ < K < a1 + 2λ, let (ξ1(K), ξ2(K)) be the unique solution of

system (4.35). Then it holds

Theorem 4.4 For any K satisfying a2+2λ ≤ K ≤ a1+2λ, the point (λ, ξ1(K), ξ2(K))

split HK in two parts Hu
K and Hs

K ; the equilibrium of (1.1), (1.2) on the set

Hu
K = {(λ, ξ1, ξ2) ∈ HK : ξ1 < ξ1(K)}

are unstable and on the set

Hs
K = {(λ, ξ1, ξ2) ∈ HK : ξ1 > ξ1(K)}

are stable, independently of the diffusion matrix D = diag(δ0, δ1, δ2).

This final result shows that the zip bifurcation phenomenon can be preserved by

the introduction of a diagonal diffusion matrix D in the model (4.34), independent of

the domain Ω. Moreover, Theorem 4.3 shows that Turing instability may occurs only

in models with crossed diffusion and/or very special domains Ω.
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