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Abstract We study the existence of a global attractor in a reaction-diffusion system
which describes the interaction among n+ 1 species, amongst which n species of preda-
tors compete for a single prey. Also, we prove the persistence of the zip bifurcation
phenomenon for the reaction-diffusion system, which was introduced by Farkas [5] for
a three dimensional ODE prey-predator system.
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1. Introduction

The model to be studied is described by the differential equation system

oS
ot

ou;
ot

(z,1) = 6o AS + (1 - g) S =S mifi(S)u; in 2 x(0,00)
i=1 (1.1)

(z,t) = 6;Au; + (M fi(S) — di)ui, i=1,2,...,m,
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38 JOCIREI D. FERREIRA, Luiz A. F. OLIVEIRA

where 2 ¢ RY (N = 1,2,3) is an open connected bounded domain with smooth
boundary 9f2. We will assume that the functions S and w; satisfies the Neumann
boundary conditions

a5 ou;

8V(x,t):(), o (z,t) =0, i=1,2,...,n, on 92 x (0,00), (1.2)

where v = v(z) denotes the outer unit normal to 92 and A = Zévzl agj is the Lapla-

cian operator. S is the population density of the prey, and u;, i = 1,2,...,n, are the
population densities of n predators competing for the prey. §; > 0, i = 1,2,... ,n,
are the diffusion rates. We admit that the functional response f; is Holling type
IT for each predator i that is, f;(S) = S/(a; + S), for each i = 1,2,...,n, where
the constant ai, ag,...,an are nonnegative. The parameters compound the model
represent

e S: quantity of prey

e : intrinsic growth rate of prey

e K: carrying capacity of the environment
e u;: quantity of predator i

e m;: mazximal birth rate of predator i

e d;: mortality of predator i

e a;: half saturation constant of predator i.

In the second section of this work we prove that the positive cone RT’l
= {(S,u1,...,un) : S > 0,u; > 0} is positively invariant for system (1.1), (1.2) in
accordance with the theorems given in [9] as well that the solutions for this system
there exist for all ¢ > 0. In the third section, based in Alikakos [1] (see also Dung
and Smith [3]), we will show the existence of a global attractor for system (1.1), (1.2).
Finally, in the fourth section we prove the occurrence of the zip bifurcation phenom-
enon.

The zip bifurcation concept was introduced by Farkas [5] in connection with the
study of the ordinary differential version of (1.1) modeling the interaction between two
predator species competing for a single prey, that is, system (1.1) with n = 2 and
0g = -+ = 0n = 0. In this case, if a1 > as and malfbl = mazfib, then, aside from the
‘trivial’” equilibrium points (S, u1,u2) = (0,0,0) and (S, u1,uz) = (K, 0,0), the system
has also a family of equilibrium points contained in a line segment H g in ]R‘j_. Using the
carrying capacity K as a parameter, Farkas [5] has shown that there exists an interval
I such that, for each K € I, there is a point (A, &1(K),&2(K)) € Hgi such that any
equilibrium point (X, &1,&2) € Hy is unstable if &1 < £1(K) and stable if &1 > &1(K).
Farkas has called this situation as a zip or wvelcro bifurcation phenomenon. We will
describe this concept more carefully in Section 4..

2. Positivity and global existence of the solutions

Since S and wu; are population densities, only non-negative solutions are of biological
interest, thus we will prove the local existence and positivity of solutions for the system
(1.1), (1.2). In the following, we will use some results about invariant region (cf. Smoller
[11] or [2]) and another conditions given in Morgan [9] to show that the solutions there
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Z1p BIFURCATION IN A COMPETITIVE SYSTEM 39

exist for all time. First, we will write (1.1), (1.2) as an evolution equation on a Banach
space. Let |v| be the Euclidean norm of a vector v = (S, uy,...,un) € R* T

n 1/2
vl = <5|2 +y U¢|2> :
i=1

Let p > max{l1, ]g} and X = LP(£2,R"*!) be the Banach space of the functions
v : 2 — R such that |v|P is integrable on £2 in the norm ||v||z» = (Jo lv(z)IP dx)/P,
with obvious changes if p = co.

Let A: D(A) C X — X be the self-adjoint and nonnegative linear operator defined
by

D(A) = {v e W2P(,R" 1y gz (z) =0,z € arz} 7 (2.3)
and
(Av)(z) = —DAv = (=00 AS(x), —01 Auq (), ..., —onAun(z)), (2.4)

for v € D(A) and z € (2.

Then, for every p > 0, the operator A + pl is self-adjoint and positive, so the
fractional power spaces X% = D((A+ pI)?®), endowed with the graphic norm |[v]a,p =
I(A + pI)®||pp, a > 0, are well-defined. As different choice of p induce equivalent
norms in X%, we will omit the dependence of p (see Henry [8], Def. 1.4.7). It is well
known (see Henry [8]) that —A is a generator of a analytic semi-group {e~ 4% : ¢t > 0}
on X that satisfies ||e_AtHL(X) <1, forallt>0.

In the next proposition, we collect some results whose proofs can be find in Henry
[8], Theorems 1.4.8 and 1.6.1.

Proposition 2.1

(1) For each o > 0, X is a Banach space with the norm |[v||la = |[(A + pI)%v]|.
Furthermore, since A has compact resolvent, D(A) — X — X are compact for
each 0 < a < 1.

(2) If 2a — ]1\)] >k — JZ and ¢ > p, then X® — W*4(0);

(3) If 2a — ];\)] >v >0, then X¢ — CY(£2).

In sight of the Proposition 2.1, we will assume that p > max{1, N} and we choose
max{ J, é\;} < a <1, so that X satisfies

(i) X* — WhP(02) (2.5)
(i) X* — C¥(R2), (2.6)

with compact embedding, where 0 < v < 2a — ];7. From Henry [8], Theorem 1.4.3, it

follows that e =" (X®) € X, for all t > 0 and [le™ || (xa) < ™%, for t > 0.
Next result is an immediate consequence of maximum principle.

Lemma 2.1 Let A >0, f € LP(2) and u be solutions of

—Au(z) + u(z) = f(z), =€

g:j(:v) =0,z € 012.

If f(z) > 0 for x € 2, then u(x) > 0 for all x € £2.
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40 JOCIREI D. FERREIRA, Luiz A. F. OLIVEIRA

From Lemma 2.1 and (2.4), the resolvent (A + A)~! of —A is nonnegative for each
A > 0. Since
—At . ( t >_n
e v= lim (I+ A v
n—oo n
for all v € X and t > 0, e A4lis a semigroup of nonnegative operators, so the cone of
nonnegative functions X¢ is closed and invariant by {e=At ¢ >0}

Since f; are not defined for all values of S < 0, let us modify f; as a C*° function in
the interval (—oo,0) by taking f;(S) =0 for S < —%,i=1,...,n; we still denote this
C*° modified functions by f;. With these modifications, let F : X% — X be defined
by

F(v)(z) = (7 (1 - S?) S(w) = Y myfi(S@)u; (@),
=t (2.7)
(m1f1(5(2)) = di)ur(z), ..., (mn fn(S(2)) = dn)un (x)) ;

for z € (2. Then it holds the following

Proposition 2.2 F is Lipschitz continuous in bounded sets of X*. Furthermore, for
each bounded set B = {v € X : v > 0 and ||v||a < b}, there exists a real positive
constant 3 = B(B) such that F(v) + Bv >0 for allv € B.

Proof The first statement follows from X< — C¥({2) and from the inequalities
1
|£i(S1) = fi(S2)| = 151 = 52
3

and
1
9(50) — g(52)l <11 =2l (14 151 + 521,

for all S; > 0, Sy > 0, where g(S) = (1 — IS<)S To proof the next statement, let
B={veX%:v>0and ||v||o« <b}. If C is the immersion constant of X< in C¥(£2),
then
0 < uy(a) < Clolla < Cb,

forallz € 2,0<j<nandv € B [we take ug = 5.

Let F = (Fp, F1,...,Fp); if 1 < j < n, then, for all v = (S,u1,...,un) € B, we
have

Fj(’l}) + Buj = (mjfj(S) — dj)Uj + Buj > (B - dj)uj >0,

for B > d;. If j = 0, then

Fo(v) + Bug = g(S) + BS — Zmifi(s)uj

J=1
max{my,...,mn}
> g(S) +BS - min{ar an} S(ui +ug + -+ + un)
S eeesan
S max{mi,...,m
> [7(1— )= min{{all an’;}an—kﬁ] S
Cb max{msi,...,m
= [W(l_ K)_ min{{a11 anr]L’}an+ﬂ] 5

@ Springer



Z1p BIFURCATION IN A COMPETITIVE SYSTEM 41

since f;(S) < all S, for all S >0 and 1 < ¢ < n. Therefore, taking

Cb max{my,...,mn}
> - -
ﬂ_max{dl, ydn, —(1 K)+ min{ay,...,an} Cnb,

we get F'(v) + Bv > 0, for all v € B and the proof is complete.

With the previous notations (1.1), (1.2) can be written as an evolution equation

O(t Av(t) = F(v(t)),t >0

(1) + Av(t) = F(u(0), 28)
v(0) = vp.

In the following we will study the well-posedness of (1.1), (1.2) on X§. As usual,
we first study mild solutions of (2.8) before classical solutions. The proofs will be
omitted since they follow from the previous results and from Theorems 3.3.3 and 3.5.2
of Henry’s book [8].

Theorem 2.3 For eachvy € X, there exist t1 > 0 and an unique continuous function
v:[0,t1) — X§ such that v(0) = vg and

t
v(t) = e Ay + / eiA(t*s)F(v(s)) ds,
0
Jor all 0 <t <t1. Ift1 < oo, then limsup; 4 _ ||F(v(t))|| = co. In addition, for each
to < t1, vis Cl on (0,t2), v(t) € X{, for all0 < o < a and v is a classical solution

of (1.1), (1.2).

From Theorem 2.3, we conclude that solutions of (1.1), (1.2) exist in some interval
[0,%1), are nonnegative and classical, so that the hypotheses in p. 199 in the Smoller
book [11] are satisfied. Therefore, X = ]Rfrl is an invariant rectangle by the flux of
(1.1), (1.2). To show that the solutions are globally defined, we use the following result
due to Morgan [9].

Theorem 2.4 Assume that D = diag(dy, ..., dm) is a real matriz with entries d; > 0,
f:R™ S R™ s a C' function and R is invariant for

vi(x,t) = DAv(z,t) + f(v(z,t)), =€, t>0

ov

_ 2.9
ay(ﬂc,t) 0, z€N, t>0 (2.9)
v(z,0) = vo(z), x € f.

Suppose that v is a mazimal solution of (2.9) defined on [0,t1) and that there exist
C? functions H : R — R and h; : Ry — R such that

m

1. H(z) = Zhl(zl) Jor all z € RT;
i=1

2. hi(z) >0, kY (2) >0 for all z; € Ry and 1 < i < my
3. H(z) — oo if and only if |z| — oo in Ry;
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42 JOCIREI D. FERREIRA, Luiz A. F. OLIVEIRA

4. There exists a matric A € R™*™ satisfying a;; > 0 and a;; > 0 such that, for
each 1 < j < m, there exist v > 0, K1 > 0, Ko > 0, independent of j, such that

Zaﬂ (2i)fi(2) < K1(H(2))" + K2 for all z € R;

5. There exist q > 0, Ks > 0, Kg > 0 such that, for all 1 < i < m, it holds
h;(zl)fl(z) < K5(H(2))" + K¢ for all z € RT;

6. There exist K7 > 0 e Kg > 0 such that VH(z) - f(z) < KyH(z) + Kg for all
z € R,

Then, t; = <

Proposition 2.5 The solutions of (1.1), (1.2) are defined for t > 0.

Proof We show that (1.1), (1.2) satisfy the hypotheses of Theorem 2.4. Indeed, let
v =(S,u1,...,un) be asolution of (1.1), (1.2). Let H(S,u1,...,un) = SH+ui+---+un,
hi = u; and A = (a;5) € R+ x(n+1) satisfying a;; = 0 for 4 < j and a;; = 1 for
1> 7, for 0 < 4,5 < n+ 1. Hypotheses (1)-(3) are trivially satisfied. Taking r = 1,
K1 =~ and Ko =0, we have

Zajl (us) fi(u )—’yuo—Zug—dlul_..._dnun
Y(uo + - +un) = KiH(u)+ Ko,

so that hypothesis (4) is satisfied. Now,

n
B _ 7 2 Ui g
1f1(u) = yug Ko ;mlai+w <H(u)

and

uoU;
ot diu; < miu; < mlH(u)

h;fl(u) =my

a; + ug

Therefore, by taking ¢ = 1, Kg = 0 and K5 = max{~y, m1,...,mn}, hypothesis (5) is
satisfied. Finally,

n n
_ Y2 ~uouy Ul
VH(w) - f(u) =yuo = ou =3 ma 0 D ma Zd u;
i=1 =1 i=1
< K7H(u) + Ks,
so hypothesis (6) is satisfied for K7 = v and Kg = 0, and the proof is complete.
As a consequence, we have the following
Corollary 2.6 The problem (1.1), (1.2) define a nonlinear semigroup T(t) : X¢ —
X¢.
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Z1p BIFURCATION IN A COMPETITIVE SYSTEM 43

3. Global attractor

In this section we show that system (1.1), (1.2) has a compact global attractor. To this
end, we show that the semigroup associated to the problem is compact dissipative, that
is, there exists a bounded set which attracts all bounded sets. To get the estimates, we
apply the results due to Alikakos [1] (see also H. Smith [3] and Henry [8]). First, we
get uniform bounds of the first component.

Proposition 3.1 Let u = (S,u1,...,un) be a solution of (1.1), (1.2) with initial
condition u(-,0) > 0. Then, there exist 0 < d < v such that

0<S(z,t) < 2Ky + e " max So(x).
d €L
for all (x,t) € 2 x [0,00).

Proof Let d = min{v,d,...,dn}. Observe that (1 — 15;)5’ < —dS + 2K, for all
S € R. Therefore, S satisfies

St(x,t) < 5 AS — dS + 2k, (x,t) € 2 x (0,00)

gf(x,t) =0, (z,t) € 902 x (0,00) (3.10)
S(x,0) = Sp(x), x €2, So(z)>0,

so, by comparison, S(z,t) < w(x,t), where w is solution of

wi(z,t) = 0pAw — dw + 2k, (x,t) € 2 % [0,00)

‘?;5 (z,t) =0, (z,t) € D02 x (0,00) (3.11)
w(x,0) = Sp(x), x € .

Writing w(z, ) = z(z, t)e” % + 2Ié”(l — e~ %), we conclude that z satisfies
zt(x,t) = 6o Az (z,t) € 2 x (0,00)
gz (z,t) =0, (z,t) € 802 x (0,00) (3.12)
14
c[.3pcz(x,0) = So(z), =€ 2, Sp(z)>0.

By the Strong Maximum Principle (see [10] p. 174), z(z,t¢) assume its maximum
at t = 0. Hence, 0 < z(z,t) < max,c 2(x,0) for all (z,t) € 2 x [0,00) and therefore

2K _ _
7(1 —e dt) + e " max So(x),

< <
0< S(l’,t) — d el

for (x,t) € £2 x [0, 00).
Next, we get uniform bounds in the L'-norm.

Proposition 3.2 Let d = min{v,d1,...,dn} and u(-,t) be a solution of (1.1), (1.2).
Then

- - [2| Ky

—d —d
D i)l < e [fui(- 0)llzr + g (e h,
1=0 =0

for allt > 0.
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Proof Let S = ugp. Adding the equations of (1.1), integrating on {2 and using the
Green’s Identities we get

jt/Qéui(x,t)dx—/ﬂi_io&Aui—&-/Q'y(l— Uo—/ Zduz
S/Q [—duo($7t)+2K’Y—idui(x,t)] dx

=1
n
_ —d/ S i, t) do + |2/ K.
20

By Gronwall’s inequality we have

d 2|K~y —d
Znuz, Mir < tZHu Oll + 7 (et

for all t > 0.

Remark 3.1 According to the previous Proposition, if ||u(-,0)|;:1 is bounded then
||w(-, )]z is bounded for all ¢ > 0.

Proposition 3.3 Suppose that u;(x,t) > 0,0 < i < n, is a solution of (1.1), (1.2) and
assume that exist constant C' > 0 such that sup ;>q fQ ui(z,t)de < C, for 1 <i<n.
Then, there exists a constant C*, depending on C and ||u;(-,0)||p~, 1 < i < n, such
that sup ¢>ol|uwi(-t)||lp~ < C*.

Proof We employ the ideas of Alikakos [1]. To simplify the notation, we write, for
1 < i < n, an equation of (1.1) as

us = 0Au + F(u),

k
where F(u) =m _"° u—du and ug = S. Multiplying the previous equation by u? L

a-+ugp

integrating, using the Green’s Identity and the fact that F'(u) < mu, for u > 0, we

d (1 / ok > / 2k _1 / 2k _1
u” dr) =96 Au)u dx + U F(u)dx
dt (Qk Q Q( ) Q )

— k
< - 2% 5 5/ IV (u \ dx—!—m/ w2 d. (3.13)

have

25 —1y _ (ok 2k —2 2
On the other hand, VuV (u ) =02 =1)u |Vul|® and therefore

2]’“ ok—1
22k—2 |V(

d 1 ok 1 d /1 ok=1 o
dt (Qk /Qu dw) T k-1 gy (2 /Q(“ ) dw)’

Vuv (Y = )2,

Since
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Z1p BIFURCATION IN A COMPETITIVE SYSTEM 45

we have
d l/(u2k_1)2dx g— 5/ v P de
dt \2 Jgo
(3.14)
+2k71m/ (qu‘_l)2 dz.
[0}
Let A
k—1 2 -1 k—
w=u? , 6k:52k—1 and my, =m2" L. (3.15)

Thus, (3.14) can be written as

d 1/ w? da g—ék/ \Vw\2dx+mk/ w? da. (3.16)

By Nirenberg-Gagliardo and Young inequalities, for any ¢ > 0, there exists C' > 0

such that )
/ w? dx < e/ \Vw\2 dx + Ce (/ wdw) , (3.17)
2 2 2

where Ce = ¢+ Ce™ 5. Indeed, since
1-0)
lwllwes < Clewolfimallwllf
where p>¢q, p>r, 0<0<1 and 0> 2JJFVN, then

2 2 2 20 2(1-0
lwllz = /Qw dz = [|wlljyo2 < C’Hw|IW1,2||wHL(1 ).

2(1-6)

2(1— 9 —
S P [|w] 2

Changing ||w|\12/81,2 v (& )P ||wHW1 2, ||lw and using the

Young inequality we obtain
()7 o)+ ((6) 7 a2
c c

2(1— 0)1 0

20 2(1—0
Clfw]|Fn 2 ]2~ < ©

= 6IIwHW1 s +Cre llwll 11

_ 2 — 2

= el|w||jy1.2 + Ce B [Jwl| 71 (3.18)
2 2 —_— 2

= €[Vl + wllz:] + Ce™ 2 [wl|ga

B 2 N 2

=€||Vwl||z2 + (e+Ce 2 ) |lw|[7a

where p = é, q= 110, Ce = C’e*g, 0= 24]_VN and the equivalent norm [[w|[yy1.2( o) =
o |Vw|? dz + (Jo wd:c)2]é on W12(£2) was used. Hence,

2 2
[wll2 = €|Vw|[L2 + Cef|w][11

where Ce = ¢+ Ce™ 3 , as claimed.
Replacing € by €, in (3.17), multiplying each side of (3.17) by (my + €;) we have

2
—(my +ek)6k/ \Vw\2 dx < —(mk—i—ek)/ w? dx + (my +€x)Ce,, (/ wdw) . (3.19)
2 £2 £2

@ Springer
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Choosing ¢, such that myey, + €2 <y, it follows from (3.16) and (3.19) that
d 1/ w? da —5k/ \Vw\2d:v+mk/ w? da
2
< —(my + ek)/ w? dz + (my, + €,)Ce,, (/ wdx)
[0} 02

+mk/ w? dx
2

2
< —(—:k/ w? dx + (my + €x)Ce, [boundt>0/ wdx] ,
2 - J

IN

where bound;>q widx is an upper bound for widx for all t > 0. By Gronwall’s
inequality, we have

my, + €)Cey,
€k

2
/Qw2 dr < e 2+ 0 Hw(-,O)HQLm(Q) + ( {boundtZO/Qw dx] (1—e 2kt

for all ¢ > 0, where |{2| denotes the volume of (2.
2k—1

Replacing w by and assuming that [£2| = 1 for simplicity, we obtain

2
[ do< e 0 + s ot [boundtw/ w? ldx]
0 & 20 |

o 2
< max {(mk”k)cfk [boundm [ ldx] 7 ||u<~7o>||%'io<m},
€k B 2

(3.20)

for all t > 0.

) C,
We can assume that (mter)

% >1, for k =1,2,..., and that the constant C
bounding [, u(x,t)dx for t > 0 is also an upper bound for [[u(:,0)|| (). We claim
that (3.20) implies

0 ! ko
/ W dn < ((mk + Gk)Cek>2 ((mkfl + Ekl)C€k1>2 <(m1 +a)Ca)’ ',
7

€k €k—1 €1
(3.21)

. . . k : Ce
for any ¢t > 0. Indeed, introducing the notations fQ u? dr = X and C), = (matei)Cey >

€k
1, we have Xo = [lu(-,0)[ (o) < C and inequalities (3.20) are equivalent to

X1 < max{Cng, 02}
2 22 2 27 27 22
Xo <max{CyX7{, C° } <max{Comax{CiXj ,C”° }, C°}

= max{max{C2C2 X2, CoC¥}, CF) = max{CC2XE , CrC?)

@ Springer



Z1p BIFURCATION IN A COMPETITIVE SYSTEM 47

X3 < max{CgX%, 023} < max{max{CgC%C%2X33, 03022023}, 023}

— max{C5C30% x2° 030207}

2k71

2 22 ok—1
Xk < max{Cka,lc’k,g e Cl

k 2 k
X3, C,Ci_CE ,...C5 C%).

k k
Since Xg < C', we have Xg < C? , and therefore

21@71

2 k
Xj < CpCi1Chp...CT  C*,

as claimed.

We now choose €}, as ¢, = jgk . It is a simple matter to verify that e (my+ex) < 0.
With this choice, we have

(mk + ex)Cey _ (1 N Tk) (6](€N+2)/2 —&—C)e,:N/Q
k

€k

2

IN

2 N/2
m 2k m kN/2
2% 2°% 20 (26) 2 (3.22)

_ m2C (m)N/Q 2]€(N/2+2)
) 20

where A = ]g and m = mgC (%)N/Q'

Hence, the right hand side of (3.21) becomes

/ W2 de < (21@(,\+2)m)2° (2(1@71)(A+2)m)21(2(1@72)(“2)7”)22
(7]

X oo x (2 (=IO y25 T 2 (3.23)

k k— k
— 21 _2(>\+2)(k+2(k—1)+22(k—2)+---+2 Hk—(k—1))) .02
— ;2 1 gO2)(—k+2 +1_2) o2
Taking 21k — power on both sides of (3.23) and taking limit for k¥ — 400, we obtain

ull g () < 22D, (3.24)
and the proof is complete.

Theorem 3.4 Assume that the hypotheses of Proposition 3.3 hold. Then, there erists
a constant B > 0 such that

lim sup [Ju; (¢, )| xo < B.
t—oo

Proof Let u(t) = (uo(t),u1(t),...,un(t)) be a solution of (2.8). By the variation of
constant formula
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At b A
ult) = e Ahu(0) + /0 ¢ Flu(s))ds, (3.25)

where A and F are as in section 2. Applying A on both sides of (3.25) we have

A%(u(t)) = A% Au(0) + / t A% A3 py(s))ds.
0

From estimates gotten from Proposition (3.3), there exist constant C such that

lim sup || F(u(s))|lp < C,
t—oo

for all p > 1. Hence,
u(®)llxe = A% (u(®)]]

t
< A% M u(0)]lp + /0 A% A || F(u(s))||p ds (3.26)
t
< Cat ™% |u(0)]|, +/ CCu(t—s5)" % 0079 g5
0

(o]
< Cut ™% |u(0)||p +/ CCor™ % " dr,
0

which implies the result.

Corollary 3.5 System (1.1), (1.2) generates a nonlinear semigroup T'(t) : X§ — X¢
satisfying:

i) T(t) is compact fort > 0;
i) T'(t) is point dissipative;
iii) Orbit of bounded sets are bounded.

As a consequence, system (1.1), (1.2) has a compact global attractor.
Proof Note that by the embedding
X® — CY(02)x--xCY (),

we can replace the uniform norm of the Proposition 3.3 by the norm C* for some v > 0.
On the other hand, C" is compactly embedded into C(£2), so we have (i). Assertions
(#) and (7i7) follow from Theorem 3.4. The last conclusion follows from results given
in J. Hale’s book [7].

4. Zip bifurcation in a reaction diffusion system

In this section we will examine the stability or instability of homogeneous equilibrium
for the problem (1.1), (1.2), tat is, solutions independent on z. We show that system
(1.1), (1.2) exhibits a zip bifurcation when the carrying capacity K is varied.
We consider the system (1.1), (1.2) and we assume that the nonnegative constants
ai, ag, ..., an satisfy
O<an<ap-1<---<az<aj. (4.27)
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Except by the ‘trivial’ solutions (S, u1,...,un) = (0,0,...,0) and (S,u1,...,un) =
(K,0,...,0), the system (1.1), (1.2) have solutions independent of z if and only if
m; > d; and the solutions of f;(S) =d;/m;, i =1,2,...,n, coincide, that is,

ardy aads andn
= == . 4.28
—dy mo — do My — dn ( )
Let \; , for i = 1,2,...,n. From now on, we assume that m; > d; and
Al = = /\n The common value of A;’s will be denoted by A: Ay = --- = Ay, = A.

It follows that ‘non-trivial’ homogeneous equilibrium points of (1.1), (1.2) belong to
the (n — 1) dimensional manifolds Hg defined by

Hy = {(A,sl,...,sn) Ry a’?”bf; =7 (1 - 2)} (4.29)
i=1 "

The linearization of system (1.1), (1.2) at a point (X, &1,...,&n) € Hg is

8S(x,t)—§0AS+<—VI§‘+,\2(ml& )S Za+/\' in 2 x (0, 00)

ot a; + )2
Ou;(x,t . .
Z(fgt ) = §;Au; + lﬁfl/\S i=1,2,...,n, in 2 x (0,00)
(4.30)

with boundary conditions (1.2), where 8; =m; —d;, i1 =1,2,...,n
Let 0= po < p1 < pg < --- — oo and {¢ }f— be the eigenvalues and eigenfunc-
tions of the Laplacian operator in {2 with Neumann boundary on 02:

Ay, = A\ptbg in 2

Oy,
ov

(4.31)
=0 on 0f2.

We can assume that {1, }32 is an orthonormal basis of L?(£2).
Let w = (S,u1,...,un), D = diag(do, d1,...,0n) and J be the matrix

n

mi& YA maA _ mpoiA ma
l(ai+>\)2 K ar+Xx @2 q S 4N an+A
A& 0 0 ... 0 0
al + A
P2t 0 0 ... 0 0
J = as + A\
Fn—18n-1 0 0 ... 0 0
n—1+ A
Bntn 0 0 ... 0 0
an+>\

Then, (4.30), (1.2) can be written as

ow

o = DAw + Jw,
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so, the solution of (4.30), (1.2) with initial condition w(-,0) = wq is given by

w(z,t) = Y e (g, )y (), (4.32)

k=0

where (wo,¥y) = [, wo(x) Py (z) de.

It follows from the linearization principle that a ‘non-trivial’ homogeneous solution
of (1.1), (1.2) is asymptotically stable if the eigenvalues of all matrix J — pgD have
negative real part; if there exists a k > 1 such that J — ui D has an eigenvalue with
positive real part then the solution is unstable. Note that for g = 0 and the matrix
J has zero as an eigenvalue of multiplicity (n — 1) and two eigenvalues with positive
(resp. negative) real part according to

m;&; vy

> <
(@+N2 " Kk &

(4.33)

n
5
— K’

i=1

The following result is an immediate consequence of this note and the proof can be
found in [6].

Proposition 4.1 If K > aj + 2\, then all equilibrium on Hp are unstable.

4.1. The case n = 2

To simplify computations, from now on we consider n = 2 to study the persistence
of the zip bifurcation phenomenon in the reaction diffusion system (1.1), (1.2). The
corresponding ODE model was considered first by Farkas [5], where he studied the
competition between two predators for a single prey, given by

S == 2)S —mifi(S)z1 — mafa(S)w2
1 =my1f1(S)z1 —dixy (4.34)

o = mafa(S)r2 — daxa,

where the functional response and the parameters have the same meaning as those of
model (1.1) for the case n = 2. We keep the same notations and hypotheses as before.
In the next result, we collect the main results of [4,5].

Proposition 4.2 If A < K < az + 2\, each equilibrium (X, &1,&2) € Hy of (4.34) is
asymptotically stable. If K > a1 + 2X, (A, &€1,&2) is unstable.

When as + 2XA < K < a1 + 2), it also follows from [4] (see also [6]) that there
exist a point (X, &1 (K),&2(K)) € Hi such that the equilibrium on Hyy = {()\, £1,&2) €
Hy : & < & (K)} are unstable for the flow of (4.34) and the equilibrium on Hg =
{(\&1,&2) € Hig : & > &1(K)} are stable. The point (§1(K),&2(K)) is obtained
solving the system

mi&l | maée _ (K =)
ar+ A ag+ A K (4.35)
m1&y ma&2 " .

(a1 + )\)2 (a2 + A)Q K’
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Now, if E is an unstable equilibrium for the flow of (4.34) then F is also an unstable
homogeneous equilibrium for the flow of (1.1), (1.2), since the subspace of the function
independent of z is invariant for the flow of (1.1), (1.2). We will show that if E is stable
for the flow of (4.34) then E is also stable for the flow of (1.1), (1.2) independently of
the diffusion diagonal matrix D = diag(dg, d1,02). This fact is surprisingly and shows
that the zip phenomenon is preserved by the introduction of diffusion in system (4.34).

Theorem 4.3 Suppose that E is an equilibrium of (1.1), (1.2) independent of x. If E
is stable for the flow of (4.34), then E is stable for the flow of (1.1), (1.2), independently
of D = diag(do, 01, d2)-

Proof Let E = (\,&1,&2) be an equilibrium of (1.1), (1.2) independent of xz. Then
A < K and (&1, &2) satisfies

mify | mage (K —A)
ar+ A as+ A K '

The hypothesis that E is stable for (4.34) is equivalent to

mi&; ma&2 Y
< 4.36
(a1 + A)2 (a2 + )\)2 K ( )
(see [4] or [6] for detail).
Let us to write the characteristic polynomial Py(v) of J — uiD, where J is the
Jacobian matrix of (4.34) evaluated at E. To simplify the computations, we introduce
the notations

2
mq&; YA B1&1 P2&2 miA
— )\ it b= - d=—
@ ;(ai—&—)\)Q K’ a; + A\’ ¢ as + N\’ a; + A
e= —:;_2:3\7 so that the condition (4.36) means that a < 0. Therefore, for each k > 0,

the eigenvalues of J — pp D are the roots of the equation
Py(v) = v° + Ag® + Bpv + Cy,, (4.37)
where

Ay = pi(do + 61 + d2) — a,
By = Mz(5051 + 00902 + 5152) — aﬂk((sl + 52) —bd — ec

O = pi 800102 — pipadydy — g (ecdy + bddy).

Since a < 0, bd < 0 and ec < 0, we have Ay > 0, By > 0 and C}, > 0, for all £k > 1.
At k = 0, the polynomial

Py(v) = v — av® — (bd + ec)v,

has zero as a single eigenvalue and two complex conjugate with negative real part.
We claim that, for any k& > 1, all eigenvalues of J — pup D have negative real part. This
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will follows from Routh-Hurwitz’s criterion if we show that Ay By > Cj, for any k > 1.
To prove this, we consider the function AB — C = (AB — C)(u) given by

(AB = C)(p) = 4°[2000102 + 63(81 + 82) + 61 (80 + 62) + 63 (60 + 61)]
— ap®[6001 + 6002 + (80 + 1 + 82)(61 + 82)]
— p[do(bd + ec) + d1bd + d2ec (4.38)
— a%(61 + 82)] + a(bd + ec),

obtained from the expression of Ay By — C}, changing g by p.

Since a < 0, ec < 0 and bd < 0, the coefficients of (4.38) are all positive, and
therefore (AB — C')(u) is positive for any nonnegative values of . Taking into account
that pui > 0 for any k > 1, the claim is proved. Thus, for any k > 1, we have Ay By —
C}, > 0 therefore, the roots of Py (v) has negative real part.

On the other hand, taking v = gz, the roots of Py (v) = 0 are roots of the equation
8 Ap 2 Bk Ck

+ ok MR o (4.39)
pe o opg g

z

When k — oo, the coefficients of (4.39) have limit and the limiting equation is
given by
23 + (00 + 01 + 52)22 + (0001 + 8902 + 01d2)z + Jpd102 = 0. (4.40)

If 21, 22 e z3 are roots of (4.40), then Rez; < 0, j = 1,2, 3. By Rouché’s Theorem, there
exist neighborhoods Vi, Vo and V3 of 21, 22 and z3, respectively, mutually disjoint, and
ko > 1 such that if k£ > ko, the polynomial (4.39) has a root z]({j) in each neighborhood
Vj. Since zero is a simple eigenvalue of J and the roots of (4.37) are v, ; = ukz,(j),
for 7 =1,2,3, k > 1 and p; > 0, there exists a > 0 such that the remainder of the
spectrum of the operator in (4.30) belongs to {v : Re v < —a}. Therefore, all the
hypotheses of Henry (see [8] p. 108) are satisfied, and therefore E is stable.

As a consequence, if A < K < ag + 2\, the hyperplane of equilibrium points H g
of (4.34) is asymptotically stable for the flow of (1.1), (1.2). If K > aj + 2, then Hg
is unstable. If ag + 2\ < K < aj + 2, let (£1(K),&2(K)) be the unique solution of
system (4.35). Then it holds

Theorem 4.4 For any K satisfying as+2X < K < a1+2X, the point (X, £1(K), & (K))
split Hye in two parts Hyy and Hye; the equilibrium of (1.1), (1.2) on the set

Hi ={(\&1,&) € Hy : & < &(K)}
are unstable and on the set
Hi ={(\&1,&) € Hy : & > & (K)}
are stable, independently of the diffusion matriz D = diag(8o, 51, 52).

This final result shows that the zip bifurcation phenomenon can be preserved by
the introduction of a diagonal diffusion matrix D in the model (4.34), independent of
the domain (2. Moreover, Theorem 4.3 shows that Turing instability may occurs only
in models with crossed diffusion and/or very special domains (2.
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