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Abstract 

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of accurate models to predict disease dynamics 
and guide public health interventions. This study leverages the COVASIM agent-based model to simulate 1331 scenarios of COVID-19 
transmission across various social settings, focusing on the school, community, and work contact layers. We extracted complex network 
measures from these simulations and applied deep learning algorithms to predict key epidemiological outcomes, such as infected, 
severe, and critical cases. Our approach achieved an R2 value exceeding 95%, demonstrating the model’s robust predictive capability. 
Additionally, we identified optimal intervention strategies using spline interpolation, revealing the critical roles of community and 
workplace interventions in minimizing the pandemic’s impact. The findings underscore the value of integrating network analytics with 
deep learning to streamline epidemic modeling, reduce computational costs, and enhance public health decision-making. This research 
offers a novel framework for effectively managing infectious disease outbreaks through targeted, data-driven interventions.
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Accurate predicting infectious disease dynamics is crucial for ef
fective public health interventions, especially in pandemics like 
COVID-19. This study presents a novel approach that combines 
complex network analytics with deep learning to predict key epi
demiological outcomes and optimize intervention strategies. 
Simulating various transmission scenarios using the COVASIM 
agent-based model across the school, community, and workplace 
settings achieved high predictive accuracy with a R2 value ex
ceeding 95%. The findings underscore the significant impact of 
community and workplace interventions in mitigating the pan
demic’s spread. This framework enhances epidemic modeling by 
reducing computational costs and provides valuable insights for 
policymakers to design effective containment measures, contrib
uting to improved management of infectious disease outbreaks.

Introduction
The coronavirus disease 2019 (COVID-19) epidemic has disclosed 
difficulties and delays in the public health and societal response 
to emerging new diseases. While simulation tools designed to 
model the dynamics of infections have been quickly adapted to 
new virus parameters [1–3] and made available to a large com
munity of researchers [4], ready-made expert support systems 
for predicting the effectiveness and impact of public health inter
ventions have not been publicly available. Responsible public 
health administrators and the general public alike were lacking 
essential information to opt quickly for the most appropriate and 
least intrusive intervention.

Hence, a need for new predictive tools has become evident. This 
paper demonstrates a first direction to further develop agent-based 
disease simulators into tools for predicting optimal public health 
responses. As a full study of all conceivable interventions is beyond 
the scope of this work, a focus on contact restrictions is taken.

Mathematical models, notably Susceptible-Exposed-Infectious- 
Recovered (SEIR) models, have been seminal in generating predic
tions and guiding public health measures [5–7].

Compartmental models are non-linear models widely recog
nized for their effectiveness in understanding the spread of infec
tious diseases within a population. The SEIR model subdivides 
individuals into four distinct compartments based on their disease 
progression status: Susceptible, Exposed, Infectious, and Recovered 
[6, 8]. The dynamics of transitions between these compartments 
are governed by a set of ordinary differential equations driven by 
essential parameters such as transmission rate, incubation period, 
and recovery rate described in Equation (1) [8, 9]. 
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Where: S(t) represents the number of susceptible individuals 
at time t, E(t) represents the number of exposed individuals 
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(infected but not yet infectious) at time t, I(t) represents the num
ber of infectious individuals at time t, E(t) represents the number 
of exposed individuals (infected but not yet infectious) at time t, 
R(t) represents the number of recovered individuals at time t, N is 
the total population size, β is the transmission rate (average 
number of contacts an infectious person makes per unit time 
multiplied by the probability of disease transmission in a con
tact), α is the rate at which individuals move from the exposed to 
infectious compartment (1/incubation period), and γ is the recov
ery rate (1/duration of infection).

By leveraging mathematical formulations and incorporating 
key parameters, compartmental models have proven invaluable 
in guiding public health measures [5, 10, 11]. On the other hand, 
agent-based simulators like COVASIM [4] have emerged as power
ful tools for studying the complex dynamics of infectious diseases, 
extending the SEIR model by allowing for the integration of fine 
grained disease stages, age-specific parameters, immunization 
models etc., enabling a more nuanced simulation of disease pro
gression across various demographic segments. Furthermore, 
COVASIM implements the contact network of agents, capturing 
heterogeneous interaction patterns that the traditional SEIR 
model oversimplifies, thereby offering a more detailed and realis
tic representation of disease transmission [12–14].

COVASIM is a stochastic agent-based simulator, which allows 
for the representation of individual-level heterogeneity in behav
iors and interactions, leading to more realistic epidemic predic
tions [15, 16]. Built on separately generated synthetic 
populations, this tool additionally includes country-specific de
mographic information on age structure and population size. 
Social contact networks are structured in four subgraphs (layers), 
referring to households, schools, workplaces, and communities 
[4]. Through COVASIM, it is possible to simulate a refined trans
mission network by a multigraph with multiple layers, capturing 
the complex interactions between individuals in a population 
[13]. The community layer accounts for random contact between 
individuals in the general population, mimicking casual encoun
ters in public spaces or social gatherings [17]. Household con
tacts, as another layer, capture close and sustained interactions 
within households, which are known to be a significant source of 
disease transmission. The work and school layers further con
tribute to the complexity of the model as they reflect the specific 
patterns of interactions that occur in these settings [18]. 
Workplaces often involve dense and regular contact, while 
schools accommodate interactions among children and staff, 
influencing the spread of infections among younger populations 
[19]. The multigraph contact network enables a detailed and nu
anced representation of disease transmission dynamics in vari
ous social contexts. The approach allows researchers and 
policymakers to explore the potential effectiveness of public 
health interventions in controlling infectious diseases [20–22] in 
particular those which target specifically the contact networks 
[13, 23–25].

One major limitation of agent-based simulators like COVASIM 
is their computational cost [26]. Simulating numerous scenarios 
with detailed contact networks can require significant computing 
resources and time.

This work addresses the hypothesis that between a full model
ing of contact networks in agent-based simulators like COVASIM 
and neglecting the structure of contact networks in compartment 
models there is a gap to establish a computationally efficient and 
fast prediction method which includes some effective properties 
of contact networks but avoids their full inclusion. We use ma
chine learning for a simplified substitutional model by replacing 

the full contact network adjacency matrix with a description 
based on complex network measures, such as betweenness cen
trality (BC) and others based in Rodrigues et al. [27]. They serve as 
predictors of disease dynamics while other parameters of the 
COVASIM framework remain fixed.

We use COVASIM to set up the contact network adjacency 
matrix using its initial state initialization routine, extracted it 
and calculated relevant complex network measures from it. 
Those served as input features for a deep learning-based method 
to predict time series data of the disease dynamics. A limited vol
ume of synthetic data generated from the COVASIM simulator 
was used for training the model. Thus, we have shown by con
struction that a prediction of the disease dynamics from effective 
network properties is possible with sufficient accuracy without 
incurring the computational cost of performing a full agent- 
based simulation on a complex contact network.

We considered contact restrictions by public health interven
tions which modify the contact networks in schools, community 
and work and the corresponding values of complex network 
measures. The speed-up of predictions by the substitutional 
model allowed to efficiently sample the space of possible contact 
restrictions and to quickly predict the corresponding disease dy
namics. From a parameter space study an inverse model was set 
up to derive the manifold in intervention space which is consis
tent with given external constraints, for example, a maximum 
number of critically sick or hospitalized patients. This manifolds 
marks the weakest contact restrictions compatible with an exter
nally pre-defined maximally acceptable disease dynamics. A dis
cussion of the points of the manifold allows to open a public 
debate on the least intrusive and most acceptable strategy for in
fectious disease control.

Materials and methods
We use COVASIM to set up realistic contact networks based on a 
synthetic population which resembles the city of Aschaffenburg, 
Germany. Its roughly 70,000 inhabitants were represented by 
70,000 agents and synthetic contact networks, structured as four 
subgraphs for households, school, work, and communities, were 
created to reproduce essential macroscopic statistical quantities 
as implemented in COVASIM. COVASIM simulations have been 
fitted and calibrated with respect to historic epidemiological data 
in previous work [28, 29]. Interaction patterns and rates within 
and across the subgraphs are based on the synthetic population 
and modeled through a stochastic process to capture the hetero
geneity of disease transmission.

Analysis was conducted in Python version 3.6.15 and Docker. 
The Docker image includes the required Python packages, 
COVASIM source code, and any additional data needed for the 
simulations, and all code used here can be found in: https:// 
github.com/kathlab/covasim-covid19.

Creating synthetic data from 
COVASIM simulation
We use COVASIM to perform a parameter study for varying con
tact restrictions in schools (s), community (c), and work (w), 
which implies varying contact networks (Fig. 1-I)). A total of 1331 
scenarios were created by systematically varying the level of con
tact reduction in each of these three layers, using 11 uniformly 
spaced values between 0.0 (full contact removal) and 1.0 (no re
striction). This 3D grid of intervention configurations is illus
trated in Supplementary Appendix A (Fig. 6). For each scenario, a 
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new contact network was generated and the full disease dynam
ics were calculated over a simulation horizon of 100 days.

Contact restrictions were implemented using COVASIM’s in
ternal contact scaling mechanism. Specifically, each restriction 
level was applied as a scaling factor that probabilistically retains 
a fraction of the edges (contacts) within the corresponding net
work layer. For instance, a scaling factor of 0.6 means that 60% of 
contacts in that layer are preserved, while the remaining 40% are 
randomly removed. This stochastic edge reduction maintains the 
approximate structural characteristics of the layer while model
ing decreased social interaction due to public health interven
tions. Each combination of restriction levels produced a unique 
network configuration used in the corresponding simulation.

The household subgraph was excluded from the study, as 
public health interventions in households are considered excep
tionally intrusive and their impact comparatively less significant 
[30, 31]. Moreover, household networks in COVASIM are com
posed of small, tightly clustered groups with limited variability 
across scenarios. Excluding this layer also served to reduce the 
dimensionality of the parameter space and focus our analysis on 
public contact settings that are typically targeted by intervention 
policies. By concentrating on school, community, and work 
layers, we aimed to capture the most relevant aspects of trans
mission in the public sphere and better understand the struc
tural effects of varying policy interventions.

While the COVASIM simulation preserves the layered structure 

of contact networks, for feature extraction, we aggregated the 

school, work, and community subgraphs into a single contact net

work per scenario. From this aggregated network, we computed the 

complex network measures used as input features for the machine 

learning models. This approach allowed us to capture the joint 

effects of modifiable social contacts while maintaining compatibil

ity with the network analysis techniques employed in our study.
The initial infected population was set at 4.5% of the total 

population, reflecting early-stage epidemic conditions often ob

served in urban settings. This percentage was chosen based on 

epidemiological data suggesting an initial infection seeding rate 

in similar contexts. For example, the early phases of the COVID- 

19 pandemic in various European cities saw similar infection 

rates, as in [32] documented rapid increases in urban areas due 

to high population density and connectivity. The transmission 

rate, represented by the parameter β¼ 0:01825, and to differenti

ate between varying disease severities, we set the relative proba

bilities of developing severe and critical cases to 0.6558 and 

0.9404, respectively. These values were derived from our previ

ous work [28, 29] to calibrate and align with observed COVID-19 

transmission dynamics, ensuring that the simulated spread 

closely mirrors real-world patterns. The simulations of disease 

dynamics were conducted for 100days.

Figure 1. Schematic representation of the methodology using COVASIM simulation. After the chosen interventions, the scenarios are simulated in 
COVASIM. (I) Creating synthetic data from COVASIM simulation, described in the Subsection II A: The simulation involves three contact network 
subgraphs—school, work, and community—jointly represented by a multigraph. Each agent is represented by one node in at least one subgraph (up to 
maximally one node in each subgraph) and characterized by a multi-valued agent state (in the orange box) as detailed in Kerr et al. [4]. Links on the 
contact network graph represent the possibility for disease transmission between agents which is randomly substantiated through a stochastic process 
(I.a). We consider 1331 unique variations in the contact network, each differing by the connectivity within the subgraphs. The disease dynamics is 
represented by time series data of observables (Obs), for example, the time dependent number of infected agents, and vectorized as I(t). It is calculated 
using COVASIM for a modeling time of 100 days; exemplary simulation results are illustrated for seven scenarios (I.b). From the multigraphs, six 
complex network measures—KC, BC, CC, ECP, R, and D—which characterize the contact networks, were extracted for dimensionality reduction. The 
distribution ranges of these measures for the considered networks are depicted in (II). Substitutional ML and DL models (II C) are trained to predict the 
observables in (II.b) from complex network measure inputs. Finally, the manifold of minimal intervention is recovered as described in II D
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We calculated each scenario as an ensemble of five equivalent 
implementations to account for stochastic variability, enhancing 
our findings’ statistical robustness; we calculated average out
comes across multiple runs, reducing the impact of random fluc
tuations and providing more reliable results [4, 33, 34].

Complex network feature extraction for 
dimensionality reduction
In line with Rodrigues et al. [27], for each of these contact net
works the following complex network metrics are extracted; they 
incorporate essential networks properties and provide dimen
sionality reduced input features for a machine learning model: 
First, BC, introduced by Freeman [35], measures the extent to 
which a node lies on the shortest paths between other nodes, in
dicating its role as a bridge or a bottleneck within the network. 
Closeness centrality (CC), also developed by Freeman [36], 
assesses how close a node is to all other nodes in the network, 
reflecting the efficiency with which information can spread from 
that node. Eigenvector centrality (EC), proposed by Bonacich [37], 
considers the number of connections a node has and the impor
tance of the nodes it is connected to, providing a measure of a 
node’s influence within the network.

In addition, PageRank (PR), originally devised by Brin and Page 
[38] for ranking web pages, is employed to evaluate the impor
tance of nodes based on the quantity and quality of incoming 
connections. Degree (D), discussed by Doyle and Graver [39], is 
the simplest measure, representing the number of direct connec
tions a node has, which can indicate its potential for interaction 
within the network. Finally, the k-core (KC) measure, described 
in [40, 41], identifies the largest subnetwork in which each node 
is connected to at least k other nodes, highlighting the network’s 
cohesiveness.

The ensemble-averaged values of the complex network meas
ures, whose distribution ranges are shown in Fig. 1-II, were used 
as the input features for the machine learning models to predict 
the corresponding IðtÞ. Here, ensemble average refers to averag
ing across five independent stochastic realizations of each sce
nario simulated in COVASIM. For each intervention 
configuration, we repeated the simulation five times and com
puted both the mean IðtÞ curve and the mean network measures 
across these runs, to reduce the impact of randomness in disease 
transmission and initialization. A summary of the covariates (in
put features) and response variables used in our machine learn
ing pipeline is provided in Table 1.

Substitutional ML and DL algorithms
We have employed a multioutput regression methodology that 
simultaneously predicts the full time series IðtÞ ¼ ½I1; I2; . . . ; I100�, 
where It denotes the number of infected individuals on day t. 
This vectorized formulation enables the model to learn the 

temporal evolution of infections from static network features. 
The same approach is applied for predicting severe and critical 
cases over time. We implemented it for several ML algorithms 
and compared their performance: the support vector machine 
(SVM) algorithm [42]; the Random Forest (RF) algorithm [43]; and 
the scalable tree boosting algorithm (Xgboost) [44]. We employ 
grid search for hyperparameter tuning with mean R2 score as the 
optimizing criterion [45–50]. The set of hyperparameters and 
range of values considered in the grid search is shown in Table 2. 
The synthetic dataset was split into disjunct training (75%) and 
test (25%) subsets and training was performed w.r.t. the target 
variables I(t).

Model performance was measured using the conventional R- 
squared metrics [51–53], to assess the goodness-of-fit of our predic
tive models. The R2 score measures the proportion of the variance 
in the dependent variables that our models can elucidate.

Additionally, a previous split of 25% is made on the original 
dataset, reserved for final testing after the model is trained on 
the 10-fold cross-validation. This technique evaluates model per
formance while minimizing overfitting and ensuring generaliza
tion to new data.

Moreover, we implemented a fully connected neural network 
as deep learning model (DL). To efficiently tune the hyperpara
meters of this model, we used the random search optimization 
algorithm, which involves randomly sampling hyperparameters 
from a predefined range and evaluating the model’s performance 
for each set [54]. This method effectively identifies satisfactory 
hyperparameter configurations without requiring exhaustive 
searches across the entire hyperparameter space [55]. The high 
dimensionality and complex interplay of hyperparameters in 
deep learning render traditional grid search impractical [56, 57].

Additionally, we applied dropout and L2 regularization techni
ques to mitigate overfitting. Dropout involves temporarily deacti
vating a random subset of neurons during each training 
iteration, preventing the model from becoming overly dependent 
on specific neurons and thereby enhancing generalization [58]. 
L2 regularization, also known as weight decay, was applied to the 
weights of the neural network layers. Additionally, we applied 
dropout and L2 regularization techniques to mitigate overfitting. 
Dropout involves temporarily deactivating a random subset of 
neurons during each training iteration, preventing the model 
from becoming overly dependent on specific neurons and 
thereby enhancing generalization [58]. L2 regularization was ap
plied to penalize larger weight values and to reduce the risk of 
overfitting [59]. The architecture and random search hyperpara
meters for the DL algorithm are summarized in Table 3.

We consistently applied a uniform data sampling strategy 
across all machine learning and deep learning algorithms, using 
a 10-fold cross-validation approach with shuffling; k¼ 10 is a 
common value for this method [60–64]. This technique involves 

Table 1. Summary of machine learning input features (covariates) and prediction targets (responses).

Type Variable(s) Description

Covariates Mean PR Average PageRank centrality of all nodes in the static contact network
Mean CC Average closeness centrality across all nodes
Mean BC Average BC across all nodes
Mean EC Average EC across all nodes
Mean Degree (D) Average degree (number of direct connections) per node
Mean KC Index Average k-core number, reflecting the cohesiveness of the network

Responses IðtÞ Time series of infected individuals from day 1 to 100, averaged across five stochastic 
simulation runs

IsevereðtÞ Time series of severe cases (daily counts, averaged over five runs)
IcriticalðtÞ Time series of critical cases (daily counts, averaged over five runs)
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partitioning the dataset into ten equitable folds, ensuring each 

fold represents a fair portion of the data. Random shuffling 

ensures that each batch contains a different mix of data points in 

every iteration. Shuffling the data before partitioning reduces the 

risk of any systematic patterns in the dataset influencing the per

formance of the model. This process is suitable to reduce a possi

ble bias, enhance the robustness of the trained models and to 

improve generalization capabilities to unseen data [65–67].
Furthermore, per established preprocessing best practices, 

our pipeline incorporates the application of a standard scaler to 

normalize the features before training our multioutput model. 

Following the approach [68, 69], we employed this scaler to stan

dardize the features by centering them through the removal of 

the mean and subsequently scaling to attain unit variance. This 

normalization procedure proves pivotal, especially for algorithms 

that hinge on the assumption of feature homogeneity. Both the 

input features (X) and the corresponding multioutput target vari

ables (y) are subjected to this scaling protocol, which is recog

nized for its capacity to enhance the suitability of the data for a 

diverse array of machine learning algorithms and optimization 
methodologies. This uniformity in scaling fosters heightened 
model convergence and stability and culminates in demonstra
bly enhanced performance.

The SHapley Additive exPlanations (SHAP) values were calcu
lated to assess the predictive contribution of individual variables, 
the complex network metrics described in Subsection II A. The 
SHAP value methodology, rooted in cooperative game theory and 
popularized by Lundberg and Lee [70], allows to conclude on the 
relative contributions of each input feature (here: the complex 
network measures) to the model prediction (here: prediction vari
ables I(t)). For details see III A.

Assessing the manifold of minimal intervention
For illustration, we consider a use case where disease control 
should be done with minimal restrictions but within a set of con
straints set by the health system. Such constraints on the maxi
mally acceptable number of infected, hospitalized or critically 
sick patients are given externally. For instance, the number of 
available beds in intensive care units can be a limiting factor 
which requires to keep the number of critically sick patients be
low that threshold. That goal, however, may be equivalently 
reachable by different contact network restrictions applied to 
one or several subgraphs of the contact network. Therefore, we 
consider the manifold of equivalent and minimal interventions 
which all imply a disease dynamics compatible with the set 
constraints.

Motivated by this use case, we restrict our target variables 
(time series data on disease dynamics) to the maximum value of 
critically sick patients at any point in prediction time to facilitate 
the assessment of optimal interventions. We consider the three- 
dimensional parameter space defined by the strength of the 
restrictions imposed on the school, community, or work sub
graphs and, as a single target value, the maximum number of the 
critically sick. The trained deep learning model was used to re
fine the parameter space discretization and to extend the syn
thetic dataset. Cubic splines [71] were used to finally interpolate 
the manifold [72] between available data points.

Figure 1 depicts our methodology summary scheme.

Results
Machine learning and deep learning results
Figure 2a depicts the results of ML and DL algorithms. By con
struction, we verified that the time series of observables can be 
predicted directly from complex network measures as input fea
tures, bypassing a full agent-based simulation on a contact 

Table 2. Hyperparameters and best values found for different machine learning models.

Model Hyperparameter Values tested Description Best value

SVM C 0.1, 1, 10 Regularization parameter 10
Kernel linear, rbf Kernel function rbf

RF Max depth 10, 20, 30, 40, 50 Maximum depth of each tree 5
Max features 2, 3, 4 Maximum number of features for the 

best split
4

n estimators 100, 200, 300 Number of trees in the forest 50
MLP Hidden layer sizes (100,), (100, 50, 100) Neurons in the hidden layers (100, 50, 100)

Alpha 0.0001, 0.001, 0.01 L2 penalty term 0.01
Solver adam, sgd, lbfgs Weight optimization solver lbfgs

XGBoost n_estimators 100, 200, 300 Number of boosting rounds 300
Learning rate 0.01, 0.1, 0.2 Step size shrinkage 0.1
Max depth 3, 5, 7 Maximum depth of a tree 5

Table 3. DL algorithm architecture, hyperparameter search 
space, and best values found.

Layer Hyperparameter Search space Best value

Dense (1) Units 8 to 64 (step 4) 48
Activation relu, tanh, sigmoid relu
L2 Regularization 1e-6 to 1e-2 (log) 1.49e-6

Dense (2) Units 16 to 128 (step 4) 104
Activation relu, tanh, sigmoid tanh
L2 Regularization 1e-6 to 1e-2 (log) 2.74e-4
Use Dropout True/False False
Dropout Rate 0.1 to 0.6 (step 0.01) 0.33

Dense (3) Units 16 to 128 (step 4) 124
Activation relu, tanh, sigmoid sigmoid
L2 Regularization 1e-6 to 1e-2 (log) 1.31e-5
Use Dropout True/False False
Dropout Rate 0.1 to 0.6 (step 0.01) 0.30

Dense (4) Units 16 to 128 (step 4) 108
Activation relu, tanh, sigmoid sigmoid
L2 Regularization 1e-6 to 1e-2 (log) 5.43e-4
Use Dropout True/False True
Dropout Rate 0.1 to 0.6 (step 0.01) 0.26

Dense (5) Units 16 to 128 (step 4) 36
Activation relu, tanh, sigmoid relu
L2 Regularization 1e-6 to 1e-2 (log) 4.58e-6
Use Dropout True/False True
Dropout Rate 0.1 to 0.6 (step 0.01) 0.12

Output Units Equal to number  
of target variables

–

Optimizer Learning rate 1e-4 to 1e-1 (log) 3.03e-4
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network, with reasonable accuracy; all algorithms obtained R2 

test higher than 85%. The DL algorithm achieved the best perfor
mance, with a mean train R2 of 0.9587±0.0076 and a test R2 

of 0.9605.
Figure 2b illustrates the learning curves over epochs for the 

DL model. An epoch represents one complete pass through the 
entire training dataset. The curve shows the development of 
the model performance with ongoing training, that is, updates to 
the trainable weights over multiple iterations. Both the training 
and test performances of the DL models increase until conver
gence, indicating a stable and well-generalized model.

The convergence of learning curves in DL models indicates 
that this model achieved stable performance, which is crucial for 
reliable predictions and generalization to new data.

Further, we also fit the flattened predicted time series found 
(ŷ) and compared it to the flattened original data (y), as shown in 
Fig. 3. It can be seen that the cosine similarity between the pre
dicted values and the original data is higher than 99%, demon
strating the high predictive accuracy of our DL model. We 
conclude that complex network measures are a suitable candi
date for a reduced representation of contact networks which still 
maintains predictive power.

Since the DL model obtained the best performance, the SHAP 
value analysis is applied to this model, depicted in Fig. 4, reveal
ing the relative importance of various complex network metrics 
in predicting the number of infected individuals over time, I(t). 
The bar plot (Fig. 4a) indicates that PR has the highest impact on 
the model’s output, suggesting that the influence of a node, con
sidering the importance of its neighbors, plays a crucial role in 
understanding the spread of infection. Following PR, CC is also 
highly influential, highlighting the importance of nodes’ accessi
bility to others within the network.

The violin plot (Fig. 4b) complements the bar plot by showing 
each feature’s distribution of SHAP values. PR and CC have 
broader distributions, indicating varying impacts across different 
scenarios. This variability suggests that while these features are 
generally significant, their influence can differ significantly 
depending on the specific network structure and intervention 
scenario. The distributions for BC, D, EC, and KC are narrower, in
dicating more consistent impacts across different scenarios.

Further, the DL model is applied to time series for critical and 
severe patients and the infected patients’ time series. Table 4
depicts the results of DL to the all I(t) curves in which similar 
results can be obtained for the infected patients. This consis
tency suggests that the DL models achieve stable performance 
across different patient categories, which is crucial for reliable 
predictions and generalization to new data. Further, the severe 
and critical time series learning curves can be seen in 
Supplementary Appendix B, whose curves depicted the conver
gence and stability of the DL model for different curves.

Assessing the manifold of minimal intervention
As described in Subsection II D, using spline interpolation in the 
intervention space (S, c, w) with the maximum number of criti
cally sick as the target variable, we mapped out the manifold of 
minimal intervention. Figure 5 displays three cross sections 
through 3D parameter space. It illustrates the manifold for 

Figure 2. Performance Comparison of ML and DL Algorithms. (a) R2 -performance for ML and DL algorithms. The grey bar plot represents each 
algorithm’s training performance, including error bars. The blue curve indicates the R2 performance for the test data. (b) The learning curve for the 
optimized DL model—the plot displays the mean R2 scores for both train (blue) and test (green) sets, shaded regions the standard deviation

Figure 3. Comparison of flattened predicted time series and flattened 
original data for DL model. The figure presents the flattened predicted 
time series (ŷ) compared to the flattened original data (y) across various 
algorithms. Both ŷ and y were normalized using standard scalers before 
the comparison. The cosine similarity (ρ) was calculated for each 
comparison to quantify the similarity between the predicted and 
original series
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different public health interventions which restrict contacts in 
any combination of the dimensions community, work, and 
school and allows to read off the effectiveness of actions. Various 
intervention strategies can be discussed w.r.t. their impact on 
the maximum number of critical cases: The subfigures (A), (B), 
and (C) depict the combined impact and the interplay between 
restrictions in community and work work (with school set to 0), 
community versus school (with work set to 0), and school versus 
work (with community set to 0), respectively. The color gradients 
represent the maximum critical cases observed under each inter
vention scenario, highlighting the regions that result in the low
est and highest number of critical patients. This visualization 
aids in identifying equivalent interventions which are consistent 
with a pre-defined maximal number of critical cases. This ena
bles a broader discussion on the optimal public health response 
in a society. A full 3D visualization of the considered parameter 
space is depicted in Supplementary Appendix C.

Discussion
In this study, we first investigated the research question whether 
a full simulation of disease dynamics using an agent-based simu
lator is necessary to predict the time series of essential observ
ables like the number of infected, hospitalized or critically 
sick patients.

By applying machine learning to a set of dimensionality- 
reduced features of the contact network, defined by complex net
work measures, we observed that models with equivalent predic
tive power can be constructed. A DL approach achieved the 
highest performance, with an R2-adjusted value exceeding 95%. 
This high performance signifies the model’s efficiency in predict
ing the time series of infected, severe, and critical cases within a 
sufficient approximation. This result confirmed our hypothesis 
that the topology of the contact network could effectively charac
terize the impact of the network on the disease dynamics. It is im
portant to clarify that our study aimed to investigate how 
variations in the topology of contact networks—driven by 

interventions targeting public contact layers—affect the progres
sion of an epidemic. Rather than reproducing the full complexity 
of time-varying behavior or policy adaptation, we focused on 
whether the structural properties of the network alone could reli
ably predict disease outcomes. While this necessarily simplifies 
real-world dynamics, it allowed us to isolate and assess the pre
dictive power of topological features under controlled conditions. 
Therefore, we successfully abstracted from the full description 
based on an adjacency matrix of the contact network to effective 
network metrics; this allows—at least partially—to circumvent 
the need for computationally expensive agent-based simulations.

The SHAP value results are useful to understand the relative 
relevance of the applied complex network measures. It demon
strates that centrality measures, mainly PR and CC, are leading 
in capturing the nuances of disease transmission within the net
work. PR is vital as it accounts for both the quantity and signifi
cance of a node’s connections, aiding in identifying influential 
nodes [73–75]. CC measures how quickly an infection can spread 
from one node to all others, identifying nodes crucial for rapid 
dissemination [76, 77]. Our findings align with the study [78], em
phasizing the predictive power of combined centrality measures. 
The study demonstrated that integrating normalized spectral 
centralities like PR with measures sensitive to graph edges, such 
as CC, can yield rather high predictive accuracy (R2 scores of 0.91 
or higher) across various graph structures and epidemic parame
ters. This reinforces the notion that PR’s consideration of both 
the quantity and quality of connections, coupled with CC’s ability 
to measure rapid dissemination potential, makes them highly ef
fective for identifying influential nodes and optimizing interven
tion strategies. Our use of these centralities indicates their 
applicability and robustness in network epidemiology.

Further, BC and D also show substantial contributions, em
phasizing the roles of nodes in controlling information flow [35, 
79] and the number of direct connections, respectively [80]. EC 
and KC have slightly lower SHAP values but contribute signifi
cantly to the model predictions. EC reflects the influence of 
nodes based on the quality of their connections [37]. At the same 
time, KC indicates the core-periphery structure of the network, 
both providing valuable insights into the network’s robustness 
and connectivity [40]. It is important to note that network meas
ures are not intended to be directly measured or acted upon in 
real-time policy implementation. Rather, they serve as interpret
able indicators of how structural changes to contact networks— 
through public health interventions like school closures, remote 
work, or gathering bans—influence epidemic dynamics. In 

Figure 4. SHAP value analysis for the deep learning model. (a) The bar plot shows the mean SHAP values for each complex network metric, indicating 
their average impact on model predictions. PR has the highest impact, followed by CC, BC, D, EC, and KC. (b) The violin plot shows the distribution of 
SHAP values for each feature, illustrating the variability in their impacts across different scenarios. Broader distributions for PR and CC suggest higher 
variability, while narrower distributions for BC, D, EC, and KC indicate more consistent impacts.

Table 4. DL performance to different I(t) curves.

I(t) Train Mean R2 Test R2

Infected 0:9587±0:0076 0.9605
Severe 0:9738±0:0037 0.9824
Critical 0:9841±0:0027 0.9820
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practice, these metrics help identify which types of interventions 
are structurally impactful, even if the network itself is only par
tially known or estimated. Future work could explore how real- 
world proxies (e.g. mobility data or contact surveys) might be 
used to approximate or track changes in these network proper
ties to support planning and communication.

These findings validate our DL model’s robustness and ability 
to effectively leverage network-based features to predict disease 
dynamics. This enhances our understanding of intervention 
strategies and their potential impacts on public health, support
ing the development of more effective containment and mitiga
tion measures. While SHAP values helped identify which 
network metrics most influence the model’s predictions, they do 
not provide causal explanations for how specific interventions (e. 
g. reducing workplace contacts) lead to epidemiological changes. 
As deep learning models can function as black boxes, their use in 
public health decision-making must be approached with care. 
Future work could integrate more interpretable frameworks— 
such as hybrid models combining machine learning with 
Bayesian Networks—to improve transparency and allow clearer 
communication with policymakers. Our current approach should 
be viewed as a proof of concept for structural prediction, not a re
placement for mechanistic or causally grounded epidemiologi
cal models.

A further research question directs toward a better under
standing of equivalent public health interventions obtained 
through contact restrictions in various contexts of society. A crit
ical aspect of our study is to identify the manifold of minimal in
tervention for a given set of external constraints, illustrated by a 
maximal number of critically sick patients. Through extensive 
parameter space sampling and analysis, we mapped out the rela
tive impact of contact restrictions in schools, workplaces and 
community on disease dynamics (in Fig. 5). This provides a route 
toward improved tools for policymakers and the public alike to 
decide on the best strategies based on their specific public health 
constraints but also on an appropriate sharing of burden. The 
results indicate that interventions in the community and work 
layers are equally effective for controlling the pandemic, as dem
onstrated by the diagonal line representing balanced interven
tions between these two layers. Specifically, within the 

community versus work intervention space (Fig. 5), a coordinated 
contact reduction in both areas yields the lowest number of criti
cal cases. Community interventions are more effective in reduc
ing critical cases when comparing community and school 
interventions (Fig. 5). When resources or compliance levels are 
limited, public health strategies should prioritize community- 
based measures over school closures. Conversely, the compari
son between school and work interventions (Fig. 5) reveals that 
workplace interventions generate more impact in controlling the 
pandemic than school-based measures. This may raise questions 
on the relevance, necessity and appropriatness of large scale 
school closures to mitigate the spread of the virus. Figure 5 sup
ports the conclusion that both community and work interven
tions are of comparable impact. This enables mutual trade-offs 
and allows for a societal debate on which combination of contact 
restrictions, chosen from equally effective ones, may be most ap
propriate for disease control in a pandemic situation.

In summary, our findings on the relative importance of con
tact restricting interventions indicate that among school, com
munity, and work settings, community restrictions have the 
most significant impact on controlling the disease dynamics. 
This aligns with the general understanding that casual and fre
quent interactions in community settings contribute substan
tially to disease transmission [81, 82]. The analysis also 
highlights that contact restrictions at workplaces generate a 
higher impact than school closures. We attribute this, among 
other aspects, to the high density and regularity of contacts in 
workplace environments.

As our framework identifies a manifold of equivalent inter
ventions it allows for an attribution of the restriction burden 
caused by public health interventions to different subgroups in 
society. However, it is beyond the scope of this simulation to in
clude substantiated predictions on the economic and social 
implications of chosen public health interventions. We acknowl
edge that interventions which lead to comparable disease con
trol, may have very different social and economic impacts on 
various social groups, for example, for low-income workers. 
Future extensions of our model could interface with economic 
and social system simulators to include these aspects and arrive 
at socially justified policy recommendations.

Figure 5. Cross-sections of the interpolated intervention-response surface: (a) community vs. work (school fixed at 0), (b) community vs. school (work 
fixed at 0), and (c) school vs. work (community fixed at 0). Each subplot shows a 2D slice of the 3D intervention space ðs; c;wÞ 2 ½0;1�3, where two 
dimensions vary and the third is held constant. The axes correspond to contact retention levels in the school (s), community (c), and work (w) layers. 
The surface illustrates the predicted maximum number of critical cases (color-coded) as estimated by the deep learning model. Smooth contours arise 
from spline interpolation over the model outputs and highlight how different combinations of interventions affect the disease burden
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To achieve the new perspective of identifying medically equiv
alent public health interventions, we had to restrict the model 
complexity substantially. First, we included only contact restric
tions as examples for public health interventions and we model 
changes to contact networks by just three effective parameters 
which represent the strength of the interventions. We main
tained constant all other parameters available in COVASIM, in 
particular medical parameters, such as transmission and recov
ery rates, across all simulations. These parameters can vary sig
nificantly depending on local health conditions, population 
behavior, and emerging virus variants. Hence, our model does 
currently not account for the impact of other types of interven
tions like vaccinations, active contact tracing or others that have 
become crucial in managing pandemics. The exclusion of house
hold contacts might oversimplify the contact dynamics, although 
we focused on public and communal settings to capture broader 
transmission patterns. While household transmission has been a 
significant route of spread, especially during lockdowns, the 
household layer in COVASIM involves a relatively small number 
of nodes with highly clustered and repetitive interactions. These 
contacts are generally stable and less influenced by public inter
ventions than those in schools, workplaces, and communities. 
Nevertheless, we acknowledge this limitation and suggest that 
future studies include a sensitivity analysis incorporating house
hold contacts to evaluate their added influence under more com
plex intervention strategies.

Furthermore, our approach relies heavily on the detection of 
network modifications stemming from contact restrictions by 
established complex network measures. While this is the case in 
the currently depicted contact restriction scenarios, it may hap
pen that, in reality, different modifications of contact networks 
occur which may not be equally well resolved by complex net
work measures. A test of the approach with real network data is, 
unfortunately, beyond the scope of this study but could provide 
further evidence on the reliability of the chosen route. We men
tion that we have not exhausted the set of possible complex net
work measures and that further measures could be added to the 
set of input features if required.

Future work should extend this framework to include further 
public health interventions like vaccinations, contact tracing, 
and behavioral compliance to allow an expert to choose from an 
even more diverse set of interventions. This framework remains 
applicable beyond COVID-19, offering a fast and generalizable 
tool for modeling the spread of emerging infectious diseases and 
supporting policy planning in future outbreaks or resource- 
limited settings.

Conclusion
The handling of the COVID-19 pandemic has highlighted the 
need to proceed from accurate and efficient models for predict
ing disease dynamics to expert support systems for guiding 
public health interventions. This study utilized the COVASIM 
agent-based model to simulate various scenarios across different 
social settings—specifically focusing on school, community, and 
workplace related contact networks. The description of contact 
networks has been simplified by extracting complex network 
measures which, despite a substantial reduction in model com
plexity, showed predictive power on key epidemiological out
comes when used in deep learning. This includes, for instance, 
the number of infected, severe, and critical cases, with a high de
gree of R2 values exceeding 95%.

Our approach demonstrated robust predictive capabilities and 

provided a framework for identifying optimal intervention strate
gies. We observed that community and workplace interventions 
are critical in minimizing the impact of the pandemic, underscoring 
the importance of targeted public health strategies in these areas. 
The integration of network analytics with deep learning offers sig

nificant advantages in epidemic modeling, including reduced com
putational costs and enhanced decision-making efficiency.

While our model successfully abstracted the complex dynam
ics of disease transmission, it is important to acknowledge certain 

limitations: These include the assumption of constant medical 
parameters, excluding vaccination effects and others. This under
scores the need for ongoing research to incorporate dynamic 
parameters and a broader range of contact layers, which will fur

ther improve the model’s applicability and robustness.
In conclusion, this study provides a novel and effective frame

work for planning most adequate contact restrictions to control 
infectious disease outbreaks. By leveraging deep learning and 

network measures, our approach can simplify parameter space 
searches and offers valuable insights for public health deci
sion-making.
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Supplementary data are available at Biology Methods and 

Protocols online.
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