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Abstract

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of accurate models to predict disease dynamics
and guide public health interventions. This study leverages the COVASIM agent-based model to simulate 1331 scenarios of COVID-19
transmission across various social settings, focusing on the school, community, and work contact layers. We extracted complex network
measures from these simulations and applied deep learning algorithms to predict key epidemiological outcomes, such as infected,
severe, and critical cases. Our approach achieved an R? value exceeding 95%, demonstrating the model’s robust predictive capability.
Additionally, we identified optimal intervention strategies using spline interpolation, revealing the critical roles of community and
workplace interventions in minimizing the pandemic’s impact. The findings underscore the value of integrating network analytics with
deep learning to streamline epidemic modeling, reduce computational costs, and enhance public health decision-making. This research

offers a novel framework for effectively managing infectious disease outbreaks through targeted, data-driven interventions.
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Accurate predicting infectious disease dynamics is crucial for ef-
fective public health interventions, especially in pandemics like
COVID-19. This study presents a novel approach that combines
complex network analytics with deep learning to predict key epi-
demiological outcomes and optimize intervention strategies.
Simulating various transmission scenarios using the COVASIM
agent-based model across the school, community, and workplace
settings achieved high predictive accuracy with a R? value ex-
ceeding 95%. The findings underscore the significant impact of
community and workplace interventions in mitigating the pan-
demic’s spread. This framework enhances epidemic modeling by
reducing computational costs and provides valuable insights for
policymakers to design effective containment measures, contrib-
uting to improved management of infectious disease outbreaks.

Introduction

The coronavirus disease 2019 (COVID-19) epidemic has disclosed
difficulties and delays in the public health and societal response
to emerging new diseases. While simulation tools designed to
model the dynamics of infections have been quickly adapted to
new virus parameters [1-3] and made available to a large com-
munity of researchers [4], ready-made expert support systems
for predicting the effectiveness and impact of public health inter-
ventions have not been publicly available. Responsible public
health administrators and the general public alike were lacking
essential information to opt quickly for the most appropriate and
least intrusive intervention.

Hence, a need for new predictive tools has become evident. This
paper demonstrates a first direction to further develop agent-based
disease simulators into tools for predicting optimal public health
responses. As a full study of all conceivable interventions is beyond
the scope of this work, a focus on contact restrictions is taken.

Mathematical models, notably Susceptible-Exposed-Infectious-
Recovered (SEIR) models, have been seminal in generating predic-
tions and guiding public health measures [5-7].

Compartmental models are non-linear models widely recog-
nized for their effectiveness in understanding the spread of infec-
tious diseases within a population. The SEIR model subdivides
individuals into four distinct compartments based on their disease
progression status: Susceptible, Exposed, Infectious, and Recovered
[6, 8]. The dynamics of transitions between these compartments
are governed by a set of ordinary differential equations driven by
essential parameters such as transmission rate, incubation period,
and recovery rate described in Equation (1) [8, 9].
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Where: S(t) represents the number of susceptible individuals
at time t, E(t) represents the number of exposed individuals
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(infected but not yet infectious) at time t, I(t) represents the num-
ber of infectious individuals at time t, E(t) represents the number
of exposed individuals (infected but not yet infectious) at time t,
R(t) represents the number of recovered individuals at time t, N is
the total population size, § is the transmission rate (average
number of contacts an infectious person makes per unit time
multiplied by the probability of disease transmission in a con-
tact), a is the rate at which individuals move from the exposed to
infectious compartment (1/incubation period), and y is the recov-
ery rate (1/duration of infection).

By leveraging mathematical formulations and incorporating
key parameters, compartmental models have proven invaluable
in guiding public health measures [5, 10, 11]. On the other hand,
agent-based simulators like COVASIM [4] have emerged as power-
ful tools for studying the complex dynamics of infectious diseases,
extending the SEIR model by allowing for the integration of fine
grained disease stages, age-specific parameters, immunization
models etc., enabling a more nuanced simulation of disease pro-
gression across various demographic segments. Furthermore,
COVASIM implements the contact network of agents, capturing
heterogeneous interaction patterns that the traditional SEIR
model oversimplifies, thereby offering a more detailed and realis-
tic representation of disease transmission [12-14].

COVASIM is a stochastic agent-based simulator, which allows
for the representation of individual-level heterogeneity in behav-
iors and interactions, leading to more realistic epidemic predic-
tions [15, 16]. Built on separately generated synthetic
populations, this tool additionally includes country-specific de-
mographic information on age structure and population size.
Social contact networks are structured in four subgraphs (layers),
referring to households, schools, workplaces, and communities
[4]. Through COVASIM, it is possible to simulate a refined trans-
mission network by a multigraph with multiple layers, capturing
the complex interactions between individuals in a population
[13]. The community layer accounts for random contact between
individuals in the general population, mimicking casual encoun-
ters in public spaces or social gatherings [17]. Household con-
tacts, as another layer, capture close and sustained interactions
within households, which are known to be a significant source of
disease transmission. The work and school layers further con-
tribute to the complexity of the model as they reflect the specific
patterns of interactions that occur in these settings [18].
Workplaces often involve dense and regular contact, while
schools accommodate interactions among children and staff,
influencing the spread of infections among younger populations
[19]. The multigraph contact network enables a detailed and nu-
anced representation of disease transmission dynamics in vari-
ous social contexts. The approach allows researchers and
policymakers to explore the potential effectiveness of public
health interventions in controlling infectious diseases [20-22] in
particular those which target specifically the contact networks
[13, 23-25].

One major limitation of agent-based simulators like COVASIM
is their computational cost [26]. Simulating numerous scenarios
with detailed contact networks can require significant computing
resources and time.

This work addresses the hypothesis that between a full model-
ing of contact networks in agent-based simulators like COVASIM
and neglecting the structure of contact networks in compartment
models there is a gap to establish a computationally efficient and
fast prediction method which includes some effective properties
of contact networks but avoids their full inclusion. We use ma-
chine learning for a simplified substitutional model by replacing

the full contact network adjacency matrix with a description
based on complex network measures, such as betweenness cen-
trality (BC) and others based in Rodrigues et al. [27]. They serve as
predictors of disease dynamics while other parameters of the
COVASIM framework remain fixed.

We use COVASIM to set up the contact network adjacency
matrix using its initial state initialization routine, extracted it
and calculated relevant complex network measures from it.
Those served as input features for a deep learning-based method
to predict time series data of the disease dynamics. A limited vol-
ume of synthetic data generated from the COVASIM simulator
was used for training the model. Thus, we have shown by con-
struction that a prediction of the disease dynamics from effective
network properties is possible with sufficient accuracy without
incurring the computational cost of performing a full agent-
based simulation on a complex contact network.

We considered contact restrictions by public health interven-
tions which modify the contact networks in schools, community
and work and the corresponding values of complex network
measures. The speed-up of predictions by the substitutional
model allowed to efficiently sample the space of possible contact
restrictions and to quickly predict the corresponding disease dy-
namics. From a parameter space study an inverse model was set
up to derive the manifold in intervention space which is consis-
tent with given external constraints, for example, a maximum
number of critically sick or hospitalized patients. This manifolds
marks the weakest contact restrictions compatible with an exter-
nally pre-defined maximally acceptable disease dynamics. A dis-
cussion of the points of the manifold allows to open a public
debate on the least intrusive and most acceptable strategy for in-
fectious disease control.

Materials and methods

We use COVASIM to set up realistic contact networks based on a
synthetic population which resembles the city of Aschaffenburg,
Germany. Its roughly 70,000 inhabitants were represented by
70,000 agents and synthetic contact networks, structured as four
subgraphs for households, school, work, and communities, were
created to reproduce essential macroscopic statistical quantities
as implemented in COVASIM. COVASIM simulations have been
fitted and calibrated with respect to historic epidemiological data
in previous work [28, 29]. Interaction patterns and rates within
and across the subgraphs are based on the synthetic population
and modeled through a stochastic process to capture the hetero-
geneity of disease transmission.

Analysis was conducted in Python version 3.6.15 and Docker.
The Docker image includes the required Python packages,
COVASIM source code, and any additional data needed for the
simulations, and all code used here can be found in: https://
github.com/kathlab/covasim-covid19.

Creating synthetic data from

COVASIM simulation

We use COVASIM to perform a parameter study for varying con-
tact restrictions in schools (s), community (c), and work (w),
which implies varying contact networks (Fig. 1-1)). A total of 1331
scenarios were created by systematically varying the level of con-
tact reduction in each of these three layers, using 11 uniformly
spaced values between 0.0 (full contact removal) and 1.0 (no re-
striction). This 3D grid of intervention configurations is illus-
trated in Supplementary Appendix A (Fig. 6). For each scenario, a
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Figure 1. Schematic representation of the methodology using COVASIM s

imulation. After the chosen interventions, the scenarios are simulated in

COVASIM. (I) Creating synthetic data from COVASIM simulation, described in the Subsection II A: The simulation involves three contact network
subgraphs—school, work, and community—jointly represented by a multigraph. Each agent is represented by one node in at least one subgraph (up to
maximally one node in each subgraph) and characterized by a multi-valued agent state (in the orange box) as detailed in Kerr et al. [4]. Links on the
contact network graph represent the possibility for disease transmission between agents which is randomly substantiated through a stochastic process
(I.a). We consider 1331 unique variations in the contact network, each differing by the connectivity within the subgraphs. The disease dynamics is
represented by time series data of observables (Obs), for example, the time dependent number of infected agents, and vectorized as I(t). It is calculated

using COVASIM for a modeling time of 100 days; exemplary simulation re

sults are illustrated for seven scenarios (I.b). From the multigraphs, six

complex network measures—KC, BC, CC, ECP, R, and D—which characterize the contact networks, were extracted for dimensionality reduction. The
distribution ranges of these measures for the considered networks are depicted in (II). Substitutional ML and DL models (IIC) are trained to predict the
observables in (IL.b) from complex network measure inputs. Finally, the manifold of minimal intervention is recovered as described in IID

new contact network was generated and the full disease dynam-
ics were calculated over a simulation horizon of 100 days.

Contact restrictions were implemented using COVASIM’s in-
ternal contact scaling mechanism. Specifically, each restriction
level was applied as a scaling factor that probabilistically retains
a fraction of the edges (contacts) within the corresponding net-
work layer. For instance, a scaling factor of 0.6 means that 60% of
contacts in that layer are preserved, while the remaining 40% are
randomly removed. This stochastic edge reduction maintains the
approximate structural characteristics of the layer while model-
ing decreased social interaction due to public health interven-
tions. Each combination of restriction levels produced a unique
network configuration used in the corresponding simulation.

The household subgraph was excluded from the study, as
public health interventions in households are considered excep-
tionally intrusive and their impact comparatively less significant
[30, 31]. Moreover, household networks in COVASIM are com-
posed of small, tightly clustered groups with limited variability
across scenarios. Excluding this layer also served to reduce the
dimensionality of the parameter space and focus our analysis on
public contact settings that are typically targeted by intervention
policies. By concentrating on school, community, and work
layers, we aimed to capture the most relevant aspects of trans-
mission in the public sphere and better understand the struc-
tural effects of varying policy interventions.

While the COVASIM simulation preserves the layered structure
of contact networks, for feature extraction, we aggregated the
school, work, and community subgraphs into a single contact net-
work per scenario. From this aggregated network, we computed the
complex network measures used as input features for the machine
learning models. This approach allowed us to capture the joint
effects of modifiable social contacts while maintaining compatibil-
ity with the network analysis techniques employed in our study.

The initial infected population was set at 4.5% of the total
population, reflecting early-stage epidemic conditions often ob-
served in urban settings. This percentage was chosen based on
epidemiological data suggesting an initial infection seeding rate
in similar contexts. For example, the early phases of the COVID-
19 pandemic in various European cities saw similar infection
rates, as in [32] documented rapid increases in urban areas due
to high population density and connectivity. The transmission
rate, represented by the parameter 8 =0.01825, and to differenti-
ate between varying disease severities, we set the relative proba-
bilities of developing severe and critical cases to 0.6558 and
0.9404, respectively. These values were derived from our previ-
ous work [28, 29] to calibrate and align with observed COVID-19
transmission dynamics, ensuring that the simulated spread
closely mirrors real-world patterns. The simulations of disease
dynamics were conducted for 100days.
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We calculated each scenario as an ensemble of five equivalent
implementations to account for stochastic variability, enhancing
our findings’ statistical robustness; we calculated average out-
comes across multiple runs, reducing the impact of random fluc-
tuations and providing more reliable results [4, 33, 34].

Complex network feature extraction for
dimensionality reduction

In line with Rodrigues et al. [27], for each of these contact net-
works the following complex network metrics are extracted; they
incorporate essential networks properties and provide dimen-
sionality reduced input features for a machine learning model:
First, BC, introduced by Freeman [35], measures the extent to
which a node lies on the shortest paths between other nodes, in-
dicating its role as a bridge or a bottleneck within the network.
Closeness centrality (CC), also developed by Freeman [36],
assesses how close a node is to all other nodes in the network,
reflecting the efficiency with which information can spread from
that node. Eigenvector centrality (EC), proposed by Bonacich [37],
considers the number of connections a node has and the impor-
tance of the nodes it is connected to, providing a measure of a
node’s influence within the network.

In addition, PageRank (PR), originally devised by Brin and Page
[38] for ranking web pages, is employed to evaluate the impor-
tance of nodes based on the quantity and quality of incoming
connections. Degree (D), discussed by Doyle and Graver [39], is
the simplest measure, representing the number of direct connec-
tions a node has, which can indicate its potential for interaction
within the network. Finally, the k-core (KC) measure, described
in [40, 41], identifies the largest subnetwork in which each node
is connected to at least k other nodes, highlighting the network’s
cohesiveness.

The ensemble-averaged values of the complex network meas-
ures, whose distribution ranges are shown in Fig. 1-II, were used
as the input features for the machine learning models to predict
the corresponding I(t). Here, ensemble average refers to averag-
ing across five independent stochastic realizations of each sce-
nario simulated in COVASIM. For each intervention
configuration, we repeated the simulation five times and com-
puted both the mean I(t) curve and the mean network measures
across these runs, to reduce the impact of randomness in disease
transmission and initialization. A summary of the covariates (in-
put features) and response variables used in our machine learn-
ing pipeline is provided in Table 1.

Substitutional ML and DL algorithms

We have employed a multioutput regression methodology that
simultaneously predicts the full time series I(t) = [I1,I2,...,I100],
where I; denotes the number of infected individuals on day t.
This vectorized formulation enables the model to learn the

temporal evolution of infections from static network features.
The same approach is applied for predicting severe and critical
cases over time. We implemented it for several ML algorithms
and compared their performance: the support vector machine
(SVM) algorithm [42]; the Random Forest (RF) algorithm [43]; and
the scalable tree boosting algorithm (Xgboost) [44]. We employ
grid search for hyperparameter tuning with mean R? score as the
optimizing criterion [45-50]. The set of hyperparameters and
range of values considered in the grid search is shown in Table 2.
The synthetic dataset was split into disjunct training (75%) and
test (25%) subsets and training was performed w.r.t. the target
variables I(t).

Model performance was measured using the conventional R-
squared metrics [51-53], to assess the goodness-of-fit of our predic-
tive models. The R? score measures the proportion of the variance
in the dependent variables that our models can elucidate.

Additionally, a previous split of 25% is made on the original
dataset, reserved for final testing after the model is trained on
the 10-fold cross-validation. This technique evaluates model per-
formance while minimizing overfitting and ensuring generaliza-
tion to new data.

Moreover, we implemented a fully connected neural network
as deep learning model (DL). To efficiently tune the hyperpara-
meters of this model, we used the random search optimization
algorithm, which involves randomly sampling hyperparameters
from a predefined range and evaluating the model’s performance
for each set [54]. This method effectively identifies satisfactory
hyperparameter configurations without requiring exhaustive
searches across the entire hyperparameter space [55]. The high
dimensionality and complex interplay of hyperparameters in
deep learning render traditional grid search impractical [56, 57].

Additionally, we applied dropout and L2 regularization techni-
ques to mitigate overfitting. Dropout involves temporarily deacti-
vating a random subset of neurons during each training
iteration, preventing the model from becoming overly dependent
on specific neurons and thereby enhancing generalization [58].
L2 regularization, also known as weight decay, was applied to the
weights of the neural network layers. Additionally, we applied
dropout and L2 regularization techniques to mitigate overfitting.
Dropout involves temporarily deactivating a random subset of
neurons during each training iteration, preventing the model
from becoming overly dependent on specific neurons and
thereby enhancing generalization [58]. L2 regularization was ap-
plied to penalize larger weight values and to reduce the risk of
overfitting [59]. The architecture and random search hyperpara-
meters for the DL algorithm are summarized in Table 3.

We consistently applied a uniform data sampling strategy
across all machine learning and deep learning algorithms, using
a 10-fold cross-validation approach with shuffling; k=10 is a
common value for this method [60-64]. This technique involves

Table 1. Summary of machine learning input features (covariates) and prediction targets (responses).

Type Variable(s) Description

Covariates Mean PR Average PageRank centrality of all nodes in the static contact network
Mean CC Average closeness centrality across all nodes
Mean BC Average BC across all nodes
Mean EC Average EC across all nodes

Mean Degree (D)
Mean KC Index
Responses I(t)

Lsevere (t)
Icritical (t)

Average degree (number of direct connections) per node

Average k-core number, reflecting the cohesiveness of the network

Time series of infected individuals from day 1 to 100, averaged across five stochastic
simulation runs

Time series of severe cases (daily counts, averaged over five runs)

Time series of critical cases (daily counts, averaged over five runs)
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Table 2. Hyperparameters and best values found for different machine learning models.

Model Hyperparameter Values tested Description Best value
SVM C 0.1,1, 10 Regularization parameter 10
Kernel linear, rbf Kernel function rbf
RF Max depth 10, 20, 30, 40, 50 Maximum depth of each tree 5
Max features 2,3, 4 Maximum number of features for the 4
best split
n estimators 100, 200, 300 Number of trees in the forest 50
MLP Hidden layer sizes (100,), (100, 50, 100) Neurons in the hidden layers (100, 50, 100)
Alpha 0.0001, 0.001, 0.01 L2 penalty term 0.01
Solver adam, sgd, 1bfgs Weight optimization solver Ibfgs
XGBoost n_estimators 100, 200, 300 Number of boosting rounds 300
Learning rate 0.01,0.1,0.2 Step size shrinkage 0.1
Max depth 3,5,7 Maximum depth of a tree 5

Table 3. DL algorithm architecture, hyperparameter search
space, and best values found.

Layer Hyperparameter Search space Best value
Dense (1) Units 80 64 (step 4) 48
Activation relu, tanh, sigmoid relu
L2 Regularization  1le-6 to le-2 (log) 1.49e-6
Dense (2) Units 16 to 128 (step 4) 104
Activation relu, tanh, sigmoid tanh
L2 Regularization  1le-6to le-2 (log) 2.74e-4
Use Dropout True/False False
Dropout Rate 0.1t0 0.6 (step 0.01) 0.33
Dense (3) Units 16 to 128 (step 4) 124
Activation relu, tanh, sigmoid sigmoid
L2 Regularization  1le-6 to le-2 (log) 1.31e-5
Use Dropout True/False False
Dropout Rate 0.1t0 0.6 (step 0.01) 0.30
Dense (4) Units 16 to 128 (step 4) 108
Activation relu, tanh, sigmoid sigmoid
L2 Regularization  1le-6 to le-2 (log) 5.43e-4
Use Dropout True/False True
Dropout Rate 0.1t0 0.6 (step 0.01) 0.26
Dense (5) Units 16 to 128 (step 4) 36
Activation relu, tanh, sigmoid relu
L2 Regularization  le-6to le-2 (log) 4.58e-6
Use Dropout True/False True
Dropout Rate 0.1t0 0.6 (step 0.01) 0.12
Output Units Equal to number -
of target variables
Optimizer  Learningrate le-4 to le-1 (log) 3.03e-4

partitioning the dataset into ten equitable folds, ensuring each
fold represents a fair portion of the data. Random shuffling
ensures that each batch contains a different mix of data points in
every iteration. Shuffling the data before partitioning reduces the
risk of any systematic patterns in the dataset influencing the per-
formance of the model. This process is suitable to reduce a possi-
ble bias, enhance the robustness of the trained models and to
improve generalization capabilities to unseen data [65-67].
Furthermore, per established preprocessing best practices,
our pipeline incorporates the application of a standard scaler to
normalize the features before training our multioutput model.
Following the approach [68, 69], we employed this scaler to stan-
dardize the features by centering them through the removal of
the mean and subsequently scaling to attain unit variance. This
normalization procedure proves pivotal, especially for algorithms
that hinge on the assumption of feature homogeneity. Both the
input features (X) and the corresponding multioutput target vari-
ables (y) are subjected to this scaling protocol, which is recog-
nized for its capacity to enhance the suitability of the data for a

diverse array of machine learning algorithms and optimization
methodologies. This uniformity in scaling fosters heightened
model convergence and stability and culminates in demonstra-
bly enhanced performance.

The SHapley Additive exPlanations (SHAP) values were calcu-
lated to assess the predictive contribution of individual variables,
the complex network metrics described in Subsection ITA. The
SHAP value methodology, rooted in cooperative game theory and
popularized by Lundberg and Lee [70], allows to conclude on the
relative contributions of each input feature (here: the complex
network measures) to the model prediction (here: prediction vari-
ables I(t)). For details see IITA.

Assessing the manifold of minimal intervention
For illustration, we consider a use case where disease control
should be done with minimal restrictions but within a set of con-
straints set by the health system. Such constraints on the maxi-
mally acceptable number of infected, hospitalized or critically
sick patients are given externally. For instance, the number of
available beds in intensive care units can be a limiting factor
which requires to keep the number of critically sick patients be-
low that threshold. That goal, however, may be equivalently
reachable by different contact network restrictions applied to
one or several subgraphs of the contact network. Therefore, we
consider the manifold of equivalent and minimal interventions
which all imply a disease dynamics compatible with the set
constraints.

Motivated by this use case, we restrict our target variables
(time series data on disease dynamics) to the maximum value of
critically sick patients at any point in prediction time to facilitate
the assessment of optimal interventions. We consider the three-
dimensional parameter space defined by the strength of the
restrictions imposed on the school, community, or work sub-
graphs and, as a single target value, the maximum number of the
critically sick. The trained deep learning model was used to re-
fine the parameter space discretization and to extend the syn-
thetic dataset. Cubic splines [71] were used to finally interpolate
the manifold [72] between available data points.

Figure 1 depicts our methodology summary scheme.

Results

Machine learning and deep learning results

Figure 2a depicts the results of ML and DL algorithms. By con-
struction, we verified that the time series of observables can be
predicted directly from complex network measures as input fea-
tures, bypassing a full agent-based simulation on a contact
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Figure 3. Comparison of flattened predicted time series and flattened
original data for DL model. The figure presents the flattened predicted
time series (y) compared to the flattened original data (y) across various
algorithms. Both § and y were normalized using standard scalers before
the comparison. The cosine similarity (p) was calculated for each
comparison to quantify the similarity between the predicted and
original series

network, with reasonable accuracy; all algorithms obtained R?
test higher than 85%. The DL algorithm achieved the best perfor-
mance, with a mean train R? of 0.9587+0.0076 and a test R?
of 0.9605.

Figure 2b illustrates the learning curves over epochs for the
DL model. An epoch represents one complete pass through the
entire training dataset. The curve shows the development of
the model performance with ongoing training, that is, updates to
the trainable weights over multiple iterations. Both the training
and test performances of the DL models increase until conver-
gence, indicating a stable and well-generalized model.

The convergence of learning curves in DL models indicates
that this model achieved stable performance, which is crucial for
reliable predictions and generalization to new data.

Further, we also fit the flattened predicted time series found
() and compared it to the flattened original data (y), as shown in
Fig. 3. It can be seen that the cosine similarity between the pre-
dicted values and the original data is higher than 99%, demon-
strating the high predictive accuracy of our DL model. We
conclude that complex network measures are a suitable candi-
date for a reduced representation of contact networks which still
maintains predictive power.

Since the DL model obtained the best performance, the SHAP
value analysis is applied to this model, depicted in Fig. 4, reveal-
ing the relative importance of various complex network metrics
in predicting the number of infected individuals over time, I(t).
The bar plot (Fig. 4a) indicates that PR has the highest impact on
the model’s output, suggesting that the influence of a node, con-
sidering the importance of its neighbors, plays a crucial role in
understanding the spread of infection. Following PR, CC is also
highly influential, highlighting the importance of nodes’ accessi-
bility to others within the network.

The violin plot (Fig. 4b) complements the bar plot by showing
each feature's distribution of SHAP values. PR and CC have
broader distributions, indicating varying impacts across different
scenarios. This variability suggests that while these features are
generally significant, their influence can differ significantly
depending on the specific network structure and intervention
scenario. The distributions for BC, D, EC, and KC are narrower, in-
dicating more consistent impacts across different scenarios.

Further, the DL model is applied to time series for critical and
severe patients and the infected patients’ time series. Table 4
depicts the results of DL to the all I(t) curves in which similar
results can be obtained for the infected patients. This consis-
tency suggests that the DL models achieve stable performance
across different patient categories, which is crucial for reliable
predictions and generalization to new data. Further, the severe
and critical time series learning curves can be seen in
Supplementary Appendix B, whose curves depicted the conver-
gence and stability of the DL model for different curves.

Assessing the manifold of minimal intervention

As described in Subsection 11D, using spline interpolation in the
intervention space (S, ¢, w) with the maximum number of criti-
cally sick as the target variable, we mapped out the manifold of
minimal intervention. Figure 5 displays three cross sections
through 3D parameter space. It illustrates the manifold for
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Figure 4. SHAP value analysis for the deep learning model. (a) The bar plot shows the mean SHAP values for each complex network metric, indicating
their average impact on model predictions. PR has the highest impact, followed by CC, BC, D, EC, and KC. (b) The violin plot shows the distribution of
SHAP values for each feature, illustrating the variability in their impacts across different scenarios. Broader distributions for PR and CC suggest higher
variability, while narrower distributions for BC, D, EC, and KC indicate more consistent impacts.

Table 4. DL performance to different I(t) curves.

I(t) Train Mean R? Test R?
Infected 0.9587+0.0076 0.9605
Severe 0.9738+0.0037 0.9824
Critical 0.9841+0.0027 0.9820

different public health interventions which restrict contacts in
any combination of the dimensions community, work, and
school and allows to read off the effectiveness of actions. Various
intervention strategies can be discussed w.r.t. their impact on
the maximum number of critical cases: The subfigures (A), (B),
and (C) depict the combined impact and the interplay between
restrictions in community and work work (with school set to 0),
community versus school (with work set to 0), and school versus
work (with community set to 0), respectively. The color gradients
represent the maximum critical cases observed under each inter-
vention scenario, highlighting the regions that result in the low-
est and highest number of critical patients. This visualization
aids in identifying equivalent interventions which are consistent
with a pre-defined maximal number of critical cases. This ena-
bles a broader discussion on the optimal public health response
in a society. A full 3D visualization of the considered parameter
space is depicted in Supplementary Appendix C.

Discussion

In this study, we first investigated the research question whether
a full simulation of disease dynamics using an agent-based simu-
lator is necessary to predict the time series of essential observ-
ables like the number of infected, hospitalized or critically
sick patients.

By applying machine learning to a set of dimensionality-
reduced features of the contact network, defined by complex net-
work measures, we observed that models with equivalent predic-
tive power can be constructed. A DL approach achieved the
highest performance, with an R?-adjusted value exceeding 95%.
This high performance signifies the model’s efficiency in predict-
ing the time series of infected, severe, and critical cases within a
sufficient approximation. This result confirmed our hypothesis
that the topology of the contact network could effectively charac-
terize the impact of the network on the disease dynamics. It is im-
portant to clarify that our study aimed to investigate how
variations in the topology of contact networks—driven by

interventions targeting public contact layers—affect the progres-
sion of an epidemic. Rather than reproducing the full complexity
of time-varying behavior or policy adaptation, we focused on
whether the structural properties of the network alone could reli-
ably predict disease outcomes. While this necessarily simplifies
real-world dynamics, it allowed us to isolate and assess the pre-
dictive power of topological features under controlled conditions.
Therefore, we successfully abstracted from the full description
based on an adjacency matrix of the contact network to effective
network metrics; this allows—at least partially—to circumvent
the need for computationally expensive agent-based simulations.

The SHAP value results are useful to understand the relative
relevance of the applied complex network measures. It demon-
strates that centrality measures, mainly PR and CC, are leading
in capturing the nuances of disease transmission within the net-
work. PR is vital as it accounts for both the quantity and signifi-
cance of a node’s connections, aiding in identifying influential
nodes [73-75]. CC measures how quickly an infection can spread
from one node to all others, identifying nodes crucial for rapid
dissemination [76, 77]. Our findings align with the study [78], em-
phasizing the predictive power of combined centrality measures.
The study demonstrated that integrating normalized spectral
centralities like PR with measures sensitive to graph edges, such
as CC, can yield rather high predictive accuracy (R? scores of 0.91
or higher) across various graph structures and epidemic parame-
ters. This reinforces the notion that PR’s consideration of both
the quantity and quality of connections, coupled with CC’s ability
to measure rapid dissemination potential, makes them highly ef-
fective for identifying influential nodes and optimizing interven-
tion strategies. Our use of these centralities indicates their
applicability and robustness in network epidemiology.

Further, BC and D also show substantial contributions, em-
phasizing the roles of nodes in controlling information flow [35,
79] and the number of direct connections, respectively [80]. EC
and KC have slightly lower SHAP values but contribute signifi-
cantly to the model predictions. EC reflects the influence of
nodes based on the quality of their connections [37]. At the same
time, KC indicates the core-periphery structure of the network,
both providing valuable insights into the network’s robustness
and connectivity [40]. It is important to note that network meas-
ures are not intended to be directly measured or acted upon in
real-time policy implementation. Rather, they serve as interpret-
able indicators of how structural changes to contact networks—
through public health interventions like school closures, remote
work, or gathering bans—influence epidemic dynamics. In
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Figure 5. Cross-sections of the interpolated intervention-response surface: (a) community vs. work (school fixed at 0), (b) community vs. school (work
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The surface illustrates the predicted maximum number of critical cases (color-coded) as estimated by the deep learning model. Smooth contours arise
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practice, these metrics help identify which types of interventions
are structurally impactful, even if the network itself is only par-
tially known or estimated. Future work could explore how real-
world proxies (e.g. mobility data or contact surveys) might be
used to approximate or track changes in these network proper-
ties to support planning and communication.

These findings validate our DL model’s robustness and ability
to effectively leverage network-based features to predict disease
dynamics. This enhances our understanding of intervention
strategies and their potential impacts on public health, support-
ing the development of more effective containment and mitiga-
tion measures. While SHAP values helped identify which
network metrics most influence the model’s predictions, they do
not provide causal explanations for how specific interventions (e.
g. reducing workplace contacts) lead to epidemiological changes.
As deep learning models can function as black boxes, their use in
public health decision-making must be approached with care.
Future work could integrate more interpretable frameworks—
such as hybrid models combining machine learning with
Bayesian Networks—to improve transparency and allow clearer
communication with policymakers. Our current approach should
be viewed as a proof of concept for structural prediction, not a re-
placement for mechanistic or causally grounded epidemiologi-
cal models.

A further research question directs toward a better under-
standing of equivalent public health interventions obtained
through contact restrictions in various contexts of society. A crit-
ical aspect of our study is to identify the manifold of minimal in-
tervention for a given set of external constraints, illustrated by a
maximal number of critically sick patients. Through extensive
parameter space sampling and analysis, we mapped out the rela-
tive impact of contact restrictions in schools, workplaces and
community on disease dynamics (in Fig. 5). This provides a route
toward improved tools for policymakers and the public alike to
decide on the best strategies based on their specific public health
constraints but also on an appropriate sharing of burden. The
results indicate that interventions in the community and work
layers are equally effective for controlling the pandemic, as dem-
onstrated by the diagonal line representing balanced interven-
tions between these two layers. Specifically, within the

community versus work intervention space (Fig. 5), a coordinated
contact reduction in both areas yields the lowest number of criti-
cal cases. Community interventions are more effective in reduc-
ing critical cases when comparing community and school
interventions (Fig. 5). When resources or compliance levels are
limited, public health strategies should prioritize community-
based measures over school closures. Conversely, the compari-
son between school and work interventions (Fig. 5) reveals that
workplace interventions generate more impact in controlling the
pandemic than school-based measures. This may raise questions
on the relevance, necessity and appropriatness of large scale
school closures to mitigate the spread of the virus. Figure 5 sup-
ports the conclusion that both community and work interven-
tions are of comparable impact. This enables mutual trade-offs
and allows for a societal debate on which combination of contact
restrictions, chosen from equally effective ones, may be most ap-
propriate for disease control in a pandemic situation.

In summary, our findings on the relative importance of con-
tact restricting interventions indicate that among school, com-
munity, and work settings, community restrictions have the
most significant impact on controlling the disease dynamics.
This aligns with the general understanding that casual and fre-
quent interactions in community settings contribute substan-
tially to disease transmission [81, 82]. The analysis also
highlights that contact restrictions at workplaces generate a
higher impact than school closures. We attribute this, among
other aspects, to the high density and regularity of contacts in
workplace environments.

As our framework identifies a manifold of equivalent inter-
ventions it allows for an attribution of the restriction burden
caused by public health interventions to different subgroups in
society. However, it is beyond the scope of this simulation to in-
clude substantiated predictions on the economic and social
implications of chosen public health interventions. We acknowl-
edge that interventions which lead to comparable disease con-
trol, may have very different social and economic impacts on
various social groups, for example, for low-income workers.
Future extensions of our model could interface with economic
and social system simulators to include these aspects and arrive
at socially justified policy recommendations.

G20z Jequiaideg gz uo Jasn dSN/IVELNIO YOI LOITgIg/ddINd Ad 20€2G18/6€04edq/L/01/aI01E/SPOY}aWOIG/WO9 dNO"dlWapede//:sdjiy Wol) papeojumoq



Multi-output machine learning approach and dynamical observables | 9

To achieve the new perspective of identifying medically equiv-
alent public health interventions, we had to restrict the model
complexity substantially. First, we included only contact restric-
tions as examples for public health interventions and we model
changes to contact networks by just three effective parameters
which represent the strength of the interventions. We main-
tained constant all other parameters available in COVASIM, in
particular medical parameters, such as transmission and recov-
ery rates, across all simulations. These parameters can vary sig-
nificantly depending on local health conditions, population
behavior, and emerging virus variants. Hence, our model does
currently not account for the impact of other types of interven-
tions like vaccinations, active contact tracing or others that have
become crucial in managing pandemics. The exclusion of house-
hold contacts might oversimplify the contact dynamics, although
we focused on public and communal settings to capture broader
transmission patterns. While household transmission has been a
significant route of spread, especially during lockdowns, the
household layer in COVASIM involves a relatively small number
of nodes with highly clustered and repetitive interactions. These
contacts are generally stable and less influenced by public inter-
ventions than those in schools, workplaces, and communities.
Nevertheless, we acknowledge this limitation and suggest that
future studies include a sensitivity analysis incorporating house-
hold contacts to evaluate their added influence under more com-
plex intervention strategies.

Furthermore, our approach relies heavily on the detection of
network modifications stemming from contact restrictions by
established complex network measures. While this is the case in
the currently depicted contact restriction scenarios, it may hap-
pen that, in reality, different modifications of contact networks
occur which may not be equally well resolved by complex net-
work measures. A test of the approach with real network data is,
unfortunately, beyond the scope of this study but could provide
further evidence on the reliability of the chosen route. We men-
tion that we have not exhausted the set of possible complex net-
work measures and that further measures could be added to the
set of input features if required.

Future work should extend this framework to include further
public health interventions like vaccinations, contact tracing,
and behavioral compliance to allow an expert to choose from an
even more diverse set of interventions. This framework remains
applicable beyond COVID-19, offering a fast and generalizable
tool for modeling the spread of emerging infectious diseases and
supporting policy planning in future outbreaks or resource-
limited settings.

Conclusion

The handling of the COVID-19 pandemic has highlighted the
need to proceed from accurate and efficient models for predict-
ing disease dynamics to expert support systems for guiding
public health interventions. This study utilized the COVASIM
agent-based model to simulate various scenarios across different
social settings—specifically focusing on school, community, and
workplace related contact networks. The description of contact
networks has been simplified by extracting complex network
measures which, despite a substantial reduction in model com-
plexity, showed predictive power on key epidemiological out-
comes when used in deep learning. This includes, for instance,
the number of infected, severe, and critical cases, with a high de-
gree of R? values exceeding 95%.

Our approach demonstrated robust predictive capabilities and
provided a framework for identifying optimal intervention strate-
gies. We observed that community and workplace interventions
are critical in minimizing the impact of the pandemic, underscoring
the importance of targeted public health strategies in these areas.
The integration of network analytics with deep learning offers sig-
nificant advantages in epidemic modeling, including reduced com-
putational costs and enhanced decision-making efficiency.

While our model successfully abstracted the complex dynam-
ics of disease transmission, it is important to acknowledge certain
limitations: These include the assumption of constant medical
parameters, excluding vaccination effects and others. This under-
scores the need for ongoing research to incorporate dynamic
parameters and a broader range of contact layers, which will fur-
ther improve the model’s applicability and robustness.

In conclusion, this study provides a novel and effective frame-
work for planning most adequate contact restrictions to control
infectious disease outbreaks. By leveraging deep learning and
network measures, our approach can simplify parameter space
searches and offers valuable insights for public health deci-
sion-making.

Supplementary data

Supplementary data are available at Biology Methods and
Protocols online.
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