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Abstract
Let J and J

′
be Jordan rings. In this paper we study the additivity of n-multiplicative

isomorphisms from J onto J
′
and of n-multiplicative derivations of J . Suppose that

J contains a nontrivial idempotent; we prove that if J satisfying certain conditions,
then n-multiplicative maps and n-multiplicative derivations from J to J

′
are additive

maps.
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1 Introduction

Wewill use (x, y, z) = (xy)z−x(yz) and [x, y] = xy− yx to denote the associator of
elements x, y, z and the commutator of elements x, y in a not necessarily associative
ring J .
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For those readers who are not familiar with this language, we recommend [15].
According to [3], “let X = {xi }i∈N be an arbitrary set of variables. A nonassocia-
tive monomial of degree 1 is any element of X . Given a natural number n > 1, a
nonassociative monomial of degree n is an expression of the form (u)(v), where u
is a nonassociative monomial of some degree i and v a nonassociative monomial of
degree n − i .

Let J and J ′ be two rings and ϕ : J −→ J ′ a bijective map of J onto J ′. We
call ϕ an n−multiplicative map of J onto J ′ if for all nonassociative monomials
m = m(x1, . . . , xn) of degree n:

ϕ(m(x1, . . . , xn)) = m(ϕ(x1), . . . , ϕ(xn))

for all x1, . . . , xn ∈ J . If ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ J , we just say that ϕ is a
multiplicative map. And if ϕ(xyx) = ϕ(x)ϕ(y)ϕ(x) for all x, y ∈ J , then we call ϕ

a Jordan semi-triple multiplicative map.
Similarly, a map d : J −→ J is called a n-multiplicative derivation of J if

d(m(x1, . . . , xn)) =
n∑

i=1

m(x1, . . . , d(xi ), . . . , xn)

for all nonassociative monomials m = m(x1, . . . , xn) of degree n and arbitrary ele-
ments x1, . . . , xn ∈ J .

If d(xy) = d(x)y + xd(y) for all x, y ∈ J , we just say that d is a multiplicative
derivation of J ”. And if d(xyx) = d(x)(yx) + xd(y)x + (xy)d(x) for all x, y ∈ J ,
then we call d a Jordan triple multiplicative derivation.

A ring J is said to be Jordan if (x2, y, x) = 0 and [x, y] = 0 for all x, y ∈ J . A
Jordan ring J is called k-torsion free if kx = 0 implies x = 0, for any x ∈ J , where
k is a positive integer.

A nonzero element e ∈ J is called an idempotent if e2 = ee = e and a nontrivial
idempotent if it is a nonzero idempotent and different from the multiplicative identity
element of J .

Let us consider a Jordan ring J with a nontrivial idempotent e.
Let J = J 1 ⊕ J 1

2
⊕ J 0 be the Peirce decomposition of J with respect to e, where

J i = {xi | exi = i xi }, i = 0, 1
2 , 1, satisfying the following multiplicative relations:

J 0J 0 ⊆ J 0; J 1J 1 ⊆ J 1; J 1J 0 = 0; (J 1 ⊕ J 0)J 1
2

⊆ J 1
2
;

J 1
2
J 1

2
⊆ J 1 ⊕ J 0.

In studying preservers on algebras or rings, one usually assumes additivity in
advance. Recently, however, a growing number of papers began investigating pre-
servers that are not necessarily additive, characterizing the interrelation between the
multiplicative and additive structures of a ring or algebra in an interesting topic. The
first result about the additivity of maps on rings was given by Martindale III [13]. He
established a condition on a ring R, such that every multiplicative isomorphism on
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R is additive. Besides, over the years, several works have been published considering
different types of maps on non-associative rings or algebras among them we can men-
tion [1–12]. Ferreira and Ferreira [3] also considered this question in the context of
n−multiplicativemaps on alternative rings satisfyingMartindale’s conditions. Ferreira
and Nascimento proved the additivity of multiplicative derivations [12]. Motivated by
all these results mentioned above, the present paper considers a similar Ferreira and
Ferreira’s problems [3] in the context of Jordan rings. We investigate the problem of
when a n-multiplicative isomorphism and a n-multiplicative derivation are additive
for the class of Jordan rings.

2 n-Multiplicative Isomorphism

It will be convenient for us to change notation at this point. Henceforth, the ring J will
be 2-torsion free and the nonassociative monomialm of degree n will be an expression
of the form:

m(x1, x2, . . . , xn−1, xn) := x1(x2(. . . (xn−1xn) . . .)).

When the first i variables in the non-associative monomialm assume equal values, we
will denote by:

m(z, z, . . . , z︸ ︷︷ ︸
i

, xi+1, . . . , xn) := ξz(xi+1, . . . , xn).

The main technique which we will use is the following argument which will be
termed a “standard argument”. Suppose, x, y, s ∈ J are such that ϕ(s) = ϕ(x)+ϕ(y).
Multiplying this equality by ϕ(ti ), (i = 1, 2, . . . , n − 1), we get:

ϕ(t1)(ϕ(t2)(. . . (ϕ(tn−1)ϕ(s)) . . .)) = ϕ(t1)(ϕ(t2)(. . . (ϕ(tn−1)ϕ(x)) . . .))

+ϕ(t1)(ϕ(t2)(. . . (ϕ(tn−1)ϕ(y)) . . .));

then

m(ϕ(t1), ϕ(t2), . . . , ϕ(tn−1), ϕ(s)) = m(ϕ(t1), ϕ(t2), . . . , ϕ(tn−1), ϕ(x))

+m(ϕ(t1), ϕ(t2), . . . , ϕ(tn−1), ϕ(y)).

It follows that:

ϕ
(
m(t1, t2, . . . , tn−1, s)

) = ϕ
(
m(t1, t2, . . . , tn−1, x)

) + ϕ
(
m(t1, t2, . . . , tn−1, y)

)
.

Moreover, if

ϕ
(
m(t1, t2, . . . , tn−1, x)

) + ϕ
(
m(t1, t2, . . . , tn−1, y)

)

= ϕ
(
m(t1, t2, . . . , tn−1, x) + m(t1, t2, . . . , tn−1, y)

)
,
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then by injectivity of ϕ, we have that:

m(t1, t2, . . . , tn−1, s) = m(t1, t2, . . . , tn−1, x) + m(t1, t2, . . . , tn−1, y).

The main result of this section reads as follows.

Theorem 2.1 Let J and J ′ be Jordan rings and e a non-trivial idempotent in J . Let
J = J 1 ⊕ J 1

2
⊕ J0 be the Peirce decomposition of J with respect to e. If J satisfies

the following conditions:

(i) Let ai ∈ J i (i = 1, 0). If t 1
2
ai = 0 for all t 1

2
∈ J 1

2
, then ai = 0;

(ii) Let a0 ∈ J 0. If t0a0 = 0 for all t0 ∈ J 0, then a0 = 0;
(iii) Let a 1

2
∈ J 1

2
. If t0a 1

2
= 0 for all t0 ∈ J 0, then a 1

2
= 0.

Then every n-multiplicative isomorphism from J onto J ′ is additive.

The proof is organized in a series of Lemmas.

Lemma 2.2 ϕ(0) = 0.

Proof Since ϕ is surjective, there exists x ∈ J , such that ϕ(x) = 0. Therefore,
ϕ(ξ0(x)) = ξϕ(0)(ϕ(x)) = ξϕ(0)(0) = 0. ��
Lemma 2.3 Let ai ∈ J i , i = 1, 1

2 , 0. Then, ϕ(a1+a 1
2
+a0) = ϕ(a1)+ϕ(a 1

2
)+ϕ(a0).

Proof Since ϕ is surjective, we can find an element s = s1 + s 1
2

+ s0 ∈ J , such that:

ϕ(s) = ϕ(a1) + ϕ
(
a 1

2

)
+ ϕ(a0). (2.1)

For e, applying a standard argument to (2.1), we get:

ϕ
(
ξ2e(s)

) = ϕ
(
ξ2e(a1)

) + ϕ
(
ξ2e

(
a 1

2

)) + ϕ
(
ξ2e(a0)

)

= ϕ(2n−1a1) + ϕ
(
a 1

2

) + ϕ(0) = ϕ(2n−1a1) + ϕ
(
a 1

2

)
.

Since ϕ(ξ2e(s)) = ϕ(2n−1s1 + s 1
2
), we have:

ϕ
(
2n−1s1 + s 1

2

)
= ϕ(2n−1a1) + ϕ

(
a 1

2

)
. (2.2)

Now, for t0 ∈ J 0 applying the standard argument to (2.2), we have:

ϕ
(
ξ2e(t0, 2

n−1s1 + s 1
2
)
) = ϕ

(
ξ2e(t0, a1)

) + ϕ
(
ξ2e

(
t0, a 1

2

))

= ϕ
(
t0a 1

2

)
.

Hence:

ϕ
(
t0s 1

2

)
= ϕ

(
t0a 1

2

)
.
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Therefore, t0s 1
2

= t0a 1
2
for every t0 ∈ J 0. It follows from the item (iii) of Theorem

2.1 that s 1
2

= a 1
2
. With a similar argument, we can show that s1 = a1.

Now, it only remains show that s0 = a0. For this, let t0 ∈ J 0; applying the standard
argument to (2.1), we get:

ϕ
(
ξt0(s)

)

= ϕ
(
ξt0(a1)

) + ϕ
(
ξt0

(
a 1

2

)) + ϕ
(
ξt0(a0)

)

= ϕ
(
0
) + ϕ

(
ξt0

(
a 1

2

)) + ϕ
(
ξt0(a0)

)

= ϕ
(
ξt0

(
a 1

2

)) + ϕ
(
ξt0(a0)

)
. (2.3)

For t 1
2

∈ J 1
2
, applying the standard argument to (2.3), we have:

ϕ
(
ξ2e

(
t 1
2
, ξt0(s)

))

= ϕ
(
ξ2e

(
t 1
2
, ξt0

(
a 1

2

))) + ϕ
(
ξ2e

(
t 1
2
, ξt0(a0)

)

= ϕ
(
2n−2(t 1

2
ξt0

(
a 1

2

))
1

) + ϕ
(
t 1
2
ξt0(a0)

)
, (2.4)

where (t 1
2
ξt0(a 1

2
))1 ∈ J 1 and t 1

2
ξt0(a0) ∈ J 1

2
. Now, for t

′
0 ∈ J 0, applying the

standard argument to (2.4), we have that:

ϕ
(
ξ2e

(
t ′0, ξe

(
t 1
2
, ξt0(s)

))) = ϕ
(
ξ2e

(
t ′0, 2n−2(t 1

2
ξt0

(
a 1

2

))
1)

) + ϕ
(
ξ2e

(
t ′0, t 12 ξt0(a0)

))

= ϕ(0) + ϕ
(
ξ2e

(
t ′0, t 12 ξt0(a0)

))

= ϕ
(
ξ2e

(
t ′0, t 12 ξt0(a0)

)) = ϕ
(
t ′0

(
t 1
2
ξt0(a0)

))
.

Since ξ2e(t ′0, ξe(t 12 , ξt0(s))) = t ′0(t 12 ξt0(s0)), we have:

t ′0
(
t 1
2
ξt0(s0)

)
= t ′0

(
t 1
2
ξt0(a0)

)
.

It follows from the items (i), (ii), and (iii) of Theorem 2.1 that s0 = a0. Thus, s =
a1 + a 1

2
+ a0. ��

Lemma 2.4 Let a 1
2
, b 1

2
∈ J 1

2
and a0 ∈ J 0. Then, ϕ

(
a 1

2
a0 + b 1

2

)
= ϕ

(
a 1

2
a0

)
+

ϕ
(
b 1

2

)
.

Proof We note that:

ξ2e

(
2e + a 1

2
, a0 + b 1

2

)
= ξ2e

(
2e, a 1

2
a0 + b 1

2

)
+ ξ2e

(
b 1

2
, a 1

2

)
.
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Using Lemma 2.3, we have: ϕ(ξ2e

(
2e + a 1

2
, a0 + b 1

2
)
)

= ϕ(ξ2e

(
2e, a 1

2
a0 + b 1

2
)
)
+

ϕ(ξ2e

(
b 1

2
, a 1

2
)
)
, because ξ2e(2e, a 1

2
a0 + b 1

2
) ∈ J 1

2
and ξ2e(b 1

2
, a 1

2
) ∈ J 1. Conse-

quently, by Lemmas 2.2 and 2.3, we have:

ϕ
(
ξ2e

(
2e, a 1

2
a0 + b 1

2

))
+ ϕ

(
ξ2e

(
a 1

2
, b 1

2

))

= ϕ
(
ξ2e

(
2e + a 1

2
, a0 + b 1

2

))

= ξϕ(2e)

(
ϕ

(
2e + a 1

2

)
, ϕ

(
a0 + b 1

2

))

= ξϕ(2e)

(
ϕ(2e) + ϕ

(
a 1

2

)
, ϕ(a0) + ϕ

(
b 1

2

))

= ξϕ(2e)(ϕ(2e) + ϕ(a0)) + ξϕ(2e)(ϕ(2e), ϕ
(
b 1

2
)
)

+ξϕ(2e)

(
ϕ(a 1

2
), ϕ(a0)

)

+ξϕ(2e)

(
ϕ

(
a 1

2

)
, ϕ

(
b 1

2

))

= ϕ(0) + ϕ
(
ξ2e(2e, b 1

2
)
)

+ϕ
(
ξ2e

(
a 1

2
, a0

))
+ ϕ

(
ξ2e

(
a 1

2
, b 1

2

))
.

Thus, ϕ(ξ2e(2e, a 1
2
a0 + b 1

2
)) = ϕ(ξ2e(2e, b 1

2
)) + ϕ(ξ2e(a 1

2
, a0)), that is ϕ(a 1

2
a0 +

b 1
2
) = ϕ(a 1

2
a0) + ϕ(b 1

2
). ��

Lemma 2.5 Let a 1
2
, b 1

2
∈ J 1

2
. Then, ϕ(a 1

2
+ b 1

2
) = ϕ(a 1

2
) + ϕ(b 1

2
).

Proof Let s = s1 + s 1
2

+ s0 ∈ J , such that:

ϕ(s) = ϕ
(
a 1

2

)
+ ϕ

(
b 1

2

)
. (2.5)

For t0 ∈ J 0, applying the standard argument to (2.5) and using Lemma 2.4, we
have:

ϕ(ξt0(s, t0)) = ϕ
(
ξt0

(
a 1

2
, t0

))
+ ϕ

(
ξt0

(
b 1

2
, t0

))
= ϕ

(
ξt0

(
a 1

2
, t0

)
+ ξt0

(
b 1

2
, t0

))
.

Hence, ξt0(s, t0) = ξt0(a 1
2
, t0) + ξt0(b 1

2
, t0). By (ii) and (iii) of Theorem 2.1, we

obtain that s0 = 0 and s 1
2

= a 1
2

+ b 1
2
. Now, for t 1

2
∈ J 1

2
and e ∈ J 1, applying the

standard argument to (2.5) again, we have:

ϕ
(
ξ2e

(
s1, t 1

2

)
+ ξ2e

(
s 1
2
, t 1

2

))

= ϕ
(
ξ2e

(
s, t 1

2

))
= ϕ

(
ξ2e

(
a 1

2
, t 1

2

))
+ ϕ

(
ξ2e

(
b 1

2
, t 1

2

))
. (2.6)

For u0, applying the standard argument to (2.6), we get that:
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ϕ
(
ξu0

(
ξ2e

(
s1, t 1

2

)))
= ϕ

(
ξu0

(
ξ2e

(
a 1

2
, t 1

2

)))
+ ϕ

(
ξu0

(
ξ2e

(
b 1

2
, t 1

2

)))

= ϕ(0) + ϕ(0) = 0.

Hence, ξu0(ξ2e(s1, t 1
2
)) = 0 for every u0 ∈ J 0 and t 1

2
∈ J 1

2
, it follows from the

items (iii) and (i) of Theorem 2.1 that s1 = 0. Thus, s = s 1
2

= a 1
2

+ b 1
2
. ��

Lemma 2.6 Let a1, b1 ∈ J 1. Then, ϕ(a1 + b1) = ϕ(a1) + ϕ(b1).

Proof Let s = s1 + s 1
2

+ s0 ∈ J , such that:

ϕ(s) = ϕ(a1) + ϕ(b1). (2.7)

For t0 ∈ J 0, applying the standard argument to (2.7), we have:

ϕ
(
ξt0

(
s 1
2
, t0

)
+ ξt0(s0, t0)

)
= ϕ(ξt0(s, t0)) = ϕ(ξt0(a1, t0)) + ϕ(ξt0(b1, t0))

= ϕ(0) + ϕ(0) = 0.

Thus, ξt0(s 1
2
, t0) + ξt0(s0, t0) = 0 for every t0 ∈ J0. Since ξt0(s 1

2
, t0) ∈ J 1

2
and

ξt0(s0, t0) ∈ J 0, we get that ξt0(s 1
2
, t0) = 0 and ξt0(s0, t0) = 0. By (ii) and (iii) of

Theorem 2.1, we obtain that s 1
2

= 0 and s0 = 0. Now, for t 1
2

∈ J 1
2
and e ∈ J 1,

applying the standard argument to (2.7) again and using Lemma 2.5, we have:

ϕ
(
ξ2e

(
s1, t 1

2

))
= ϕ

(
ξ2e

(
s, t 1

2

))

= ϕ
(
ξ2e

(
a1, t 1

2

))
+ ϕ

(
ξ2e

(
b1, t 1

2

))

= ϕ
(
ξ2e

(
a1, t 1

2

)
+ ξ2e

(
b1, t 1

2

))
. (2.8)

Hence, ξ2e(s1, t 1
2
) = ξ2e(a1, t 1

2
) + ξ2e(b1, t 1

2
) for every t 1

2
∈ J 1

2
, it follows from

the item (i) of Theorem 2.1 that s1 = a1 + b1. Thus, s = s1 = a1 + b1. ��

Lemma 2.7 Let a0, b0 ∈ J 0. Then, ϕ(a0 + b0) = ϕ(a0) + ϕ(b0).

Proof Let s = s1 + s 1
2

+ s0 ∈ J , such that:

ϕ(s) = ϕ(a0) + ϕ(b0). (2.9)

For e ∈ J 1, applying the standard argument to (2.9), we have:

ϕ
(
ξ2e

(
s 1
2
, 2e

)
+ ξ2e(s1, 2e)

)
= ϕ(ξ2e(s, 2e)) = ϕ(ξ2e(a0, 2e)) + ϕ(ξ2e(b0, 2e))

= ϕ(0) + ϕ(0) = 0.
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Therefore, s 1
2

+ 2n−1s1 = 0. Hence, s 1
2

= 0 and s1 = 0. Now, for t 1
2

∈ J 1
2
and

e ∈ J 1, applying the standard argument to (2.9) again and using Lemma 2.5, we have:

ϕ
(
ξ2e

(
s0, t 1

2

))
= ϕ

(
ξ2e

(
s, t 1

2

))

= ϕ
(
ξ2e

(
a0, t 1

2

))
+ ϕ

(
ξ2e

(
b0, t 1

2

))

= ϕ
(
ξ2e

(
a0, t 1

2

)
+ ξ2e

(
b0, t 1

2

))
. (2.10)

Hence, ξ2e(s0, t 1
2
) = ξ2e(a0, t 1

2
) + ξ2e(b0, t 1

2
) for every t 1

2
∈ J 1

2
; it follows from

the item (i) of Theorem 2.1 that s0 = a0 + b0. Thus, s = s0 = a0 + b0. ��

Now, we are ready to prove our first result.

Proof of Theorem 2.1. Let a = a1 + a 1
2
+ a0, b = b1 + b 1

2
+ b0. By Lemmas 2.3, 2.5,

2.6, and 2.7, we have:

ϕ(a + b) = ϕ
(
(a1 + b1) +

(
a 1

2
+ b 1

2

)
+ (a0 + b0)

)

= ϕ(a1 + b1) + ϕ
(
a 1

2
+ b 1

2

)
+ ϕ(a0 + b0)

= ϕ(a1) + ϕ(b1) + ϕ
(
a 1

2

)
+ ϕ

(
b 1

2

)
+ ϕ(a0) + ϕ(b0)

= ϕ
(
a1 + a 1

2
+ a0

)
+ ϕ

(
b1 + b 1

2
+ b0

)

= ϕ(a) + ϕ(b).

That is, ϕ is additive on J . ��

3 n-Multiplicative Derivation

We now investigate the problem of when a n-multiplicative derivations is additive for
the class of Jordan rings.

For this purpose, we will assume that the Jordan ring J is
{
2, (n − 1), (2n−1 − 1)

}
-

torsion free for n ≥ 2 where n is degree of the nonassociative monomial m =
m(x1, . . . , xn).

Let d be a n-multiplicative derivation of Jordan ring J . If we put d(e) = a1 +
a 1

2
+ a0, then d(m(e, e, . . . , e)) =

∑n

i=1
m(e, . . . , d(e), . . . , e) = na1 + a 1

2
. Since

d(m(e, e, . . . , e)) = d(e), then (n−1)a1−a0 = 0.Thus, a1 = a0 = 0 and d(e) = a 1
2
.

By [14, p. 77], we have:

Dy,z(x) = [Ly, Lz] + [Ly, Rz] + [Ry, Rz],
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is a derivation for all y, z ∈ J . In particular, if y = a 1
2
and z = 4e, then Dy,z(e) =

3d(e). Indeed:

Da 1
2
,4e(e) =

([
La 1

2
, L4e

]
+

[
La 1

2
, R4e

]
+

[
Ra 1

2
, R4e

])
(e)

= La 1
2
L4e(e) − L4eLa 1

2
(e) + La 1

2
R4e(e) − R4eLa 1

2
(e)

= Ra 1
2
R4e(e) − R4e Ra 1

2
(e) = a 1

2
(4ee) − 4e

(
a 1

2
e
)

+ a 1
2
(e4e)

−
(
a 1

2
e
)
4e + (e4e)a 1

2
−

(
ea 1

2

)
4e = 2a 1

2
− a 1

2
+ 2a 1

2

−a 1
2

+ 2a 1
2

− a 1
2

= 3a 1
2
,

so (Dy,z − 3d)(e) = 0. Let D = Dy,z − 3d, note that D is additive if and only if
d is additive, since Dy,z is additive. Furthermore, observe that D is a multiplicative
derivation, such that D (e) = 0.

The next is the main result of this section. Its proof shares the same outline as that
of Theorem 2.1, but it needs different technique.

Theorem 3.1 Let J be a Jordan ring with a non-trivial idempotent e. Let J = J 1 ⊕
J 1

2
⊕ J0 be the Peirce decomposition of J with respect to e. If J satisfies the conditions

of Theorem 2.1, then every n-multiplicative derivation d from J is additive.

The proof will be organized in a series of auxiliary lemmas.

Lemma 3.2 D (0) = 0.

Proof Note that D (0) = D (ξ0(0)) = 0. ��
Lemma 3.3 D (J i ) ⊆ J i for i = 1, 1

2 , 0.

Proof Let a1 ∈ J 1 as D (e) = 0, we have D (a1) = D (ξe(a1)) = ξe(D (a1)). If we
express D (a1) = D (a1)1 + D (a1) 1

2
+ D (a1)0, it follows that:

D (a1) = D (a1)1 + D (a1) 1
2

+ D (a1)0 = ξe(D (a1)) = D (a1) + 1

2n−1D (a1) 1
2
.

Thus, D (a1) = 0 = D (a1) 1
2
and D (a1) = D (a1)1.

Let a0 ∈ J 0 as D (e) = 0, we have 0 = D (ξe(a0)) = ξe(D (a0)) = D (a0)1 +
1

2n−1D (a0) 1
2
. If we express D (a0) = D (a0)1 + D (a0) 1

2
+ D (a0)0, it follows that

D (a0)1 = 0 = D (a0) 1
2
. Thus, D (a0) = D (a0)0.

Let a 1
2

∈ J 1
2
, we have:

D
(
a 1

2

)
= D

(
ξ2e

(
a 1

2

))
= ξD (2e)

(
2e, . . . , 2e, a 1

2

)
+ ξ2e(D (2e), 2e, . . . , 2e, a 1

2
)

+ · · · + ξ2e(2e, . . . ,D (2e), a 1
2
) + ξ2e

(
2e, . . . , 2e,D

(
a 1

2

))
.
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If we express D (a 1
2
) = D (a 1

2
)1 + D (a 1

2
) 1
2

+ D (a 1
2
)0, it follows that

(2n−1 − 1)D (a 1
2
)1 = 0 = D (a 1

2
)0 and 0 = x 1

2
= ξD (2e)(2e, . . . , 2e, a 1

2
) +

ξ2e(D (2e), 2e, . . . , 2e, a 1
2
) + · · · + ξ2e(2e, . . . ,D (2e), a 1

2
) ∈ J 1

2
once that ξ2e(2e,

. . . , 2e,D (a 1
2
)) = 2n−1D (a 1

2
)1 + D (a 1

2
) 1
2
. Thus, D (a 1

2
) = D (a 1

2
) 1
2
.

Lemma 3.4 Let a1 ∈ J 1 and a 1
2

∈ J 1
2
. Then,D (2n−1a 1

2
) = 2n−1D (a 1

2
),D (2e) = 0

and D (2n−1a1) = 2n−1D (a1).

Proof Let a 1
2

∈ J 1
2
as D (e) = 0 and D (2n−1a 1

2
) ∈ J 1

2
; then:

D (a 1
2
) = D

(
ξe

(
2n−1a 1

2

))
= ξe

(
D (2n−1a 1

2
)
)

= 1

2n−1D (2n−1a 1
2
).

Thus, D (2n−1a 1
2
) = 2n−1D (a 1

2
).

Nownote that (n−1)D (2e)a 1
2

= D (ξ2e(a 1
2
))−ξ2e(D (a 1

2
)) = D (a 1

2
)−D (a 1

2
) =

0. By item (i) of Theorem 3.1, we have D (2e) = 0.
Let a1 ∈ J 1 as D (2e) = 0 and D (a1) ∈ J 1; then:

D (2n−1a1) = D (ξ2e(a1)) = ξ2e(D (a1)) = 2n−1D (a1).

��
Lemma 3.5 Let a1 ∈ J 1, a 1

2
∈ J 1

2
and a0 ∈ J 0. Then,D (a1 + a 1

2
+ a0) = D (a1) +

D (a 1
2
) + D (a0).

Proof Consider D (a1 + a 1
2

+ a0) = d1 + d 1
2

+ d0; by Lemma 3.4, we get:

D
(
2n−1a1 + a 1

2

)
= D

(
ξ2e

(
a1 + a 1

2
+ a0

))

= ξ2e

(
D

(
a1 + a 1

2
+ a0

))

= ξ2e

(
d1 + d 1

2
+ d0

)
= 2n−1d1 + d 1

2
. (3.1)

Let t0 ∈ J 0; then:

t0d 1
2

= ξ2e

(
t0,D

(
2n−1a1 + a 1

2

))

= D
(
ξ2e

(
t0, 2

n−1a1 + a 1
2

))

−ξ2e

(
D (t0), 2

n−1a1 + a 1
2

)

= D
(
t0a 1

2

)
− D (t0)a 1

2
= t0D

(
a 1

2

)
. (3.2)
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Thus, by item (iii) of Theorem 3.1, we have D (a 1
2
) = d 1

2
. Let t 1

2
∈ J 1

2
by (3.1),

we have:

ξ2e

(
t 1
2
, 2n−1d1

)
+ ξ2e

(
t 1
2
, d 1

2

)

= ξ2e

(
t 1
2
, 2n−1d1 + d 1

2

)

= ξ2e

(
t 1
2
,D

(
2n−1a1 + a 1

2

))

= D
(
ξ2e

(
t 1
2
, 2n−1a1 + a 1

2

))

−ξ2e

(
D

(
t 1
2

)
, 2n−1a1 + a 1

2

)

= D
(
ξ2e

(
t 1
2
, 2n−1a1

)
+ ξ2e

(
t 1
2
, a 1

2

))

−ξ2e

(
D (t 1

2
), 2n−1a1

)
− ξ2e

(
D

(
t 1
2

)
, a 1

2

)
. (3.3)

As ξ2e(t 1
2
, d 1

2
), ξ2e(D (t 1

2
), a 1

2
) ∈ J 1 ⊕ J 0 follows that for u0 ∈ J 0 by (3.3), we

get:

u0ξ2e
(
t 1
2
, 2n−1d1

)
= ξ2e

(
u0, ξ2e

(
t 1
2
, 2n−1d1

))

= ξ2e

(
u0, ξ2e

(
t 1
2
, 2n−1d1

)
+ ξ2e

(
t 1
2
, d 1

2

))

= ξ2e

(
u0,D

(
ξ2e

(
t 1
2
, 2n−1a1

)
+ ξ2e

(
t 1
2
, a 1

2

)))

−ξ2e

(
u0, ξ2e

(
D

(
t 1
2

)
, 2n−1a1

))
= u0ξ2e

(
t 1
2
,D (2n−1a1)

)
.

Therefore by item (iii) of Theorem 3.1 and Lemma 3.4, we have d1 = D (a1).
Finally, we show that d0 = D (a0). Let e ∈ J 1, t 1

2
∈ J 1

2
and h0, t0 ∈ J 0. We have:

ξh0

(
h0, 2e, t 1

2
, t0,D

(
a1 + a 1

2
+ a0

))
= ξh0

(
h0, 2e, t 1

2
, t0, d1 + d 1

2
+ d0

)

= ξh0(h0, t 1
2
, t0, d0).

On the other hand, using the identity of n-multiplicative derivation, we get:

ξh0

(
h0, 2e, t 1

2
, t0,D

(
a1 + a 1

2
+ a0

))
= ξh0

(
h0, t 1

2
, t0,D (a0)

)
.

Thus, ξh0(h0, t 1
2
, t0, d0) = ξh0(h0, t 1

2
, t0,D (a0)). Now, by items (iii), (i) and (ii) of

Theorem 3.1, we have d0 = D (a0).
Therefore, D (a1 + a 1

2
+ a0) = D (a1) + D (a 1

2
) + D (a0). ��

Lemma 3.6 Let a 1
2
, b 1

2
∈ J 1

2
. Then, D (a 1

2
+ b 1

2
) = D (a 1

2
) + D (b 1

2
).
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Proof Note that ξ2e((2e + a 1
2
), (2e + b 1

2
)) = ξ2e(a 1

2
+ b 1

2
+ 22e + a 1

2
b 1

2
). Since

a 1
2

+ b 1
2

= ξ2e(a 1
2

+ b 1
2
) ∈ J 1

2
and ξ2e(22e + a 1

2
b 1

2
) ∈ J 1 by Lemmas 3.4 and 3.5,

we get:

D
(
ξ2e

(
a 1

2
+ b 1

2

))
+ D

(
ξ2e

(
22e + a 1

2
b 1

2

))

= ξ2e

(
D

(
a 1

2
+ b 1

2

))
+ ξ2e

(
D

(
22e + a 1

2
b 1

2

))

= ξ2e

(
D

(
a 1

2
+ b 1

2

)
+ D

(
22e + a 1

2
b 1

2

))

= ξ2e

(
D

(
a 1

2
+ b 1

2
+ 22e + a 1

2
b 1

2

))

= D
(
ξ2e

(
a 1

2
+ sb 1

2
+ 22e + a 1

2
b 1

2

))

= D
(
ξ2e

((
2e + a 1

2

)
,
(
2e + b 1

2

)))

= ξ2e

(
D

(
2e + a 1

2

)
,
(
2e + b 1

2

)))

+ ξ2e

((
2e + a 1

2

)
,D

(
2e + b 1

2

)))

= ξ2e

(
D (2e) + D

(
a 1

2

)
,
(
2e + b 1

2

))

+ξ2e

((
2e + a 1

2

)
,D (2e) + D

(
b 1

2

))

= ξ2e

(
D

(
a 1

2

)
, 2e

)
+ ξ2e

(
D

(
a 1

2

)
, b 1

2

)

+ξ2e

(
2e,D

(
b 1

2

))
+ ξ2e

(
a 1

2
,D

(
b 1

2

))

= D
(
ξ2e

(
a 1

2
, b 1

2

))
+ ξ2e

(
D

(
a 1

2

)
, 2e

)

+ξ2e

(
2e,D

(
b 1

2

))
.

Observe that D (ξ2e(22e + a 1
2
b 1

2
)),D (ξ2e(a 1

2
, b 1

2
)) ∈ J 1 and

D
(
ξ2e

(
a 1

2
+ b 1

2

))
, ξ2e

(
D

(
a 1

2

)
, 2e

)
+ ξ2e

(
2e,D

(
b 1

2

))
∈ J 1

2
;

it follows that:

D
(
a 1

2
+ b 1

2

)
= D

(
ξ2e

(
a 1

2
+ b 1

2

))
= ξ2e

(
D (a 1

2
), 2e

)
+ ξ2e

(
2e,D

(
b 1

2

))

= D
(
a 1

2

)
+ D

(
b 1

2

)
.

��
Lemma 3.7 Let ai , bi ∈ J i , (i = 1, 0). Then, D (ai + bi ) = D (ai ) + D (bi ).
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Proof Let ai , bi ∈ J i (i = 1, 0) and t 1
2

∈ J 1
2
; by Lemma 3.6, we have:

D (ai + bi )t 1
2

= ξ2e

(
D (ai + bi ), t 1

2

)
= D

(
ξ2e

(
(ai + bi ), t 1

2

))

−ξ2e

(
(ai + bi ),D

(
t 1
2

))
= D

(
ξ2e

(
ai , t 1

2

))
+ D

(
ξ2e

(
bi , t 1

2

))

−ξ2e

(
ai ,D

(
t 1
2

))
− ξ2e

(
bi ,D

(
t 1
2

))

= ξ2e

(
D (ai ), t 1

2

)
+ ξ2e

(
D (bi ), t 1

2

)

= (D (ai ) + D (bi ))t 1
2
.

Therefore, by item (i) of Theorem 3.1, we get D (ai + bi ) = D (ai ) + D (bi ). ��
Now, we are in a position to show that D preserves addition.

Proof of Theorem 3.1. Let a = a1 + a 1
2
+ a0, b = b1 + b 1

2
+ b0. By Lemmas 3.5–3.7,

we have:

D (a + b) = D ((a1 + b1) +
(
a 1
2

+ b 1
2

)
+ (a0 + b0)) = D (a1 + b1) + D

(
a 1
2

+ b 1
2

)

+D (a0 + b0) = D (a1) + D (b1) + D
(
a 1
2

)
+ D

(
b 1
2

)
+ D (a0) + D (b0)

= D
(
a1 + a 1

2
+ a0

)
+ D (b1 + b 1

2
+ b0) = D (a) + D (b).

That is, D is additive on J . ��
The following two examples show that there are non-trivial noncommutative Jordan

algebra and Jordan algebra, respectively, that satisfy the conditions of the Theorem
2.1.

Example 3.8 Let F be a field of characteristic different from 2, J a four-dimensional
algebra over F, and a basis {e11, e10, e01, e00} with the multiplication table given by:
ei j ekl = δ jkeil (i, j, k, l = 1, 2), where δ jk is the Kronecker delta. We can verify
that J is a Jordan algebra. In fact, J is an associative algebra where e11 and e00 are
orthogonal idempotents, such that e = e11 + e00 is the unity element of J. Moreover,
if J = J1 ⊕ J 1

2
⊕ J0 is the Peirce decomposition of J, relative to e11, then we have

J1 = Fe11, J 1
2

= Fe10 + Fe01, J0 = Fe00. From a direct calculation, we can verify

that J satisfies the conditions (i)–(iii) of Theorem 2.1.

Example 3.9 Let K be the algebra obtained from the associative algebra J, in Example
3.8, on replacing the product xy by x · y = 1

2 (xy + yx). We can verify that K is a
Jordan algebra where e11 and e00 are orthogonal idempotents, such that e = e11 + e00
is the unity element of K. Moreover, if K = K1⊕K 1

2
⊕K0 is the Peirce decomposition

of K, relative to e11, then we have Ki = Feii (i = 1, 0) and K 1
2

= Fe10 + Fe01. From

a direct calculation, we can verify that the algebra K satisfies the conditions (i)–(iii)
of the Theorem 2.1.
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4 Corollaries

In this section, we will give some consequences of our main results.

Corollary 4.1 Let J satisfy the conditions of Theorem 2.1. Then, any multiplicative
map ϕ of J onto an arbitrary Jordan ring J ′ is additive.

In the case of unital Jordan rings, we have the following.

Corollary 4.2 Let J be a unital Jordan ring and e a non-trivial idempotent in J . Let
J ′ be a Jordan ring. Let J = J 1 ⊕ J 1

2
⊕ J 0 be the Peirce decomposition of J with

respect to e. If J satisfies the following condition:

(i) Let ai ∈ J i (i = 1, 0). If t 1
2
ai = 0 for all t 1

2
∈ J 1

2
, then ai = 0;

then every multiplicative map from J onto J ′ is additive.

Corollary 4.3 Let J be a unital Jordan ring and e a non-trivial idempotent in J . Let
J = J 1 ⊕ J 1

2
⊕ J 0 be the Peirce decomposition of J with respect to e. If J satisfies

the following condition:

(i) Let ai ∈ J i (i = 1, 0). If t 1
2
ai = 0 for all t 1

2
∈ J 1

2
, then ai = 0;

then every multiplicative derivation from J is additive.
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