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Abstract

LetJ and 3 be Jordan rings. In this paper we study the additivity of n-multiplicative
isomorphisms from J onto J "and of n-multiplicative derivations of Jj . Suppose that
J contains a nontrivial idempotent; we prove that if J satisfying certain conditions,
then n-multiplicative maps and n-multiplicative derivations from J to J " are additive
maps.
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1 Introduction

We willuse (x, v, z) = (xy)z—x(yz) and [x, y] = xy — yx to denote the associator of
elements x, y, z and the commutator of elements x, y in a not necessarily associative
ring J .
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For those readers who are not familiar with this language, we recommend [15].
According to [3], “let X = {x;};cn be an arbitrary set of variables. A nonassocia-
tive monomial of degree 1 is any element of X. Given a natural number n > 1, a
nonassociative monomial of degree n is an expression of the form (u)(v), where u
is a nonassociative monomial of some degree i and v a nonassociative monomial of
degree n — i.

Let J and J’ be two rings and ¢ : J —> J’ a bijective map of J onto J'. We
call ¢ an n—multiplicative map of J onto J’ if for all nonassociative monomials
m =m(xy, ..., x,) of degree n:

pm(xy, ..., xp)) = m(p(x1), ..., ¢xn))

forall x1,...,x, € J. If p(xy) = p(x)p(y) for all x, y € J, we just say that ¢ is a
multiplicative map. And if p(xyx) = ¢(x)@(y)p(x) for all x, y € J, then we call ¢
a Jordan semi-triple multiplicative map.

~

Similarly, amap d : § — J is called a n-multiplicative derivation of J if
n
dm(xi, ..., x)) = Y m(xr, ..., d(xi), ..., )
i=1

for all nonassociative monomials m = m(xy, ..., x,) of degree n and arbitrary ele-
ments xi,...,X; €J.

Ifd(xy) =d(x)y + xd(y) for all x, y € J, we just say that d is a multiplicative
derivation of 3”. And if d(xyx) = d(x)(yx) + xd(y)x + (xy)d(x) forallx,y € J,
then we call d a Jordan triple multiplicative derivation.

A ring J is said to be Jordan if (x2, y,x) =0and [x,y]=0forallx,y € 3. A
Jordan ring J is called k-torsion free if kx = 0 implies x = 0, for any x € J, where
k is a positive integer.

A nonzero element e € J is called an idempotent if e*> = ee = e and a nontrivial
idempotent if it is a nonzero idempotent and different from the multiplicative identity
element of J .

Let us consider a Jordan ring J with a nontrivial idempotent e.

Lety =317 1 @ J o be the Peirce decomposition of J with respect to e, where

Ji=1{xilexi =ix;},i =0, %, 1, satistying the following multiplicative relations:

JoJoSJo; J1J1 ST Ji1Jo=0; (31@30)3%23%;
3%3%9316930.

In studying preservers on algebras or rings, one usually assumes additivity in
advance. Recently, however, a growing number of papers began investigating pre-
servers that are not necessarily additive, characterizing the interrelation between the
multiplicative and additive structures of a ring or algebra in an interesting topic. The
first result about the additivity of maps on rings was given by Martindale III [13]. He
established a condition on a ring R, such that every multiplicative isomorphism on
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‘R is additive. Besides, over the years, several works have been published considering
different types of maps on non-associative rings or algebras among them we can men-
tion [1-12]. Ferreira and Ferreira [3] also considered this question in the context of
n—multiplicative maps on alternative rings satisfying Martindale’s conditions. Ferreira
and Nascimento proved the additivity of multiplicative derivations [12]. Motivated by
all these results mentioned above, the present paper considers a similar Ferreira and
Ferreira’s problems [3] in the context of Jordan rings. We investigate the problem of
when a n-multiplicative isomorphism and a n-multiplicative derivation are additive
for the class of Jordan rings.

2 n-Multiplicative Isomorphism
It will be convenient for us to change notation at this point. Henceforth, the ring § will

be 2-torsion free and the nonassociative monomial m of degree n will be an expression
of the form:

mxy, X2, ..oy Xn—1,%Xn) ;= x1(x2( .. (Xp—1x) ...)).

When the first i variables in the non-associative monomial m assume equal values, we
will denote by:

m(za Z7 LIRS Za xl+la LRI ) xl‘l) = %‘Z('xl*‘rl? I ) xn)-
——
i
The main technique which we will use is the following argument which will be
termed a “standard argument”. Suppose, x, y, s € J are suchthatp(s) = ¢(x)+¢(y).
Multiplying this equality by ¢(#;), (i = 1,2, ...,n — 1), we get:

(1) (@) (... (@(tn-1)@(s)) ...)) = (D) (@@)(. .. (p(ta—1)(x))...))
Fo ) (@@)(. .. (@(t-1)9e () .. .));

then

m(p(t1), (2), ..., 0(ty—1), @(s)) = m(p(t1), (12), ..., ¢(ty—1), (%))
+m(p(t), ¢(t2), ..., eta-1), ¢(¥)).

It follows that:
o(mt, 2, ... tao1,9) = @(m(tr, ta, .. 1, X)) + @(mt1, 12, .. Tt ).
Moreover, if

(p(m(tlv t2a M) tn—la-x)) + (p(m(tla t2» cet tn—lv J’))
=o(m@t, t2, ... . ta—1, X) +m(t1, 12, ... ta1, Y)),
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then by injectivity of ¢, we have that:
m(ty, 12, .oy tn—1,8) = m(f1, by, .o ty—1, X) +m(t1, 12, -y In—1, Y)-

The main result of this section reads as follows.

Theorem 2.1 Let J and J’ be Jordan rings and e a non-trivial idempotent in J . Let
J=31DJ ! @ Jo be the Peirce decomposition of J with respect to e. If § satisfies
the following conditions:

(i) Leta; € 3;(i =1,0). Ift%al- =Of0rallt% 63%, then a; = 0;

(i) Letag € Jo. Iftoap = 0 forall tg € Jo, then agp = 0;
(ii1) Leta% 63%.Ift0a% =0forallty € Jo, thena% =0.

Then every n-multiplicative isomorphism from J onto J' is additive.
The proof is organized in a series of Lemmas.
Lemma 2.2 ¢(0) =0.

~

Proof Since ¢ is surjective, there exists x € J, such that ¢(x) = 0. Therefore,
&0(x)) = &p0) (X)) = &y(0)(0) = 0. a

Lemma2.3 Leta; € §;,i =1, %, 0. Then, (p(al—i—a%—i—ao) = gp(al)—i—(p(a%)—l-(p(ao).

Proof Since ¢ is surjective, we can find an element s = s; + s 1 + 50 € J, such that:
#(s) = plan) +¢ (ay) + p(ao). @1

For e, applying a standard argument to (2.1), we get:

9(520(5)) = ¢(52¢(a1)) + ¢(62e (a%)) + ¢(&2¢(a0))
=@ "la)) +p(ay) +¢(0) = 92" 'a1) + ¢(ay).

[N]

Since p(£2.(s)) = (2" L5 + s%), we have:

(p<2”*1s1+s%) =<p(2”*]a1)+<p(a%). (2.2)
Now, for #p € J o applying the standard argument to (2.2), we have:

9(2e(t0, 2" sy + S%)) = @(&2¢(t0, a1)) + @(&2¢(t0, a%))

Hence:

o osy) = )
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Therefore, tgs1 = foay for every fy € Jo. It follows from the item (iii) of Theorem
2.1 that s1 = a1 . With a similar argument, we can show that s; = a;.

2 2
Now, it only remains show that so = ag. For this, let #) € J ¢o; applying the standard
argument to (2.1), we get:

<P(§to(5))
= (& (@) + (& (a1)) + @ (& (a0)

= #(0) + ¢(8n(ay)) + (& (@)
= ¢(En(a1)) + ¢(Eq(a0))- (2.3)

For ¢ 1€ J 1 applying the standard argument to (2.3), we have:

(&2 (t%, £(5)))
= <ﬂ(§2e(l‘%, & (a%))) + go(éze(t%, & (ao))
= (2" (1160 (a1)),) + ¢ (1160 (@0)) 2.4)

where (t%g,o(a%))l € J1 and I%S,O (ap) € J 1 Now, for t(; € Jo, applying the
standard argument to (2.4), we have that:

(820 (16, £ (11 €0y (9)))) = @ (82 (6. 2" (13800 (a1)))) + 0 (B2e (10 7161 (a0)))
= 9(0) + ¢ (52 (15, 1161 @0)))
= ¢(&2(tg. I%Szo(ao))) = (P(t(/)(t%éto (a0))).

Since &¢ (£, &e(11, & () = fé(t% &1y (s0)), we have:

1 (118060)) = 4 (1180 (@)

It follows from the items (i), (ii), and (iii) of Theorem 2.1 that so = ag. Thus, s =
al+a % + ayg. O

Lemma 2.4 Let a%,b% S 3% and ag € Jo. Then, w(a%ao—l—b%) = gp(a%ao) +
o (by)

Proof We note that:

£, <Ze+a%,a0+b%> — &, <Ze,a%a0+b%) s (bl,al).

2 2
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Using Lemma 2.3, we have: ¢ (&2, <2e + a%, ap + b%)> = @& (26, a%ao + b%)) +

0 (&2 (b% a%)), because &.(2e, a%ao + b%) S 3% and EZe(b%7 a%) € J1. Conse-
quently, by Lemmas 2.2 and 2.3, we have:

(0(§2e <2e,a%a0+b%)> +§0<f§2e (a%,b%))
=(P<€2e <2€+a%,a0+b%)>

() o 1)
=&,00 (20) + ¢ (a)) . 0@ +0 (b))
= 00 (9(26) + 9(a0)) + Epe) (9 (2€). 0 (b))
o0 (0@, ola)
sty (1) 1)
= 9(0) + ¢ (£22e.bp)
+9 (e (ay.0)) + 0 (e 0y 1))

Thus, ¢(&2.(2e, ayao+ b%)) = (2. (2e, b%)) + ¢(§2e(a%, ap)), that is <ﬂ(a%ao +
b%) = <ﬂ(a%ao) + @(b%)' m|

Lemma 2.5 Leta%,b% 63%. Then, go(a% ~|—b%) =<p(a%)+g0(b%).

Proof Lets = s —i—s% + 5o € J, such that:

o(s) = ¢ (a%) to (b%) . 2.5)

For ty € Jo, applying the standard argument to (2.5) and using Lemma 2.4, we
have:

0 & (s,10) = ¢ (Ezo (a%, to)) +o (5:0 (b%, to)) =¢ (5:0 (a%, to) + &, (b%, to)) .

Hence, &, (s, t0) = &, (a%, t0) + &, (b%, t9). By (ii) and (iii) of Theorem 2.1, we
obtain that so = 0 and 51 = a% + b%. Now, for t% € 3% and e € J 1, applying the
standard argument to (2.5) again, we have:

@ (Eze (MJ%) + &2, (S%,t%>)
=¢ (6 (s1y)) = (82 (o)) o (0 (byony)). - 20

For ug, applying the standard argument to (2.6), we get that:
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o (8 (8 (n1:13))) = (50 (52 (a3.11))) 0 (8 (8 (b1 11))

=¢(0) +¢0) =0.

Hence, &,,(62.(s1,t1)) = O forevery ugp € Joandt1 € J 1 it follows from the
1= a% + b%. O

[N]

2
items (iii) and (i) of Theorem 2.1 that s; = 0. Thus, s = s
Lemma 2.6 Letay, by € J1. Then, p(a; + b1) = ¢(ay) + ¢(by).

Proof Lets =51 + s% + 50 € J, such that:

@(s) = ¢(ar) + @(b1). 2.7

For 19 € J o, applying the standard argument to (2.7), we have:

@ (&0 (5310) + 8060, 10)) = ¢ s, 10)) = 9l a1, 10)) + (b1, 10)
= 9(0) +¢(0) = 0.

Thus, &, (s%, t0) + &, (so, to) = O for every ty € Jp. Since & (s%, tg) € 3% and
&, (50, 10) € Jo, we get that &, (s%, to) = 0 and &, (so, fo) = 0. By (ii) and (iii) of
Theorem 2.1, we obtain that s% = 0 and so = 0. Now, for t% € 3% ande € J1q,
applying the standard argument to (2.7) again and using Lemma 2.5, we have:

oo o)) = (o (1)
(e o) - e )
- (e o) v ()

Hence, &, (s, t%) = &.(ay, t%) + &.(by, t%) for every t% €J 1 it follows from
O

the item (i) of Theorem 2.1 that s = a; + b;. Thus, s = s1 = a1 + b;.

2.8)

Lemma 2.7 Let ag, by € Jo. Then, p(ag + bg) = ¢(ag) + ¢(bo).

Proof Lets = s; + S1 + 5o € J, such that:

@(s) = ¢(ao) + ¢(bo). (2.9)

For e € J 1, applying the standard argument to (2.9), we have:

0 (82 (s1.2€) + £2e(51,2) ) = @(E2e (5. 2€)) = @(Ene (@0, 2€)) + 9 (& (bo, 2))
= p(0) +¢(0) =0.
@ Springer
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Therefore, s% + 2”’1s1 = 0. Hence, s% = 0 and s; = 0. Now, for t% € 3% and
e € J 1, applying the standard argument to (2.9) again and using Lemma 2.5, we have:

(8 (0.13)) = (8 (1))
=0 (6 (a0.13)) 0 (62 (20-1))

=<p($ze (ao,t%) + & (bo,t1)>. (2.10)

2

Hence, &, (5o, t%) = &, (ag, t%) + &, (bo, t%) for every t% ey %; it follows from
the item (i) of Theorem 2.1 that so = ag + bg. Thus, s = 5o = ag + bo. O

Now, we are ready to prove our first result.

Proof of Theorem 2.1. Leta = a; + ai +ag,b=b; + b% + bp. By Lemmas 2.3, 2.5,
2.6, and 2.7, we have:

oa+b) =g <(a1 by + (a% + b%) + (a0 + bo))
=g@(ar+b)+o (a% +b%) ~+ @(ap + bo)
= p(a+o) +¢ (ay) +¢ (b)) + @) + b0

=(p<a1 +a, +ao> +go(b1 +b) +b0)
= @(a) + ¢(b).

That is, ¢ is additive on . O

3 n-Multiplicative Derivation

We now investigate the problem of when a n-multiplicative derivations is additive for
the class of Jordan rings.

For this purpose, we will assume that the Jordan ring J is {2, n—1,2"1=-1 }-
torsion free for n > 2 where n is degree of the nonassociative monomial m =
mxg, ..., Xxn).

Let d be a n-multiplicative derivation of Jordan ring J. If we put d(e) = a; +
ay + ag,thend(m(e,e, ..., e)) = Zj_l m(e,...,d(e),...,e) =nay + ai. Since

d(m(e,e,...,e)) =d(e),then(n—1)a;—ag = 0. Thus,a; = ag = 0andd(e) = a.
By [14, p. 77], we have:

Dy,z(x) = [L)” LZ] + [Lya RZ] + [Ry’ Rz]’
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is a derivation for all y, z € J. In particular, if y = a 1 and z = 4e, then D, ;(e) =
3d(e). Indeed:

Dal ,46(6) = ([La| s L4e:| + [La| s R4e:| + |:Ra| s R4ei|> (e)
2 2 2 2

= Lal Lyc(e) — L4eLal (e) + Lal Ry (e) — R4eLal (e)
2 2 2 2

= Ry, R4c(€) — R4e Ry (€) = ay (4ee) — 4de (a%e) + a%(e4e)
7 7

—(ale)4e+(e4e)al — (ea1>4e=2al —a1 +2ai
2 2 2 2 2 2

—a1 +2a1 —a1 =3ai,
2 2 2 2

so (Dy,; —3d)(e) = 0. Let ® = D, ; — 3d, note that © is additive if and only if
d is additive, since Dy ; is additive. Furthermore, observe that © is a multiplicative
derivation, such that © (e) = 0.

The next is the main result of this section. Its proof shares the same outline as that
of Theorem 2.1, but it needs different technique.

Theorem 3.1 Let J be a Jordan ring with a non-trivial idempotent e. Let§ = 31 @
J 1 @ Jo be the Peirce decomposition of § with respect to e. If § satisfies the conditions

of Theorem 2.1, then every n-multiplicative derivation d from J is additive.

The proof will be organized in a series of auxiliary lemmas.

Lemma3.2 © (0) = 0.
Proof Note that ® (0) = D (£(0)) = 0. O
Lemma3.3 D (J;) € J;fori=1,1,0.

Proof Leta; € J1 as ® (e) = 0, we have D (a1) = D (E.(a1)) = & (D (ay)). If we
express O (a;) =9 (a1); + 2 (a1)% + D (ay)o, it follows that:

1
D(a) =D (@) +D (@) +D (@) =@ (@) =9 (@) + 759 (a1)}.

Thus, D (al) =0=2 (al)% and © (al) =9 (al)l.
Letag € Jo as D (e) = 0, we have 0 = D (§.(ap)) = &.(D (ap)) = D (ap)1 +
2,%]@ (ao)%. If we express © (ap) = D (ap)1 + D (ao)% + D (ap)o, it follows that

D)1 =0=29 (ao)%~ Thus, © (ap) = D (ao)o.
Leta% € (%,wehave:

D (a%> =9 (§2e (%)) = &9 (2¢) (2e,...,2€,a1)+$26(33(26),2e,...,26,a%)

2

+o e, D Q0),ay) 6 (26,20, (a%>>.
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If we express @(a%) = @(a%)l + @(a%)% + @(a%)o, it follows that
@1 — l)@(a%)l =0 = @(a%)o and 0 = Xy = 59(26)(26,...,26,0%) +
£.(® (26),26,...,26,61%) —|—~--+§23(2€,...,©(2€),a%) € 3% once that &,(2e,
...,Ze,ZD(a%))=2”_l’D(a%)1—l—@(a%)%.Thus,’D(a%)=Z‘D(a%)%.

Lemma3.4 Leta; € J anda% ey L Then, ® (2"_1a%) =219 (ay), D (2e) =0
and® 2" lay) =219 (ay).

Proof Leta% 63% asD(e) =0and ® 2" la1) € J 1; then:

2 2

1
2

)): ! D" ay).

D=2 (. () =5 (o0 ep) = 5

Thus, D (2"—1a%) =219 (ay).

Now note that (n—1)2 (2e)a% =9 (éze(a%))—sze(ZD (a%)) =% (a%)—i) (a%) =
0. By item (i) of Theorem 3.1, we have © (2¢) = 0.

Leta; e J1as® (2¢e) =0and D (a;) € J; then:

D 2" a) = D Gela)) = £2(D (@) = 2"7'D (@)

O

Lemma 3.5 Leta; Eﬁl,a% 63% and agy € Jo. Then,@(a1+a%+a0) =9 (a))+
Q(a%)+©(ao)~

Proof Consider ® (a; + a% +ag) =d; + d% + dp; by Lemma 3.4, we get:

D (2”_1611 +a%> =9 (Sze (a1 ~|—a% +ao>)
= &2, (33 (dl +ai +a0>)

= £ (d1 +d, +d0> =2ld +dy. 3.1)

Let g € Jo; then:

tod1 = &, (to,@ (2n_la1 +a%)>

1
=% (Sze (t(), 2n_1a1 —I—a%)
&2 (D10, 2" a1 + ay)

D

2

-9 (toa%> — D (t)ay =10 (a%> . (3.2)
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Thus, by item (iii) of Theorem 3.1, we have © (a%) = d%. Let t% € 3% by (3.1),
we have:

e 1. 27101) + &2 (1)
— &, (t%, 1) + d1>
— &, (u,@ (2" 1a1+a.))
=9 (& (1y.2" a1 +ay))

—£2e (53 (n) 2" +a1)
5 e 7 ) 5 )

_&, (@ (t%),Z”_lcn) — &, (@ (m) ) (3.3)

2

As $2e(l‘%, d%), £.(®D (t%), a%) € J1 @ Jo follows that for ug € Jo by (3.3), we
get:

uoé2e (t%, 2"71011) =& (uo, &2e (t1 . 2”*]d1))

= &2¢ (uoﬁé'ze (II,Z" 1d1> + &2 ( ,d1)>
= &2, (Mo, D (Sze (t. 2"~ ) + &2 (l%, %)»
—£2e (uo, &2¢ (33 (t%) 2" al)) = uob2e (t%, D (2"71611)) .

Therefore by item (iii) of Theorem 3.1 and Lemma 3.4, we have di = ® (ay).
Finally, we show that dy = © (ap). Lete € J 1, t% € 3% and hg, ty € Jo. We have:

(S]]

é/’lo (h()a 267 t%v 1o, D (al + Cl% + a())) = Eho (l’l(), 26, t%v 1o, dl + d% + dO)
= &p, (ho, 11, fo, dp).

On the other hand, using the identity of n-multiplicative derivation, we get:

&no (h(), 2e, t%, to, O (al +a% +ao)) =&, (/’l(), t%, to, ® (a0)> .

Thus, &, (ho, t%, to, do) = &y (ho, t%, 1o, © (ap)). Now, by items (iii), (i) and (ii) of
Theorem 3.1, we have dy = D (ayp).
Therefore, ® (a1 +a% + agp) :Q(a1)+©(a%)+©(ao). O

Lemma 3.6 Leta%,b% eJi. Then,@(a% +b%) =©(a%)+©(b%).

[N
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Proof Note that &((2¢ +ay). (2e + b1)) = &x(ay + by + 2%e + ayby). Since
a% +b% = 526((1% +b%) € 3% and Sze(Zze +a%b%) € J1 by Lemmas 3.4 and 3.5,
we get:

D (%‘ze (a% +b%)) +9 (526 (226—|—a b;))
=&, (@ (a; —i—b%)) +&, (33 (226+a5b;)>
=&, (@ (a; +b%) +9 (223+a%b%>)
=&, (@ (a% +by +2% —I—a%b%))
=D (&2 (a) +5by + 2% +asb1))

5 o (o o) ()
=& (D (2e+ay). (2e+b1)

—52( (a1) 2e)+52( (a1) 24)
+620 (26,9 (b)) + &2 (a1.2 (by))

= (52 (ay.0y)) + &2 (2 (1) 2¢)
+oa (200 (0y))

Observe that © (SZE(ZZe + a%b%)), D (Ezg(a%, b%)) € J1and

0 (6 (o +y)) (9 (1) 2¢) +0c (200 (1)) €3

it follows that:

Il

—~

N\S

~
+
-

Lemma3.7 Leta;,b; € J;, (i =1,0). Then, ® (a; + b;) =D (a;) + D (b;).
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Proof Leta;,b; € J; (i =1,0) and t% € 3%; by Lemma 3.6, we have:

D (@ + bty = &2 (D + b ty) =D (&2 (@ +0.1y))
&2 (@ +80.9 (1)) =D (e (ain1y)) +2 (2 (b11y))
e fom (1)~ (0.2 ()

= &2 (D (ai), t%) + &2 (@ (bi), t%)
= (@ (@) +9 Gy

Therefore, by item (i) of Theorem 3.1, we get ® (a; + b;) = D (a;) + D (b;). O
Now, we are in a position to show that © preserves addition.

Proof of Theorem 3.1. Leta = a; + ai +ag,b=b; + b% + by. By Lemmas 3.5-3.7,
we have:

D(a+b>=©<(a1+b1)+(ai +b1)+(ao+bo))=©(a1+b1)+© (al +bi)
2 2 2 2
1D (ag + bo) = D (a)) + D (by) + D (a%) +D (b%) + D (ap) + D (bo)

=9 <a1+a%+a0)+’}3(b1—|—b%+bo):33(a)+©(b).

That is, © is additive on J . O

The following two examples show that there are non-trivial noncommutative Jordan
algebra and Jordan algebra, respectively, that satisfy the conditions of the Theorem
2.1.

Example 3.8 Let § be a field of characteristic different from 2, J a four-dimensional
algebra over §, and a basis {e11, €10, €01, eoo} With the multiplication table given by:
eijer; = djke (i, j,k,1 = 1,2), where §j; is the Kronecker delta. We can verify
that J is a Jordan algebra. In fact, J is an associative algebra where ;1 and eqq are
orthogonal idempotents, such that e = e] + eqp is the unity element of Jj. Moreover,
if J =31 J1 @ Jo is the Peirce decomposition of J, relative to e, then we have
J1 = Feur, 3% = Fe10 + Feor, Jo = Jeopo. From a direct calculation, we can verify
that J satisfies the conditions (i)—(iii) of Theorem 2.1.

Example 3.9 Let £ be the algebra obtained from the associative algebra J, in Example
3.8, on replacing the product xy by x - y = %(xy + yx). We can verify that R is a
Jordan algebra where e and eq are orthogonal idempotents, such that e = e1 + eqgo
is the unity element of K. Moreover, if R = K1 & R ! @ Ry is the Peirce decomposition
of R, relative to e, then we have K; = §e;; (i = 1,0) and R% = Feqo + Seor. From
a direct calculation, we can verify that the algebra R satisfies the conditions (i)—(iii)
of the Theorem 2.1.
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4 Corollaries

In this section, we will give some consequences of our main results.

Corollary 4.1 Let J satisfy the conditions of Theorem 2.1. Then, any multiplicative
map ¢ of J onto an arbitrary Jordan ring J’ is additive.

In the case of unital Jordan rings, we have the following.

Corollary 4.2 Let J be a unital Jordan ring and e a non-trivial idempotent in J. Let
J' bealdordan ring. LetJ =31 ®J 1 @ J o be the Peirce decomposition of J with

respect to e. If J satisfies the following condition:

(i) Leta; € J;(i =1,0). Ift%ai = 0 forall t% IS L then a; = 0;
then every multiplicative map fromJ onto J' is additive.

Corollary 4.3 Let J be a unital Jordan ring and e a non-trivial idempotent in J . Let
IJ=3193 1 @ J o be the Peirce decomposition of § with respect to e. If § satisfies
the following condition:

(1) Leta; € J;(i =1,0). Ift%al- = Oforallt% € 3%, then a; = 0;
then every multiplicative derivation from J is additive.
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