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Abstract—A first theoretical and numerical treatment of longi-
tudinal forces in an extended geometrical optics model exerted by
a truncated Bessel beam (TBB) on a spherical dielectric particle is
presented in this work. To describe the TBB, we use a method for
spatial beam shaping to describe truncated beams with simplicity
and total analyticity in the paraxial approximation, which utilizes
a discrete superposition of scalar Bessel Gauss beams. We present
numerical examples of longitudinal forces that a TBB exerts on
a scatterer and argue about the limitations of this method. We
also briefly discuss about further possible analysis that can be
done with TBB and other truncated beams.
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I. INTRODUCTION

Since the first experiments performed by A. Ashkin and
others involving the use of lasers for trapping biological
particles [1], [2], optical tweezers have been the subject of
intensive studies and applications [3]–[10]. Due to its non-
invasive features, it has been used in non-contact and non-
damage applications, in particular at biomedical optics field,
such as manipulation of bacterias and viruses [7], induced
cell fusion [11], microscopic observation of living cells [8],
[12], chromosome movement [13], DNA insertion in a single
cell among others [14], [15]. Besides biology, there are ap-
plications in physics and chemistry’s branches, like support
on macromolecular interactions analysis in colloidal solutions
[16], [17] or studies on the vibration dynamics and fluctuations
of microtubules field [18]. More recently, optical tweezers
served as a valuable tool in evidenciating violations to the
Second Law of Thermodynamics over extremely short time
intervals [19].

Most published reports about optical tweezers found on the
literature use a Gaussian beam (GB) for its analysis. Other
that is commonly found is a Bessel Beam (BB) [20]–[22]
because of its self-reconstructing and non diffractive properties
[23], [24]. However, as far as we know, these works consider
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the BBs as ideal ones, that is, they differ from a real beam
in respect to its opening aperture radius. The former has
an infinite radius, which means that it receives an infinite
amount of energy from its source and, therefore, propagates
indefinitely; the latter has a finite opening radius, finite energy
and propagates up to a maximum distance Zmax. Real BB is
also called truncated Bessel beam (TBB).

Studies with real beams, until now, fall back on the res-
olution of diffraction’s integrals, like Rayleigh-Sommerfeld
formula [25, Chap 4], in order to represent a finite-aperture
beam. Nevertheless, there are cases in which these integrals
do not provide an analytical expression and a BB is one of
them. To overcome this problem, we use a method for spatial
beam shaping developed by Zamboni-Rached et al. [26], which
describes truncated beams with simplicity and total analyticity
in the paraxial approximation, utilizing a discrete superposition
of scalar Bessel Gauss beams.

Due to the relevance of optical trapping systems and its
applications aiming to bringing theoretical descriptions into
closer contact with actual laser beams found in the laboratory,
the purpose of the present work is to perform theoretical
and numerical analysis of optical forces exerted on dielectric
particles by real, finite energy scalar BBs, whose fields can
be described analytically [26]. To the best of the authors’
knowledge, this is the first attempt towards the incorporation of
truncated beams in optical force calculations in the ray optics
regime. The authors had already done some work with optical
force calculation for TBB in the Rayleigh approximation [27].

Firstly, in this work, we revised how TBBs can be described
using the method commented above, eliminating the diffrac-
tion’s integrals’ need. Afterward, we study how to calculate
optical forces in dielectric spherical particles using TBBs in
the paraxial approximation. We also assume the particle radius
to be much greater than the wavelength of the incident wave,
thus focusing on the geometrical optics regime. Subsequently,
numerical results and examples are presented, followed by our
conclusions.978-1-5090-6241-6/17/$31.00 c©2017 IEEE
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II. THEORY

A. Truncated Bessel Beam

A scalar TBB in the paraxial regime can be represented by
a superposition of distinct Bessel-Gauss beams (BGBs) [26].
A BGB is defined, at the z = 0 plane, as a BB apodized by a
Gaussian function, whose propagation is taken along +z [28]:

ψBG(ρ, z = 0) = AJ0(kρρ)e−qρ
2

, (1)

where A is the intensity of the incident field; J0 zeroth-order
Bessel function of the first kind; kρ transverse wave number
of the propagating wave and q a Gaussian function parameter.
The temporal factor exp (−iωt) is omitted for simplicity. As
much as the paraxial regime is sub-intended, our analysis is
therefore limited to small axicon angles [23].

To represent a BGB over all coordinates, we apply
ψBG(ρ, z = 0) on Fresnel diffraction integral [25], whose
final results is [26]:

ψBG(ρ, z) = − ikA
2zQ

e
ik
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)
J0

(
ikkρρ
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(2)

where Q = q − ik/2z and k is the wave number.
The proposed solution to represent truncated beams analyt-

ically uses a discrete superposition of 2N+1 equal-frequency
BGBs. Thus, we have:

Ψ(ρ, z) = − ik
2z
e
ik
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(3)

in which An are a complex constant and Qn = qn − ik/2z.
qn is defined by qn = qr − i2πn/L, in which qr > 0 is the
real part of qn and L is a constant with dimensions of length
squared. An is given by [26]

An =
2 sinh

[
(qR − q − i 2πL n)R2

]
L(qR − q)− i2πn

. (4)

Heretofore, the variables that must be determined are L and
qr. Once we have defined q from (1) and An from (4), L and
qr must satisfy the following condition:

e−qrρ
2
∞∑

n=−∞
Ane

i2πnρ2/L ≈

≈

{
e−qρ

2

, if 0 ≤ ρ ≤ R
0, if R < ρ <∞.

(5)

It is possible to represent other truncated beams by requiring
q and kρ to obey the following conditions [see Eq. (1)]:
• Truncated plane wave (TPW): when q and kρ are zero;
• TBB: when q = 0 and kρ is its transverse wave number;
• truncated Gaussian beam (TGB): when kρ = 0 and q =

1/ω2
0 , in which ω0 is the desired TGB beam waist;

• truncated Bessel-Gaussian beam (TBGB): when kρ is the
BGB transverse wave number and q = 1/ω2

0 , in which
ω0 is the desired BGB beam waist.

B. Ray Optics Forces on Spherical Particles

Consider a laser beam, whose aperture is parallel to the
xy plane and with center at Ca = (x0, y0, z0). It illuminates a
spherical dielectric particle fixed at the origin of the coordinate
system O = (0, 0, 0) with radius Rp and refractive index np.
The host medium is water, whose refractive index is 1.33.

It is well-known that light carries momentum [29] which
can be transferred to objects. When a light ray hits a bead,
there is linear momentum transfer between them, with the
consequence that the former will exert an optical force on
the latter. To illustrate this, Fig. 1 shows a single ray pi,
whose direction is k̂0, with power density dPi impacting on
a spherical particle surface at point A whose normal is n̂0.
The multiple rays reflected and refracted at the surface of
the scatterer are labeled according to its power density. We
denote by T and R the transmissivity and reflectivity Fresnel
coefficients, respectively, at medium-particle interface, and by
θi and θr the angles of incidence and refraction.

Fig. 1: Schematic diagram of the propagation of a light ray in a dielectric
spherical particle.

It can be shown that the radiation pressure d~F exerted by
pi, firstly calculated by Roosen [30] and Ashkin [9], is given
by [31]:

d~F =
nm
c

[Re(Qt)k̂0 + Im(Qt)d̂0]dPi, (6)
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where k̂0 is given by the phase gradient of Ψ and d̂0 is the
orthonormal vector with respect to k̂0, given by:

d̂0 =
n̂0 − (n̂0.k̂0)k̂0

|n̂0 − (n̂0.k̂0)k̂0|
, (7)

and Qt by [32]:

Qt = 1 +Re−i2θi − T 2 e
−i2(θi−θr)

1 +Rei2θr
. (8)

The transmissivity and reflectivity can be written as [33,
Chap 1]:

R(θi, θr) =
sin2(θi − θr)
sin2(θi + θr)

sin2 β+
tan2(θi − θr)
tan2(θi + θr)

cos2 β, (9)

in which β is the crossing angle between the electric field
direction and the normal to the plane of incidence (plane in
which k̂0, d̂0 and n̂0 are contained [33, Chap 1]) and

T (θi, θr) = 1−R(θi, θr). (10)

The resultant optical force exerted by the laser is obtained
by integrating (6) over all the surface of particle which is
effectively illuminated by the beam (the region in which
k̂0.(−n̂0) ≥ 0). To do so, we need to know the power density
carried by each ray. In this work, we suppose that the electric
field is given by ~E(ρ, z) ∝ Ψ(ρ, z)x̂, in which Ψ(ρ, z) is given
by (3). Therefore, the power density Pi is:

dPi = ~S.d ~A = |~S| cos θidA ∝ | ~E|2 cos θi sin θdθdφ, (11)

in which ~S is the Poynting vector and θ and φ are azimuthal
and polar angles of the spherical coordinates. From now on,
we shall consider only normalized fields, which means that
the intensity of a corresponding ideal BB is taken as being
unitary.

III. RESULTS

To perform the numerical analysis of optical forces ex-
erted on dielectric particles, we define a TBB with vacuum
wavelength λ0 = 1064 nm, aperture radius R = 1 mm,
L = 3R2, qr = 6/L, axicon angle θa = 6◦, q = 0 and
N = 21 (thus, we have 2N + 1 = 43 different BGBs). These
conditions lead to Zmax = 9.51 mm. We also supposed that
the electric field of our TBB is linearly polarized in x̂, that
is, ~E(ρ, z) = Ψ(ρ, z)x̂, in which Ψ(ρ, z) is given by (3). The
intensity of our corresponding TBB can be seen in Fig. 2.

In our first analysis, we suppose that the TBB impinges on
a spherical dielectric particle with radius Rp = 18 µm. The
longitudinal force exerted on this scatterer is sketched in Fig.
3 for three relative (to water) refractive indices (nrel = 0.95,
1.01, and 1.20). Fig. 3 shows that the slopes resemble with
the TBB slope in ρ = 0, whose typical oscillations along
+z are closer of those observed experimentally, in contrast
with the ideal case, in which the force magnitude does not
change over the propagation. This result was expected for a

(a) 3D

(b) 2D

Fig. 2: TBB with vacuum wavelength λ0 = 1064 nm, medium refractive
index nm = 1.33, aperture radius R = 1 mm, L = 3R2, qr = 6/L, axicon
angle θa = 6◦, constant q = 0 and N = 21.

real BB because of the scatter force’s predominance as long
as the axicon angle is small, which implies in a TBB with an
extended focus.

Fig. 3: Longitudinal force for the TBB over a dielectric spherical particle
with radius Rp = 18 µm in function of z0 with x0 = 0 and y0 = 0. Three
different nrel are shown. For visualization purposes, slope nrel = 1.01 is
scaled by factor of 10.

To deepen in our longitudinal force analysis, Fig. 4 shows
the contribution of each term of (8) for the same three
particles defined before. We call the terms 1, R exp (−i2θi)
and T 2 exp [−i2(θi − θr)]/[1 + R exp (i2θr)] of (8) as inci-
dent, reflection and transmission contribution respectively. We

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on January 10,2023 at 14:10:56 UTC from IEEE Xplore.  Restrictions apply. 



observe, as expected, the incident contribution has the same
value for the three beads; the reflection contribution has its
magnitude much smaller compared with the other two and
transmission has a small variation for each particle. Finally,
we can infer that the three terms are proportional to |Ψ|2,
which leads to the longitudinal force Fz being proportional to
the intensity and, therefore, never cross Fz = 0.

(a) nrel = 0.95

(b) nrel = 1.01

(c) nrel = 1.2

Fig. 4: Decomposition of the longitudinal force for the TBB over a dielectric
spherical particle with radius Rp = 18 µm in function of z0 with x0 = 0
and y0 = 0. Three different nrel are shown: (a) for nrel = 0.95, (b) for
nrel = 1.01 and (c) for nrel = 1.2. For visualization purposes, reflection
slope is scaled by factor of 10.

The longitudinal force when the beam aperture is fixed at
z0 = −Zmax and moved along x axis is shown in Fig. 5, for

the particle defined before. As we can see, there is not a point
of stable equilibrium when the aperture is moving transversely.
It is worth to point that longitudinal forces reaches a maximum
value when x0 = ±Rp.

Fig. 5: Longitudinal force for the TBB over a dielectric spherical particle
with radius Rp = 18 µm in function of x0 with y0 = 0 and z0 = 0. Three
different nrel are shown. For visualization purposes, slope nrel = 1.01 is
scaled by factor of 10.

IV. CONCLUSION

For the small axicon angles adopted in our analysis, points
of stable equilibrium along +z did not occur, as expected. To
observe such points, it is imperative to increase the axicon an-
gle, thus forcing us to abandon the paraxial regime altogether.
But doing that involves dealing with full vector beams. Since
the original method deals exclusively with scalar beams, such
a situation turns out to be out of the scope of the present work.
It can and must, however, be considered elsewhere.

From this first attempt towards the incorporation of TBBs
in optical force calculations under the ray optics regime, we
can see clearly that it is possible to extend this analysis to
others truncated beams like TGBs and TBGBs. Furthermore,
one must also consider the behavior of the transverse forces,
and the consequences of introducing losses. This is currently
in progress.
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