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Resumo: Robôs autônomos precisam ser capa::es de aprender e manter modelos de seus ambiente. Neste contexto o 
presente trabalho contempla técnicas de classificação e extração de características a partir de imagens em conjunto 
com redes neurais artificiais com o objetivo de usá-las na implementafção do sistema de mapemanento e focalização 
do robô movei do Laboratório de Automação e Controle Evolutivo (LACE). Para perceber o ambiente explorado o 
robô usa seu sistema sensorial formado por sensores de ultra-som e um sistema catadióptrico, composto por uma 
câmera e um espelho cônico. O sistema de mapeamento é dividido em três módulos. Dois deles serão apresentados 
neste artigo: módulo class(ficador de nós e módulo caracterizador de nós. O primeiro utiliza uma rede neural 
hierárquica para tarejà de classificação. Já o segundo usa técnicas de e-rtração de atributos de imagens e de 
reconhecimento de padrões invariantes aplicadas em imagens coletadas do ambiente. A rede neural utilizada pelo 
módulo classificador é estruturada em duas camadas: razão e intuição; a qual é treinada para classificar cada focal 
explorado pelo robô dentre quatro classes pré-definidas. O resultado final da exploração é a construção de um mapa 
topológico do ambiente. Resultados obtidos através da simulação de ambos os módulos do sistema serão apresentados 
neste trabalho. 

Palavras-chave: mapeamento topológico, sistema de visão omnidirecional, rede neural hierárquica (RNAH), vetor de 
atributos, padrões invariantes afim. 

l. INTRODUÇÃO 

A tarefa de navegar no contexto da robótica móvel necessita de métodos que utilizem de maneira mais eficiente as 
informações perceptuais sobre o ambiente externo. Tais informações afetam diretamente o grau de autonomia do robô, a 
qual é extremamente necessária no contexto de modelagem de ambientes. 

O processo de modelar um ambiente consiste na criação de um modelo que represente sua estrutura fisica, ou seja, 
na construção de um mapa. Os primeiros esforços em navegação baseada em mapas foram principalmente inspirados 
nos processos cognitivos dos seres humanos, assumindo-se que os erros de sensores e atuadores pudessem ser 
detectados e corrigidos por um processo de nível mais alto, ou modificando-se o ambiente de tal maneira que tomasse a 
navegação mais fácil. Navegação baseada em mapas requer um processo de reconhecimento e análise de alto nível a fim 
de interpretar o mapa e estabelecer sua correspondência com o mundo real. Além disso, o problema de adquirir modelos 
é complexo e dificil de ser resolvido devido a limitações práticas sobre a habil idade dos robôs de aprender e usar 
modelos precisos. Estas limitações surgem a partir de problemas inerentes aos próprios sensores e ao ambiente. 

Classicamente, a construção de mapas segue duas abordagens: geométrica e topológica. A abordagem adotada neste 
trabalho é a topológica, a qual é definida por Kuipers (Kuipers, 1991 ). De acordo com ela, o ambiente é representado 
por wn número de lugares distintivos, e de modo que o robô possa se locomover de um lugar a outro. Em outras 
palavras, o ambiente é representado por um grafo, onde os lugares identi ficados formam o conjunto de vértices ou nós, 
e todas as passagens entre cada nó formam o conjunto de arestas. 
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Neste trabalho apresentamos um método de mapeamento usado pelo robô móvel do Laboratório de Automação e 
Controle Evolutivo (LACE). A Figura I mostra uma visão frontal do robô. O método de modelagem proposto usa o seu 
sistema sensorial embarcado para coletar informações sobre o ambiente, o qual é formado por sensores de ultra-som e 
um sistema de visão omnidirecional. O método utiliza uma rede neural artific ial hierárquica (RNAH) treinada para 
reconhecer e classificar os lugares usando para isso informações sobre a vizinhança do robô. Dessa maneira, o objetivo 
é mapear os espaços livres pelos quais o robô possa se locomover, bem como as relações de adjacência entre eles, 
elas si ficando-os dentre quatro classes pré-definidas, e finalmente criar um mapa topológico do ambiente explorado. 

Figura 1. Foto do robô móvel do LAC E. 

Além da classificação e definição dos nós do mapa, faz-se necessário caracterizá-los, ou seja, identificar 
características que os tornem únicos e diferentes dos demais nós da mesma classe. Tais características são extraídas de 
um conjunto de imagens coletadas em cada nó, criando assim marcos natmais que os identifica. Navegação baseada em 
marcos está amplamente difundida na literatura da área e pesquisas envolvendo tais técnicas têm obtido bons resultados. 
Como exemplo, podemos citar os trabalhos defin idos em (Arsênio, 1998; Betke, 1997; Marsland, 200 I e Se, 2002). 

2. ESTRUTURA DO ARTIGO 

Vários aspectos do uso de redes neurais artificiais e reconhecimento de padrões invariantes são apresentados na 
Seção 3. A Seção 4 aborda o procedimento geral adotado para construção do mapa topológico. A Seção 5 apresenta o 
sistema de visão omnidirecional embarcado no robô móvel do LACE, o qual é uti lizado para coletar cenas do ambiente 
a ser mapeado. A Seção 6 descreve a rede nemal hierárquica usada como classificador dos lugares exp lorados pelo 
robô. Na Seção 7 define-se o método proposto para selecionar e reconhecer marcos natmais no ambiente de navegação. 
Os resultados experimentais e conclusões obtidas a partir dos testes serão apresentados nas Seções 8 e 9, 
respectivamente. 

3. TRABALHOS RELACIONADOS 

Máquinas com a capacidade de emular funções do cérebro humano têm uma alta capacidade de processamento 
paralelo, além de serem capazes de aprender a resolver problemas e general izar soluções não aprendidas. Tais atributos 
são muito atraentes em aplicações de robótica móvel e tem sido objeto de estudos de muitas pesquisas nesta área. 

Matsumoto (Matsumoto et. a i, 1999) propôs uma técnica que usa uma seqüência de imagens como um mapa do 
ambiente. As imagens são adquiridas numa etapa de aprendizagem de uma rede neura l, seguindo uma rota pré­
determinada e coletadas seguindo espaçamentos constan tes. Após a fase de treinamento da rede, o mapa construído 
pode ser usado durante a navegação do robô para tarefas de localização e planejamento de trajetórias. A localização do 
robô é realizada através da classificação das imagens coletadas durante a navegação. 

Ster (Ster, 2004) apresenta uma abordagem para aprender mapas topológicos, a qual usa redes nemais recorrentes. 
Esta técnica segue o paradigma de navegação reativa, ou seja, o robô navega baseado em comportamentos, os quais 
consistem em atitudes do robô frente à dinâmica do ambiente. Além disso, alguns critérios comportamentais são pré­
definidos nos chamados pontos de decisão, de modo que à cada ponto, ou local definido no mapa, associa-se um 
conjunto de comportamentos. Estes são aprendidos pelo robô usando-se uma técnica de aprendizagem chamada de 
reinforcementleaming, em conjunto com um novo método com base psicológica proposto pelo autor. 

Em sistemas de navegação baseados em marcos, as percepções sensoriais são usadas para mapear o ambiente. 
Marsland (Marsland, 200 I) descreveu um método que automatiza o processo de seleção de bons marcos sob o ponto­
de-vista do robô, usando para isto uma rede neural capaz de aprender um modelo de relac ionamento entre uma 
seqüência de percepções sensoriais obtidas durante a fase de treinamento da RNA. Zitová (Zitovà, 1999) apresenta em 
seu trabalbo um sistema de reconhecimento de marcos artificiais usado para navegação de robôs móveis, o qual apl ica 
técnicas de reconhecimento de padrões invariantes afim. 
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4. SISTEMA DE VISÃO OMNIDIRECIONAL DO ROBÔ MÓVEL DO LACE 

Nesta seção aprcsenlamos o sistema de visão ornnidirecional embarcado no robô móvel do LACE utilizado para 
captura de cenas do ambiente explorado. A Figura 2 ilustra o procedimento de captura e pré-processamento das 
imagens. 

As imagens omnidirecionais são captw·adas por urna câmera com seu foco alinhado a um espelho cônico. Estas 
imagens são retificadas no módulo de visão omnidirecional, e transformadas em imagens panorâmicas da cena. Elas são 
então pré-processadas e usadas pelos procedimentos de classificação e caracterização de nós. As equações e a 
metodologia adotada na captw·a e processamento das imagens estão definidas em (Spacek, 2003). As Figuras 3 e 4 
ilustram exemplos de imagens omnidirecional e panorâmica, respectivamente. 
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Figura 2. Fases do processamento das imagens coletadas pelo sistema de visão omnidirecional do robô móvel do 
LACE. 

Figura 3. Imagem omnidirecional. 

Figura 3. Imagem panorâmica obtida a partir de uma imagem omnidirecional. 

S. CONSTRUÇÃO DO MAPA TOPOLÓGICO 

O método de mapeamento de am bientes proposto neste trabalho tem como objetivo construir um modelo 
topológico de ambientes interiores explorados pelo robô móvel do LACE. Para perceber o ambiente o robô utiliza seu 
sistema sensorial formado por sensores de ultra-som e um sistema de visão omnidirecional, sendo tais informações 
fornecidas como dados de entrada ao sistema de mapeamento. Este sistema é composto por três módulos: classificador, 
identificador/criador e caracterizador de nós. A principal tarefa do módulo classificador é identificar cada lugar visitado 
pelo robô, classificando-os dentre quatro classes pré-defi nidas, e assim criar os nós do mapa com suas respectivas 
relações de adjacência. 

Uma rede neural hierárquica estruturada em duas camadas, razc/o e intuiçc/o, é usada como principal fenamenta do 
módulo classificador. Sua estrutura e procedimento de classificação serão descritos na Seção 6. A tarefa de 
identificação e criação de um novo nó é realizada por um procedimento que recebe a informação sobre a classe do lugar 
e cria um novo nó da mesma classe. A Figura 2 ilustra a relação entre os módulos do sistema de mapeamento. 
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Além de identificar e classificar nós, é necessário caracterizá-los, ou seja, cada nó definido precisa ser identi ficado 
de maneira única e diferente dos nós pertencentes à mesma classe. O módulo caracterizador de nós é responsável por 
esta tarefa. Sua função é selecionar bons marcos do ponto-de-vista do robô, usando para isto as imagens dos nós. 

Marcos podem ser defin idos como objetos da cena que podem ser encontrados de uma maneira distintiva pelo robô. 
Neste traballio, marcos naturais serão definidos usando-se técnicas de extração de atributos e reconhecimento de 
padrões invariantes extraídos a partir de um conjunto de imagens dos nós. O procedimento adotado para implementação 
deste módulo será descrito na Seção 7. 

Figura 4. Diagrama funcional do sistema de mapeamento. 

6. MÓDULO CLASSIFICADOR 

A função do módulo classificador é classificar os lugares explorados pelo robô dentre quatro classes pré-definidas: 
corredor, porta, intersecção e sala; e assim passar esta in formação ao módulo criador, o qual efetivamente cria e insere 
um novo nó no mapa topológico. O objetivo da classificação é atribuir paràmetros a cada classe para que, com base 
neles, o robô saiba quais decisões tomar dw·ante a navegação. Dessa maneira, as decisões de navegação do robô podem 
ser defin idas como uma máquina de estados, onde cada estado (classe) está associado a um conjunto de possíveis ações. 
A Figura 5 ilustra este procedimento. 

Seguirem 

frente 

CF • Corredor à Frente 
CE = COrredor ê Esquerda 
co • Corredor à D~etta 
PAF = Porta à Frente 
PAE = Porta à Eoquerdo 
PAO = Porta à Direita 
PFE = Porta Fechada à 
Esqueroa 
PFD =Porta Fechada à 
Direlt8 
NO= Nao Definido 

Figura S. Diagrama em máquina de estados das decisões de navegação do robô. 

Analisando a Fig. 5 pode-se constatar que uma vez que o mapa proposto esteja disponível , basta ao robô identificar 
a classe do local atual para então decidir quais decisões tomar. Nesse caso, tendo um plano de percurso definido, o robô 
pode então escolher o próximo nó do mapa a ser ocupado a fim de alcançar seu objetivo. Dessa maneira, o sistema de 
classificação de lugares pode ser usado tanto para propósitos de mapeamento quanto para local ização do robô durante 
sua navegação. 

Para implementar a tarefa de classifi cação usamos uma Rede Neural Artificial Hierárquica (RNAH) treinada para 
reconhecer as classes de lugares definidas. A estrutura da RNAH bem como seu procedimento de classificação será 
descrito na próxima seção. 

6.1. Rede Neural Hierárquica - RNAH 

Nesta Seção descrevemos a estrutura da rede new·al hierárquica utilizada para tarefas de classificação dos lugares 
explorados pelo robô. A RNAH é formada por duas camadas, razão e bzwição, como ilustrado na Fig. 6. 
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Figm·a 6. Estrutura da Rede Neural Hierárquica- RNAH. 

A RNAH recebe como entrada os dados lidos pelo sistema sensorial do robô: medidas de distância e imagens do 
ambiente fornecidas pelos sanares e sistema de visão omnidirecional, respectivamente. A rede razão recebe os dados 
lidos pelos sonares e com base neles é capaz de identificar a classe corredor, quando o robô navega através deste, e a 
classe interseção, quando detecta o encontro de dois ou mais corredores de modo que o robô possa eventualmente 
mudar a direção do seu percurso. As informações de distância são suficientes para identificar as referidas classes nas 
condições descritas. Os parâmetros necessários para definição da classe sala estão em estudo, de modo que a mesma 
não foi incluída nos testes apresentados neste trabalho. Quando o robô se locomover através de um corredor e seus 
sonares detectarem a existência de uma abertura lateral, esta pode consistir de uma porta ou um conedor. Neste caso as 
informações de distância não são suficientes para identificar a classe correta. É neste momento que a rede intuição é 
ativada. 

Na situação descrita anteriormente um dos neurônios da saída da rede razão é ativado, o qual consiste no neurônio 
excitador da rede intuição. Esta executa então seu procedimento de classificação utilizando imagens do local atual com 
o objetivo de identificar a classe correta: porta ou corredor. Para isso, a segunda camada da RNAH é treinada com 
imagens destas duas classes de lugares para adquirir a capacidade de distingui-las. 

O fato descrito no parágrafo anterior é o que justifica a criação de uma rede neural hierárquica para propósitos de 
classificação. Os testes envolvendo a RNAH foram realizados e serão descritos na Seção 8. 

6.2. Treinamento da RNAH 

Para identificar as classes definidas, ambas as camadas da RNAH precisam ser treinadas para adquirir tal 
capacidade. Defin imos então parâmetros para cada classe, os quais as caracterizam tomando-as diferentes das demais. 
Tais parâmetros são levados em consideração durante a construção do conjunto de padrões de treinamento. 

O conjunto de treinamento fornecido à camada ra:;ão da RNAH permite que a mesma classifique com certo grau de 
certeza as classes cujos parâmetros que as caracterizam são bem definidos e modelados com base nas distâncias lidas 
pelos sonares. As classes onde isso não acontece são caracterizadas por suas imagens, e é responsabilidade da segunda 
rede identi ficá-las, a qual é ativada sempre que houver qualquer dúvida no processo de reconhecimento da primeira 
camada. 

Por exemplo, um corredor é definido como um lugar limitado continuamente por obstáculos em ambos os lados do 
robô. Uma intersecção é um local onde dois ou mais corredores se interceptam, de modo que o robõ possa 
eventualmente a lterar a direção do seu percurso. Essas duas classes são então modeladas levando-se em consideração 
tais características e as informações disponíveis para a construção dos modelos: leitura das distâncias dos sanares. No 
caso da rede intuição, o conjunto de treinamento é formado por diferentes imagens de portas e corredores, com o 
objetivo de capacitar a rede a distingui-las quando estes forem encontrados dLu·ante a etapa de mapeamento. 

A arquitetura da rede neural adotada é a Perceptron Multicamadas (MPL), que são redes adequadas para a tarefa de 
classificação. Determinar o número de camadas ocultas e a quantidade de neurônios em cada uma é uma importante 
decisão de projeto determinada empiricarnente dw·ante a fase de testes, levando-se em consideração os resultados 
obtidos. 

Os sonares localizados nas laterais do robô se movem na horizontal enquanto realizam a leitma das distâncias. O 
resultado é a criação de um vetor de números reais, onde cada número representa a distância do robô em relação a um 
objeto, calculada de acordo com o ângulo formado entre a respectiva direção de leitura e a posição central de leitura, 
seguindo o procedimento ilustrado na Fig. 7. Já o sensor dianteiro se move tanto na horizontal quanto na vertical, 
resultando em uma matriz de números reais. Isto é necessário para garantir que o robô detecte a altma do espaço livre à 
sua frente, evitando possíveis colisões. Dessa maneira, cada neurônio da camada de entrada da rede razão recebe o 
valor armazenado em uma das posições do vetor ou matriz de leituras. Assim esta camada tem tantos new·ônios quan to 
o número de leituras realizadas pelos u·ês sanares. Neste caso, este número pode ser modificado, adequando-o as 
necessidades do sistema de modo a tomá-lo tanto confiável quanto eficiente. Sua camada de saída é composta por 
quatro neurônios: os três primeiros correspondem às classes sala, intersecção e corredor, enquanto o último consiste no 
neurônio excitador da rede intuição. 
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Figura 7. Procedimento de leitura dos sonares laterais do robô. 

Como já citado, a rede intuição recebe como entrada imagens dos locais a serem classificados. Dessa maneira, o 
número de neurônios de sua camada de entrada é igual à resolução das imagens, ou seja, o número total de pixels 
utilizados para representar as imagens. Este número deve ser "grande" o suficiente para garantir a qualidade no processo 
de c lassificação, e "pequeno" o suficiente para garantir eficiência durante as fases de treinamento e validação da rede, 
etapas estas que demandam o maior tempo de execução. 

7. MÓDULO CARACTERIZADOR 

Nesta seção descrevemos a técnica proposta para implementar o módulo caracteri::ador de nós do sistema de 
mapeamento. A função deste módulo é caracterizar os nós identificados pelo módulo classificador, a fim de tomá-los 
únicos e distintos dos demais nós pertencentes à mesma classe. O objetivo é criar marcos natw·ais para os nós a partir de 
cenas de um conjunto de imagens, as quais serão usadas como marcos visuais, o que difere da abordagem onde marcos 
são defin idos como objetos individuais da cena. 

Em nossa abordagem, os marcos são definidos por vetores de atributos e invariantes de momento afim extra ídos a 
partir das imagens dos nós. A técnica usada para extrair os vetores de atributos e diminuir o tamanho dos mesmos é a 
PCA (Principa l Component Analysis) (Duda, 1973), cuja aplicação resul ta em uma representação de menor dimensão da 
imagem, levando em consideração a variância dos atributos. As equações usadas para ca lcular os m omentos afins foram 
derivadas por Zitovà (Zitovà, 1999), as quais são invariantes sobre transformações afin s gera l. 

O procedimento descrito no parágrafo anterior é responsável pela seleção de marcos naturais (vetores de atributos e 
momentos afins) em cada nó do mapa. Dessa maneira, durante a criação do mapa, os marcos em cada nó são usados 
para treinar uma rede neural, criando assim um classificador de marcos natw·ais usado para tarefas de mapeamento e 
localização. 

7.1. Seleção de Marcos Visuais- Vetores de Atributos 

A abordagem proposta para implementação da PCA é baseada no traba lho descri to por Martinez (Martinez, 2005), e 
é definida como segue. 

Considere a imagem I fornecida pelo sistema de visão, representada por urna matriz de dimensão m x n, de modo que 
cada elemento representa o nível de intensidade de cinza naquele ponto. A imagem pode ser representada por um vetor 
através da leitura coluna a coluna da matriz da imagem e armazenando cada pixel num vetor coluna. Assim, 

x(l) = l(i,j), (I ) 

para i = 1 . ... ,n, j = 1 . . . . ,me I = i + O x i) x m. O tamanho do vetor de atributos é dado por d = m x n. 
Considere t padrões de treinamento conhecidos, x l , x2, . . . , xt. O conjunto de treinamento pode ser visto como uma 

matriz, onde cada coluna contém wn padrão de h·einamento, 

(2) 

A matriz de covariància I x da matriz de tTeinamento X, pode ser definida como 
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2> = (X - J.t)(X - J.L{, (3) 

onde ).l é a matriz média de d imensão d x t, e cada coluna da matriz contém o valor esperado do padrão X. 

1 I 

j.L (i, j) = - L(X (i, j )), 
t J = l 

(4) 

para i = 1, .. . ,de j = 1, ... ,!. 
Dada a matriz de covariância I x, estima-se seus auto-vetores e auto-valores de maneira que: 
Ài and vi, para i = 1 .. . . . d, são os auto-valores e auto-vetores de D, respectivamente. 

Os a utovalores indicam a relevância dos autovetores. No caso da PCA, se um dado autovetor tem um grande 
autovalor, isto significa que este autovetor está em uma direção com grande variância nos padrões. Assim, os 
autovetores são dispostos em ordem decrescente de autovalores. 

O conjunto ordenado de autovetores compõe a matriz de transformação H abaixo, 

(5) 

o vetor de atributos é obtido através de uma mudança de base, onde a matriz H é a matriz de mudança de base 

(6) 

e ffl' é a matriz transposta de H. 
A matriz de novos atributos Y obtida não apresenta redução na sua d imensão, sendo somente uma mudança de base 

no espaço de atributos. Entretanto, a matriz de covariância H pode ser construída somente com os autovetores que 
possuem os ma iores autovalores. Assim, escolhendo-se k autovalores, k < d, a dimensão do vetor de atributos é 
reduzida para wna representação k-dimensiona l. 

Nas técnicas de reconhecimento de padrões pesquisa-se por características distintivas, ou seja, por vetores de 
atributos que não tenham covariância entre si. Através da matriz de covariância Ix é possível checar se existe 
covariância entre os atributos definidos. Fazendo-se a transformação dos atributos X para os novos atributos Y usando 
PCA, observa-se que a matriz Y tem média zero e a matriz de covariância IY é d iagonal, em q ue os elementos da 
diagonal principal são os auto-valores de Ix, e os elementos fora da d iagonal principal são zero. Isto significa que os 
elementos da matriz Y não estão correlacionados. 

8. RESULTADOS EXPERIMENTAIS 

Nesta seção a presentamos os resultados obtidos durante a fases de testes dos procedimentos de seleção e 
reconhecimento de marcos do módulo caractcrizador e de ambas as camadas da RNAH: razão e intuição. 

Para criar as duas camadas da RNAI-1, bem como a RNA do classificador de marcos, usamos o simulador de redes 
neurais SNNS (Stuttgart New-al Network Simulator) (Zell, 2000), o qual fornece também suporte para etapas de 
treinamento, validação e teste. 

A camada razão criada é uma rede perceptron de camada ún ica com 35 neurônios em sua camada de entrada , cada 
um dos quais recebe uma das posições do vetor e matriz de leitura dos sanares. A saída desta camada tem quatro 
new-ônios, os três primeiros relativos às classes intersecção, sala e corredor, e o último é o neurônio excitador da 
segunda rede. 

A rede intuição foi testada usando perceptrons de camada única e multicamadas. Isso porque os resultados obtidos 
no primeiro caso foram insatisfatórios, apresentando uma baixa taxa de acertos na classificação. Este problema foi 
resolvido com o uso de uma perceptron multicamadas, cujos resultados serão apresentados a inda nesta seção. 

A camada de entrada da rede intuição tem 300 neurônios, cada um dos quais recebe o valor armazenado em um dos 
pixels da imagem de 50 X 6 de resolução. Sua camada de saída tem dois neurônios relativos às classes corredor e porta. 

O conj unto de treinamento fornecido a rede razão tem 95 padrões, o qua l foi utilizado para treiná-la para o 
reconhecimento de corredores e intersecções, sendo estas classes modeladas levando-se em consideração as leitw-as dos 
sanares. Já o conjunto de treinamento da camada intuição tem 65 imagens de portas e corredores. Durante a tàse de 
testes foram apresentados 24 e 50 padrões à camada razão e intuição, respectivamente. 

Todos os 24 padrões fornecidos à pr imeira rede eram completamente desconhecidos desta, ou seja, eram situações 
não apresentadas em etapas an teriores. À rede intuição foram apresentados 30 padrões desconhecidos e 20 imagens de 
portas e corredores conhecidas da rede, vistas, contudo, sob diferentes pontos-de-vista ou sob dife rentes condições de 
iluminação. 
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A Tabela l ilustra o resultado geral da classificação das duas camadas. A coluna 2 indica a taxa geral de acertos. A 
coluna 3 mostra a taxa de acertos no processo de classificação dos padrões desconhecidos, ou seja, padrões não 
uti lizados durante as etapas de tre inamento e validação. Já a última coluna, válida somente para a rede intuição, indica a 
porcentagem de acertos na classificação daqueles padrões conhecidos da rede e que sofreram algum tipo de 
modificação. 

Tabela L Classificação geral das camadas razão e intuição. 

Camada Classificação Padrões Padrões 
Geral Desconhecidos Alterados 

Razão 100% 100% 
Intuição 94% 90% 100% 

A Tabela 2 resume os resul tados obtidos pela rede intuição no processo de classificação das classes porta e 
corredor. Analisando-se a tabela, pode-se concluir que a rede alcançou uma taxa de acertos superior a 90%. Alem disso, 
somente 7% dos padrões corretamente classificados obtiveram tml baixo valor de ativação, o qual está dentro do 
intervalo [0.65, 0.75], o que pode ser considerado aceitável. 

Tabela 2. Classificação da camada intuição - classes corredor e porta. 

Classe Classificação Classificação Classificação 
Correta lnCOITeta Correta com baixo 

Valor de Ativação 
Porta 93% 7% 7% 
Corredor 95% 5% 0% 

Para implementar o módulo caracteri::ador nós usamos uma RNA treinada com informações sobre os marcos 
defin idos em cada nó. A Figma 8 mostra a estrutura da RNA. 

Nos testes uti lizamos perceptrons com diferentes números de neurônios na camada oculta. A Tabela 3 resun1e os 
resultados obtidos, mostrando o número de neurônios na camada oculta, o Mean Square Error (Braga, 2000), o erro 
tota l do conjunto de treinamento e a porcentagem de classificação incorreta. 
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Figura 8. Estrutura da RNA caracterizador de marcos. 

Tabela 3. Resultados dos testes da RNA - Caracterizador de marcos. 

Neurônios MSE En·o 
Porcentagem de 

En·o 

o 0.1360 5.43981 30% 

5 0.52 133 20.853 14 33,3% 

10 0.53058 2 1.22337 33,3% 

20 0.5 1565 20.62615 46,6% 

30 0.51 304 20.52151 53,3% 
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9. CONCLUSÕES 

Este trabalho contempla uma técnica de modelagem de ambientes para navegação do robô móvel do Laboratório de 
Automação e Controle Evolutivo - LACE, o qual usa seu sistema de visão omnidirecional e sensores de ultra-som para 
adquirir informações sobre o ambiente externo e fornecê-las ao sistema de mapeamento. Este é composto por três 
módulos, sendo dois deles descritos neste artigo: módulo classificador de nós e módulo caracterizador de nós. 

O modulo classificador utiliza como ferramenta de classificação uma rede neural hierárquica estruturada em duas 
camadas: razão e intuição. Ambas as camadas da rede foram construídas usando o s imulador de redes neurais SNNS. O 
uso de uma perceptron de camada única nos testes da rede razão apresen tou excelentes resultados j á que a classificação 
da mesma alcançou I 00% de acertos. Sendo assim, tal arquitetura de rede mostrou-se adequada para a implementação 
do sistema real do s istema de mapeamento do robô. 

Os resul tados obtidos no teste da camada intuição foram tan1bém satisfatórios, pois a mesma obteve em geral uma 
taxa de acertos de 94%. Assim, esta camada alcançou o objetivo para a qual foi criada: resolver possíveis con flitos no 
processo de classificação da primeira rede. A lém disso, pode-se concluir que a ba ixa resolução das imagens de entrada 
da rede, 50 x 60 pixcls, foi suficiente para o propósito de classificação. 

Sobre o módulo caracteri::.ador, pode-se dizer que a estruLUra da RNA não está adequada para a tarefa de 
classificação de marcos, pois a porcentagem de erro neste processo foi maior do que a esperada. Serão real izados 
alterações na estrutw·a da RNA ou em alguns parâmetros utilizados na etapa de treinamento com o objetivo de se gerar 
melhores resultados. 
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