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Let G be a finite group and ZG be the integral group ring of G. We denote Received 13 November 2020
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1. Introduction

Describing explicitly the group of units of integral group rings is a classical open problem, that
has been solved only for some groups, such as cyclic groups of order p" for some prime numbers
p and some integers n (see [2, 7, 8]), groups of type C; x C, or C; X C; X C,, for some prime
numbers p (see [9]) and, using the results of [7] and [13], some elementary abelian groups. See
also [5].

The problem of describing explicitly the group of central units of integral group rings ZG has
been solved for some non-abelian groups, such as the alternating groups A,,, for values of n such
that the group of central units of ZA, has rank 1 (see [1,3]), and groups of type C; X C, (semi-
direct product of cyclic groups) for certain values of p and g (see [11]). But there is still a great
amount of groups that do not have such a description yet.

In the present paper, we generalize the results obtained in [11] to a wider variety of groups
that share properties that allow us to apply the same ideas that the authors used, and we are able
to describe explicitly the group of central units of some classes of integral group rings.

First we fix some notations: If H < G are groups and H is finite, then H := 3, h and if |H|
is invertible in R, then we denote the idempotent ey = ﬁH € RG; if G is a group such that H «
G and R is a ring, then A(G,H) denotes the kernel of the ring homomorphism 7 :RG —
R(G/H) that extends linearly the natural projection G — G/H; we also denote ¢ as the augmenta-
tion map. If G is a group and g € G, then o(g) is the order of g in G.

We also remember that a prime number is called regular if it divides its class number. For
example, all prime numbers p < 37 are regular (see [4], p. 430, Table 9).

Proposition 1.1. (Proposition 3.6.7, [15]) Let R be a ring and H, G groups such that H< G. If |H]|
is invertible in R, we have:
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RG = RG@H @RG(l - eH),
with RGey =2 R(G/H) and RG(1 — ey) = A(G, H).
In particular, we have that RG = RGeg @ RG(1 — eg). In this case, if R is commutative, the

first component of the direct sum above will be composed of elements that commute with RG.
Then we have the following:

Theorem 1.2. Let G a finite group, then

Z(U1(QG)) = (1 + QGeg) N U1(QG)) x (14 QG(1 —e)) N Z(U1(QG)))

Proof. First, we note that both factors are in Z(U;(QG)), because of the paragraph above.

Proposition 1.1 gives us that (1 + QGeg) N (1 +QG(1 —eg)) = {1}.
Now suppose u € Z(U;(QG)). Let us take u; =14 (u— l)eg,up =1+ (u—1)(1 —eg).
Then we have:
wmuy =14+ (u—1leg)(1+ (u—1)(1 —eg)) =
=1+u—-1)(1-eg)+(u—1leg+(u—1leg(l—eg)=1+u—1=u,
because eq is idempotent.
Then we have the result. 0

Remark 1.3. Considering the morphism n : QG — QG/G, we could take any uy = 1+ (w — l)eg,
such that n(w) = n(u) in the proof above.

Now we are able to describe Z(U,(ZG)) for certain groups G. First we fix some notations: if
g € G, then C, denotes the conjugacy class of g, and y, denotes the class sum of g.

Theorem 1.4. Let G be a finite group such that the following property holds:
Ifx€ Gand x ¢ G, then y, = G'x.
Then we have that:

Z(U(ZG)) = (1 + ZGeg) N UL(ZG)) x (U1(ZG') N Z(ZG))

Proof. We denote by Is a complete set of representatives of the conjugacy classes of G contained
in G, and by Ig_¢ a complete set representatives of the conjugacy classes of G that don’t inter-
sect G’ (these are all the possible conjugacy classes, as G’ < G).

Let u € Z(U,(ZG)). As u is a central element of the group ring, we have that u can be written

as following:
u= Z oY, + Z oc;,(A;’b,

acly bGIG,G/

where o € Z, for all s. We denote by = the ring homomorphism that extends linearly the projec-
tion G — G/G'. We have:

n(u) = Z %|Ca| + |G| Z b € Ui (ZG/G).

a€ly bel;_ o

As &(n(u)) =1, we have that >
elements:

aely %a|Cal = 1(mod|G'|). So, we can define the following
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Dacty %alCal =1+ G D4y, , owb
wp ‘= 1+ |G/|

)@ €1+ ZGeg.

llEIGr llEIGr

m::Zcxavu—( 1+Zoca|C |) G eZG’

To prove our result, we will verify that wyw, = u. This should be enough, since we would
have that w;' = wou™! and w;' = wiu™! (so they are units), and we have that the elements w;
and u being central imply that w, is central.

Wiwy = W2+| /| (Z Oﬁa|Ca|—1—|—|G" Z ocbb)é/WZ

acly belg o

Since w, € ZG' has augmentation 1, we can write:

wWiw, = W2+| /| (Z oca|Cu|—l—|-\G’| Z O([J?)é\/:

a€lgy bels_ o
And our result is proven. 0

Let us denote Z, the ring of integers modulo n, for all positive integers n. Also, we fix m :=
|G| the order of G'. Consider the morphism ZG/G — Z,,G/G' that extends linearly the natural
projection of the coefficients, and we denote =, : U;(ZG/G') — U(Z,,G/G') the induced group
homomorphism on the group of normalized units. We also consider again the ring homomorph-
ism 7 : ZG — Z(G/G'), that extends linearly the projection g—g € G/G'.

Then we have the following corollary:

Corollary 1.5. With the same hypotheses of Theorem 1.4 and the definitions on the paragraph
above, we have:

Z(U](ZG)) = W1 X Wz,

where:

W, = <1 + w lw € n_l(ker(nm))> =~ ker(my,),
W, = (U(ZG') N Z(ZG)).

Proof. By the previous theorem, we just need to verify that W := Wy = ((1 4+ ZGeg) N U, (ZG))
and that W = ker(m,,).

Let us take an arbitrary unit of the form 1+ (x — 1)eg,x € ZG. In order to prove that this
unit is in W), we have to prove that n(x) € ker(m,,).

We have the following: if x, y € ZG then

(1+ (x—1ec)(1+ (y — Deg) = (1 + (xy — Leg).

So we have that (14 (x — 1)eg) € U1 (ZG) if, and only if n(x) € U;(ZG/G') and (x — l)eg €
ZG (that is, it has integer coefficients), due to the isomorphism ZGes = ZG/G', induced by
geq — g — in this case, the inverse of (14 (x — 1)eg) would be (1+ (y — 1)ew), where n(y) =
n(x)~". This proves that W, C ((1 + ZGeg) N U, (ZG)) (because the domain of ,, consists only
of units and, if n(x) € ker(n,,), then 1+ (x — 1)ew has only integer coefficients).

Now we prove the other inclusion: suppose u =1+ (x — l)eg € ((1 + ZGeg) N U, (ZG)), for
a certain x € ZG. Taking {g;G,i € I} a complete set of representatives of cosets of G/G', we can
assume that there are integers x; such that x can be written:
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X = Zx,-g,».

icl

From now on we assume that x is written in the form above. If g; is a coset representative
such that g; ¢ G’ and h € G, we have that the coefficient of gih in 1 + (x — 1)eg is ;. If other-
wise g; is a coset representative of the class 1, then the coefficient of g;h is ‘g—,‘ — ﬁ Therefore
we conclude 7(x) € ker(m,,), because every coefficient of (x — 1) is divisible by m = |G'| so that
14 (x — 1)eg has integers coefficients and by the proof of the first inclusion, we have that 7(x)
is a unit. Thus x € 7! (ker(m,,)).

So, we proved the remaining inclusion ((1 + ZGeg) N U (ZG)) C W;. Also, W = ker(m,,),
because 1 + (UJ‘IE,I‘)G/ =14+ (“’2‘5,1')6/ if, and only if n(w;) = n(w,).

And our result is proven. O

Now we are ready to apply these results to some concrete examples of groups.

2. Groups of type Cgn X Cpn

In this chapter, we will do something similar to what was done in [11], applying Corollary 1.5.
First we fix some notations: given p # g odd primes and m, n, r integers such that 1 <r < g™,
we define for this section

G:=Cpgn,= (abla? =b" =1,bab™" =a’).

We will need that " = 1(modq™), and it follows that (r,q) = 1. We will study only the cases
that are non-commutative, so we will assume r Z 1(mod g™). These are all the non-commutative
possible cases. These groups G are semidirect products Cgn X Cyn.

In [14], the authors presented a set of linearly independent units that generate a subgroup of
finite index for the group of central units of the integral group ring of Cyn X C,» when the action
defining the semidirect product has trivial kernel.

Before we proceed, we will need some facts about the group Cpn, g .. First, let us fix the fol-
lowing notation: if # > 1 is an integer, we denote U(Z,) the group of units of Z,,.

Lemma 2.1. If Cp gn,, and Cpn gn s are groups as defined above, and if there exists an integer o
such that o(r) = o(s) = p° in U(Zyn), then Cpn gn,r = Cpn gm s
Proof. We know that U(Zg») (the group of units of Z») is cyclic, then exists j such that (j,p) =
1 and ¥ = s(mod q™).

So, Wab™/ = a*, and b/ generates (b) (because (j,p) = 1).

Then we have:

Cpn,qm,r = <a) bj|aqm = bp" = 1, bjab_j = as> 2 Cpn)qm)s

We will conclude the converse of the above result after we find the conjugacy classes.

Lemma 2.2. If o(r) = p°,0 > 1 in U(Zyn), and 0 < I < o, then ' % 1(mod g¥), for all 0 < k < m.

Proof. We know that |U(Zgn)| = "' (q — 1),|U(Zy)| = ¢ (g — 1).

Since r*" = 1(mod q™), then p°|/(q —1). Furthermore, we also know that U(Zg) is cyclic
(since g is odd). Let t an integer such that its class modulo g™ generates U(Zg»). We have that
the class modulo g* of ¢ also generates U(Zg)-
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-1 (a-1) m-1a-1i
So, there are i, j such that (j,p) = (i,p) = L,r =1 %(moqu) and r =11 qP—”(modqm)
(-1

(since 17" 7 is a generator of the subgroups of order p’ of U(Zgn) and of U(Zy), and the
respective classes of r is in both subgroups).

m—1(q-1)j

So, ' =+t 7 (mod gt). But ¢ 1(q—1) Jg" ! _(?;11)]‘.

So we conclude that r? # 1(mod ¢¥). O
Lemma 2.3. Suppose o(r) = p° in U(Zgn). Then there is k < m such that (1 —r',q") = q~ if, and
only if p°|i.

In this case, (1 —1',q™) = q™.

Proof. (=) ¢*|(1 —r). So there is y integer such that 1 — r' = g*y. We have:

r= qky +1
r' = 1(mod q*)
From Lemma 2.2 we have that p°|i.
(<) We have 1 — v = 0(mod q™), then we can take k= m. O

Now we will evaluate the conjugacy classes of Cy gn , and each class sum. Let us fix p° as the
order of r in the group of units of Zn:

(1) class {1}, with class sum 1. _
(2) let1<i<g™—1,(i,q) = 1. We evaluate the conjugacy class of a":

(@b)ai(b*a ) = g

And we have

Since (i,q) = 1, the above is equivalent to:

* = r(mod q") <= k — s = p°(mod q"™)

So we have that, in this case, the class of a' is {a’,a”,a",...,a”™ '}, and we denote its sum
by v:.
In the case (i,q™) = ¢', we have (without loss of generality, we consider s>k below):

a" = a" = ir* = ir'(mod ") <= i(r* — r) = 0(mod ") =
g% — ) = (1 — )
Since (r,q) = 1, the above is equivalent to:
-,
which is equivalent to
7% = 1(mod ¢" )
From Lemma 2.2, we have that the above is equivalent to
P°|(s — k).

So in the case (i,q) # 1 we also have the same format for the conjugacy class of a’.
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(3) If1<i<p"—1,(1—r,q) =1 We will find the conjugacy class of b'’:
(@b (b~*a) = dbla = dbia b b = )b

And we have
aj(l—ri)bi _ al(l—r")bi —
i1 =) =11 —r)(modq") <=
j=1(modq™)

Therefore, the class of b in this case is {¥',ab’,a®t',...,a?" "'b'}, and its sum is ab'.
(4) If1<i<p"—1,(1—r,q")=q" (from Lemma 2.3), k = m). Let us evaluate the conjugacy
class of b in this case:

(@b (b~*a) = b = b

So, the conjugacy class of b’ in this case is {b'}, with sum b’ (this means that b’ is a central
element of the group when (1 — 1, q) # 1). In fact, the center of the group is generated by
such b”s.

(5) now we evaluate the case of elements of type a*b’. If (1 —r,q) = 1, the class appeared in
case (3), and in the case (1 — ri,oq) # 1, we can just use the fact that b’ is central, and we
have that the class is {a’b’,...,a™ b'}, with sum 7,b'.

Note that all the conjugacy classes we evaluated have 1, p° or g™ elements, proving the reciprocal
of Lemma 2.1, that is, if Cyr gn , 22 Cpr gn.s, then o(r) = o(s) in the group of units of Zgn.

First we will show that if 0 <#n (remember that o is such that the order of r in the group of
units of Zgn is p°), then the assumption of Corollary 1.5 may not follow.

First we notice that G = (a), and that Z(G) = (b*"). To show what we want, we could sim-
ply note that the units of Z(b*") are all central in ZG (since b*" is a central element in G), and if
u is such a unit, then 14 (4 — 1)(1 — eg’) may have non-integer coefficients, for certain value of
(p",q™,r). We give an example:

Example: Let (p",g") = (81,19) and r such that the order of r in the group of units of Zs
is 9. And we consider the following Hoechsmann’s unit (see [16], Chapter 2 for more information
about such units):

w= (14 F) + ) + B + )1 +8) — @),

in this case, one can easily verify that 14 (u—1)(1 —eg) = u — ueg + e has non’integer
coefficients.
Now we define the following morphism:

7'Eqm : U1 (ZCpa) — U1 (quCpo)

this morphism takes the coefficients to their classes modulo g™.
With the conjugacy classes evaluated and the morphism above defined, we conclude
the following:

Corollary 2.4. If o(r) = p° in U(Zyn), we have that:

Z(Ul (ZCpo)qm)r)) =W; X Wy,

where:
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u—1)a
W = {1 Jr(q—m)u € ker(nqm)} = ker(mgm)

Wy = Z(U1 (ZCpo,gn.r)) N UL(ZCy)

Proof. By Corollary 1.5, we just have to prove that G = (a). For this, note that G = (a)(b),
so G =[G, G] = [{a), (b)] C (a).

Furthermore, we have that aba 'b~! = a'". From Lemma 2.3, we have that a'™" generates
(a), proving the result. |

Using the results of [7] and [8], we can now evaluate explicitly a basis for W; and a basis for
W, in the cases (p° g™) = (3,49),(9,19)or(9,37) (the other possible cases to evaluate using the
results of [7] were already evaluated in [11]). In all cases we will utilize techniques similar to the
ones used in [11] to evaluate a basis for W,. Note that W, is trivial in the first case. In the other
two cases we use GAP to evaluate Wi, and the code is in Section 4. We will start calculating a
basis for W,.

3. Basis for W,

In this section, we will describe a basis for W, as in Corollary 2.4 when (p° g") =
(3,49),(9,19) or (9,37), and we use the same notations as the previous section. Let us denote  :
ZG — ZG the classical involution, given by dec agg— dec agg~'. An element u € ZG is said

to be symmetric if u* = u. We start with the following proposition:
Proposition 3.1. The units in W, are all symmetric.

Proof. Let i : Uj(ZCyn) — Uy (ZCyn) be the morphism that extends linearly a— bab™! = a’. We
have that W, = {u € U;(ZCpn)|n(u) = u}. We also have that n(x*) =n(x)", for all x € ZCpn.
Thus, if u is a symmetric unit, then n(u) is a symmetric unit too.

Let u € W,. We have that u may be written uniquely as u = a'v, with 0 <i < g™ — 1,v = v".
Since n(u) = u, we have that a'v = n(a'v) = n(a’)n(v) = a"n(v). Since n(v) is symmetric and
because of the unique expression for the above u, we have that v =#5(v), and that a” = a'. So
q"|(r — 1)i, and by Lemma 2.2, we have that q f(r — 1), thus ¢"|i, and we have that u=v prov-
ing the result. O

We will start with the cases (p",q™) = (9,19) or (9, 37), and we will treat the case (p°,q™) =
(3,49) separately, since this case is different from the others.

3.1. Basis for W, when (p",q™)=(9, 19) or (9, 37)

Suppose in this subsection that (p”,q™) = (9,19) or (9, 37). In particular, in these cases we have
m=1. We will construct a basis similar to the one presented in [11].

Let So = fuy,us,...,us 3\ be a linearly independent set of maximum rank in U;(ZC,) (the
rank of U(ZéCq)) follows f}rom [7]), given by:

i

w=0+a+a+..+a"V)1+a" +a" + .. +a"V") —ka,

where ¢ is an integer representative of a generator of the units group of Z,, s is a representative
of an inverse of ¢ in this group, and k = % (these units are defined in [7]).
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In [11], we have the inverses evaluated:
ul=(+a+ad+.+a N1 +a" +a" + . +aV") —Ka.

Now we define, for 2 <i < ‘12;3, the elements v; := u; " u;, and v; := u;.
Let §; = V1> vzl We have (Sp) = (S;), and similarly to what was evaluated in [11], we
have: ’
vi=(+a" +a" + .. +a" 1 +a" +a + .. +a"V) — ka.

With the expression above in mind, let us generalize this definition (of v;) for all i > 0. We
define the morphism f : U;(ZC,;) — Ui(ZC,) as the linear extension of the group homomorph-
ism given by a— a’. We have:

g1
fi) =vip; 7 (v) = Vil = V.
We have that v; may be written uniquely as @w;, with w; = w}. So we have that:

W) = wirns 7 (i) = w; (1)
We define S, = (W Wi and we have that S, generates a complement for (a)
in U, (ZC,). ’
From (1) we have that, defining d:= (q—1)/2, then w; = w;4, for all i >0. We state
Lemma 4.1 of [11]:
Lemma 3.2. [11] With the definitions above, we have that wow;...we—3 = 1.

We want to find the elements generated by S, that are in the center of ZG.
According to Lemma 2.1, from now on, we will consider r = ta=1/P" We have that the map

n defined in the proof of Proposition 3.1 can be written as # = jqp;” . To simplify, we define [ :=
(q—1)/p". So, we have that n(w;) = f'(w;) = wiy. For 1 <i<1—1 we will define the elements
Zi = WiW, (Wil Wiy (pn 1)l In the proof of the next theorem we will prove that all the z/s

are central.
Now, we define the following set:

Sy = {Zl, ""Z%—l}'
We have that the set S, is linearly independent, given that S, is linearly independent.

Theorem 3.3. With the definitions above (in the cases where m=1), we have (S,) = W,.

Proof. Let us start by proving that S, C W,. We have:
n(wi) = wigs;

N(Wit1) = Wisars

”(W; ; @";3)!) = W; / (Pn;l)l;

M(Wipetoy) = Wiy

Since 2d = p"l, then i+ @l =i+d+ %, and since w; = w;14, we have (following the
equations above):

M(Yin) = Wisk
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And since 1(w;) = w;y;, we have:
’7(Wi+g) = Wi

1(Wid) = Wisg

’1(W L 4)1) =w, MR
7](Wi+(p";z)z) = WH_;% = Witd = W;.
From that, we have:

n(z) = 7’[(W,‘Wi+%WH,lWi+3EZ...Wi+(p";1)l) =
== Wi+lwi+%l...Wi+(p”2—l)IWiWi+% = Zj.

And it’s proven that (S,) C W,. We prove now the other inclusion.
Suppose u € W,. From proposition 3.1, we have that u is symmetric and, therefore, we can

write u = wi'..wj"}, for certain integers r; since S, generates the group of symmetric units of

ZCy. We have.
n(u) = n(w)"n(wa)™ = wiy w0 wiw L

since for i > d — | we have i + [ > d, we substitute i+ by i + [ — d in the index of the w’s.
By proposition 3.2 we have that wo = w;'..w;!,, so we have:

— Td—1+1—Td—I Yd—1—Td—1, ,—Td— Td—1-1—Td-1
n(u) = wy B TR 1V .

Since u is central, we have u = n(u). Furthermore, S, is a linearly independent set, then the

exponents of the w;’s in u are the same as in #(u). In particular, we have that r, = —ry_j, 1y =
r—r4 = —2rg;. By induction, we get that for every integer j> 1,7 = —jry
(since 7 = r(j_1y — ra—1).

We also have that L= Tg = Td Since d — = —p —1] and rj) = —jra—;, we have that r;, =

7p i — ra = fp—rd ;. Furthermore, ra =1 —ry_; = —£ ;3 r4—1. By induction we have
2 2
that if m is odd, then Tmz = r(mfzz — Tty = —2 +m Td—i-

Using the formula above for m=p"—2, we getr, = = —(p" — 1)r4—;, however, for this value
of m, we have that mz = d — I. Therefore, we conclude that ry_; = —(p" — 1)r4_;, and we get
that r;_; = 0. So we can write:

Td—i+1, d—I4+2 fabor Tabn a1 Td—1-1
n(u) = w""'wj WL W W 1W1+1 Wi
2 2

Comparing the exponents of the factors of u and n(u), we get r; = rij, for all i,j > 1 (such

that the index makes sense). We also get that r;, =714 = R and by the formula we con-
cluded before, in this same paragraph, we have that T = T = = T
T
r [
Then r; = Fiph = Tidl = oo = 100, and u = zll...zéz_l, as we wanted. O

3.2. Basis for W, when (p",q™)=(3,49)

Now we will work with the case (p”,q™) = (3,49). In this case n=1 and m=2. The previous
cases are essentially a repetition of what was done in [11]. From now on, the procedure is basic-
ally the same, but it will be done with two different types of units of ZCm, as we will
describe below.
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From [8], we have that, if ¢(q*) < 66, then ker(7;) x (S) generates a complement for (a) in
Ui(ZCyp), where 7y : U(ZCp) — Uy(Z[0]), 0 is a g*-primitive root of unit and U,(Z[0]) are

units congruent to 1 modulo 6 — 1 (units of Z[0]), S is the set of units u; = (1 + a’ +a* + ... +

a1 +a" + a2 + .+ altV) — (tsq;zwﬁ, where ¢ generates the group of units of integers

modulo ¢* and s its inverse, 1 < i < ¢(g?)/2 — 1.

@)
Let us use the units u; and set r = ¢ " . This way, analogously to what was done in the other

cases, we get the set Sy, consisting of elements v; = u; L u;, for 1 <i< ¢(q?)/2 —1,v; = uy. We
have that the elements v; are written as

(ts—1)
7
We will now call f: U;(ZCyn) — Uy (ZCyn) the map that extends linearly ar— a'. Again we

have that (like in the previous cases) f(v;) = vii1,f*@)/2(v,) = Visg(q)2 = V- Again, we know

vi=(1+a +a" 4+ .. +aVY1+a" +a* + ... +aV - a.

that there is only one w; such that v; = @iw;, and w; is symmetric. We define the set S, =
{wis .. wy(q)2—1} of symmetric linearly independent units. We have that f(w;) = w;;; and

F4)/2(w;) = w;. We have the following lemma, analogous to Lemma 3.2:
Lemma 3.4. With the definitions above, wy...wy2) =1L

=
Proof. We will use the properties of f. Setting u = wy...wg(s2)/2—1, We have:

f(u) = W0~-~W¢>(q2)/271 = Uu.

Furthermore:
o)
Nowje(T (1) = o(m(w) = [[m(Fw) =
+€Gal(Q(0)|Q) =1
o) , ,
= [[m () = (@) =m @),
j=1

where Ngg)@ denotes the field norm.

Since u is an unit with augmentation 1, we get Ngg)o(71 (4)) = 1.

However, from [8], we know that v/ & ker(7y) if u # 1, for all j > 1 (since (S)Nker(7;)
is trivial).

And we get u=1, as desired. |

So, we define d := ¢(q*)/2,1= ¢(q*)/p", and we define the set S, = {z1,....,z;,_1}, where
Zi = WiWi 1 aWitl---Wig(p—1)1/2- As we did in the previous cases, we have that S, C W,. In this
case we do not have equality, because we still need to consider units in ker(77). However, the
units z; that we just found form a basis for the group of central units of ZG that are in (S,),
analogously to what we did in the previous cases. And we know that ker(7;) x (S.) generates a
complement for (a) in the group U,(ZCp).

Now we consider the map f; : U;(ZC,;) — U(Z,C,) that sends the coefficients to theirs classes
modulo q. From now on we will consider q a regular prime (remember q=7 is regular). So, by
Kiimmer’s Lemma, we have that ker(f) = {u?|lu € U,(ZC,)} (see [13]). Let us denote h = ai, so
that h is a generator of a group isomorphic to C,. Thus, utilizing the symmetric units of
Z{h)ZC, obtained from the Hoechsmann units (analogous to the w; units we had in the previous
cases), that we will denote now by w;, we have that ker(fi) = (wi®),_; _ (;_3)/-

To simplify notation, we will denote y; = w;%. So, we have that the units yx; are of the form
14 gx; = 1+ g(co,i + c1,ih + ...co—1,ih7"), where ¢ are integers.



COMMUNICATIONS IN ALGEBRA® 11

Now we define the units p, =1+ ¢ B+ cl,iaﬁ + cz,iazﬁ + ..+ cq,l,iaq‘lﬁ. From [8], we
have that ker(7y) is generated by the units p;,i =1,...,(q — 3)/2 that are linearly independent
and symmetric. Thus, we conclude that the units in ker(77) are precisely all the elements gener-
ated by units of the following type:

1 —+ (do —+ dla + ...+ dq,laqfl)ﬁ,

where 14 dy + dih + ... +dy_1h?7! is generated by the y/’s.
Similarly to what we did previously, we define the units z;, for 1 <i < (qz;;) — 1, given by
Z; = WH%VVH%;U~~WH@4>%~

Remark 3.5. Here, (q — 1)/2p plays the same role that 1 played in the previous cases.

Remark 3.6. In the case q =7,p = 3 that we are studying now, the set of the z;’s is empty, since
% — 1 =0. This happens due to the fact that the rank of the group of central units of ZCs 7 is
zero (see the formula for the rank in [10]). But we will continue with the argument anyway, so
that the method will be as general as possible, allowing one to find generators of a group o finite

index in Z(U,(ZG)) in the future.

With this procedure, we have that the units z; form a basis for the group of units of ZC, that
are in Z(ZC,, 4) (here C, 4 is seen as a subgroup of G) and, consequently, in Z(ZG).

Therefore, we conclude that a basis for the group of units in ker(77) that are in Z(ZG) is
formed by the units below:

=1+ (doi+dia+..+ dqfl)iaq_l)ﬁ’

where Zqu =1+ do’,’ + d]y,'h + ...+ dq_lyihqil.
With a procedure analogous to that we did before, we have that the units z; and {; form a
basis for W,.

Remark 3.7. In our case q = 7,p = 3, we only have the units z;, for the reason mentioned above.

4, Basis for W,
We start by proving the following proposition, analogous to Proposition 2.1 from [11]:

Proposition 4.1. With the same notations of Corollary 2.4, we have that ker(my) has only sym-
metric units.

Proof. Let u € ker(nqm). We have that there is a power of b, say, Y, and w symmetric unit such
that u = biw.

Then 1 = mgn (B'w) = 7gn (V) gn(w) = bmgn(w), so we get that mgn(w) = b/, but this is sym-
metric, so b7 = 1 and, therefore, u=w. O

We still need to evaluate W, in the cases (p°,q™) = (9,19) or (9, 37) (in these cases we have
m=1). By Corollary 3.5.6 of [15], we have that Z;Cpo = (Zq)Po (since r is a primitive root of
unity of order p° in ZC,).

We need to evaluate the kernel of m4n(= 7). By the above, we have that the exponent of
Z4Cy is g — 1. By [8], we have that the set

S={si=—14+b—0+b +1° -V +b% s, =1—-b+b*+1 —b*}

generates U*(ZCy), the group of symmetric units, where b is a generator of Cy. Thus, we just have
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to evaluate all pairs s’is"z, with 0 <i,j < g — 2, for the possible values of g (in our case, 19 or 37),
and so we will have generator of ker(,) for each case. We used GAP, with the following code:

G := CyclicGroup(IsPermGroup,9);
R := GroupRing(GF(19),G);
b :=R.1;

sl :==—b " 0+b—b"2+b"34b6 — b"7+b"8;
$2 :=b0—b+b2+4b"7 — b

>

r

b~0
s b~0

>

for i in [0.17] do
s:=b"0;
for j in [0.17] do
if r*s=b"0 then
Print(’i =7, 1, 5j =7, },” \n”);

i

S: = 82 %§;
od;
r: =slxr;

od;

In the code above we did the case g=19 but, changing 19 for 37 and 17 for 35 in the code,
we obtain the case g=37.

Case g =19 :

We got the following outcome:

i=0;j=0
i=6;j=6
i=12j=12

It means that the algorithm found the following elements in the kernel: sJs9, s¢s5, s12s12.

Thus, in the case g =19, the kernel is generated by {s9s5,s1®}.
Case q = 37 :

We got the following outcome:

i=0;j=0

i=12j=12

i=24; =24

It means that the algorithm found the following elements in the kernel: sJs9, s]2s)2, s24s24.
Thus, in the case g =37, the kernel is generated by {s}s}%, s3%}.

And so we finish this section.

5. Some metacyclic p-groups

Throughout this section, we consider p an odd prime number. First, we need the follow-
ing theorem:

Theorem 5.1. [12] If p is a regular odd prime number, A is a finite abelian p-group, and u is a
symmetric unit with augmentation 1 in ZA such that u = 1(modp), then there is a symmetric unit
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v with augmentation 1 such that u=n(v)v P, where n:7ZA — ZA is an endomorphism that
extends linearly g — g%, for all g € A.

In this chapter, we will consider the groups G, = (a,b|a?” = b”" = 1,bab' = aP*!) (this can
be seen as a semidirect product Cyz X Cn).

The center of G, is {1,a?,a?,...,a?~VP}. the conjugacy classes of non-central elements are
listed below:

—

(1) the class of @', for p ¥ i is {a’,a"™?,a™*?, ..., a*?= 1P}, and its sum is y, := Z(G,)a'.

(2) the class of a'b' is {a’b,a* b, a® b, ..., aP"VP+5bi}, and its sum is [y, := Z(G,)a'b'.

We also have that G =Z(G,) = (aP). So, we have that G, satisfies the hypothesis of
Corollary 1.5.
Now we define the following morphism:

n- U](Z(Cp X Cpn)) d Ul(Zp(Cp X Cp"))’

that takes the coefficients to their classes modulo p.
We have the following theorem:

Theorem 5.2. With the notations above, we have that

Z(UL(ZG,)) = Wy x W,

where

Wy = <1 + (W_;?Z(G") |w € ker(m,, ) ) = ker(my, )
W2 = Ul (ZZ(G,J) = Ul(ZCp)

Remark 5.3. Here, we are considering the domain of ny, as U\(ZG,/G,) = U\(ZG,/(a’)), and
we can take w as any representative in the group ring ZG,.

Proof. Tt follows immediately from Corollary 1.5, and we have that the image of w; in
Ui(ZG,/G,) is what defines u; (remember that Z(G,) = G,,). O

By Theorem 5.1 we get that the kernel of 7, ; when p is a regular prime is precisely the set
{vf|u € U\(ZC, x Cpy)}. So, using the results of [7] and the following theorem by Hoechsmann,
we get explicitly the group of central units of G,, for regular primes p that are less than 68.

Theorem 5.4. [13] Let p a regular prime. So, the units of Z(C, x --- x C,) = ZG are all generated
by the units of subrings of the type ZH, where H is a subgroup of G of order p.

By Theorem 5.1 we get that the kernel of 7, ; when p is a regular prime is precisely the set
{uPlu € U\(ZC, x Cpy)}. So, using the results of [7] and by Theorem 5.1, we get explicitly the
group of central units of G, for regular primes p that are less than 68. Let us give an example:

We consider n=1, p=5. We know that Z(G,) = (a’) = C,. From [7], we have that u(b) :=
b* + b — 1 generates a complement for Cs in U;ZCs. We have:

W2 = (a") x ((@)'+ (@) —1) = (@) x (u(a"))
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Set V = {u(a)f, u(ab)?, u(ab?®)?, ..., u(ab’~')?,u(b)’}. By Theorems 5.4 and 5.1, we have that
—1 .
Wi = <1 +w|w e V>

6. Other metabelian p-Groups

In this chapter, we are going to study groups of type (C,)" X C,, where (C,)" is the direct prod-
uct of n copies of C,,.
In the case n=2, we get a very well known group:

G= (a,b,cla® =¥ = = 1,ab = ba,ac = ca,cbc ‘b~ = a)

It can also be seen as the following matrix group:

1 ki
H= < 0 1 j |i,j,kezp>
0 0 1

This is known as the Heisenberg group.
The isomorphism between G and H is given by

k i
(@, b, k) — 1 j
0 1

S O

Back to the general case, we will define the following groups, for n > 2 :

H,,, = (al,...,an,b|a€ =..= af, =bP = l;aiaj = ajai,Vi,j > 1;
a1b = bay; bayba ' = ay,Vk > 2)

Analogous to what happens in the case n =2, we have that Z(H,) = (a;) = H),, and the con-
jugacy class of an element of type g = a5...a" b/ is the set {g,a,g, a’g, ...,aﬁ’*lg}.

Thus, the groups H,, satisfy the hypothesis of Corollary 1.5.

Let us define the map 7, , : Ui(Z(C,)") — Ui(Z,(Cy)"), that takes the coefficients to their
classes modulo p. We have the following:

Theorem 6.1. With the same notations used above, we have that

Z(UI(ZHH)) = W1 X Wz,

where:

W, = <1 + %M € ker(ﬁp’n)> = ker(7p, n)
W, = U\(ZZ(H,)) = U,(ZC,)
Remark 6.2. Here we are considering the domain of 7, , as U\(ZH,/H,,), and we could take w as
any representative of it in the group ring ZH,.
Proof. It follows immediately from Corollary 1.5, analogous to the result of the previous section.

We also give an example of how to apply this to a concrete case:
With p=5 and n=2, we take u(b) = b* + b — 1. So, we have:

Wi = (a1) x (u(ar)),
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and setting V = {u(a,)?, u(a;b)?, u(a;b*Y, ..., u(a,b>~*)?, u(b)’}, we have by Theorem 5.1:

NP
W, = <1+(W+)alwev>

With this example we conclude this section.

7. Some generalized dihedral groups

We will consider H a finite abelian group such that |H| is odd, and we define the following
groups:

GH =HX wCz,

where C, = (g) and the semidirect product is defined by the morphism , given by:
x€EH—Y(x) =gxg ' =x"

Remark 7.1. We don’t need |H| to be odd to define such groups, but we need this to prove the the-

orem in this chapter. The groups of type Gy are called Generalized Dihedral groups.

Remark 7.2. In the case of H a cyclic group of odd order n, we have that Gy is the dihedral group
D, this case is covered in the Ph. D. thesis of Ferraz [6]

I = x%¢ and, since |H| is odd, we have that x € H+ x* is surjective

Now, if x € H, then xgx~
(over H), therefore G, = H. .
Furthermore, we have that if y ¢ G}, then the sum of the conjugacy class of y is 7, = Gy.

So, we have satisfied the hypothesis of Corollary 1.5, and we have immediately the follow-

ing theorem:
Theorem 7.3. If Gy is the group defined above, where H is a finite abelian group with |H| odd,
then Z(Uy(ZGy)) is the group of symmetric units U; (ZH).

Proof. By Corollary 1.5, we have Z(U;(ZGy)) = W; x W,, where W, is isomorphic to a sub-
group of U(ZGu/Gyy) = U(ZC,), which is trivial. Thus, the only non-trivial factor is W».

But W, is formed by the units of U;(ZH) that commute with Gp. Since gxg~'! = x"1, we
have that u € W, if, and only if u is a symmetric unit in Z(U;(ZH)), and we have our
result proven. 0
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