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Central units in some integral group rings

Vitor Araujo Garcia and Raul Antonio Ferraz

Departamento de Matem�atica, Universidade de S~ao Paulo, S~ao Paulo, Brazil

ABSTRACT
Let G be a finite group and ZG be the integral group ring of G. We denote
by U1ðZGÞ the group of normalized units of ZG; that is, the units which
have augmentation 1, and by ZðU1ðZGÞÞ the group of normalized central
units. Many articles have been written describing the groups U1ðZGÞ and
ZðU1ðZGÞÞ for certain groups G. In this work, we will describe the group of
normalized central units of some integral group rings by applying the idea
presented in an article by Ferraz and Sim�on to a wider variety of groups,
and we will study some examples of groups that can be treated with this
method: metacyclic groups of type Cqm 3 Cpn ; some metacyclic p-groups;
some metabelian p-groups and some generalized dihedral groups.
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1. Introduction

Describing explicitly the group of units of integral group rings is a classical open problem, that
has been solved only for some groups, such as cyclic groups of order pn for some prime numbers
p and some integers n (see [2, 7, 8]), groups of type C2 � Cp or C2 � C2 � Cp, for some prime
numbers p (see [9]) and, using the results of [7] and [13], some elementary abelian groups. See
also [5].

The problem of describing explicitly the group of central units of integral group rings ZG has
been solved for some non-abelian groups, such as the alternating groups An, for values of n such
that the group of central units of ZAn has rank 1 (see [1,3]), and groups of type Cq 3 Cp (semi-
direct product of cyclic groups) for certain values of p and q (see [11]). But there is still a great
amount of groups that do not have such a description yet.

In the present paper, we generalize the results obtained in [11] to a wider variety of groups
that share properties that allow us to apply the same ideas that the authors used, and we are able
to describe explicitly the group of central units of some classes of integral group rings.

First we fix some notations: If H � G are groups and H is finite, then bH :¼Ph2H h and if jHj
is invertible in R, then we denote the idempotent eH ¼ 1

jHj bH 2 RG; if G is a group such that H /
G and R is a ring, then DðG,HÞ denotes the kernel of the ring homomorphism p : RG !
RðG=HÞ that extends linearly the natural projection G ! G=H; we also denote e as the augmenta-
tion map. If G is a group and g 2 G, then o(g) is the order of g in G.

We also remember that a prime number is called regular if it divides its class number. For
example, all prime numbers p< 37 are regular (see [4], p. 430, Table 9).

Proposition 1.1. (Proposition 3.6.7, [15]) Let R be a ring and H, G groups such that H / G. If jHj
is invertible in R, we have:
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RG ¼ RGeH �RGð1� eHÞ,
with RGeH ffi RðG=HÞ and RGð1� eHÞ ¼ DðG,HÞ:

In particular, we have that RG ¼ RGeG0 �RGð1� eG0 Þ: In this case, if R is commutative, the
first component of the direct sum above will be composed of elements that commute with RG.
Then we have the following:

Theorem 1.2. Let G a finite group, then

ZðU1ðQGÞÞ ¼ ð1þQGeG0 Þ \ U1ðQGÞð Þ � ð1þQGð1� eG0 ÞÞ \ ZðU1ðQGÞÞð Þ

Proof. First, we note that both factors are in ZðU1ðQGÞÞ, because of the paragraph above.

Proposition 1.1 gives us that ð1þQGeG0 Þ \ ð1þQGð1� eG0 ÞÞ ¼ f1g:
Now suppose u 2 ZðU1ðQGÞÞ: Let us take u1 ¼ 1þ ðu� 1ÞeG0 , u2 ¼ 1þ ðu� 1Þð1� eG0 Þ:

Then we have:

u1u2 ¼ ð1þ ðu� 1ÞeG0 Þð1þ ðu� 1Þð1� eG0 ÞÞ ¼
¼ 1þ ðu� 1Þð1� eG0 Þ þ ðu� 1ÞeG0 þ ðu� 1ÞeG0 ð1� eG0 Þ ¼ 1þ u� 1 ¼ u,

because eG0 is idempotent.
Then we have the result. w

Remark 1.3. Considering the morphism p : QG ! QG=G0, we could take any u1 ¼ 1þ ðw� 1ÞeG0 ,
such that pðwÞ ¼ pðuÞ in the proof above.

Now we are able to describe ZðU1ðZGÞÞ for certain groups G. First we fix some notations: if
g 2 G, then Cg denotes the conjugacy class of g, and cg denotes the class sum of g.

Theorem 1.4. Let G be a finite group such that the following property holds:
If x 2 G and x 62 G0, then cx ¼ bG0x:
Then we have that:

ZðU1ðZGÞÞ ¼ ð1þ ZGeG0 Þ \ U1ðZGÞð Þ � ðU1ðZG0Þ \ ZðZGÞÞ

Proof. We denote by IG0 a complete set of representatives of the conjugacy classes of G contained
in G0, and by IG�G0 a complete set representatives of the conjugacy classes of G that don’t inter-
sect G0 (these are all the possible conjugacy classes, as G0 / G).

Let u 2 ZðU1ðZGÞÞ: As u is a central element of the group ring, we have that u can be written
as following:

u ¼
X
a2IG0

aaca þ
X

b2IG�G0

ab bG0b,

where as 2 Z, for all s. We denote by p the ring homomorphism that extends linearly the projec-
tion G ! G=G0: We have:

pðuÞ ¼
X
a2IG0

aajCaj þ jG0j
X

b2IG�G0

abb 2 U1ðZG=G0Þ:

As eðpðuÞÞ ¼ 1, we have that
P

a2IG0 aajCaj � 1ðmodjG0jÞ: So, we can define the following
elements:
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w1 :¼ 1þ
P

a2IG0 aajCaj � 1þ jG0jPb2IG�G0
abb

jG0j

 !bG0 2 1þ ZGeG0 :

w2 :¼
X
a2IG0

aaca � �1þ
X
a2IG0

aajCaj
� � bG0

jG0j 2 ZG0:

To prove our result, we will verify that w1w2 ¼ u: This should be enough, since we would
have that w�1

1 ¼ w2u�1 and w�1
2 ¼ w1u�1 (so they are units), and we have that the elements w1

and u being central imply that w2 is central.

w1w2 ¼ w2 þ 1
jG0j

X
a2IG0

aajCaj � 1þ jG0j
X

b2IG�G0

abb
� �bG0w2

Since w2 2 ZG0 has augmentation 1, we can write:

w1w2 ¼ w2 þ 1
jG0j

X
a2IG0

aajCaj � 1þ jG0j
X

b2IG�G0

abb
� �bG0 ¼ u:

And our result is proven. w

Let us denote Zn the ring of integers modulo n, for all positive integers n. Also, we fix m :¼
jG0j the order of G0: Consider the morphism ZG=G0 ! ZmG=G0 that extends linearly the natural
projection of the coefficients, and we denote pm : U1ðZG=G0Þ ! UðZmG=G0Þ the induced group
homomorphism on the group of normalized units. We also consider again the ring homomorph-
ism p : ZG ! ZðG=G0Þ, that extends linearly the projection g 7! �g 2 G=G0:

Then we have the following corollary:

Corollary 1.5. With the same hypotheses of Theorem 1.4 and the definitions on the paragraph
above, we have:

ZðU1ðZGÞÞ ¼ W1 �W2,

where:

W1 ¼ 1þ ðx� 1Þ bG0

m
jx 2 p�1ðkerðpmÞÞ

� �
ffi kerðpmÞ,

W2 ¼ ðU1ðZG0Þ \ ZðZGÞÞ:

Proof. By the previous theorem, we just need to verify that W :¼ W1 ¼ ðð1þ ZGeG0 Þ \ U1ðZGÞÞ
and that W ffi kerðpmÞ:

Let us take an arbitrary unit of the form 1þ ðx� 1ÞeG0 , x 2 ZG: In order to prove that this
unit is in W1, we have to prove that pðxÞ 2 kerðpmÞ:

We have the following: if x, y 2 ZG then

ð1þ ðx� 1ÞeG0 Þð1þ ðy� 1ÞeG0 Þ ¼ ð1þ ðxy� 1ÞeG0 Þ:
So we have that ð1þ ðx� 1ÞeG0 Þ 2 U1ðZGÞ if, and only if pðxÞ 2 U1ðZG=G0Þ and ðx� 1ÞeG0 2

ZG (that is, it has integer coefficients), due to the isomorphism ZGeG0 ffi ZG=G0, induced by
geG0 7! �g – in this case, the inverse of ð1þ ðx� 1ÞeG0 Þ would be ð1þ ðy� 1ÞeG0 Þ, where pðyÞ ¼
pðxÞ�1: This proves that W1 � ðð1þ ZGeG0 Þ \ U1ðZGÞÞ (because the domain of pm consists only
of units and, if pðxÞ 2 kerðpmÞ, then 1þ ðx� 1ÞeG0 has only integer coefficients).

Now we prove the other inclusion: suppose u ¼ 1þ ðx� 1ÞeG0 2 ðð1þ ZGeG0 Þ \ U1ðZGÞÞ, for
a certain x 2 ZG: Taking {giG0, i 2 I} a complete set of representatives of cosets of G=G0, we can
assume that there are integers xi such that x can be written:
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x ¼
X
i2I

xigi:

From now on we assume that x is written in the form above. If gi is a coset representative
such that gi 62 G0 and h 2 G0, we have that the coefficient of gih in 1þ ðx� 1ÞeG0 is xi

jG0 j : If other-
wise gi is a coset representative of the class �1, then the coefficient of gih is xi

jG0 j � 1
jG0j : Therefore

we conclude pðxÞ 2 kerðpmÞ, because every coefficient of ðx� 1Þ is divisible by m ¼ jG0j so that
1þ ðx� 1ÞeG0 has integers coefficients and by the proof of the first inclusion, we have that pðxÞ
is a unit. Thus x 2 p�1ðkerðpmÞÞ:

So, we proved the remaining inclusion ðð1þ ZGeG0 Þ \ U1ðZGÞÞ � W1: Also, W1 ffi kerðpmÞ,
because 1þ ðx1�1ÞbG0

jG0j ¼ 1þ ðx2�1ÞbG0
jG0 j if, and only if pðx1Þ ¼ pðx2Þ:

And our result is proven. w

Now we are ready to apply these results to some concrete examples of groups.

2. Groups of type Cqm 3 Cpn

In this chapter, we will do something similar to what was done in [11], applying Corollary 1.5.
First we fix some notations: given p 6¼ q odd primes and m, n, r integers such that 1 < r < qm,
we define for this section

G :¼ Cpn , qm , r ¼ ha, bjaqm ¼ bp
n ¼ 1, bab�1 ¼ ari:

We will need that rp
n � 1ðmodqmÞ, and it follows that ðr, qÞ ¼ 1: We will study only the cases

that are non-commutative, so we will assume r 6� 1ðmod qmÞ: These are all the non-commutative
possible cases. These groups G are semidirect products Cqm 3 Cpn :

In [14], the authors presented a set of linearly independent units that generate a subgroup of
finite index for the group of central units of the integral group ring of Cqm 3 Cpn when the action
defining the semidirect product has trivial kernel.

Before we proceed, we will need some facts about the group Cpn , qm , r: First, let us fix the fol-
lowing notation: if n> 1 is an integer, we denote UðZnÞ the group of units of Zn:

Lemma 2.1. If Cpn , qm , r and Cpn , qm , s are groups as defined above, and if there exists an integer o
such that oðrÞ ¼ oðsÞ ¼ po in UðZqmÞ, then Cpn , qm , r ffi Cpn, qm , s:

Proof. We know that UðZqmÞ (the group of units of Zqm) is cyclic, then exists j such that ðj, pÞ ¼
1 and rj � sðmod qmÞ:

So, bjab�j ¼ as, and bj generates hbi (because ðj, pÞ ¼ 1).
Then we have:

Cpn , qm , r ¼ ha, bjjaqm ¼ bp
n ¼ 1, bjab�j ¼ asi ffi Cpn , qm , s

w

We will conclude the converse of the above result after we find the conjugacy classes.

Lemma 2.2. If oðrÞ ¼ po, o � 1 in UðZqmÞ, and 0 � l < o, then rp
l 6� 1ðmod qkÞ, for all 0 < k � m:

Proof. We know that jUðZqmÞj ¼ qm�1ðq� 1Þ, jUðZqkÞj ¼ qk�1ðq� 1Þ:
Since rp

o � 1ðmod qmÞ, then pojðq� 1Þ: Furthermore, we also know that UðZqmÞ is cyclic
(since q is odd). Let t an integer such that its class modulo qm generates UðZqmÞ: We have that
the class modulo qk of t also generates UðZqkÞ:
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So, there are i, j such that ðj, pÞ ¼ ði, pÞ ¼ 1, r � tq
m�1ðq�1Þj

po ðmod qkÞ and r � tq
m�1ðq�1Þi

po ðmod qmÞ
(since tq

m�1ðq�1Þ
po is a generator of the subgroups of order po of UðZqmÞ and of UðZqkÞ, and the

respective classes of r is in both subgroups).

So, rp
l � t

qm�1ðq�1Þj
po�l ðmod qkÞ: But qk�1ðq� 1Þ 6 jqm�1 ðq�1Þj

po�l :

So we conclude that rp
l 6� 1ðmod qkÞ: w

Lemma 2.3. Suppose oðrÞ ¼ po in UðZqmÞ. Then there is k � m such that ð1� ri, qmÞ ¼ qk if, and
only if poji:

In this case, ð1� ri, qmÞ ¼ qm:

Proof. ð)Þ qkjð1� riÞ: So there is y integer such that 1� ri ¼ qky: We have:

ri ¼ qkyþ 1

ri � 1ðmod qkÞ
From Lemma 2.2 we have that poji:
ð(Þ We have 1� ri � 0ðmod qmÞ, then we can take k¼m. w

Now we will evaluate the conjugacy classes of Cpn , qm , r and each class sum. Let us fix po as the
order of r in the group of units of Zqm :

(1) class {1}, with class sum 1.
(2) let 1 � i � qm � 1, ði, qÞ ¼ 1: We evaluate the conjugacy class of ai:

ðajbkÞaiðb�ka�jÞ ¼ air
k

And we have

air
k ¼ air

s () irk � irsðmod qmÞ
Since ði, qÞ ¼ 1, the above is equivalent to:

rk � rsðmod qmÞ () k� s � poðmod qmÞ
So we have that, in this case, the class of ai is fai, air, air2 , :::, airpo�1g, and we denote its sum
by ci.
In the case ði, qmÞ ¼ ql, we have (without loss of generality, we consider s> k below):

air
k ¼ air

s () irk � irsðmod qmÞ () iðrk � rsÞ � 0ðmod qmÞ ()
qm�ljðrk � rsÞ ¼ rkð1� rs�kÞ

Since ðr, qÞ ¼ 1, the above is equivalent to:

qm�ljð1� rs�kÞ,
which is equivalent to

rs�k � 1ðmod qm�lÞ
From Lemma 2.2, we have that the above is equivalent to

pojðs� kÞ:
So in the case ði, qÞ 6¼ 1 we also have the same format for the conjugacy class of ai.
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(3) If 1 � i � pn � 1, ð1� ri, qÞ ¼ 1: We will find the conjugacy class of bi:

ðajbkÞbiðb�ka�jÞ ¼ ajbia�j ¼ ajbia�jb�ibi ¼ ajð1�riÞbi

And we have

ajð1�riÞbi ¼ alð1�riÞbi ()
jð1� riÞ � lð1� riÞðmod qmÞ ()

j � lðmod qmÞ
Therefore, the class of bi in this case is fbi, abi, a2bi, :::, aqm�1big, and its sum is babi:

(4) If 1 � i � pn � 1, ð1� ri, qmÞ ¼ qk (from Lemma 2.3), k ¼ m). Let us evaluate the conjugacy
class of bi in this case:

ðajbkÞbiðb�ka�jÞ ¼ ajð1�riÞbi ¼ bi

So, the conjugacy class of bi in this case is fbig, with sum bi (this means that bi is a central
element of the group when ð1� ri, qÞ 6¼ 1). In fact, the center of the group is generated by
such bi’s.

(5) now we evaluate the case of elements of type asbi: If ð1� ri, qÞ ¼ 1, the class appeared in
case (3), and in the case ð1� ri, qÞ 6¼ 1, we can just use the fact that bi is central, and we
have that the class is fasbi, :::, asrpo�1

big, with sum csb
i:

Note that all the conjugacy classes we evaluated have 1, po or qm elements, proving the reciprocal
of Lemma 2.1, that is, if Cpn , qm , r ffi Cpn, qm , s, then oðrÞ ¼ oðsÞ in the group of units of Zqm :

First we will show that if o< n (remember that o is such that the order of r in the group of
units of Zqm is po), then the assumption of Corollary 1.5 may not follow.

First we notice that G0 ¼ hai, and that ZðGÞ ¼ hbpoi: To show what we want, we could sim-
ply note that the units of Zhbpoi are all central in ZG (since bp

o
is a central element in G), and if

u is such a unit, then 1þ ðu� 1Þð1� eG0 Þ may have non-integer coefficients, for certain value of
ðpn, qm, rÞ: We give an example:

Example: Let ðpn, qmÞ ¼ ð81, 19Þ and r such that the order of r in the group of units of Z19

is 9. And we consider the following Hoechsmann’s unit (see [16], Chapter 2 for more information
about such units):

u ¼ ð1þ ðb9Þ2 þ ðb9Þ4 þ ðb9Þ6 þ ðb9Þ8Þð1þ b9Þ � dhb9i,
in this case, one can easily verify that 1þ ðu� 1Þð1� eG0 Þ ¼ u� ueG0 þ eG0 has non’integer
coefficients.

Now we define the following morphism:

pqm : U1ðZCpoÞ ! U1ðZqmCpoÞ
this morphism takes the coefficients to their classes modulo qm.

With the conjugacy classes evaluated and the morphism above defined, we conclude
the following:

Corollary 2.4. If oðrÞ ¼ po in UðZqmÞ, we have that:

Z U1 ZCpo , qm , r
� �� � ¼ W1 �W2,

where:
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W1 ¼ 1þ ðl� 1Þba
qm

jl 2 kerðpqmÞ
� 	

ffi kerðpqmÞ

W2 ¼ Z U1 ZCpo , qm , r
� �� � \ U1ðZCqmÞ

Proof. By Corollary 1.5, we just have to prove that G0 ¼ hai: For this, note that G ¼ haihbi,
so G0 ¼ ½G,G	 ¼ ½hai, hbi	 � hai:

Furthermore, we have that aba�1b�1 ¼ a1�r: From Lemma 2.3, we have that a1�r generates
hai, proving the result. w

Using the results of [7] and [8], we can now evaluate explicitly a basis for W1 and a basis for
W2 in the cases ðpo, qmÞ ¼ ð3, 49Þ, ð9, 19Þorð9, 37Þ (the other possible cases to evaluate using the
results of [7] were already evaluated in [11]). In all cases we will utilize techniques similar to the
ones used in [11] to evaluate a basis for W2. Note that W1 is trivial in the first case. In the other
two cases we use GAP to evaluate W1, and the code is in Section 4. We will start calculating a
basis for W2.

3. Basis for W2

In this section, we will describe a basis for W2 as in Corollary 2.4 when ðpo, qmÞ ¼
ð3, 49Þ, ð9, 19Þ or ð9, 37Þ, and we use the same notations as the previous section. Let us denote 
 :

ZG ! ZG the classical involution, given by
P

g2G agg 7!
P

g2G agg
�1: An element u 2 ZG is said

to be symmetric if u
 ¼ u: We start with the following proposition:

Proposition 3.1. The units in W2 are all symmetric.

Proof. Let g : U1ðZCqmÞ ! U1ðZCqmÞ be the morphism that extends linearly a 7! bab�1 ¼ ar: We
have that W2 ¼ fu 2 U1ðZCqmÞjgðuÞ ¼ ug: We also have that gðx
Þ ¼ gðxÞ
, for all x 2 ZCqm :

Thus, if u is a symmetric unit, then gðuÞ is a symmetric unit too.
Let u 2 W2: We have that u may be written uniquely as u ¼ aiv, with 0 � i � qm � 1, v ¼ v
:

Since gðuÞ ¼ u, we have that aiv ¼ gðaivÞ ¼ gðaiÞgðvÞ ¼ arigðvÞ: Since gðvÞ is symmetric and
because of the unique expression for the above u, we have that v ¼ gðvÞ, and that ari ¼ ai: So
qmjðr � 1Þi, and by Lemma 2.2, we have that q 6 jðr � 1Þ, thus qmji, and we have that u¼ v prov-
ing the result. w

We will start with the cases ðpn, qmÞ ¼ ð9, 19Þ or (9, 37), and we will treat the case ðpo, qmÞ ¼
ð3, 49Þ separately, since this case is different from the others.

3.1. Basis for W2 when ðpn, qmÞ5ð9, 19Þ or (9, 37)
Suppose in this subsection that ðpn, qmÞ ¼ ð9, 19Þ or (9, 37). In particular, in these cases we have
m¼ 1. We will construct a basis similar to the one presented in [11].

Let S0 ¼ u1, u2, :::, uq�3
2


 � be a linearly independent set of maximum rank in U1ðZCqÞ (the
rank of UðZðCqÞÞ follows from [7]), given by:

ui ¼ ð1þ at þ a2t þ :::þ aðs�1ÞtÞð1þ at
i þ at

2i þ :::þ aðt�1ÞtiÞ � kba,
where t is an integer representative of a generator of the units group of Zq, s is a representative
of an inverse of t in this group, and k ¼ ts�1

q (these units are defined in [7]).
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In [11], we have the inverses evaluated:

u�1
i ¼ ð1þ aþ a2 þ :::þ at�1Þð1þ at

iþ1 þ a2t
iþ1 þ :::þ aðs�1ÞtiþiÞ � kba:

Now we define, for 2 � i � q�3
2 , the elements vi :¼ u�1

i�1ui, and v1 :¼ u1:
Let S1 ¼ v1, :::, vq�3

2


 �
: We have hS0i ¼ hS1i, and similarly to what was evaluated in [11], we

have:

vi ¼ ð1þ at
i þ at

2i þ :::þ aðs�1ÞtiÞð1þ at
i þ a2t

i þ :::þ aðt�1ÞtiÞ � kba:
With the expression above in mind, let us generalize this definition (of vi) for all i � 0: We

define the morphism f : U1ðZCqÞ ! U1ðZCqÞ as the linear extension of the group homomorph-
ism given by a 7! at: We have:

f ðviÞ ¼ viþ1; f
q�1
2 ðviÞ ¼ viþq�1

2
¼ v
i :

We have that vi may be written uniquely as ajiwi, with wi ¼ w

i : So we have that:

f ðwiÞ ¼ wiþ1; f
q�1
2 ðwiÞ ¼ wi (1)

We define S
 ¼ w1, :::,wq�3
2


 �, and we have that S
 generates a complement for hai
in U1ðZCqÞ:

From (1) we have that, defining d :¼ ðq� 1Þ=2, then wi ¼ wiþd, for all i � 0: We state
Lemma 4.1 of [11]:

Lemma 3.2. [11] With the definitions above, we have that w0w1:::wq�3
2
¼ 1:

We want to find the elements generated by S
 that are in the center of ZG:
According to Lemma 2.1, from now on, we will consider r ¼ tðq�1Þ=pn : We have that the map

g defined in the proof of Proposition 3.1 can be written as g ¼ f
q�1
pn : To simplify, we define l :¼

ðq� 1Þ=pn: So, we have that gðwiÞ ¼ f lðwiÞ ¼ wiþl: For 1 � i � l
2 � 1 we will define the elements

zi ¼ wiwiþ l
2
wiþl:::wiþðpn�1Þ l2: In the proof of the next theorem we will prove that all the zi’s

are central.
Now, we define the following set:

Sc ¼ fz1, :::, zl
2�1g:

We have that the set Sc is linearly independent, given that S
 is linearly independent.

Theorem 3.3. With the definitions above (in the cases where m¼ 1), we have hSci ¼ W2:

Proof. Let us start by proving that Sc � W2: We have:

gðwiÞ ¼ wiþl;

gðwiþlÞ ¼ wiþ2l;

..

.

g w
iþðpn�3Þ

2 l
� � ¼ w

iþðpn�1Þ
2 l

;

g wiþðpn�1Þ
2 l

� � ¼ wiþðpnþ1Þ
2 l:

Since 2d ¼ pnl, then iþ ðpnþ1Þ
2 l ¼ iþ d þ l

2 , and since wi ¼ wiþd, we have (following the
equations above):

g w
iþðpn�1Þ

2 l
� � ¼ wiþ l

2
:
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And since gðwiÞ ¼ wiþl, we have:

gðwiþ l
2
Þ ¼ wiþ3l

2
;

g wiþ3l
2ð Þ ¼ wiþ5l

2
;

..

.

g w
iþðpn�4Þl

2

� � ¼ w
iþðpn�2Þl

2
;

g w
iþðpn�2Þl

2

� � ¼ wiþpnl
2
¼ wiþd ¼ wi:

From that, we have:

gðziÞ ¼ g wiwiþ l
2
wiþlwiþ3l

2
:::wiþðpn�1Þl

2

� � ¼
¼ wiþlwiþ3l

2
:::w

iþðpn�1Þl
2

wiwiþ l
2
¼ zi:

And it’s proven that hSci � W2: We prove now the other inclusion.
Suppose u 2 W2: From proposition 3.1, we have that u is symmetric and, therefore, we can

write u ¼ wr1
1 :::w

rd�1
d�1, for certain integers ri, since S
 generates the group of symmetric units of

ZCq: We have:

gðuÞ ¼ gðw1Þr1 :::gðwd�1Þrd�1 ¼ wr1
1þl:::w

rd�l�1
d�1 wrd�l

0 wrd�lþ1
1 :::wrd�1

l�1 ,

since for i � d � l we have iþ l � d, we substitute iþ l by iþ l� d in the index of the w’s.
By proposition 3.2 we have that w0 ¼ w�1

1 :::w�1
d�1, so we have:

gðuÞ ¼ wrd�lþ1�rd�l
1 :::wrd�1�rd�l

l�1 w�rd�l
l :::wrd�l�1�rd�l

d�1 :

Since u is central, we have u ¼ gðuÞ: Furthermore, S
 is a linearly independent set, then the
exponents of the wi’s in u are the same as in gðuÞ: In particular, we have that rl ¼ �rd�l, r2l ¼
rl � rd�l ¼ �2rd�l: By induction, we get that for every integer j � 1, rjl ¼ �jrd�l

(since rjl ¼ rðj�1Þl � rd�l).
We also have that rl

2
¼ rd� l

2
� rd�l: Since d � l

2 ¼ pn�1
2 l and rjl ¼ �jrd�l, we have that rl=2 ¼

� pn�1
2 rd�l � rd�l ¼ � pnþ1

2 rd�l: Furthermore, r3l
2
¼ rl

2
� rd�l ¼ � pnþ3

2 rd�l: By induction we have

that, if m is odd, then rml
2
¼ rðm�2Þl

2
� rd�l ¼ � pnþm

2 rd�l:

Using the formula above for m ¼ pn � 2, we get rml
2
¼ �ðpn � 1Þrd�l, however, for this value

of m, we have that m l
2 ¼ d � l: Therefore, we conclude that rd�l ¼ �ðpn � 1Þrd�l, and we get

that rd�l ¼ 0: So we can write:

gðuÞ ¼ wrd�lþ1
1 wd�lþ2

2 :::w
r
d� l

2�1

l
2�1

w
r
d� l

2þ1

l
2þ1

:::wrd�1
l�1w

r1
lþ1:::w

rd�l�1
d�1 :

Comparing the exponents of the factors of u and gðuÞ, we get ri ¼ riþjl, for all i, j � 1 (such
that the index makes sense). We also get that ri ¼ riþd�l ¼ r

iþðpn�2Þl
2

, and by the formula we con-

cluded before, in this same paragraph, we have that r
iþðpn�2Þl

2
¼ r

iþðpn�4Þl
2

¼ ::: ¼ riþ l
2
:

Then ri ¼ riþ l
2
¼ riþl ¼ ::: ¼ r

iþðpn�1Þl
2

, and u ¼ zr11 :::z
rl
2�1

l
2�1

, as we wanted. w

3.2. Basis for W2 when ðpn, qmÞ5ð3, 49Þ
Now we will work with the case ðpn, qmÞ ¼ ð3, 49Þ: In this case n¼ 1 and m¼ 2. The previous
cases are essentially a repetition of what was done in [11]. From now on, the procedure is basic-
ally the same, but it will be done with two different types of units of ZCqm , as we will
describe below.
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From [8], we have that, if /ðq2Þ � 66, then kerðp1Þ � hSi generates a complement for hai in
U1ðZCq2Þ, where p1 : U1ðZCq2Þ ! U1ðZ½h	Þ, h is a q2-primitive root of unit and U1ðZ½h	Þ are

units congruent to 1 modulo h� 1 (units of Z½h	), S is the set of units ui ¼ ð1þ at þ a2t þ :::þ
aðs�1ÞtÞð1þ at

i þ a2t
i þ :::þ aðt�1ÞtiÞ � ðts�1Þ

q2 ba, where t generates the group of units of integers

modulo q2 and s its inverse, 1 � i � /ðq2Þ=2� 1:

Let us use the units ui and set r ¼ t
/ðqmÞ
pn : This way, analogously to what was done in the other

cases, we get the set S0, consisting of elements vi ¼ u�1
i�1ui, for 1 � i � /ðq2Þ=2� 1, v1 ¼ u1: We

have that the elements vi are written as

vi ¼ ð1þ at
i þ at

2i þ :::þ aðs�1ÞtiÞð1þ at
i þ a2t

i þ :::þ aðt�1ÞtiÞ � ðts� 1Þ
q2

ba:
We will now call f : U1ðZCqmÞ ! U1ðZCqmÞ the map that extends linearly a 7! at: Again we

have that (like in the previous cases) f ðviÞ ¼ viþ1, f /ðq
2Þ=2ðviÞ ¼ viþ/ðq2Þ=2 ¼ v
i : Again, we know

that there is only one wi such that vi ¼ ajiwi, and wi is symmetric. We define the set S
 ¼
fw1, :::,w/ðq2Þ=2�1g of symmetric linearly independent units. We have that f ðwiÞ ¼ wiþ1 and

f /ðq
2Þ=2ðwiÞ ¼ wi: We have the following lemma, analogous to Lemma 3.2:

Lemma 3.4. With the definitions above, w0:::w/ðq2Þ
2 �1

¼ 1:

Proof. We will use the properties of f. Setting u ¼ w0:::w/ðq2Þ=2�1, we have:

f ðuÞ ¼ w0:::w/ðq2Þ=2�1 ¼ u:

Furthermore:

NQðhÞjQðp1ðuÞÞ ¼
Y

r2GalðQðhÞjQÞ
rðp1ðuÞÞ ¼

Y/ðq2Þ
j¼1

p1ðf jðuÞÞ ¼

¼
Y/ðq2Þ
j¼1

p1ðuÞ ¼ ðp1ðuÞÞ/ðq
2Þ ¼ p1ðu/ðq2ÞÞ,

where NQðhÞjQ denotes the field norm.
Since u is an unit with augmentation 1, we get NQðhÞjQðp1ðuÞÞ ¼ 1:
However, from [8], we know that uj 62 kerðp1Þ if u 6¼ 1, for all j � 1 (since hSi \ kerðp1Þ

is trivial).
And we get u¼ 1, as desired. w

So, we define d :¼ /ðq2Þ=2, l ¼ /ðq2Þ=pn, and we define the set Sc ¼ fz1, :::, zl=2�1g, where
zi ¼ wiwiþl=2wiþl:::wiþðpn�1Þl=2: As we did in the previous cases, we have that Sc � W2: In this
case we do not have equality, because we still need to consider units in kerðp1Þ: However, the
units zi that we just found form a basis for the group of central units of ZG that are in hS
i,
analogously to what we did in the previous cases. And we know that kerðp1Þ � hS
i generates a
complement for hai in the group U1ðZCq2Þ:

Now we consider the map f1 : U1ðZCqÞ ! UðZqCqÞ that sends the coefficients to theirs classes
modulo q. From now on we will consider q a regular prime (remember q¼ 7 is regular). So, by
K€ummer’s Lemma, we have that kerðf1Þ ¼ fuqju 2 U1ðZCqÞg (see [13]). Let us denote h ¼ aq, so
that h is a generator of a group isomorphic to Cq. Thus, utilizing the symmetric units of
ZhhiZCq obtained from the Hoechsmann units (analogous to the wi units we had in the previous
cases), that we will denote now by ~wi , we have that kerðf1Þ ¼ h ~wi

qii¼1, :::, ðq�3Þ=2:
To simplify notation, we will denote li ¼ ~wi

q: So, we have that the units li are of the form
1þ qxi ¼ 1þ qðc0, i þ c1, ihþ :::cq�1, ihq�1Þ, where cj, k are integers.
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Now we define the units qi ¼ 1þ c0, ibh þ c1, iabh þ c2, ia2bh þ :::þ cq�1, iaq�1bh: From [8], we
have that kerðp1Þ is generated by the units qi, i ¼ 1, :::, ðq� 3Þ=2 that are linearly independent
and symmetric. Thus, we conclude that the units in kerðp1Þ are precisely all the elements gener-
ated by units of the following type:

1þ ðd0 þ d1aþ :::þ dq�1a
q�1Þbh,

where 1þ d0 þ d1hþ :::þ dq�1hq�1 is generated by the li’s.
Similarly to what we did previously, we define the units ~zi , for 1 � i � ðq�1Þ

2p � 1, given by

~zi ¼ ~wi ~wiþðq�1Þ
2p
~w
iþðq�1Þ

p
:::~w

iþðp�1Þðq�1Þ
2p
:

Remark 3.5. Here, ðq� 1Þ=2p plays the same role that l played in the previous cases.

Remark 3.6. In the case q ¼ 7, p ¼ 3 that we are studying now, the set of the ~zi ’s is empty, since
ðq�1Þ
2p � 1 ¼ 0. This happens due to the fact that the rank of the group of central units of ZC3, 7 is

zero (see the formula for the rank in [10]). But we will continue with the argument anyway, so
that the method will be as general as possible, allowing one to find generators of a group o finite
index in ZðU1ðZGÞÞ in the future.

With this procedure, we have that the units ~zi form a basis for the group of units of ZCq that
are in ZðZCp, qÞ (here Cp, q is seen as a subgroup of G) and, consequently, in ZðZGÞ:

Therefore, we conclude that a basis for the group of units in kerðp1Þ that are in ZðZGÞ is
formed by the units below:

fi ¼ 1þ ðd0, i þ d1, iaþ :::þ dq�1, ia
q�1Þbh,

where ~zi
q ¼ 1þ d0, i þ d1, ihþ :::þ dq�1, ihq�1:

With a procedure analogous to that we did before, we have that the units zi and fj form a
basis for W2.

Remark 3.7. In our case q ¼ 7, p ¼ 3, we only have the units zi, for the reason mentioned above.

4. Basis for W1

We start by proving the following proposition, analogous to Proposition 2.1 from [11]:

Proposition 4.1. With the same notations of Corollary 2.4, we have that kerðpqmÞ has only sym-
metric units.

Proof. Let u 2 kerðpqmÞ: We have that there is a power of b, say, bj, and w symmetric unit such
that u ¼ bjw:

Then 1 ¼ pqmðbjwÞ ¼ pqmðbjÞpqmðwÞ ¼ bjpqmðwÞ, so we get that pqmðwÞ ¼ b�j, but this is sym-
metric, so b�j ¼ 1 and, therefore, u¼w. w

We still need to evaluate W1 in the cases ðpo, qmÞ ¼ ð9, 19Þ or (9, 37) (in these cases we have
m¼ 1). By Corollary 3.5.6 of [15], we have that ZqCpo ffi ðZqÞp

o

(since r is a primitive root of
unity of order po in ZCq).

We need to evaluate the kernel of pqmð¼ pqÞ: By the above, we have that the exponent of
ZqCpo is q� 1. By [8], we have that the set

S ¼ fs1 ¼ �1þ b� b2 þ b3 þ b6 � b7 þ b8, s2 ¼ 1� bþ b2 þ b7 � b8g
generates U
ðZC9Þ, the group of symmetric units, where b is a generator of C9. Thus, we just have
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to evaluate all pairs si1s
j
2, with 0 � i, j � q� 2, for the possible values of q (in our case, 19 or 37),

and so we will have generator of kerðpqÞ for each case. We used GAP, with the following code:

G :¼ CyclicGroup(IsPermGroup,9);
R :¼ GroupRing(GF(19),G);
b :¼ R.1;

s1 :¼ �b b 0þ b � bb2þ bb3þ bb6 � bb7þ bb8;
s2 :¼ bb0 � bþ bb2þ bb7 � bb8;
r :¼ bb0;
s :¼ bb0;
for i in [0.17] do

s :¼ bb0;
for j in [0.17] do

if r 
 s¼ bb0 then
Print(”i ¼”, i,” ; j ¼”, j,” \n”);

fi;
s: ¼ s2 
 s;

od;
r: ¼ s1 
 r;

od;

In the code above we did the case q¼ 19 but, changing 19 for 37 and 17 for 35 in the code,
we obtain the case q¼ 37.

Case q ¼ 19 :
We got the following outcome:

i¼ 0; j¼ 0
i¼ 6; j¼ 6
i¼ 12; j¼ 12

It means that the algorithm found the following elements in the kernel: s01s
0
2, s

6
1s

6
2, s

12
1 s122 :

Thus, in the case q¼ 19, the kernel is generated by fs61s62, s181 g:
Case q ¼ 37 :

We got the following outcome:
i¼ 0; j¼ 0
i¼ 12; j¼ 12
i¼ 24; j¼ 24

It means that the algorithm found the following elements in the kernel: s01s
0
2, s

12
1 s122 , s241 s242 :

Thus, in the case q¼ 37, the kernel is generated by fs121 s122 , s361 g:
And so we finish this section.

5. Some metacyclic p-groups

Throughout this section, we consider p an odd prime number. First, we need the follow-
ing theorem:

Theorem 5.1. [12] If p is a regular odd prime number, A is a finite abelian p-group, and u is a
symmetric unit with augmentation 1 in ZA such that u � 1ðmod pÞ, then there is a symmetric unit
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v with augmentation 1 such that u ¼ gðvÞv�p, where g : ZA ! ZA is an endomorphism that
extends linearly g 7! gp, for all g 2 A:

In this chapter, we will consider the groups Gn ¼ ha, bjap2 ¼ bp
n ¼ 1, bab�1 ¼ apþ1i (this can

be seen as a semidirect product Cp2 3 Cpn).
The center of Gn is f1, ap, a2p, :::, aðp�1Þpg: the conjugacy classes of non-central elements are

listed below:

(1) the class of ai, for p- i is fai, aiþp, aiþ2p, :::, aiþðp�1Þpg, and its sum is ci :¼ dZðGnÞai:
(2) the class of asbi is fasbi, apþsbi, a2pþsbi, :::, aðp�1Þpþsbig, and its sum is Ci, s :¼ dZðGnÞasbi:

We also have that G0 ¼ ZðGnÞ ¼ hapi: So, we have that Gn satisfies the hypothesis of
Corollary 1.5.

Now we define the following morphism:

pp, n : U1ðZðCp � CpnÞÞ ! U1ðZpðCp � CpnÞÞ,
that takes the coefficients to their classes modulo p.

We have the following theorem:

Theorem 5.2. With the notations above, we have that

ZðU1ðZGnÞÞ ¼ W1 �W2,

where

W1 ¼ 1þ ðw� 1Þ dZðGnÞ
p

jw 2 kerðpp, nÞ
* +

ffi kerðpp, nÞ
W2 ¼ U1ðZZðGnÞÞ ffi U1ðZCpÞ

Remark 5.3. Here, we are considering the domain of pp, n as U1ðZGn=G0
nÞ ¼ U1ðZGn=hapiÞ, and

we can take w as any representative in the group ring ZGn:

Proof. It follows immediately from Corollary 1.5, and we have that the image of wi in
U1ðZGn=G0

nÞ is what defines ui (remember that ZðGnÞ ¼ G0
n). w

By Theorem 5.1 we get that the kernel of pp, 1 when p is a regular prime is precisely the set
fupju 2 U1ðZCp � CpÞg: So, using the results of [7] and the following theorem by Hoechsmann,
we get explicitly the group of central units of Gn for regular primes p that are less than 68.

Theorem 5.4. [13] Let p a regular prime. So, the units of ZðCp � � � � � CpÞ ¼ ZG are all generated
by the units of subrings of the type ZH, where H is a subgroup of G of order p.

By Theorem 5.1 we get that the kernel of pp, 1 when p is a regular prime is precisely the set
fupju 2 U1ðZCp � CpÞg: So, using the results of [7] and by Theorem 5.1, we get explicitly the
group of central units of Gn for regular primes p that are less than 68. Let us give an example:

We consider n¼ 1, p¼ 5. We know that ZðGnÞ ¼ hapi ffi Cp: From [7], we have that uðbÞ :¼
b4 þ b� 1 generates a complement for C5 in U1ZC5: We have:

W2 ¼ hapi � hðapÞ4 þ ðapÞ � 1i ¼ hapi � huðapÞi
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Set V ¼ fuðaÞp, uðabÞp, uðab2Þp, :::, uðabp�1Þp, uðbÞpg: By Theorems 5.4 and 5.1, we have that

W1 ¼ 1þ ðw� 1Þbap
p

jw 2 V

* +

6. Other metabelian p-Groups

In this chapter, we are going to study groups of type ðCpÞn 3 Cp, where ðCpÞn is the direct prod-
uct of n copies of Cp.

In the case n¼ 2, we get a very well known group:

G ¼ ha, b, cjap ¼ bp ¼ cp ¼ 1, ab ¼ ba, ac ¼ ca, cbc�1b�1 ¼ ai
It can also be seen as the following matrix group:

H ¼
1 k i
0 1 j
0 0 1

24 35ji, j, k 2 Zp

* +

This is known as the Heisenberg group.
The isomorphism between G and H is given by

ðai, bj, ckÞ 7!
1 k i
0 1 j
0 0 1

24 35:
Back to the general case, we will define the following groups, for n � 2 :

Hn ¼ ha1, :::, an, bjap1 ¼ ::: ¼ apn ¼ bp ¼ 1; aiaj ¼ ajai, 8i, j � 1;
a1b ¼ ba1; bakb�1a�1

k ¼ a1, 8k � 2i
Analogous to what happens in the case n¼ 2, we have that ZðHnÞ ¼ ha1i ¼ H0

n, and the con-
jugacy class of an element of type g ¼ ai22 :::a

in
n b

j is the set fg, a1g, a21g, :::, ap�1
1 gg:

Thus, the groups Hn satisfy the hypothesis of Corollary 1.5.
Let us define the map ~pp, n : U1ðZðCpÞnÞ ! U1ðZpðCpÞnÞ, that takes the coefficients to their

classes modulo p. We have the following:

Theorem 6.1. With the same notations used above, we have that

ZðU1ðZHnÞÞ ¼ W1 �W2,

where:

W1 ¼ 1þ ðw� 1Þ dha1i
p

jw 2 kerð~pp, nÞ
* +

ffi kerð~pp, nÞ
W2 ¼ U1ðZZðHnÞÞ ffi U1ðZCpÞ

Remark 6.2. Here we are considering the domain of ~pp, n as U1ðZHn=H0
nÞ, and we could take w as

any representative of it in the group ring ZHn:

Proof. It follows immediately from Corollary 1.5, analogous to the result of the previous section.

We also give an example of how to apply this to a concrete case:
With p¼ 5 and n¼ 2, we take uðbÞ ¼ b4 þ b� 1: So, we have:

W2 ¼ ha1i � huða1Þi,

14 V. A. GARCIA AND R. A. FERRAZ



and setting V ¼ fuða1Þp, uða1bÞp, uða1b2Þp, :::, uða1bp�1Þp, uðbÞpg, we have by Theorem 5.1:

W1 ¼ 1þ ðw� 1Þbap1
p

jw 2 V

* +
With this example we conclude this section.

7. Some generalized dihedral groups

We will consider H a finite abelian group such that jHj is odd, and we define the following
groups:

GH :¼ H3 wC2,

where C2 ¼ hgi and the semidirect product is defined by the morphism w, given by:

x 2 H 7!wðxÞ :¼ gxg�1 ¼ x�1:

Remark 7.1. We don’t need jHj to be odd to define such groups, but we need this to prove the the-
orem in this chapter. The groups of type GH are called Generalized Dihedral groups.

Remark 7.2. In the case of H a cyclic group of odd order n, we have that GH is the dihedral group
D2n, this case is covered in the Ph. D. thesis of Ferraz [6]

Now, if x 2 H, then xgx�1 ¼ x2g and, since jHj is odd, we have that x 2 H 7! x2 is surjective
(over H), therefore G0

H ¼ H:
Furthermore, we have that if y 62 G0

H , then the sum of the conjugacy class of y is cy ¼ cG0
Hy:

So, we have satisfied the hypothesis of Corollary 1.5, and we have immediately the follow-
ing theorem:

Theorem 7.3. If GH is the group defined above, where H is a finite abelian group with jHj odd,
then ZðU1ðZGHÞÞ is the group of symmetric units U


1 ðZHÞ:

Proof. By Corollary 1.5, we have ZðU1ðZGHÞÞ ¼ W1 �W2, where W1 is isomorphic to a sub-
group of UðZGH=G0

HÞ ffi UðZC2Þ, which is trivial. Thus, the only non-trivial factor is W2.
But W2 is formed by the units of U1ðZHÞ that commute with GH. Since gxg�1 ¼ x�1, we

have that u 2 W2 if, and only if u is a symmetric unit in ZðU1ðZHÞÞ, and we have our
result proven. w
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