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Abstract

In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of 
the 2nd order viscous conformal hydrodynamic equations corresponding to Israel–Stewart theory. Small 
amplitude waves are studied within the linearization approximation while waves with large amplitude are 
investigated using the reductive perturbation method, which is generalized to the case of 2nd order rela-
tivistic hydrodynamics. Our results indicate the presence of a “soliton-like” wave solution in Israel–Stewart 
hydrodynamics despite the presence of dissipation and relaxation effects.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Experiments at RHIC and LHC indicate that the quark–gluon plasma is an almost perfect fluid 
where viscous effects are small [1–3]. In contrast, at low temperatures and nonzero baryon chem-
ical potentials in the hadron gas phase, viscous effects may be considerably more pronounced 
[4–8]. Numerical studies of the hydrodynamical evolution of the Quark–Gluon Plasma (QGP) 
show that viscosity produces some visible but not very large effects on global observables [9].

In this work we investigate how the presence of a nonzero shear viscosity relaxation time 
affects wave propagation in relativistic fluids. Waves in a hadronic medium may be caused, 
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for example, by fluctuations in baryon number or energy density. These fluctuations may be 
produced by inhomogeneous initial conditions which, as pointed out in [10], are the result of 
quantum fluctuations in the densities of the two colliding nuclei and also in the energy deposi-
tion mechanism. These fluctuations and their phenomenological implications have been studied 
extensively [11–15] because they may be responsible for the angular correlations of particle 
emission observed in heavy-ion experiments. There are also hydrodynamic fluctuations [10], 
which are the result of finite particle number effects in a given fluid cell. This generates local 
thermal fluctuations of the energy density (and flow velocity) which propagate throughout the 
fluid. Furthermore, there may be fluctuations induced by energetic partons, which have been 
scattered in the initial collision of the two nuclei and propagate through the medium, losing en-
ergy and acting as a source term for the hydrodynamical equations [16]. Finally, there may be 
also freeze-out fluctuations, which may be caused by finite particle number effects during and 
after the freeze-out of the hydrodynamically expanding fluid.

In non-relativistic fluid dynamics the most successful theory of dissipative systems is the 
Navier–Stokes (NS) theory [17,18]. For instance, one can use this theory to investigate the evolu-
tion of density perturbations in a non-relativistic hadron gas and in a non-relativistic quark–gluon
plasma. Perturbations are usually studied with the linearization formalism [19,20], which is the 
simplest way to study small deviations from equilibrium to obtain wave equations, eventually 
featuring dissipative and relaxation terms. The propagation of perturbations through a QGP has 
been investigated in several works with the help of a linearized version of the hydrodynamics of 
perfect fluids and of viscous fluids. In [21] the authors went beyond linearization and considered 
the effects of shear viscosity on the propagation of nonlinear waves. This study was performed 
with the help of the well established reductive perturbation method [22–25].

The simplest extension of the well-known Navier–Stokes equations to relativistic fluids is 
plagued with instabilities and acausal signal propagation in the resulting equations [26–28], and, 
thus, they are not usually employed in numerical simulations. Currently, most fluid-dynamical 
simulations of the QGP employ a set of relaxation-type equations similar to those derived by 
Israel and Stewart (IS) [29] to close the conservation laws.

In this work we study the propagation of linear and nonlinear waves in relativistic fluids 
described by (a simplified set of) of the 2nd order conformal IS equations. We show how to 
obtain the linear wave equation which contains the dissipative and relaxation terms. This wave 
equation provides a dispersion relation that allows for the study of the stability and causality 
properties of the theory. We then expand the modes of the dispersion relation in powers of the 
wavenumber to investigate the effects of a nonzero relaxation time coefficient. Understanding the 
relaxation effects in the linear modes proved to be a useful guide to approach the same question 
in the case of nonlinear perturbations.

Solutions of nonlinear equations of motion generally contain nonlinear dispersive and dissi-
pative terms. The relative strength of these different terms depends on microscopic properties of 
the system, which manifest themselves in the transport coefficients (such as the shear viscosity 
coefficient, η, and the relaxation time, τπ ) and in the equation of state. Different combinations 
of these terms generate Korteweg–de Vries solitons, shock waves, strongly damped waves and 
so on. In principle, given the underlying microscopic theory, one can calculate the transport co-
efficients and the equation of state to determine the type of waves which can propagate in the 
system. However, when the underlying theory is QCD this is not an easy task due to the strongly 
coupled nature of the quark–gluon plasma and one needs to resort to phenomenological models 
to estimate η and τπ (the QCD equation of state can be reliably computed on the lattice [30]). 
The choice of these quantities defines the properties of the solutions of the wave equations. 
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Inconsistent choices may lead to unphysical solutions and this opens the possibility of using 
waves to put some additional constraints on the values of η and τπ in the QGP.

In this paper we show how to obtain a system of two coupled differential equations to study 
nonlinear waves in conformal IS theory. We solve this system numerically, determining the role 
played by shear viscosity and its relaxation time on wave packet evolution. One of the equations 
of this system is the Burgers’ equation for the first order perturbation in the energy density, which 
does not contain relaxation effects, and it is, thus, the same equation obtained in the NS-based 
approach developed in [31]. The other equation describes the second order perturbation in the 
energy density, where the effects from a nonzero relaxation time coefficient become manifest. 
Our results indicate the presence of a “soliton-like”, i.e., an approximately solitary wave solution, 
in IS theory despite the dissipative and relaxation effects. Another motivation to study nonlinear 
perturbations is the possibility to find an upper bound for the relaxation scale, which is not found 
in the linear treatment.

This paper is organized as follows. In the next section we review the basic expressions of 
the simplified set of equations of Israel–Stewart theory used in this work. In Section 3 we study 
the linearized hydrodynamic equations, derive the corresponding wave equation, and perform a 
study of the stability and causality regarding the propagation of these waves. In Section 4 we 
derive a system of coupled differential equations that describe the nonlinear waves in conformal 
Israel–Stewart theory. In Section 5 we solve these equations numerically and we finish with our 
conclusions and outlook. Throughout this study we use natural units h̄ = c = kB = 1 and a mostly 
minus metric gμν = diag(+, −, −, −).

2. Second-order conformal hydrodynamic equations – Israel–Stewart theory

The energy–momentum tensor of a relativistic fluid is

T μν = εuμuν − p�μν + πμν (1)

where ε is the energy density, p is the pressure, uμ is the fluid 4-velocity uμ = (γ, γ �v) and γ is 
the Lorentz factor γ = (1 −v2)−1/2 (hence, uμuμ = 1). The connection between ε and p defines 
the equation of state, which will be taken to be that of a conformal fluid, ε = 3p. The entropy 
density is then s = κT 3, where κ is a numerical coefficient. Furthermore, the projection operator 
orthogonal to the fluid velocity is given by �μν ≡ gμν − uμuν . The shear stress tensor πμν is a 
symmetric (and traceless) tensor that is orthogonal to the flow uμπμν = 0 (i.e., the Landau frame 
[17]). Besides the energy–momentum conservation equations ∂μT μν = 0, or in explicit form,

Dε + (ε + p)θ − πμνσμν = 0 (2)

(ε + p)Duα − ∇α⊥p + �α
ν ∂μπμν = 0 (3)

the simplified set of the conformal IS equations [37] that defines the dynamics of the shear stress 
tensor πμν used here are [32,33]

τπ

(
�μ

α�ν
βDπαβ + 4

3
πμνθ

)
+ πμν = 2ησμν (4)

where the operators are written in shorthand notation by D ≡ uμ∂μ, which is the comoving 
derivative, ∇α⊥ ≡ �αμ∂μ is the derivative orthogonal to the 4-velocity and the expansion rate is 
θ ≡ ∂μuμ. The shear tensor is defined as σμν ≡ �μναβ∂αuβ using the doubly symmetric and 
traceless projection operator �μναβ ≡ (�μα�νβ + �μβ�να)/2 − �μν�αβ/3. Also, note that in 
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a conformal fluid τπ ∼ 1/T and η ∼ T 3. Therefore, in Israel–Stewart’s theory the dynamical 
variables are the usual hydrodynamical quantities ε and uμ together with the shear stress ten-
sor πμν (see Appendix A for a discussion about the components of the shear stress tensor that 
contribute in our analysis).

Effects from bulk viscosity (see, for instance, [41,42]) or from additional conserved charges 
are not taken into account here. Furthermore, even though the equation of motion for πμν derived 
from kinetic theory contains many more terms than the ones used here [43], in this paper we 
shall focus on the simplest set of equations that can still describe a causal (and stable) conformal 
dissipative fluid.

3. Linearized wave equations

In order to obtain the simplest wave equation for a small perturbation in the fluid around equi-
librium, one can resort to the formalism known as the “linearization formalism” [20,21,34], in 
which one performs the following expansions of the energy density, pressure, shear stress tensor, 
and fluid 4-velocity around their respective equilibrium configuration values (for simplicity, here 
we take the sound wave disturbances in the “x” direction)

ε(x, t) = ε0 + δε(x, t), τπ (x, t) = τ 0
π + δτπ (x, t), η(x, t) = η0 + δη(x, t)

πxx = δπxx(x, t) and uμ(x, t) = (1,0,0,0) + (
0, δux(x, t),0,0

)
(5)

In Eq. (5), “δ” denotes a small deviation from equilibrium. After inserting the expansions (5)
in Eqs. (2)–(4), the linearization approximation is performed by neglecting the O(δn) terms for 
n ≥ 2 in the resulting equations (see Appendix A for a discussion about the different components 
of the shear stress tensor).

Linearizing the three equations (2) to (4), using that cs
2 = dp/dε = 1/3, we find

∂

∂t
δε + 4

3
ε0

∂

∂x
δux = 0 (6)

4

3
ε0

∂

∂t
δux + 1

3

∂

∂x
δε + ∂

∂x
δπxx = 0 (7)

τ 0
π

∂

∂t
δπxx + δπxx + 4

3
η0

∂

∂x
δux = 0, (8)

respectively.
Inserting (7) and its time derivative into the spatial derivative of (8) we find

τ 0
π

[
−4

3
ε0

∂2

∂t2
δux − 1

3

∂

∂t

∂

∂x
δε

]
− 4

3
ε0

∂

∂t
δux − 1

3

∂

∂x
δε + 4

3
η0

∂2

∂x2
δux = 0. (9)

Calculating the time and spatial derivative of (6) and inserting these results in the spatial deriva-
tive of (9), together with the Gibbs relation for the background 4ε0/3 = T0s0, we obtain the 
following wave equation

∂2

∂x2
δε − 3

∂2

∂t2
δε − 3τ 0

π

∂3

∂t3
δε = −

(
3χ

T0
+ τ 0

π

)
∂

∂t

∂2

∂x2
δε (10)

with dissipation and relaxation time effects. Eq. (10) is sometimes known as the lossy wave 
equation [35,36]. The dimensionless coefficient χ is given by

χ = 4 η0
. (11)
3 s0
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In the limit τ 0
π → 0 one recovers the linear wave equation for the viscous fluid described by the 

relativistic Navier–Stokes theory [21,34]. Also, setting τ 0
π = χ = 0, one obtains the linear wave 

equation for the ideal relativistic fluid [21,34].

3.1. Stability and causality

To study some properties of (10) we consider a plane wave ansatz for all the disturbances, 
e.g.,

δε(x, t) =Aei(kx−ωt), (12)

which yields the following dispersion relation [28]

ω2 = k2

3

(1 − iΛω)

(1 − iτ 0
πω)

(13)

where Λ is given by

Λ ≡
(

3χ

T0
+ τ 0

π

)
. (14)

For χ = 0 and τ 0
π = 0 the dispersion relation (13) becomes the ideal fluid dispersion relation 

for a sound wave: ω2 = k2/3. Setting only τπ
0 → 0, (13) gives the Navier–Stokes sound wave 

dispersion relation [21] ω2 = k2/3 − iωk2χ/T0.
Introducing the dimensionless variables ω̂ = ω/T0, k̂ = k/T0 and τ̂π = T0τ

0
π , the dispersion 

relation (13) is rewritten as a dimensionless equation to be solved for ω̂

−iτ̂π ω̂3 + ω̂2 +
(

ik̂2χ + i

3
k̂2τ̂π

)
ω̂ − k̂2

3
= 0. (15)

We expect the hydrodynamic description to be meaningful for small values of ω̂ and k̂. For 
completeness we extrapolate our results to large values of k̂, as motivated by [26]. The study of 
the short wavelength limit is surely limited to phenomenological applications of fluid dynamics; 
however, since the relativistic Navier–Stokes theory is known to have numerical instabilities, we 
find it useful to check that the Israel–Stewart construction is free of any acausality and instability 
in this regime under linear perturbations. Our results from this section are consistent with the 
discussion presented in [27,28].

To study the stability and causality properties of (10), we decompose the roots of (15) in 
two components as in [21,28]: ω̂ = Re[ω̂] + i Im[ω̂], where Re[ω̂] ∈ R and Im[ω̂] ∈ R. This 
decomposition also turns the solution (12) into

δε(x̂, t̂) =AeIm[ω̂]t̂ ei Re[ω̂](k̂x̂/Re[ω̂]−t̂ ) (16)

and again, x̂ = T0x and t̂ = T0t are dimensionless quantities. In (16) it is possible to identify 
the attenuation coefficient Im[ω̂], which dictates the stability properties of the disturbance, i.e., 
stable perturbations have Im[ω̂] < 0. The phase velocity v̂p and the group velocity v̂g are given 
by the following expressions

v̂p(k̂) = Re[ω̂]
k̂

and v̂g(k̂) = d Re[ω̂]
dk̂

(17)

and causality violation occurs if v̂g diverges [44].
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Fig. 1. Stability and causality properties of disturbances around equilibrium for IS hydrodynamics (described by Eq. (10)) 
with transport coefficients from strongly-coupled N = 4 SYM.

In the analysis below we consider the coefficients of the strongly coupled N = 4 Supersym-
metric Yang–Mills (SYM) fluid where η0/s0 = 1/(4π) and τ̂π = [2 − ln(2)]/(2π) [37]. In Fig. 1
we plot the group velocity v̂g and the attenuation coefficient Im[ω̂] for the three roots ω̂I , ω̂II and 
ω̂III of (15). In Fig. 1(a) one can clearly notice that the three modes are stable since the imaginary 
parts of the modes are always negative. In Fig. 1(b) there is no causality violation since there is 
no divergence as k̂ increases and the group velocity is bounded by unity for large values of k̂. The 
influence of the group velocity in the causal aspects of wave propagation comes from solving the 
full propagator in configuration space, which follows from the integral in momentum space. The 
resulting propagator should be a function defined only inside the corresponding lightcone. If for 
large k̂ the group velocity is at maximum unity, then this condition is satisfied [28]. This figure 
shows that the linear sound wave disturbances around thermodynamical equilibrium in 2nd order 
hydrodynamics (with the transport coefficients of strongly-coupled N = 4 SYM) are causal and 
stable. A similar study can be done for the shear channel [28].

The three modes of the IS theory with strongly-coupled transport coefficients shown in Fig. 1
can be expanded in powers of k̂. Since we are considering dimensionless variables, the limit of 
small k̂ and ω̂ reveals the infrared behavior of the theory, i.e., the behavior of the modes with 
ω̂, k̂ � 1. Hydrodynamics can be considered as an effective theory at low energies and, thus, it 
should be well defined for small k̂. We obtain the following relations

ω̂I = k̂√
3

− i

2
χk̂2 −

√
3

6
χ

(
3

4
χ − τ̂π

)
k̂3 − i

6
χτ̂π (3χ − τ̂π )k̂4 +O

(
k̂5) (18)

ω̂II = − k̂√
3

− i

2
χk̂2 +

√
3

6
χ

(
3

4
χ − τ̂π

)
k̂3 − i

6
χτ̂π (3χ − τ̂π )k̂4 +O

(
k̂5) (19)

ω̂III = − i

τ̂π

+ iχk̂2 + i
χ

3
τ̂π (3χ − τ̂π )k̂4 +O

(
k̂5) (20)

The first two modes describe sound waves at small momenta while the 3rd mode is a non-
hydrodynamic mode. For small k̂, the relaxation coefficient τ̂π first appears in the sound wave 
modes multiplied by 3χ/4 (η0/s0) in the k̂3 term [37]. However, note that τ̂π already appears at 
zeroth order in k̂ in ω̂III and it clearly defines a microscopic relaxation time scale [45].
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It is important to notice that in this regime the non-hydrodynamic mode ω̂III should only 
play a role when k̂ ≈ 1, where its value becomes comparable to the other modes. The physical 
interpretation is that in the low energy limit one should only care about the hydrodynamic modes. 
However, notice that this mode is stable for any k̂, which implies that Israel–Stewart theory is 
well-defined mathematically in the short wavelength limit.

We followed closely the study performed in [28] for the Israel–Stewart theory where the 
dispersion relation (13) and the decomposition of its modes in real and imaginary parts were 
considered in the large and small wavenumber limits. In [28] the authors suggested that the 
problem of acausality and instability are correlated in relativistic dissipative hydrodynamics.

For the modes (18), (19) and (20), the group velocity and the attenuation coefficient at small 
k̂ are

v̂gI = −v̂gII = 1√
3

−
√

3

2
χ

(
3

4
χ − τ̂π

)
k̂2 +O

(
k̂4) and v̂gIII = 0 (21)

Im[ω̂I ] = Im[ω̂II] = −χ

2
k̂2 − χ

6
τ̂π (3χ − τ̂π )k̂4 +O

(
k̂5) < 0 and

Im[ω̂III] = −
(

1

τ̂π

− χk̂2
)

+ χ

3
τ̂π (3χ − τ̂π )k̂4 +O

(
k̂5) < 0. (22)

4. Nonlinear wave equations in conformal Israel–Stewart theory

The effects from a relaxation timescale τ̂π have not yet been studied in the context of nonlinear 
wave propagation. In order to investigate its effects in the study of nonlinear waves, we shall use 
the Reductive Perturbation Method (RPM) [22–25]. The RPM was used to study nonlinear waves 
in relativistic and non-relativistic hydrodynamics in [21,31,34,40]. Our goal in this section is to 
find the nonlinear wave equation that governs the perturbation of the energy density in a hot 
dissipative and causal fluid described by IS hydrodynamics.

4.1. Reductive perturbation method

With the RPM we can derive the nonlinear wave equation for perturbations in a fluid perform-
ing the following set of operations [21,34]:

(a) Rewrite Eqs. (2), (3), and (4) using the following dimensionless variables

ε̂(x, t) = ε(x, t)

ε0
, v̂x(x, t) = vx(x, t)

cs

= √
3vx(x, t) and

π̂xx(x, t) = πxx(x, t)

p0
(23)

(b) Change the coordinates in Eqs. (2), (3), and (4) from (x, t) to the (X, Y) space defined by 
the “stretched coordinates” [22–25]

X = σ 1/2 (x − cst)

L
= σ 1/2 1

L

(
x − t√

3

)
and Y = σ 3/2 cst

L
= σ 3/2 t√

3L
(24)

where L is a characteristic length scale of the problem, which will be simplified in the final 
expressions, and σ is a small (0 < σ < 1), dimensionless expansion parameter. We also change 
the shear viscosity coefficient and the relaxation time to the (X, Y) space in the following way 
[38,39]
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η = σ 1/2η̃ and τπ = σ 1/2τ̃π . (25)

We refer the reader to Appendix A for the details. While the scaling of η with σ was known in 
literature [38,39], the proposed scaling of τπ with σ used here is new and it is the simplest choice 
that is consistent with the sound mode dispersion relation (18) and (19).

(c) Expand the variables in Eq. (23) around their equilibrium values

ε̂ = ε

ε0
= 1 + σε1 + σ 2ε2 + σ 3ε3 + · · · (26)

v̂x = vx

cs

= σv1 + σ 2v2 + σ 3v3 + · · · (27)

and

π̂xx = πxx

p0
= σπxx

1 + σ 2πxx
2 + σ 3πxx

3 + · · · . (28)

After the expansions, we organize the resulting equations in powers of σ , neglecting terms 
with powers greater than σ 3. In the usual RPM method, only terms proportional to σ and σ 2 are 
kept. However, the linear hydrodynamical modes (18) and (19) show that relaxation effects may 
appear only in the next order of the usual expansion, i.e., at order k̂3. For this reason we consider 
the σ expansion up to O(σ 3) terms to study relaxation effects in nonlinear waves.

(d) By solving the system of algebraic equations: σ 1/2{. . .} = 0, . . . , σ 3{. . .} = 0 obtained in 
the step (c), it is possible to find the system of wave equations in the (X, Y) space. Such system 
may be transformed back to the (x, t) coordinates through the stretching transformations (24)
and (25) yielding the final system of nonlinear wave equations for the perturbations in the energy 
density.

4.2. Nonlinear wave equations

The set of differential equations obtained from the RPM method is given by

∂

∂t̂
ε̂1 + 1√

3

∂

∂x̂
ε̂1 + 1

2
√

3
ε̂1

∂

∂x̂
ε̂1 = χ

2

∂2

∂x̂2
ε̂1 (29)

and

∂

∂t̂
ε̂2 + 1√

3

∂

∂x̂
ε̂2 + 1

2
√

3
ε̂1

∂

∂x̂
ε̂2 − χ

2

∂2

∂x̂2
ε̂2 + 1

2
√

3
ε̂2

∂

∂x̂
ε̂1 + χ

4
ε̂1

∂2

∂x̂2
ε̂1

+ 1

4
ε̂1

∂

∂t̂
ε̂1 + 1

4
√

3
ε̂1

∂

∂x̂
ε̂1 + χ

2

[
χ

√
3

4
− τ̂π√

3

]
∂3

∂x̂3
ε̂1 = 0, (30)

where ε̂1 ≡ σε1 and ε̂2 ≡ σ 2ε2. The details of the calculations and assumptions needed to derive 
these equations are presented in Appendix A. Also, given the solution of (29) and (30), one is also 
able to study the behavior of π̂xx . However, in this paper we shall focus on the energy density 
disturbance and leave a detailed study of the shear stress tensor in this approach for future work.

We emphasize that the Burgers’ equation (29) for the first order energy perturbation ε̂1 does 
not contain relaxation effects and, thus, it is the same both in Navier–Stokes and in Israel–Stewart 
theory. This feature has lead us to consider perturbations up to third order in energy density and 
fluid velocity. This provides the first equation where the relaxation time coefficient appears: 
Eq. (30) for ε̂2.
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Fig. 2. Numerical solutions for the energy density disturbances in the nonlinear regime in Eqs. (29) (a) and (30) (b)
for η0/s0 = 1/(4π) and τ̂π = [2 − ln(2)]/(2π). The initial conditions are (31) and (32) with A1 = 0.8, A2 = 0.2 and 
B1 = B2 = 0.5. (c) Shows the complete energy density perturbation ε̂ = 1 + ε̂1 + ε̂2. The perturbations survive despite 
the dissipative effects.

5. Numerical results and discussion

An analytical solution of the Burgers’ equation (29) can be obtained by the hyperbolic tangent 
expansion method [21] and its variants. However, it is not possible to find a finite solution after 
substituting the analytical solution for ε̂1 into (30) to solve it for ε̂2. We have thus proceeded to 
solve (29) and (30) numerically.

5.1. Soliton initial profile

Several different sets of parameters and initial profiles are considered in this study. Starting 
with the following typical strong coupling parameters 3χ/4 = η0/s0 = 1/(4π) and τ̂π = [2 −
ln(2)]/(2π) [37], we show the propagation of nonlinear waves in Fig. 2. We start by solving (29)
with the following initial condition

ε̂1(x̂,0) = A1 sech2
(

x̂
)

(31)

B1
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Fig. 3. Numerical solutions for the energy density disturbances in the nonlinear regime in Eqs. (29) (a) and (30) (b)
for η0/s0 = 1 and τ̂π = 5η0/s0. The initial conditions are (31) and (32) with A1 = 0.8, A2 = 0.2 and B1 = B2 = 0.5. 
(c) Shows the complete energy density perturbation. The perturbations do not survive due large dissipative effects.

and inserting the obtained numerical solution of (29) into (30) with the initial profile for ε̂2

ε̂2(x̂,0) = A2 sech2
(

x̂

B2

)
. (32)

The first case in Fig. 2 corresponds to A1 = 0.8, A2 = 0.2 and B1 = B2 = 0.5. The numerical 
solution of (29), (30), and the total energy perturbation given by (26), ε̂ = 1 + ε̂1 + ε̂2, are shown 
in Fig. 2. We notice that, in spite of the dissipative and relaxation effects, the perturbations still 
survive as time increases.

In Fig. 3 we show similar calculations as in Fig. 2 but now considering large viscosity and 
relaxation time coefficients given respectively by η0/s0 = 1 and τ̂π = 5η0/s0, which is in the 
ballpark of kinetic theory calculations [43,45]. In Fig. 3(a) we obtain the expected result for the 
Burgers’ equation with large viscosity: a strong dissipation of the initial pulse. In Fig. 3(b) we 
also obtain the same dissipation effect but at some intermediate time scales t̂ = 5 to t̂ = 20 there 
is also rarefaction. The total perturbation does not survive for longer times and the perturbed 
fluid tends to recover the background configuration ε̂ = 1 as time increases.

The calculations shown in Fig. 2 are repeated in Fig. 4 (same transport coefficients) now with 
different initial conditions, i.e., larger widths B1 = B2 = 3. Fig. 4 shows an intermediate con-
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Fig. 4. Numerical solutions for the energy density disturbances in the nonlinear regime in Eqs. (29) (a) and (30) (b)
for η0/s0 = 1/(4π) and τ̂π = [2 − ln(2)]/(2π). The initial conditions are (31) and (32) with A1 = 0.8, A2 = 0.2 and 
B1 = B2 = 3. In this case the width of the initial pulses is 6 times larger than in Fig. 2. (c) Shows the complete energy 
density perturbation. The perturbations with these initial profiles mimic soliton behavior.

figuration between shock wave formation (wall formation) and an approximately stable soliton 
propagation for the total perturbation ε̂ in 4(c). We note that pulses with larger width are not only 
more stable but the second order effects become more significant for larger times.

In Fig. 5 we considered A1 = 0.6, A2 = 0.3, B1 = 0.7, and B2 = 0.5 for a small viscosity 
η0/s0 = 1/(4π) and varied the value of the relaxation time coefficient. The values considered 
were τ̂π = 0 (Navier–Stokes limit) and τ̂π = 120η0/s0 (where the relaxation time is much more 
important than the shear viscosity). We only plot the perturbations affected by relaxation: ε̂2

and consequently ε̂. We notice that the size of the perturbations increase when one increases the 
relaxation coefficient. This limit is not a very plausible choice but it is interesting to see that the 
resulting solutions are unstable since they generate values of ε̂2 which are unacceptably large. If 
we consider that pulses originate from inhomogeneous density profiles or quantum fluctuations, 
it is reasonable to assume that the most realistic pulses could be in principle more localized in 
space and thus they would suffer dissipative, nonlinear, and dispersive effects losing its localized 
profile.
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Fig. 5. Numerical solutions for the energy density disturbance in the nonlinear regime in Eq. (30) (a) and (b) for η0/s0 =
1/(4π) and two choices of τ̂π . The initial conditions are (31) and (32) with A1 = 0.6, A2 = 0.3, B1 = 0.7 and B2 = 0.5. 
(c) and (d) shows the complete energy density perturbation. For large values of the relaxation time coefficient, the energy 
perturbation ε̂2 acquires large amplitude and becomes inconsistent as a small disturbance (note, however, that the initial 
gradients are large).

In Eq. (30) the terms with η0/s0 (except for the last one) contribute to dissipation. The last 
term of (30) introduces dispersion and involves both η0/s0 and the combination �3 = η0/s0 − τ̂π . 
When τ̂π tends to zero we recover the Navier–Stokes limit, where problems with causality and 
instability are expected to appear. When τ̂π becomes very large, in principle, no problem was 
expected to occur. However the very large amplification of the amplitude ε̂2 is surprising. It 
implies that a large amount of energy is transferred from the medium to the wave. We see here 
evidence that the large value chosen for τ̂π in this particular configuration may be unphysical. 
This is a interesting finding since in the linear perturbative limit (discussed before in Section 2) 
there were no apparent inconsistencies associated with large values of τ̂π . The existence of an 
upper bound for τ̂π can only be seen in the nonlinear perturbation theory used here. However, one 
may also interpret this enhancement in the amplitude as an indication that the higher order terms 
that were neglected in the expansion have become significant and must be taken into account (the 
initial profile is such that the initial spatial gradients are not very small). It would be interesting 
to check if this nonlinear instability can appear in the existing numerical hydrodynamic codes.
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Fig. 6. Comparison between the energy density perturbations in Navier–Stokes and Israel–Stewart theory for η0/s0 = 1
and τ̂π = 5η0/s0. The initial conditions are (31) and (32) with A1 = 0.1, A2 = 0.01 and B1 = B2 = 0.5. (a) and (b)
show the numerical solutions for Eq. (30) and (c) and (d) are the complete energy density perturbation. The relaxation 
ensures that rarefaction occurs in the tail of the pulse while there is an enhancement in the front of the pulse.

In Fig. 6 for a large viscosity η0/s0 = 1 and small amplitudes and widths, given by A1 = 0.1, 
A2 = 0.01 and B1 = B2 = 0.5, we compare the results for two different theories, NS and IS. 
In this case τ̂π = 0 (Navier–Stokes case) and τ̂π = 5η0/s0, which is a reasonable estimate for 
τ̂π for systems described by the Boltzmann equation. This figure is analogous to Fig. 5, as the 
Israel–Stewart fluid ensures that rarefaction occurs in the tail and there is an enhancement in the 
front of the pulse.

Using the same parameters as in Fig. 6, we summarize the effects of relaxation considering 
the “soliton-like” configuration for the initial conditions: A1 = 0.6, A2 = 0.4, B1 = B2 = 4 in 
Fig. 7. Relaxation increases the pulse amplitudes in some regions, as it has a dispersive character. 
However, this behavior is different from the NS case in which there is an enhancement of the 
amplitude in the opposite direction of the pulse.

The pulse in the Israel–Stewart fluid propagates ahead of that from the Navier–Stokes fluid. 
We clearly notice that IS hydrodynamics favors the wall front formation, while NS disperses the 
pulse to the opposite direction of motion. This might be the most important feature of relaxation 
time effects in nonlinear wave perturbation found in this paper and is both present for strong and 
weak coupling inspired parameters.
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Fig. 7. Comparison between the energy density perturbations in Navier–Stokes and Israel–Stewart theory for η0/s0 = 1
and τ̂π = 5η0/s0 for larger width of the initial pulse. The initial conditions are (31) and (32) with A1 = 0.6, A2 = 0.4
and B1 = B2 = 4. Conformal Israel–Stewart hydrodynamics favors the wall front formation.

5.2. Gaussian initial profile

Again, we consider the strong coupling parameters 3χ/4 = η0/s0 = 1/(4π) and two values 
for τ̂ . We solve (29) with the following Gaussian initial condition:

ε̂1(x̂,0) = C1e
−(x̂/D1)

2
(33)

and insert the obtained numerical solution of (29) into (30) with the initial Gaussian profile for ε̂2:

ε̂2(x̂,0) = C2e
−(x̂/D2)

2
. (34)

The amplitudes C1, C2 and the widths D1, D2 are chosen to study some stability features.
We consider τ̂π = [2 − ln(2)]/(2π), C1 = 0.5 and C2 = 0.3 in Fig. 8. One can see that by 

increasing the width of the initial profile from D1 = D2 = 2 to D1 = D2 = 20 guarantees stability 
(the gradients are significantly reduced in this case). The solution of the Burgers equation (29)
for ε̂1 mimics a soliton when D1 = D2 = 20.

In Fig. 9 we repeat the same calculation for Fig. 8, but considering a larger value for the 
relaxation time τ̂π = 200η0/s0. In Fig. 9(b) with increasing width the solution displays a soliton-
like behavior when compared to Fig. 9(a). In Fig. 9(c) and Fig. 9(e) we show the case of small 
width and instabilities in the propagation of the pulse are found. However, we clearly observe 
in Fig. 9(d) and Fig. 9(f) that by increasing the width (or, equivalently, by decreasing the initial 
spatial gradient) one can find a stable propagating pulse even for a large value of the relaxation 
time. We conclude that even for large values of the relaxation time one can still find a stable 
nonlinear propagation of the initial Gaussian profile, if the initial gradients are sufficiently small, 
i.e., if the initial Gaussian width is small enough. Therefore, in the hydrodynamic limit we find 
soliton-like solutions of the nonlinear wave equations in Israel–Stewart theory.

In all figures we notice that the numerical solutions of (29) and (30) do not diverge for long 
times, i.e., they are not unstable. The nontrivial study of causality and stability for nonlinear 
wave equations cannot be performed as simply as it was done in the linear case. Such study is in 
progress.
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Fig. 8. Stability is found by increasing the initial width of the initial Gaussian profiles (33) and (34) with C1 = 0.5 and 
C2 = 0.3. The plots are the numerical solutions in the nonlinear regime in Eqs. (29) ((a) and (b)), and (30) ((c) and (d))
for η0/s0 = 1/(4π) and τ̂π = [2 − ln(2)]/(2π). In (e) and (f): the complete energy density perturbation ε̂ = 1 + ε̂1 + ε̂2. 
The perturbations survive despite the dissipative effects.
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Fig. 9. Stability is found by increasing the width of the initial Gaussian profiles (33) and (34) with C1 = 0.5 and C2 = 0.3, 
even for large values of the relaxation time. The plots are the numerical solutions in the nonlinear regime in Eqs. (29)
((a) and (b)), and (30) ((c) and (d)) for η0/s0 = 1/(4π) and τ̂π = 200η0/s0. In (e) and (f): the complete perturbation. 
The perturbations survive despite the dissipative effects.
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6. Conclusions

We derived a system of coupled differential equations which describes nonlinear wave per-
turbations in the energy density of 2nd order conformal fluids. Our semi-analytical treatment 
provides a simple (yet nontrivial) picture of how the relaxation time coefficient affects the 
propagation of sound waves perhaps in a more transparent way than in a complex numerical 
hydrodynamical simulation.

Our system of differential equations can be easily solved numerically and in certain conditions 
gives “soliton-like” behavior for the initial wave packet evolution. Our work may be relevant for 
the understanding of nonlinear perturbations in viscous relativistic hydrodynamics. For instance, 
our study of the deep “Israel–Stewart limit” where τ̂π = 120η0/s0 in Fig. 5 and τ̂π = 200η0/s0 in 
Fig. 9 suggest the existence of an upper bound for τ̂π (for a given η0/s0), which marks the onset 
of a possible instability in the solutions in this case that involves moderately large initial spatial 
gradients. While the linearized study of wave propagation shows that τ̂π cannot be much smaller 
than η0/s0 (due to instabilities), our nonlinear treatment of the wave equation for the energy 
density in hydrodynamics indicates that in a consistent microscopic theory τ̂π and η0/s0 must be 
of comparable magnitude (this is valid, for instance, in the case of kinetic theory calculations). 
However, we remark that in the “rigorous” hydrodynamical limit of small spatial gradients, when 
considering initial Gaussian profiles with large widths, it is possible to avoid instabilities in wave 
propagation, as observed in Fig. 9, while still maintaining the soliton-like solution. Therefore, 
our nonlinear study suggests that in the case of small spatial gradients, Israel–Stewart theory 
should support soliton-like wave phenomena.

For most of our investigations we found that the influence of τ̂π did not determine the over-
all behavior of wave propagation in the nonlinear regime. This conclusion agrees with previous 
investigations in the literature on the small effect of second order transport coefficients in heavy 
ion collisions [48]. Our only exceptions were the ones that implied unphysical values of relax-
ation time and large initial spatial gradients. This statement suggests that in physical systems 
under conditions that are consistent with the hydrodynamic behavior (small gradients), τ̂π/(η/s)

should be of order 1 and the effect of the relaxation time on nonlinear wave propagation can be 
taken to be a small correction.

The differential equations (29) and (30) are nontrivial alternative approaches to investigate 
the nonlinear regime of wave propagation in 2nd order conformal hydrodynamics in the Israel–
Stewart approximation. However, they are still simple enough to be investigated with simple 
numerical routines. For this particular type of study, these equations offer a simple (though 
clearly limited) alternative to the full numerical hydrodynamical equations. We hope that our 
work can be used both as a motivation for the search for soliton waves in the full Israel–Stewart 
equations as well as a possible check of precision of numerical hydrodynamic codes, similar to 
the analytical solutions found in [33,46,47].

It would be interesting to generalize the analysis performed here to include effects from bulk 
viscosity (i.e., by dropping the underlying conformal invariance of the equations) and differ-
ent equations of state. Moreover, even though the nonlinear terms in 2nd order hydrodynamics 
do not contribute to the linearized study, they may play an interesting role in the investiga-
tion of nonlinear wave propagation in the QGP but we leave this investigation to a future 
study.
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Appendix A

Here we focus on the detailed calculations involved in Section 4, Subsection 4.2. The RPM 
method described in Section 4, Subsection 4.1 is used in the simplest conformal relativistic 
Israel–Stewart hydrodynamics equations (2), (3) and (4).

From the property of the dissipative tensor uμπμν = 0 we can write

πtt = v2πxx and πtx = πxt = vπxx. (35)

Notice that even though the RPM perturbative scheme does take into consideration nonlin-
earities, we can the general form of the flow, uμ = (γ, −γ v, 0, 0), to write all the possible 
contributions of the shear tensor components. Since it is traceless, the diagonal components are 
related as

gμνπ
μν = πtt − πxx − πyy − πzz = 0,

π⊥ ≡ πyy = πzz,

π⊥ = (v2 − 1)

2
πxx. (36)

Using the conservation of energy, the term that contains the dissipative tensor in Eq. (2) can be 
written as a function of the x coordinate (using the previous relations)

πμνσμν =
(

3

2
− v2 + 3

2
v4

)
πxxσxx. (37)

The same can be done for the dissipative contribution in the momentum equation (3):

�x
μ∂νπ

μν = v∂tπ
xx + ∂xπ

xx. (38)

Now, for more general flow patterns the relaxation equation (4) will couple the different compo-
nents of the dissipative tensor. However, in our particular case regarding this 1 + 1 flow pattern, 
different components do not couple and the relevant term simply becomes

�x
α�x

βDπαβ = γ 4(1 − v2)2
Dπxx = Dπxx. (39)

Therefore, our analysis is consistent (and simple) and does not require any further approximation 
regarding the mixing of different shear stress tensor components.

Using ε0/κT0
4 = 3/4 and (35) in (2), (3) and (4), performing the operations (a) to (c), we 

find:

σ

{
−∂ε1

∂X
+ 4

3

∂v1

∂X

}
+ σ 2

{
−∂ε2

∂X
+ 4

3

∂v2

∂X
+ ∂ε1

∂Y
+ v1

∂ε1

∂X
− 4

9
v1

∂v1

∂X
+ 1

3
πxx

1
∂v1

∂X

}

+ σ 3
{
−∂ε3

∂X
+ ∂ε2

∂Y
+ v1

∂ε2

∂X
+ v2

∂ε1

∂X
− 4

9
v1

∂v2

∂X

− 4
v2

∂v1 + 4
v1

∂v1 + 4 ∂v3 + 4
v1

2 ∂v1
9 ∂X 9 ∂Y 3 ∂X 9 ∂X
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− 1

9
πxx

1 v1
∂v1

∂X
+ 1

3
πxx

1
∂v2

∂X
+ 1

3
πxx

2
∂v1

∂X

}
= 0, (40)

σ

{
∂ε1

∂X
− 4

3

∂v1

∂X
+ ∂πxx

1

∂X

}
+ σ 2

{
−4

3

∂v2

∂X
+ ∂ε2

∂X
+ 4

3

∂v1

∂Y
+ 4

3
v1

∂v1

∂X
− 1

3
v1

∂ε1

∂X

− 1

3
v1

∂πxx
1

∂X
− 1

3
πxx

1
∂v1

∂X
+ ∂πxx

2

∂X

}

+ σ 3
{
−4

3

∂v3

∂X
+ 4

3

∂v2

∂Y
+ 4

3
v1

∂v2

∂X
+ 4

3
v2

∂v1

∂X
− 4

9
v1

2 ∂v1

∂X

− 1

3
v2

∂ε1

∂X
− 1

3
v1

∂ε2

∂X
+ 1

3
v1

∂ε1

∂Y
+ ∂ε3

∂X
+ ∂πxx

3

∂X
− 1

3
v1

2 ∂πxx
1

∂X
− 1

3
v1

∂πxx
2

∂X

− 1

3
v2

∂πxx
1

∂X
+ 1

3
v1

∂πxx
1

∂Y
+ 1

3
v1

∂πxx
1

∂Y
− 1

3
πxx

1
∂v2

∂X

− 1

3
πxx

1 v1
∂v1

∂X
− 1

3
πxx

2
∂v1

∂X

}
= 0 (41)

and

σ 1/2{L√
3πxx

1

} + σ 3/2
{
−τ̃π

∂πxx
1

∂X
+ 4

3

η̃

p0

∂v1

∂X
+ L

√
3πxx

2

}

+ σ 5/2
{
−τ̃π

∂πxx
2

∂X
+ τ̃π

∂πxx
1

∂Y
+ τ̃π v1

∂πxx
1

∂X
+ 4

3
τ̃ππxx

1
∂v1

∂X
− 4

9

η̃

p0
v1

∂v1

∂X

+ 4

3

η̃

p0

∂v2

∂X
+ L

√
3πxx

3 − L√
3
πxx

1 v1

}
= 0 (42)

respectively. The pressure p0 is the background pressure. As described in the step (d), from the 
O(σ 1/2) term in (42) we have:

πxx
1 = 0. (43)

From O(σ ) terms of (40) and (41) (and using (43)) we find:

v1 = 3

4
ε1. (44)

Applying (43) and (44) to the O(σ 3/2) term of (42), we find:

πxx
2 = − η̃

p0

1

L
√

3

∂ε1

∂X
. (45)

Similarly, applying (43), (44) and (45) to the O(σ 2) terms of (40) and (41) we find respectively:

4

3

∂v2

∂X
− ∂ε2

∂X
= −∂ε1

∂Y
− 1

2
ε1

∂ε1

∂X
(46)

and

4

3

∂v2

∂X
− ∂ε2

∂X
= ∂ε1

∂Y
+ 1

2
ε1

∂ε1

∂X
− η̃

√
3

3Lp0

∂2ε1

∂X2
. (47)

Inserting (43), (44) and (45) into the O(σ 5/2) term of (42) we obtain:
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4

3

η̃

p0

∂v2

∂X
+ L

√
3πxx

3 − η̃

4p0
ε1

∂ε1

∂X
+ τ̃π

η̃

L
√

3p0

∂2ε1

∂X2
= 0. (48)

Equating (46) with (47) we find the following Burgers’ equation for ε1(X, T ):

∂ε1

∂Y
+ 1

2
ε1

∂ε1

∂X
= η̃

√
3

6Lp0

∂2ε1

∂X2
. (49)

The O(σ 3) terms of (40) and (41) provide, after using (43), (44) and (45) the following results:

4

3

∂v3

∂X
− ∂ε3

∂X
+ ∂ε2

∂Y
+ 3

4
ε1

∂ε2

∂X
+ 2

3
v2

∂ε1

∂X
− 1

3
ε1

∂v2

∂X

+ 1

4
ε1

∂ε1

∂Y
+ 3

16
ε1

2 ∂ε1

∂X
− η̃

4Lp0
√

3

(
∂ε1

∂X

)2

= 0 (50)

and
∂ε3

∂X
− 4

3

∂v3

∂X
+ 4

3

∂v2

∂Y
− 1

4
ε1

∂ε2

∂X
+ 2

3
v2

∂ε1

∂X
+ ε1

∂v2

∂X
+ 1

4
ε1

∂ε1

∂Y
− 3

16
ε1

2 ∂ε1

∂X

+ η̃

4Lp0
√

3

(
∂ε1

∂X

)2

+ ∂πxx
3

∂X
+ η̃

4Lp0
√

3
ε1

∂2ε1

∂X2
= 0. (51)

Isolating πxx
3 in (48) and ∂ε3/∂X in (50), and then substituting these two results into (51) we 

obtain the following equation for ε2(X, T ) and v2(X, T ) (considering ε1 previously known from 
(49)):

∂ε2

∂Y
+ 4

3

∂v2

∂Y
+ 1

2
ε1

∂ε2

∂X
+ 4

3
v2

∂ε1

∂X
+ 2

3
ε1

∂v2

∂X

+ 1

2
ε1

∂ε1

∂Y
+ η̃

4Lp0
√

3
ε1

∂2ε1

∂X2
+ η̃

4Lp0
√

3

[(
∂ε1

∂X

)2

+ ε1
∂2ε1

∂X2

]

− τ̃π

η̃

3L2p0

∂3ε1

∂X3
− 4

√
3η̃

9Lp0

∂2v2

∂X2
= 0. (52)

We have thus a system of wave equations: (46), (49) and (52) for the three variables: ε1(X, T ), 
ε2(X, T ) and v2(X, T ). In order to solve it, we shall return to the Cartesian (x, t) space using the 
(24) and (25) as described in the step (d) of the RPM. So, (46), (49) and (52) are rewritten as:

4

3

∂

∂x
v̂2 − ∂

∂x
ε̂2 = −√

3
∂

∂t
ε̂1 − ∂

∂x
ε̂1 − 1

2
ε̂1

∂

∂x
ε̂1, (53)

∂

∂t
ε̂1 + 1√

3

∂

∂x
ε̂1 + 1

2
√

3
ε̂1

∂

∂x
ε̂1 = η

6p0

∂2

∂x2
ε̂1 (54)

and
∂

∂t
ε̂2 + 1√

3

∂

∂x
ε̂2 + 4

3

∂

∂t
v̂2 + 4

3
√

3

∂

∂x
v̂2

+ 1

2
√

3
ε̂1

∂

∂x
ε̂2 + 4

3
√

3
v̂2

∂

∂x
ε̂1 + 2

3
√

3
ε̂1

∂

∂x
v̂2

+ 1

2
ε̂1

∂

∂t
ε̂1 + 1

2
√

3
ε̂1

∂

∂x
ε̂1 + η

4p0
ε̂1

∂2

∂x2
ε̂1 + η

4p0

[(
∂

∂x
ε̂1

)2

+ ε̂1
∂2

∂x2
ε̂1

]

− τπ

η√ ∂3

3
ε̂1 − 4η

9p

∂2

2
v̂2 = 0. (55)
3 3p0 ∂x 0 ∂x
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The three equations above are for the dimensionless variables ε̂1 ≡ σε1, ε̂2 ≡ σ 2ε2 as defined in 
(26) and v̂2 ≡ σ 2v2 from (27). Inserting (54) into (53) we obtain:

∂

∂x
v̂2 = 3

4

∂

∂x
ε̂2 − η

√
3

8p0

∂2

∂x2
ε̂1 (56)

which, considering the constant of integration equals to zero yields the following relation:

v̂2 = 3

4
ε̂2 − η

√
3

8p0

∂

∂x
ε̂1. (57)

Calculating the spatial derivative of (54) we have:

∂

∂t

∂

∂x
ε̂1 = − 1√

3

∂2

∂x2
ε̂1 − 1

2
√

3

[(
∂

∂x
ε̂1

)2

+ ε̂1
∂2

∂x2
ε̂1

]
+ η

6p0

∂3

∂x3
ε̂1 (58)

Substituting (57) and (58) in (55) we find:

∂

∂t
ε̂2 + 1√

3

∂

∂x
ε̂2 + 1

2
√

3
ε̂1

∂

∂x
ε̂2 − η

6p0

∂2

∂x2
ε̂2 + 1

2
√

3
ε̂2

∂

∂x
ε̂1

+ η

12p0
ε̂1

∂2

∂x2
ε̂1 + 1

4
ε̂1

∂

∂t
ε̂1 + 1

4
√

3
ε̂1

∂

∂x
ε̂1 + η

6p0

[
η
√

3

12p0
− τπ√

3

]
∂3

∂x3
ε̂1 = 0. (59)

Finally, the set of equations for the small perturbations in energy density: ε̂1 and ε̂2 as described 
by (26), is given by the Burgers’ equation (54) and Eq. (59).

Using the dimensionless variables x̂ = xT0, t̂ = tT0, τ̂π = T0τπ and recalling to the Gibbs 
relation p0 = T0s0/4, we rewrite (54) and (59) as:

∂

∂t̂
ε̂1 + 1√

3

∂

∂x̂
ε̂1 + 1

2
√

3
ε̂1

∂

∂x̂
ε̂1 = χ

2

∂2

∂x̂2
ε̂1 (60)

and
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∂t̂
ε̂2 + 1√

3
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2
√

3
ε̂1
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ε̂1 + χ

4
ε̂1
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4
ε̂1

∂
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4
√

3
ε̂1

∂

∂x̂
ε̂1 + χ

2

[
χ

√
3

4
− τ̂π√

3

]
∂3

∂x̂3
ε̂1 = 0. (61)
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