Available online at www.sciencedirect.com

ScienceDirect nucLear I

PHYSICS

CrossMark

ELSEVIER Nuclear Physics A 934 (2015) 1840
www.elsevier.com/locate/nuclphysa

Nonlinear waves in second order conformal
hydrodynamics

D.A. Fogaca*, H. Marrochio, E.S. Navarra, J. Noronha

Instituto de Fisica, Universidade de Sdo Paulo, C.P. 66318, 05315-970 Sdo Paulo, SP, Brazil
Received 23 October 2014; received in revised form 24 November 2014; accepted 26 November 2014
Available online 2 December 2014

Abstract

In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of
the 2nd order viscous conformal hydrodynamic equations corresponding to Israel-Stewart theory. Small
amplitude waves are studied within the linearization approximation while waves with large amplitude are
investigated using the reductive perturbation method, which is generalized to the case of 2nd order rela-
tivistic hydrodynamics. Our results indicate the presence of a “soliton-like” wave solution in Israel-Stewart
hydrodynamics despite the presence of dissipation and relaxation effects.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Experiments at RHIC and LHC indicate that the quark—gluon plasma is an almost perfect fluid
where viscous effects are small [ 1-3]. In contrast, at low temperatures and nonzero baryon chem-
ical potentials in the hadron gas phase, viscous effects may be considerably more pronounced
[4—8]. Numerical studies of the hydrodynamical evolution of the Quark—Gluon Plasma (QGP)
show that viscosity produces some visible but not very large effects on global observables [9].

In this work we investigate how the presence of a nonzero shear viscosity relaxation time
affects wave propagation in relativistic fluids. Waves in a hadronic medium may be caused,
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for example, by fluctuations in baryon number or energy density. These fluctuations may be
produced by inhomogeneous initial conditions which, as pointed out in [10], are the result of
quantum fluctuations in the densities of the two colliding nuclei and also in the energy deposi-
tion mechanism. These fluctuations and their phenomenological implications have been studied
extensively [11-15] because they may be responsible for the angular correlations of particle
emission observed in heavy-ion experiments. There are also hydrodynamic fluctuations [10],
which are the result of finite particle number effects in a given fluid cell. This generates local
thermal fluctuations of the energy density (and flow velocity) which propagate throughout the
fluid. Furthermore, there may be fluctuations induced by energetic partons, which have been
scattered in the initial collision of the two nuclei and propagate through the medium, losing en-
ergy and acting as a source term for the hydrodynamical equations [16]. Finally, there may be
also freeze-out fluctuations, which may be caused by finite particle number effects during and
after the freeze-out of the hydrodynamically expanding fluid.

In non-relativistic fluid dynamics the most successful theory of dissipative systems is the
Navier—Stokes (NS) theory [17,18]. For instance, one can use this theory to investigate the evolu-
tion of density perturbations in a non-relativistic hadron gas and in a non-relativistic quark—gluon
plasma. Perturbations are usually studied with the linearization formalism [19,20], which is the
simplest way to study small deviations from equilibrium to obtain wave equations, eventually
featuring dissipative and relaxation terms. The propagation of perturbations through a QGP has
been investigated in several works with the help of a linearized version of the hydrodynamics of
perfect fluids and of viscous fluids. In [21] the authors went beyond linearization and considered
the effects of shear viscosity on the propagation of nonlinear waves. This study was performed
with the help of the well established reductive perturbation method [22-25].

The simplest extension of the well-known Navier—Stokes equations to relativistic fluids is
plagued with instabilities and acausal signal propagation in the resulting equations [26-28], and,
thus, they are not usually employed in numerical simulations. Currently, most fluid-dynamical
simulations of the QGP employ a set of relaxation-type equations similar to those derived by
Israel and Stewart (IS) [29] to close the conservation laws.

In this work we study the propagation of linear and nonlinear waves in relativistic fluids
described by (a simplified set of) of the 2nd order conformal IS equations. We show how to
obtain the linear wave equation which contains the dissipative and relaxation terms. This wave
equation provides a dispersion relation that allows for the study of the stability and causality
properties of the theory. We then expand the modes of the dispersion relation in powers of the
wavenumber to investigate the effects of a nonzero relaxation time coefficient. Understanding the
relaxation effects in the linear modes proved to be a useful guide to approach the same question
in the case of nonlinear perturbations.

Solutions of nonlinear equations of motion generally contain nonlinear dispersive and dissi-
pative terms. The relative strength of these different terms depends on microscopic properties of
the system, which manifest themselves in the transport coefficients (such as the shear viscosity
coefficient, 1, and the relaxation time, t,) and in the equation of state. Different combinations
of these terms generate Korteweg—de Vries solitons, shock waves, strongly damped waves and
so on. In principle, given the underlying microscopic theory, one can calculate the transport co-
efficients and the equation of state to determine the type of waves which can propagate in the
system. However, when the underlying theory is QCD this is not an easy task due to the strongly
coupled nature of the quark—gluon plasma and one needs to resort to phenomenological models
to estimate n and 7, (the QCD equation of state can be reliably computed on the lattice [30]).
The choice of these quantities defines the properties of the solutions of the wave equations.
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Inconsistent choices may lead to unphysical solutions and this opens the possibility of using
waves to put some additional constraints on the values of 1 and t; in the QGP.

In this paper we show how to obtain a system of two coupled differential equations to study
nonlinear waves in conformal IS theory. We solve this system numerically, determining the role
played by shear viscosity and its relaxation time on wave packet evolution. One of the equations
of this system is the Burgers’ equation for the first order perturbation in the energy density, which
does not contain relaxation effects, and it is, thus, the same equation obtained in the NS-based
approach developed in [31]. The other equation describes the second order perturbation in the
energy density, where the effects from a nonzero relaxation time coefficient become manifest.
Our results indicate the presence of a “soliton-like”, i.e., an approximately solitary wave solution,
in IS theory despite the dissipative and relaxation effects. Another motivation to study nonlinear
perturbations is the possibility to find an upper bound for the relaxation scale, which is not found
in the linear treatment.

This paper is organized as follows. In the next section we review the basic expressions of
the simplified set of equations of Israel-Stewart theory used in this work. In Section 3 we study
the linearized hydrodynamic equations, derive the corresponding wave equation, and perform a
study of the stability and causality regarding the propagation of these waves. In Section 4 we
derive a system of coupled differential equations that describe the nonlinear waves in conformal
Israel-Stewart theory. In Section 5 we solve these equations numerically and we finish with our
conclusions and outlook. Throughout this study we use natural units # = ¢ = kg = 1 and a mostly
minus metric g,, = diag(+, —, —, —).

2. Second-order conformal hydrodynamic equations — Israel-Stewart theory

The energy—momentum tensor of a relativistic fluid is
T =¢eu"u’ — pA*’ + 7™ (D

where ¢ is the energy density, p is the pressure, u* is the fluid 4-velocity u* = (y, yv) and y is
the Lorentz factor y = (1 — v2)~!/2 (hence, u*u u = 1). The connection between ¢ and p defines
the equation of state, which will be taken to be that of a conformal fluid, ¢ = 3p. The entropy
density is then s = ¥ T3, where « is a numerical coefficient. Furthermore, the projection operator
orthogonal to the fluid velocity is given by A*Y = g*¥ — u*u". The shear stress tensor 7#" is a
symmetric (and traceless) tensor that is orthogonal to the flow u,7w#" =0 (i.e., the Landau frame
[17]). Besides the energy—momentum conservation equations d, 7#" = 0, or in explicit form,

De+ (e + p)o — a0, =0 2)
(e + p)Du® — V% p + A%, 7" =0 3)

the simplified set of the conformal IS equations [37] that defines the dynamics of the shear stress
tensor w*¥ used here are [32,33]

4
Tr <AZA:§DJT°"3 + 571“”9) + Y =2’ 4)

where the operators are written in shorthand notation by D = u#9,,, which is the comoving
derivative, V§ = A%#9,, is the derivative orthogonal to the 4-velocity and the expansion rate is
6 = 0*u,,. The shear tensor is defined as o*” = ARByu g using the doubly symmetric and
traceless projection operator AMV*E = (AH* AVE - AMB AVX) 12 — ARV A% /3. Also, note that in
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a conformal fluid 7, ~ 1/T and n ~ T3. Therefore, in Israel-Stewart’s theory the dynamical
variables are the usual hydrodynamical quantities ¢ and u* together with the shear stress ten-
sor m#V (see Appendix A for a discussion about the components of the shear stress tensor that
contribute in our analysis).

Effects from bulk viscosity (see, for instance, [41,42]) or from additional conserved charges
are not taken into account here. Furthermore, even though the equation of motion for w*" derived
from kinetic theory contains many more terms than the ones used here [43], in this paper we
shall focus on the simplest set of equations that can still describe a causal (and stable) conformal
dissipative fluid.

3. Linearized wave equations

In order to obtain the simplest wave equation for a small perturbation in the fluid around equi-
librium, one can resort to the formalism known as the “linearization formalism” [20,21,34], in
which one performs the following expansions of the energy density, pressure, shear stress tensor,
and fluid 4-velocity around their respective equilibrium configuration values (for simplicity, here
we take the sound wave disturbances in the “x” direction)

e(x,t)=¢eo+dbe(x,t), r,,(x,t):rjg—i—érn(x,t), n(x,t)=no+n(x,t)
¥ =86 (x,t) and u”(x,t):(1,0,0,0)+(O,(Sux(x,t),0,0) 5

In Eq. (5), “6” denotes a small deviation from equilibrium. After inserting the expansions (5)
in Egs. (2)—(4), the linearization approximation is performed by neglecting the O(8") terms for
n > 2 in the resulting equations (see Appendix A for a discussion about the different components
of the shear stress tensor).

Linearizing the three equations (2) to (4), using that ¢,> = dp/de = 1/3, we find

88 +4 | Sut — 0 (6)
a1t T30 T
4 9 10 )
—gg—O0u* +-—5§ —én™ =0 7
39050 T390 T T M
0 4 9
0 XX xx x
—38 ) —ng—3du* =0, 8
Trg T T Om A g0 ou ®
respectively.

Inserting (7) and its time derivative into the spatial derivative of (8) we find

0[488_2x188:|_48x18 4 92

T — L Se+ —no—sbu* =0. 9)
X

b

3052 T 3%rax 0

Calculating the time and spatial derivative of (6) and inserting these results in the spatial deriva-
tive of (9), together with the Gibbs relation for the background 4g9/3 = Tysg, we obtain the
following wave equation

92 92 93 3x 3 92

—8e —3—8 — 310 —de=— -+ 10 |~ 10
0x2 012 T or3 (To + ”> at 9x2 (19)
with dissipation and relaxation time effects. Eq. (10) is sometimes known as the lossy wave
equation [35,36]. The dimensionless coefficient x is given by

_4m

= ) 11
X 3% (11)
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In the limit 179 — 0 one recovers the linear wave equation for the viscous fluid described by the
relativistic Navier—Stokes theory [21,34]. Also, setting ‘(79 = x = 0, one obtains the linear wave
equation for the ideal relativistic fluid [21,34].

3.1. Stability and causality
To study some properties of (10) we consider a plane wave ansatz for all the disturbances,
e.g.,
Se(x, 1) = Al k¥—oD (12)
which yields the following dispersion relation [28]

, k(1 —iAw)

-z 7 13
3 (1-itdw) (13)
where A is given by
3x
A= 14
(Z+e2). (14)

For xy =0 and ‘L'n = 0 the dispersion relation (13) becomes the ideal fluid dispersion relation
for a sound wave: w? = k2 /3. Setting only 7,,° — 0, (13) gives the Navier—Stokes sound wave
dispersion relation [21] w? = k?/3 — iwk® / 1.
Introducing the dimensionless variables @ = w/ Ty, k=k /Tp and T, = To , the dispersion
relation (13) is rewritten as a dimensionless equation to be solved for @
5 i k?
—ity® + %+ (ikzx + §k2fﬂ)@ -5 =0 (15)

We expect the hydrodynamic description to be meaningful for small values of @ and k. For
completeness we extrapolate our results to large values of k, as motivated by [26]. The study of
the short wavelength limit is surely limited to phenomenological applications of fluid dynamics;
however, since the relativistic Navier—Stokes theory is known to have numerical instabilities, we
find it useful to check that the Israel-Stewart construction is free of any acausality and instability
in this regime under linear perturbations. Our results from this section are consistent with the
discussion presented in [27,28].

To study the stability and causality properties of (10), we decompose the roots of (15) in
two components as in [21,28]: ® = Re[@] + i Im[®], where Re[®] € R and Im[&®] € R. This
decomposition also turns the solution (12) into

SE(X t)_AeIm[w]t 1Re (kx/Re[w] i) (16)

and again, X = Tox and 7 = Tyt are dimensionless quantities. In (16) it is possible to identify
the attenuation coefficient Im[®], which dictates the stability properties of the disturbance, i.e.,
stable perturbations have Im[®] < 0. The phase velocity 9, and the group velocity 0, are given
by the following expressions

Re[®] dRe[a)]

b, (k) = — and b (k) = o (17)

and causality violation occurs if U, diverges [44].
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Fig. 1. Stability and causality properties of disturbances around equilibrium for IS hydrodynamics (described by Eq. (10))
with transport coefficients from strongly-coupled N' =4 SYM.

In the analysis below we consider the coefficients of the strongly coupled N'= 4 Supersym-
metric Yang-Mills (SYM) fluid where ng/so = 1/(4n) and 7, = [2 —In(2)]/(27) [37]. In Fig. 1
we plot the group velocity 9, and the attenuation coefficient Im[®] for the three roots &7, @y and
&gy of (15). In Fig. 1(a) one can clearly notice that the three modes are stable since the imaginary
parts of the modes are always negative. In Fig. 1(b) there is no causality violation since there is
no divergence as k increases and the group velocity is bounded by unity for large values of k. The
influence of the group velocity in the causal aspects of wave propagation comes from solving the
full propagator in configuration space, which follows from the integral in momentum space. The
resulting propagator should be a function defined only inside the corresponding lightcone. If for
large k the group velocity is at maximum unity, then this condition is satisfied [28]. This figure
shows that the linear sound wave disturbances around thermodynamical equilibrium in 2nd order
hydrodynamics (with the transport coefficients of strongly-coupled N'=4 SYM) are causal and
stable. A similar study can be done for the shear channel [28].

The three modes of the IS theory with strongly-coupled transport coefficients shown in Fig. 1
can be expanded in powers of k. Since we are considering dimensionless variables, the limit of
small & and & reveals the infrared behavior of the theory, i.e., the behavior of the modes with
ok < 1. Hydrodynamics can be considered as an effective theory at low energies and, thus, it
should be well defined for small k. We obtain the following relations

ki o~ N3 (3
b= LM B == 3x — i)k + Ok 18
o1="5 =X 6x<4x ) 6xrn(x Tkt +O(k) (18)

]2 i A~ \/§ 3 I
Sy = — e — Ly k24 X2 — 2 )k — 42 By — Tk + O(K 19
wjr ﬁ 2)( + 6)((4)( ) 6)(77:1()( Tk + ( ) (19)
ot = _fL Fixk? +i§a,(3x — 2kt + O (F°) (20)

o

The first two modes describe sound waves at small momenta while the 3rd mode is a non-
hydrodynamic mode. For small k, the relaxation coefficient 7, first appears in the sound wave
modes multiplied by 3 /4 (no/so) in the k3 term [37]. However, note that T, already appears at
zeroth order in & in aj and it clearly defines a microscopic relaxation time scale [45].
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It is important to notice that in this regime the non-hydrodynamic mode @y should only
play a role when k ~ 1, where its value becomes comparable to the other modes. The physical
interpretation is that in the low energy limit one should only care about the hydrodynamic modes.
However, notice that this mode is stable for any k, which implies that Israel-Stewart theory is
well-defined mathematically in the short wavelength limit.

We followed closely the study performed in [28] for the Israel-Stewart theory where the
dispersion relation (13) and the decomposition of its modes in real and imaginary parts were
considered in the large and small wavenumber limits. In [28] the authors suggested that the
problem of acausality and instability are correlated in relativistic dissipative hydrodynamics.

For the modes (18), (19) and (20), the group velocity and the attenuation coefficient at small
k are

f)gl = —ﬁg” = % - ?}( (Z}( — fn>k2 + O(k4) and ﬁg”] =0 (21)

Im[@;] = Im[oy] = —%l%z — %fn By — 2Ok + (’)(125) <0 and

R | I R o X
Im[&p] = —<f— - Xk2> + %rn Gx — tk* + O(k°) <0. (22)

T

4. Nonlinear wave equations in conformal Israel-Stewart theory

The effects from a relaxation timescale 7,; have not yet been studied in the context of nonlinear
wave propagation. In order to investigate its effects in the study of nonlinear waves, we shall use
the Reductive Perturbation Method (RPM) [22-25]. The RPM was used to study nonlinear waves
in relativistic and non-relativistic hydrodynamics in [21,31,34,40]. Our goal in this section is to
find the nonlinear wave equation that governs the perturbation of the energy density in a hot
dissipative and causal fluid described by IS hydrodynamics.

4.1. Reductive perturbation method
With the RPM we can derive the nonlinear wave equation for perturbations in a fluid perform-

ing the following set of operations [21,34]:
(a) Rewrite Egs. (2), (3), and (4) using the following dimensionless variables

(o1
s =90 iy =2%D A ) and
€0 Cy
R T (x, 1)
A,y = 0D 23)
Po

(b) Change the coordinates in Eqgs. (2), (3), and (4) from (x, ) to the (X, Y) space defined by
the “stretched coordinates” [22-25]

X:al/zwzal/zl(x_L> and Vo326t _ 3t 24)
L L NE] L V3L

where L is a characteristic length scale of the problem, which will be simplified in the final
expressions, and o is a small (0 < o < 1), dimensionless expansion parameter. We also change
the shear viscosity coefficient and the relaxation time to the (X, Y) space in the following way
[38,39]
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1/2

n=0"?f and 1, =0'?%,. (25)

We refer the reader to Appendix A for the details. While the scaling of n with o was known in
literature [38,39], the proposed scaling of t,; with ¢ used here is new and it is the simplest choice
that is consistent with the sound mode dispersion relation (18) and (19).

(c) Expand the variables in Eq. (23) around their equilibrium values

. &
8=—=1+O’81+(7282+0’383+~-- (26)
€0
. v
by=—=0ovi+0v+cv3+ - 27
Cs
and
JTX)C
ﬁxx _ T _ O'ﬂfcx +O’27T§x _{_0-37-[;“ + .- (28)
Po

After the expansions, we organize the resulting equations in powers of o, neglecting terms
with powers greater than . In the usual RPM method, only terms proportional to o and o> are
kept. However, the linear hydrodynamical modes (18) and (19) show that relaxation effects may
appear only in the next order of the usual expansion, i.e., at order k3. For this reason we consider
the o expansion up to O(c?) terms to study relaxation effects in nonlinear waves.

(d) By solving the system of algebraic equations: ol2{..}=0,...,03{...} =0 obtained in
the step (c), it is possible to find the system of wave equations in the (X, Y) space. Such system
may be transformed back to the (x,t) coordinates through the stretching transformations (24)
and (25) yielding the final system of nonlinear wave equations for the perturbations in the energy
density.

4.2. Nonlinear wave equations

The set of differential equations obtained from the RPM method is given by

9 . 1 9. 1 .0, x 0%,
B+ b+ —=f - 29
of | /30% | 2y3 ok | 2082 9
and
aA+1aA+1AaA Xa2A+1AaA+XA32A
—& — =€ ——=&1 <& — ——=¢& —=&2——=<¢& — &1 —=€
of 2T B 2T o3 tex t T 202t T o3 tar T A ezt
1. 9. 1,8, x[xv3 73,
—&1= — =€l Al T = |a3é1 =Y 30
+48]ar81+4¢§818x8'+2[ ) 7 PFERL (30)

where ] = o¢; and & = o2¢,. The details of the calculations and assumptions needed to derive
these equations are presented in Appendix A. Also, given the solution of (29) and (30), one is also
able to study the behavior of #**. However, in this paper we shall focus on the energy density
disturbance and leave a detailed study of the shear stress tensor in this approach for future work.

We emphasize that the Burgers’ equation (29) for the first order energy perturbation &; does
not contain relaxation effects and, thus, it is the same both in Navier—Stokes and in Israel-Stewart
theory. This feature has lead us to consider perturbations up to third order in energy density and
fluid velocity. This provides the first equation where the relaxation time coefficient appears:
Eq. (30) for &;.
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Fig. 2. Numerical solutions for the energy density disturbances in the nonlinear regime in Egs. (29) (a) and (30) (b)
for ng/so = 1/(4x) and 7 = [2 — In(2)]/(27). The initial conditions are (31) and (32) with A} = 0.8, Ap =0.2 and
Bj = B =0.5. (c) Shows the complete energy density perturbation & = 1 + & + ;. The perturbations survive despite
the dissipative effects.

5. Numerical results and discussion

An analytical solution of the Burgers’ equation (29) can be obtained by the hyperbolic tangent
expansion method [21] and its variants. However, it is not possible to find a finite solution after
substituting the analytical solution for &; into (30) to solve it for &,. We have thus proceeded to
solve (29) and (30) numerically.

5.1. Soliton initial profile

Several different sets of parameters and initial profiles are considered in this study. Starting
with the following typical strong coupling parameters 3x /4 = no/so = 1/(4x) and T, = [2 —
In(2)]/(2m) [37], we show the propagation of nonlinear waves in Fig. 2. We start by solving (29)

with the following initial condition

81(R.0) =4, sechz(i) 31)
B
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Fig. 3. Numerical solutions for the energy density disturbances in the nonlinear regime in Eqgs. (29) (a) and (30) (b)
for ng/sg = 1 and 7 = 5ng/sg. The initial conditions are (31) and (32) with A} =0.8, A» =0.2 and B] = B, =0.5.
(c) Shows the complete energy density perturbation. The perturbations do not survive due large dissipative effects.

and inserting the obtained numerical solution of (29) into (30) with the initial profile for &,

£)(%,0) = Ay sech? (i) (32)
B

The first case in Fig. 2 corresponds to A; = 0.8, A» =0.2 and B; = B, =0.5. The numerical
solution of (29), (30), and the total energy perturbation given by (26), &€ = 1 + &; + &;, are shown
in Fig. 2. We notice that, in spite of the dissipative and relaxation effects, the perturbations still
survive as time increases.

In Fig. 3 we show similar calculations as in Fig. 2 but now considering large viscosity and
relaxation time coefficients given respectively by no/so = 1 and T, = 5n9/so, which is in the
ballpark of kinetic theory calculations [43,45]. In Fig. 3(a) we obtain the expected result for the
Burgers’ equation with large viscosity: a strong dissipation of the initial pulse. In Fig. 3(b) we
also obtain the same dissipation effect but at some intermediate time scales f = 5 to 7 = 20 there
is also rarefaction. The total perturbation does not survive for longer times and the perturbed
fluid tends to recover the background configuration &€ = 1 as time increases.

The calculations shown in Fig. 2 are repeated in Fig. 4 (same transport coefficients) now with
different initial conditions, i.e., larger widths B; = By = 3. Fig. 4 shows an intermediate con-
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Fig. 4. Numerical solutions for the energy density disturbances in the nonlinear regime in Egs. (29) (a) and (30) (b)
for ng/sg = 1/(4m) and 77 = [2 — In(2)]/(27). The initial conditions are (31) and (32) with A} = 0.8, Ap =0.2 and
By = By = 3. In this case the width of the initial pulses is 6 times larger than in Fig. 2. (c) Shows the complete energy
density perturbation. The perturbations with these initial profiles mimic soliton behavior.

figuration between shock wave formation (wall formation) and an approximately stable soliton
propagation for the total perturbation & in 4(c). We note that pulses with larger width are not only
more stable but the second order effects become more significant for larger times.

In Fig. 5 we considered A1 = 0.6, A» = 0.3, By =0.7, and B, = 0.5 for a small viscosity
no/so = 1/(4m) and varied the value of the relaxation time coefficient. The values considered
were T, = 0 (Navier-Stokes limit) and 7, = 120n9/so (where the relaxation time is much more
important than the shear viscosity). We only plot the perturbations affected by relaxation: £;
and consequently &. We notice that the size of the perturbations increase when one increases the
relaxation coefficient. This limit is not a very plausible choice but it is interesting to see that the
resulting solutions are unstable since they generate values of £, which are unacceptably large. If
we consider that pulses originate from inhomogeneous density profiles or quantum fluctuations,
it is reasonable to assume that the most realistic pulses could be in principle more localized in
space and thus they would suffer dissipative, nonlinear, and dispersive effects losing its localized
profile.



D.A. Fogaga et al. / Nuclear Physics A 934 (2015) 18—40 29

A
0 A 82
t:
—0
P 1
............ 5
i
i
F]
-0.4-| L
\J
T Y ] -0.8 T T T T 1
A 14 16 18 8 10 12 A 14 16 18
X X
(a) (b)
2.0+
A
A T =1207,/s,
A
1.8- R 2_o .
" T
Y A t-
\ t: ' 0
1.6 L R
i\ —0
il - 1
A 5
| ; . A T T A R
1.4 i \‘ i L e 5 ;
i
i ;
1.2 ! 7
/ H
7 A E
K4 NN
1.0 =< i — T ' ] T T T T Y
8 10 12 14 16 18 8 10 12 A 14 16 18
% X

—

c) (d)

Fig. 5. Numerical solutions for the energy density disturbance in the nonlinear regime in Eq. (30) (a) and (b) for ng/sg =
1/(47) and two choices of 75 . The initial conditions are (31) and (32) with A} = 0.6, A =0.3, By =0.7 and B, =0.5.
(c) and (d) shows the complete energy density perturbation. For large values of the relaxation time coefficient, the energy

perturbation &) acquires large amplitude and becomes inconsistent as a small disturbance (note, however, that the initial
gradients are large).

In Eq. (30) the terms with ng/so (except for the last one) contribute to dissipation. The last
term of (30) introduces dispersion and involves both 79/s¢ and the combination A3 = ng/so — .
When 7, tends to zero we recover the Navier—Stokes limit, where problems with causality and
instability are expected to appear. When 7, becomes very large, in principle, no problem was
expected to occur. However the very large amplification of the amplitude &, is surprising. It
implies that a large amount of energy is transferred from the medium to the wave. We see here
evidence that the large value chosen for 7,; in this particular configuration may be unphysical.
This is a interesting finding since in the linear perturbative limit (discussed before in Section 2)
there were no apparent inconsistencies associated with large values of 7. The existence of an
upper bound for 7 can only be seen in the nonlinear perturbation theory used here. However, one
may also interpret this enhancement in the amplitude as an indication that the higher order terms
that were neglected in the expansion have become significant and must be taken into account (the
initial profile is such that the initial spatial gradients are not very small). It would be interesting
to check if this nonlinear instability can appear in the existing numerical hydrodynamic codes.
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Fig. 6. Comparison between the energy density perturbations in Navier—Stokes and Israel-Stewart theory for g /sg = 1
and 77 = 5n9/sg. The initial conditions are (31) and (32) with A; =0.1, Ay =0.01 and B} = B, = 0.5. (a) and (b)
show the numerical solutions for Eq. (30) and (c) and (d) are the complete energy density perturbation. The relaxation
ensures that rarefaction occurs in the tail of the pulse while there is an enhancement in the front of the pulse.

In Fig. 6 for a large viscosity no/so = 1 and small amplitudes and widths, given by A; = 0.1,
Ay =0.01 and By = B, = 0.5, we compare the results for two different theories, NS and IS.
In this case 7, = 0 (Navier-Stokes case) and 7, = 5n¢/so, which is a reasonable estimate for
7, for systems described by the Boltzmann equation. This figure is analogous to Fig. 5, as the
Israel-Stewart fluid ensures that rarefaction occurs in the tail and there is an enhancement in the
front of the pulse.

Using the same parameters as in Fig. 6, we summarize the effects of relaxation considering
the “soliton-like” configuration for the initial conditions: A} = 0.6, A, =04, By =By =4in
Fig. 7. Relaxation increases the pulse amplitudes in some regions, as it has a dispersive character.
However, this behavior is different from the NS case in which there is an enhancement of the
amplitude in the opposite direction of the pulse.

The pulse in the Israel-Stewart fluid propagates ahead of that from the Navier—Stokes fluid.
We clearly notice that IS hydrodynamics favors the wall front formation, while NS disperses the
pulse to the opposite direction of motion. This might be the most important feature of relaxation
time effects in nonlinear wave perturbation found in this paper and is both present for strong and
weak coupling inspired parameters.
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5.2. Gaussian initial profile

Again, we consider the strong coupling parameters 3x /4 = no/so = 1/(4m) and two values
for 7. We solve (29) with the following Gaussian initial condition:

£1(%,0) = Cje®/D1? (33)

and insert the obtained numerical solution of (29) into (30) with the initial Gaussian profile for &;:

82 (%,0) = Cae— /D27, (34)

The amplitudes C1, C, and the widths D1, D, are chosen to study some stability features.

We consider 7; = [2 — In(2)]/(27), C; = 0.5 and C, = 0.3 in Fig. 8. One can see that by
increasing the width of the initial profile from Dy = Dy = 2 to D; = D, = 20 guarantees stability
(the gradients are significantly reduced in this case). The solution of the Burgers equation (29)
for £{ mimics a soliton when D; = D, = 20.

In Fig. 9 we repeat the same calculation for Fig. 8, but considering a larger value for the
relaxation time 7, = 200n¢/so. In Fig. 9(b) with increasing width the solution displays a soliton-
like behavior when compared to Fig. 9(a). In Fig. 9(c) and Fig. 9(e) we show the case of small
width and instabilities in the propagation of the pulse are found. However, we clearly observe
in Fig. 9(d) and Fig. 9(f) that by increasing the width (or, equivalently, by decreasing the initial
spatial gradient) one can find a stable propagating pulse even for a large value of the relaxation
time. We conclude that even for large values of the relaxation time one can still find a stable
nonlinear propagation of the initial Gaussian profile, if the initial gradients are sufficiently small,
i.e., if the initial Gaussian width is small enough. Therefore, in the hydrodynamic limit we find
soliton-like solutions of the nonlinear wave equations in Israel-Stewart theory.

In all figures we notice that the numerical solutions of (29) and (30) do not diverge for long
times, i.e., they are not unstable. The nontrivial study of causality and stability for nonlinear
wave equations cannot be performed as simply as it was done in the linear case. Such study is in
progress.
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The perturbations survive despite the dissipative effects.
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6. Conclusions

We derived a system of coupled differential equations which describes nonlinear wave per-
turbations in the energy density of 2nd order conformal fluids. Our semi-analytical treatment
provides a simple (yet nontrivial) picture of how the relaxation time coefficient affects the
propagation of sound waves perhaps in a more transparent way than in a complex numerical
hydrodynamical simulation.

Our system of differential equations can be easily solved numerically and in certain conditions
gives “soliton-like” behavior for the initial wave packet evolution. Our work may be relevant for
the understanding of nonlinear perturbations in viscous relativistic hydrodynamics. For instance,
our study of the deep “Israel-Stewart limit” where 7, = 120n9/so in Fig. 5 and 7, = 200n¢/s¢ in
Fig. 9 suggest the existence of an upper bound for 7, (for a given 19/sg), which marks the onset
of a possible instability in the solutions in this case that involves moderately large initial spatial
gradients. While the linearized study of wave propagation shows that 7, cannot be much smaller
than no/so (due to instabilities), our nonlinear treatment of the wave equation for the energy
density in hydrodynamics indicates that in a consistent microscopic theory 7, and 19/so must be
of comparable magnitude (this is valid, for instance, in the case of kinetic theory calculations).
However, we remark that in the “rigorous” hydrodynamical limit of small spatial gradients, when
considering initial Gaussian profiles with large widths, it is possible to avoid instabilities in wave
propagation, as observed in Fig. 9, while still maintaining the soliton-like solution. Therefore,
our nonlinear study suggests that in the case of small spatial gradients, Israel-Stewart theory
should support soliton-like wave phenomena.

For most of our investigations we found that the influence of 7, did not determine the over-
all behavior of wave propagation in the nonlinear regime. This conclusion agrees with previous
investigations in the literature on the small effect of second order transport coefficients in heavy
ion collisions [48]. Our only exceptions were the ones that implied unphysical values of relax-
ation time and large initial spatial gradients. This statement suggests that in physical systems
under conditions that are consistent with the hydrodynamic behavior (small gradients), 7 /(n/s)
should be of order 1 and the effect of the relaxation time on nonlinear wave propagation can be
taken to be a small correction.

The differential equations (29) and (30) are nontrivial alternative approaches to investigate
the nonlinear regime of wave propagation in 2nd order conformal hydrodynamics in the Israel—
Stewart approximation. However, they are still simple enough to be investigated with simple
numerical routines. For this particular type of study, these equations offer a simple (though
clearly limited) alternative to the full numerical hydrodynamical equations. We hope that our
work can be used both as a motivation for the search for soliton waves in the full Israel-Stewart
equations as well as a possible check of precision of numerical hydrodynamic codes, similar to
the analytical solutions found in [33,46,47].

It would be interesting to generalize the analysis performed here to include effects from bulk
viscosity (i.e., by dropping the underlying conformal invariance of the equations) and differ-
ent equations of state. Moreover, even though the nonlinear terms in 2nd order hydrodynamics
do not contribute to the linearized study, they may play an interesting role in the investiga-
tion of nonlinear wave propagation in the QGP but we leave this investigation to a future
study.
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Appendix A

Here we focus on the detailed calculations involved in Section 4, Subsection 4.2. The RPM
method described in Section 4, Subsection 4.1 is used in the simplest conformal relativistic
Israel-Stewart hydrodynamics equations (2), (3) and (4).

From the property of the dissipative tensor u,,w#*" = 0 we can write

7" =027 and ¥ =71 = vn**. (35)

Notice that even though the RPM perturbative scheme does take into consideration nonlin-
earities, we can the general form of the flow, u, = (y, —yv,0,0), to write all the possible
contributions of the shear tensor components. Since it is traceless, the diagonal components are
related as

v 1t XX y 2z _
g’ =n" — g — g — ¥ =0,

glt=g" =7%,

2
ve—1
L _-D
2
Using the conservation of energy, the term that contains the dissipative tensor in Eq. (2) can be
written as a function of the x coordinate (using the previous relations)

3 3
7o, = (E — v+ —v4>7r”axx. (37)

Pl (36)

2

The same can be done for the dissipative contribution in the momentum equation (3):
Azavn”” =00, + o, . (38)

Now, for more general flow patterns the relaxation equation (4) will couple the different compo-
nents of the dissipative tensor. However, in our particular case regarding this 1 + 1 flow pattern,
different components do not couple and the relevant term simply becomes
ALAS DR = y4(1 — )’ D™ = D™ (39)
Therefore, our analysis is consistent (and simple) and does not require any further approximation
regarding the mixing of different shear stress tensor components.
Using eo/kTo* = 3/4 and (35) in (2), (3) and (4), performing the operations (a) to (c), we
find:
381 431)1 2 382 431.)2 381 881 4 81)1 1 xx 31)1
oV~ tsw(to VTt o+t — Vi35 +t 37 —
{ 90X 3ax} ox " 39x oy 'ax 9 'ax 37! 9x

+U3 883 T 382 T 882 T 381 4v 31)2
ax oy | 'ax T Pax 9 'ax

4 vy 4 odvy 49dvs 4 ,0v

T9%5x "9y T3ax TV ax
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I .. 0dv I ovx 1 . dn
1 dui  oa0v2 Lo dui] 40
o™ Vigx T3 5x T3™ ax (40)
381 431)1 an" 2 431)2 382 431)1 4 31.)1 1 381
{ax 3ax T ax [T T3ax Tax T3y T3%ax T3V ax

1 om* 1 N
39 x 37 ax T ax
+(,3{_‘_‘%+‘_‘% 4 v 4 v 4 H0vr

39x 39y T3%ax T3%x 9 ax

1 9er 1 dex 1 dey  de3  Odmz* 1 L,om* 1 omy”
It e I B o 1 B i e 1 -2
379X 3 90X 3 9y  o0X 0X 3 X 370X

TR }

1 om™ N 1 om™ N I o™ 1 . 0w
- =V —v —v ——mt =
32%9x 3 'y "3 'y 3! ogx
I . odvy 1 0v
1 ovi 1w OUl| 41
37 VGx T3 Gx “h

and

ot 479
al/z{L\/gnfx}—i-ayz{—fn il +—lﬂ+Lx/—n§”‘}

90X ' 3po X
omy* om ¥ o 4 v 4575 Odv
spl_z %% 2 0 s O T OV 2 OV
to { Tox TRy TEU G T3TT gx T om0 " ax
478 L
+§%8—;}?+L«/—n§x—ﬁnf)‘vl}=0 42)

respectively. The pressure pg is the background pressure. As described in the step (d), from the
O(c'/?) term in (42) we have:

mt =0. (43)
From O(o) terms of (40) and (41) (and using (43)) we find:
3
v = ZEI . 44)

Applying (43) and (44) to the O(c>/?) term of (42), we find:

n 1 0d¢e
S ) (45)
2 po L3 0X

Similarly, applying (43), (44) and (45) to the O(c?) terms of (40) and (41) we find respectively:

- e (46)
and

49 9 3 1 9 /3 92
40vy dey ey 1 der i3 0% @
39X 99X dY 2 93X 3LpgdXx?

Inserting (43), (44) and (45) into the O (o>/?) term of (42) we obtain:
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47 vy ioder . @ 9%
IR SVEY - A St R S S ———— 48
3 podX T 40X T T LB, 0X2 (48)

Equating (46) with (47) we find the following Burgers’ equation for ¢1(X, T):

der 1 der 73 3%
— t - ==
3y | 2°'9X ~ 6Lpg 9X2

The O(c3) terms of (40) and (41) provide, after using (43), (44) and (45) the following results:

4 9dv de ae 3 Qe 2 0de 1 Odv
: > 22 —81—2+—v2—1——81—2

(49)

39X  aX L aY 49X 379X 3 ax
1 0d¢ 3 e 7 de1\ 2
+ et et — — () = (50)
478Y 116 39X 4Lpoy/3 \9X
and
383 4 31)3 4 8v2 1 382 2 381 31)2 1 881 3 2381
Vv T 3nv Tany G flay taVany telin T oelin, — TR o
aX 30X 33y 4 39X 39X aX 4 93y 16 aX
7 de1\> O 7 92
L (ﬂ) : TSy, (51)
4Lpov/3\ 90X X 4Lpyv/3 09X

Isolating ng‘x in (48) and de3/dX in (50), and then substituting these two results into (51) we
obtain the following equation for &2(X, T) and v2(X, T) (considering €1 previously known from
(49)):

382 T 4 31)2 1 882 4 881 2 81)2

ay T3ar T 2%%x T3%9x T3%0x

+1 a1 Lo 9%y Lo |:(381> N 3251}
SE1o €1 —~ | Té 37
20Y  4Lpgy/3  9X%  4LpoV/3L\0X 9X2
T 44/37 32
L e V37 v _, 52)
3L%2py dX3  9Lpy 3X?

We have thus a system of wave equations: (46), (49) and (52) for the three variables: 1 (X, T),
&2(X, T) and v2(X, T). In order to solve it, we shall return to the Cartesian (x, #) space using the
(24) and (25) as described in the step (d) of the RPM. So, (46), (49) and (52) are rewritten as:

&1, (53)

8A+13+1A8A n 9%,
—&81+—=—&1+—F—=&1—¢&1=——¢
9 V3 0x ! 23 ox ! 6po 0x2 !

A

(54)

and
a . 1 0., 49 , 4 9 .
PRV ¥ T FTACRIEW. ¥ P
1.9, 4 9, 2 9

LTS P SO P P LN aA2+Aa2A

—&1—€ —&1—€& —E&1——=€ — —& E1—=¢€

279 T o Tax ! T apy tax2 ' apg | \ax Tax2!
3 . 4n 9,

—Tp—————&1 — ———=10y =0. (55)
i 34/3pg 9x3 9po 0x2
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2

The three equations above are for the dimensionless variables £€| = o¢1, & = 0~¢; as defined in

(26) and 1, = o2v, from (27). Inserting (54) into (53) we obtain:

3. 30 NEEE
B S S A (56)
ax 4 0x 8po ax2

which, considering the constant of integration equals to zero yields the following relation:

. 3. 039,
=—-8) — ———F¢&]. 57
"2 482 8po dx i (57)
Calculating the spatial derivative of (54) we have:
00, _ 182é 1 a§2+§ 32é +na3é 58)
arax ' Jaax2 ' 23 \ax ! Yax2 | T epg ax3 !

Substituting (57) and (58) in (55) we find:

aA+1aA 1 aA n32A+1AaA
— 4+ —— —— &+ ——=8&—¢
at > J3ox 2f ox 2 6p0 ax2 " 23 tox !
92 1. 9 9 n [nv3 1] 0.
_n Ly W N 8 =0. (59
e ot it gy 1+4flax 1+6p0|:12p0 V3o o9

Finally, the set of equations for the small perturbations in energy density: £; and &, as described
by (26), is given by the Burgers’ equation (54) and Eq. (59).

Using the dimensionless variables £ = xTp, f = tTy, T = ToT, and recalling to the Gibbs
relation pg = Toso/4, we rewrite (54) and (59) as:

aA+1aA+1Aa x 9% 60)
—& — —=€ — 5 €
T B T oz er T 2 a2
and
aA+1aA+1AaA XaZA 9 +XA32A
= =o€ =818~ S o€ ¢ ~5 €
T BT A R T 2T 2[23 T2
1. 9. 1, 8. x[xv3 %78,
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413t14318x12[4 /33! D
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