
Eur. Phys. J. C (2017) 77:433
DOI 10.1140/epjc/s10052-017-4927-1

Regular Article - Theoretical Physics

Remarks on a gauge theory for continuous spin particles

Victor O. Rivellesa

Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo, SP 05508-090, Brazil

Received: 4 November 2016 / Accepted: 17 May 2017 / Published online: 29 June 2017
© The Author(s) 2017. This article is an open access publication

Abstract We discuss in a systematic way the gauge theory
for a continuous spin particle proposed by Schuster and Toro.
We show that it is naturally formulated in a cotangent bundle
over Minkowski spacetime where the gauge field depends
on the spacetime coordinate xμ and on a covector ημ. We
discuss how fields can be expanded in ημ in different ways
and how these expansions are related to each other. The field
equation has a derivative of a Dirac delta function with sup-
port on the η-hyperboloid η2 + 1 = 0 and we show how it
restricts the dynamics of the gauge field to the η-hyperboloid
and its first neighbourhood. We then show that on-shell the
field carries one single irreducible unitary representation of
the Poincaré group for a continuous spin particle. We also
show how the field can be used to build a set of covariant
equations found by Wigner describing the wave function of
one-particle states for a continuous spin particle. Finally we
show that it is not possible to couple minimally a continu-
ous spin particle to a background abelian gauge field, and we
make some comments about the coupling to gravity.

1 Introduction

It is remarkable that quantum mechanics and Poincaré invari-
ance alone are enough to determine what sort of particles may
and may not exist in flat spacetime. The elementary particles
are associated with the irreducible unitary representations of
the Poincaré group which were classified by Wigner [1]. They
are characterised by the eigenvalues of P2 and W 2, where
Wμ = εμνρσ Pν Jρσ is the Pauli–Lubanski vector. In the mas-
sive case the states can have integer or half-integer spins. In
the massless case we have two classes of representations.
Those with W 2 = 0 are the usual helicity states and those
with W 2 = −ρ2 �= 0 give rise to the continuous spin particle
(CSP) states with continuous spin ρ. In this case, going to
a light-cone frame with momentum k+ �= 0, k− = ki = 0
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(with a metric which is mostly minus) the Pauli–Lubanski
vector has components W+ = 0, W− = −k+εi j Ji j and
Wi = −k+εi j J j−, so that W 2 = −WiWi and the helic-
ity operator is h = −W−/k+. A basis with vectors |ρ, h〉
which are simultaneously eigenvectors of W 2 and h, with
eigenvalues −ρ2 and h, respectively, must satisfy

W 2|ρ, h〉 = −ρ2|ρ, h〉, ρ2 > 0, (1)

h|ρ, h〉 = h|ρ, h〉, h = 0,±1,±2, . . . (2)

W±|ρ, h〉 = ±iρ|ρ, h ± 1〉, (3)

where W± = W 1 ± iW 2 increases/decreases the helicity
by one unit so that the irreducible representation comprises
all basis vectors {|ρ, h〉, h = 0,±1,±2, . . .} and hence it
is infinite dimensional. When we take the limit ρ → 0 we
get an infinite number of helicity states with all values of
the helicity. This is to be contrasted with the situation where
we look for representations with ρ = 0, which gives rise
to the familiar helicity states with a fixed value of h. This
means that a field theory for a CSP with a smooth limit when
ρ → 0 should reduce to a massless higher spin (HS) field
theory with all values of h being present once.

While massive and massless particles with W 2 = 0 are
found in Nature and can be described by quantum field the-
ories, the same is not true for CSPs. They do not seem to
exist and the many attempts to describe them using quantum
field theory techniques have failed [2–6]. They have been
treated using the Bargmann–Wigner equations [6–8], or by
proposing covariant equations [3,5] or derived from higher-
dimensional massive HS equations [9]. Extensions to higher
dimensions and to the supersymmetric case also have been
performed [10] and its connection with tensionless strings
studied [11,12]. Without a solid field theoretic formulation
it is very hard to analyse CSPs interactions. CSPs may not
exist, for instance, because they comprise an infinite number
of massless states with all possible values of the helicity and
there is a huge body of evidence that HS in flat spacetime
do not interact (for a review see [13]). On the other side,
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they seem to have soft emission amplitudes which tend to
ordinary low helicity amplitudes at energies larger than ρ

[14,15]. The fact that no field theory was known for CSPs is
clearly a huge drawback to understand its properties. How-
ever, a great advance was achieved recently when an uncon-
ventional gauge field theory was proposed by Schuster and
Toro [16]. It makes use of a gauge field �(η, x) depending
on the spacetime coordinate xμ and an extra coordinate ημ

with an action functional containing Dirac delta functions of
ημ. These new features make it hard to understand several
aspects of the theory even at the free level case.

In this paper we want to clarify some important points of
the Schuster and Toro proposal. First of all it seems natural to
expect that the gauge field depends on an extra coordinate ημ.
The one-particle wave function for a CSP derived by Wigner
[17] depends on the CSP momentum and on an extra vari-
able which is also a 4-vector. Many HS theories formulations
make use of a field �(η, x) either as a way to manipulate the
many indices associated to the HS field (see for instance [18])
or sometimes associated to constraints in particle models (see
for instance [8]). In Sect. 2 we will show that the role of ημ is
to extend Minkowski spacetime to a cotangent bundle over
Minkowski spacetime where the gauge field �(η, x) lives.
We find that the natural symplectic structure of the cotangent
bundle does not seem to be relevant for the gauge theory
but the cotangent bundle structure seems to be fundamental
when considering curved spacetimes [19]. The gauge field
�(η, x) is assumed to be analytic in ημ and we show how it
can be expanded in several ways in Sect. 3.

In [20] we showed how the Schuster and Toro field equa-
tions are related to previously proposed field equations for
CSP and HS theories and we also showed how it describes
the physical degrees of freedom of a CSP. In order to do that
we had to make different gauge choices for each situation
turning the reading of the paper somewhat cumbersome. In
this paper we will make a single gauge choice for each gauge
symmetry so that all intermediate steps become much more
transparent. As remarked before the field equation has a very
peculiar form involving the derivative of a Dirac delta func-
tion δ′(η2 + 1). In Sect. 4 we show how to deal with this
sort of field equation and how it localises the dynamics of
the gauge field �(η, x) on the η-hyperboloid η2 +1 = 0 and
its first neighbourhood. This will allow us to show in Sect. 5
that W 2� = −ρ2� up to gauge transformations, without
any gauge fixing, generalizing somewhat the results of [20].
In Sect. 6 we use a new gauge choice to find the physical
degrees of freedom improving the derivation presented in
[20]. This result is then used in Sect. 7 to show explicitly the
helicity mixing (3) that the CSP states have to satisfy. More-
over, in Sect. 8 we show that these degrees of freedom satisfy
the Wigner conditions for a CSP, a set of covariant equations
for the wave function of one-particle states, confirming in an
alternative way that we are describing a single CSP. Finally,

in the last section we show that there is no minimal coupling
between a CSP and an abelian gauge field and make some
comments on the coupling to gravity.

2 Cotangent bundle formulation

The gauge theory for a CSP can be formulated in a cotan-
gent bundle over Minkowski spacetime. Any field �(η, x)
depends on the spacetime coordinate xμ and on the covector
ημ and it is assumed to be a formal power series in ημ (the
index of ημ can be raised with the Minkowski metric)

�(η, x) =
∞∑

n=0

1

n!η
μ1 · · · ημn�μ1···μn (x), (4)

where �μ1···μn (x) are completely symmetric tensor fields in
spacetime which, of course, are expected to be related to the
CSP one-particle states. In order to be able to build an action
in the cotangent bundle, an integration procedure is needed
which allow us to get meaningful actions for the compo-
nents of the �(η, x). Such a procedure was developed in
[21] and requires the use of distributions localised on the η-
hyperboloid η2+1 = 0 and its neighbourhoods. Consider the
integral

∫
d4η θ(η2+1), where θ(α) is the usual step function

vanishing for α < 0. After a Wick rotation the integral is well
defined and is proportional to the volume of the sphere with
unit radius. Integrals of the form

∫
d4η θ(η2 + 1)ϕ[�(η, x)]

are also well defined and, taking into account the expansion
(4), they will be proportional to a sum of contracted �(η, x)
components. This can be generalised by considering deriva-
tives of the θ function so that

∫
d4η δ(n)(η2 + 1)ϕ[�(η, x)],

where δ(n) is the n-th derivative of the delta function with
respect to its argument, is also well defined. Besides that,
these integral expressions allow us to perform integration by
parts in ημ so that self-adjoint operators can be defined in the
standard way. The Wick rotation is only needed if we want
to compute the integrals over ημ in terms of the component
fields as done in [20] to get the Fronsdal action when ρ = 0.
In all other situations the manipulations are independent of
the Wick rotation. Is is also important to note that there is
nothing special about the η-hyperboloid η2 + 1 = 0. We
could have started with the hyperboloid η2 + μ2 = 0 and
absorbed μ through a redefinition of ημ and �(η, x).

The action for a CSP is given by [16]

S = 1

2

∫
d4x d4η

[
δ′(η2 + 1)(∂x�(η, x))2

+1

2
δ(η2 + 1)(
�(η, x))2

]
, (5)

where 
 = ∂η · ∂x + ρ and δ′ is the derivative of the delta
function with respect to its argument. The presence of delta
functions gives rise to unfamiliar field equations which are

123



Eur. Phys. J. C (2017) 77 :433 Page 3 of 10 433

localised on the hyperboloid η2 + 1 = 0 and its first neigh-
bourhood as we will discuss in detail in the next sections. The
action is invariant under Lorentz transformations since ημ is
a covector and its generator is Jμν = i x[μ∂xν] + iη[μ∂ην].
It is also invariant under translations in spacetime, with gen-
erators Pμ = i∂xμ, but not translations in ημ. Besides, it
is invariant, up to spacetime surface terms, under the global
transformation

δ� = −ωμνημ∂xν�, (6)

with the constant parameter ωμν being antisymmetric. This
symmetry of the action is a consequence of the transforma-
tion

δxμ = ωμνην, (7)

δημ = 0, (8)

which is an ημ dependent translation along xμ for fixed
ημ with generator Nμν = iη[μ∂xν]. The set of genera-
tors (Pμ, Jμν, Nμν) form a closed algebra where Nμν com-
mutes with Pμ and with itself while transforming as an
antisymmetric tensor under Lorentz transformations. Notice
that (Pμ, Jμν, Nμν) gives rise to conserved Noether charges,
while the irreducible unitary representations for a CSP are
characterised by the Casimir operators P2 and W 2 of the
Poincaré group, and not of the enlarged group with gener-
ators (Pμ, Jμν, Nμν). Also, this new global symmetry does
not preserve the natural symplectic structure of the cotangent
bundle � = dημ ∧ dxμ so that xμ and ημ are not canonical
variables. However, it preserves the infinitesimal cotangent
bundle volume in (5) due to the antisymmetry of ωμν . Thus,
the symplectic structure seems to play no role in this case1

but the cotangent bundle framework is useful when CSPs in
curved spacetime are considered [19].

The action is also invariant under the local transformations

δ�(η, x) =
(

η · ∂x − 1

2
(η2 + 1)


)
ε(η, x)

+ 1

4
(η2 + 1)2χ(η, x), (9)

where ε(η, x) and χ(η, x) are the local parameters. As we
shall see the ημ expansion of �(η, x) provides a highly
redundant description in terms of spacetime fields and the
χ symmetry can be used to simplify the expansion of �. The
transformation with parameter ε(η, x) is a gauge transfor-
mation and it reduces to the usual Fronsdal gauge transfor-
mations for massless HS fields when ρ = 0. The symmetries
(9) are reducible [20], since

δε = 1

2
(η2 + 1)�(η, x), (10)

1 HS theories on cotangent bundles have been proposed in [22] and its
symplectic structure has been exploited in several situations. See, for
instance, [23] and references therein.

δχ = 
�(η, x), (11)

leave the RHS of (9) invariant. This symmetry can be used
to simplify the ημ expansion of ε as we will see shortly.

3 Expansion of �(η, x)

We assumed that �(η, x) is analytic in ημ and as such it
can be expanded in several ways. The formal power series
(4) presents some interesting properties. We can decompose
each �μ1···μn (x) in its trace and traceless parts and each trace
will contribute with a factor η2 in the sum (4). Each trace can
now be decomposed in an analogous way generating an extra
factor of η2 and so on. All (η2)n factors can then be grouped
together in such a way that �(η, x) can be written as

�(η, x) =
∞∑

n=0

1

n! (η
2)nϕT

n (η, x), (12)

ϕT
n (η, x) =

∞∑

p=0

1

p!η
μ1 · · · ημpϕT

n,μ1···μp
(x), (13)

whereϕT
n,μ1···μp

(x) is traceless. We can now writeη2 = (η2+
1) − 1 and use the binomial expansion to get

�(η, x) =
∞∑

n=0

1

n! (η
2 + 1)nφT

n (η, x), (14)

φT
n (η, x) =

∞∑

p=0

(−1)p

22(p+n) p!�
T
p+n(η, x), (15)

�T
p(η, x) =

∞∑

s=0

s + 1

(s + p + 1)!η
μ1 · · · ημs�

p times︷︸︸︷′ · · · ′T
μ1···μs

(x), (16)

where �

p times︷︸︸︷′ · · · ′ T
μ1···μs

(x) is the traceless part of the p-th trace of
�μ1···μs+2p (x). This procedure was used in [21] to formulate
a higher spin theory for all integer spins in terms of two
traceless fields of the form (4).

In [20] we wanted to make contact with other CSP and HS
formulations. To do that and to use the reducibility in (10)
and (11) it was found that it is better to expand �(η, x) as

�(η, x) =
∞∑

n=0

1

n! (η
2 + 1)nψn(η, x), (17)

ψn(η, x) =
∞∑

s=0

1

s!η
μ1 · · · ημsψn,μ1···μs (x), (18)

where ψn,μ1···μs (x) is completely symmetric and does not
satisfy any traceless condition whatsoever. This decomposi-
tion, however, is not unique [20]. If we transform ψn(η, x)
as
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δψn(η, x) =
∞∑

p=1

n!
(n + p)! (η

2 + 1)p �n,n+p(η, x)

−
n−1∑

p=0

�n,p(η, x), (19)

with �n,p(η, x) symmetric in n and p then �(η, x) is invari-
ant. If we use the expansion (17) in the action (5) the trans-
formations (19) will trivially leave the action invariant. The
transformations (19) do not constitute a gauge symmetry
since they are not removing any degree of freedom. Its role
is just to reshuffle traces among the ψn(η, x) and, as shown
in [20], it can be used to extend the field equation off the
η-hyperboloid.

To analyse the consequences of the action (5) we can con-
sider �(η, x) expanded as in (14), or as in (17) or even with
no expansion whatsoever, depending on our aim. Taking into
account the χ symmetry in (9) it is natural to expand �(η, x)
as in (17) since it allow us to gauge away all terms in the
expansion of �(η, x) but the first two. If instead we use
the expansion (14) the components are traceless but they are
hard to deal with because they must satisfy the constraint
�ηψ

T
n (η, x) = 0. Then it seems natural to start with the

expansion (17) since no constraints are required.
The introduction of an extra coordinate is quite useful

when regarding HS theories. In terms of an expansion like
(17) the Fronsdal equation for integer spin s [24] is
(

�x − η · ∂x∂η · ∂x + 1

2
(η · ∂x )

2�η

)
ψ(η, x) = 0, (20)

with the condition (η · ∂η − s)ψ = 0 to select just the field
with spin s, while the double traceless condition is written
as �2

ηψ = 0 and the gauge transformation takes the form
δψ = η · ∂xε. This equation was considered before but no
action from which they could be derived was known. As
shown in [20], the action is given by (5) with ρ = 0.

4 The delta function structure of the field equation

The field equation obtained from (5),

δ′(η2 + 1)

(
�x� − η · ∂x
� + 1

2
(η2 + 1)
2�

)
= 0,

(21)

has an unusual structure involving the derivative of a Dirac
delta function. It implies that the derivative of the term
between parentheses with respect to η2 + 1 evaluated at
η2 + 1 = 0 vanishes. This means that we have a differential
equation for �(η, x) involving a ημ coordinate which is con-
strained by η2 + 1 = 0. This is a nuisance since calculations
soon become too complicated. For instance, ∂ημ/∂ην is now
a projector and no longer a simple δ

μ
ν . So we have to try to

handle the delta function structure in another way in order
to have a conventional field equation, involving just �(η, x)
and its derivatives without any constraint on ημ.

To start let us consider a simpler equation in just one
dimension δ(x) f (x) = 0. Since the delta function has sup-
port at x = 0 the solution is any function f (x)which vanishes
at x = 0. If f (x) is not required to satisfy any other condition
then f (x) is not unique and we can pick up any f (x) vanish-
ing at x = 0, in particular f (x) = 0. An alternative way to
take into account the fact that the delta function has support
at x = 0 is to notice that δ(x) f (x) = 0 is invariant under the
local transformation f (x) → f (x) + x �(x). This resem-
bles a gauge transformation but it is just a consequence of the
delta function structure of the equation. We can now solve
the equation as f (x) = x ω(x) with ω(x) finite at x = 0.
In the context of gauge theory we would call this solution as
pure gauge since we can always find a �(x) which leads to
the solution f (x) = 0. Of course, our local transformation
is not a gauge transformation since we are not dealing with
redundant degrees of freedom in a gauge theory. Here, the
local transformation means that f (x) is restricted to the sup-
port of the delta function and may be extended outside the
support as we like.

The field equation (21) has a similar delta function struc-
ture since it can be written as

δ′(η2 + 1)A(η, x) = 0, (22)

A(η, x) = �x� − η · ∂x
� + 1

2
(η2 + 1)
2�. (23)

This means that A′(η, x) (the first derivative of A(η, x) with
respect to η2+1) vanishes on the η-hyperboloid. We can then
extend the solution beyond the first neighbourhood of the η-
hyperboloid as A(η, x) = 0 providing a differential equation
for �(η, x). This means that the dynamics of �(η, x) takes
place only on the η-hyperboloid and its first neighbourhood
since (21) is not strong enough to fix the dynamics beyond
the first neighbourhood of the η-hyperboloid. In conclusion
the field equation (21) describes the dynamics of �(η, x) not
on all of the cotangent bundle but only on the η-hyperboloid
and its first neighbourhood.

Alternatively we can consider the solution of (22) A(η, x)
= (η2 +1)2ω(η, x) with ω(η, x) finite on the η-hyperboloid
and its first neighbourhood. As in the one dimensional case
it is invariant under the local transformation

A(η, x) → A(η, x) + (η2 + 1)2θ(η, x) (24)

where θ(η, x) is any function of �(η, x) and its deriva-
tives. Again, this shows that A(η, x) is invariant on the η-
hyperboloid and its first neighbourhood and arbitrary out-
side it. But as we saw earlier the action (5) and consequently
the field equation (21) are invariant under the local transfor-
mations (9) with parameters ε(η, x) and χ(η, x), while the
combination A(η, x) is not invariant
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δε A(η, x) = −1

4
(η2 + 1)2
3ε, (25)

δχ A(η, x) = 3

4
(η2 + 1)2

(
�xχ + η · ∂x
χ

+ 1

6
(η2 + 1)
2χ

)
. (26)

These transformations, of course, have the same η2 +1 struc-
ture of the solution A(η, x) = (η2 + 1)2ω(η, x) so that
A(η, x) is invariant under (9) on the η-hyperboloid and its
first neighbourhood up to a θ transformation (24).

Then we can still can use the ε(η, x) transformation to deal
with the gauge transformation for the components of�(η, x),
the χ(η, x) transformation to simplify the η2+1 expansion of
�(η, x), and the θ(η, x) transformation to choose A(η, x) =
0 all over of the cotangent space.

In this way we can solve the delta function constraint of
(21) as

�x� − η · ∂x
� + 1

2
(η2 + 1)
2� = 0, (27)

everywhere in η-space but having in mind that only solu-
tions on the η-hyperboloid and its first neighbourhood have
to be taken into account. Hence this allows us to perform
calculations on the cotangent bundle with ημ unconstrained.

5 The Casimir operator W2

To find the irreducible representation carried by �(η, x) we
have to evaluate the eigenvalue of the square of the Pauli–
Lubanski operator on-shell. To compute it we must realise the
Poincaré generators on the cotangent bundle. Pμ is realised
as usual as a spacetime derivative. However, Jμν , as we saw
earlier, has a new term iη[μ∂ην]. Then the Pauli–Lubanski
vector acts on �(η, x) as Wμ� = −εμνρσ ∂xνηρ∂ησ � so
that

W 2� = [η · ∂η(1 + η · ∂η)�x − η2�η�x

− 2η · ∂η η · ∂x ∂η · ∂x + (η · ∂x )
2�η

+ η2(∂η · ∂x )
2]�. (28)

Using the field equation (27) we find that

W 2� = −ρ2� + δε� + δχ�, (29)

with

ε = η · ∂η(1 + η · ∂η)
� + 2ρ(1 + η · ∂η)�

+ (η · ∂x + 
)�η�, (30)

χ = �η

2�. (31)

Then, up to local transformations, � carries an irreducible
representation of the Poincaré group with W 2 = −ρ2 as
expected for a CSP. As explained in the previous section this

is true only on the η-hyperboloid and its first neighbourhood
and not on all of the cotangent bundle. This same result,
the computation of W 2 without gauge fixing ε and χ , was
obtained in [20] explicitly on the η-hyperboloid.

6 Physical degrees of freedom

To unravel the physical degrees of freedom we start with
�(η, x) in the form (17) and use the χ symmetry in (9) to
gauge away all ψn(η, x) with n ≥ 2 [20]

�(η, x) = ψ0(η, x) + (η2 + 1)ψ1(η, x). (32)

We can now use the same expansion (17) for the gauge param-
eter ε(η, x) and use the � symmetry in (10) to gauge away
all εn(η, x) with n ≥ 1 so that ε(η, x) = ε0(η, x) [20]. At
this point there is no traceless condition on ψ0, ψ1 and ε0 so
that we still have the � symmetry (19) which, together with
the ε gauge transformation in (9), gives

δψ0 = η · ∂xε0 + (η2 + 1)�, (33)

δψ1 = −1

2

ε0 − �. (34)

The field equation (21) can be rewritten as

δ′(η2 + 1)[A(η, x) + 2(η2 + 1)B(η, x)] = 0, (35)

where now

A(η, x) = �xψ0 − η · ∂x
ψ0 − 2(η · ∂x )
2ψ1, (36)

B(η, x) = �xψ1 + 1

2
η · ∂x
ψ1 + 1

4

2ψ0. (37)

Notice that A and B are not independent since they are related
by


A = −4η · ∂x B. (38)

Also, they are invariant under an ε transformation but not
under a � transformation

δ�A(η, x) = (η2 + 1)(�x − η · ∂x
)�, (39)

δ�B(η, x) = −1

2
(�x − η · ∂x
)� + 1

4

2�. (40)

As discussed in Sect. 4 the general solution of (35) is
A(η, x) + 2(η2 + 1)B(η, x) = (η2 + 1)2ω(η, x), and it can
always be chosen to vanish, so that

A(η, x) + 2(η2 + 1)B(η, x) = 0, (41)

everywhere in η-space. Since A(η, x) and B(η, x) are not
invariant under a � transformation we find from (39) and
(40) that there is still a residual � transformation satisfying
(η2 + 1)
2� = 0, so that 
2� = 0. We can still use the
residual � transformation to set A(η, x) = 0 implying that
the residual � transformation is further constrained by (�x −
η · ∂x
)� = 0. On the other side, using (38) we find that
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η · ∂x B = 0, so that B(η, x) = 0 up to zero modes which
are not relevant since we are looking for representations of
the Poincaré group with light-like momentum. We have then
shown that A(η, x) = B(η, x) = 0 everywhere on η-space
so that the field equation (35) becomes

�xψ0 − η · ∂x
ψ0 − 2(η · ∂x )
2ψ1 = 0, (42)

�xψ1 + 1

2
η · ∂x
ψ1 + 1

4

2ψ0 = 0, (43)

on all of η-space. There is still a residual � symmetry in (33)
and (34) with the parameter satisfying

(�x − η · ∂x
)� = 
2� = 0. (44)

As we have seen, (41) is a solution of (35) which has
support in the first neighbourhood of the η-hyperboloid. We
have shown that it is always possible to choose A(η, x) =
B(η, x) = 0. But this solution is stronger than (41) and in fact
has support on the η-hyperboloid and not on its first neigh-
bourhood. This can be seem by multiplying (35) by η2 + 1
to get δ(η2 + 1)A(η, x) = 0 which has support on the η-
hyperboloid. The solution is A(η, x) = (η2 + 1)ωA(η, x)
and we can then choose A(η, x) = 0. Replacing this solu-
tion in (35) we find that δ(η2 + 1)B(η, x) = 0 which also
has support on the η-hyperboloid. The solution is B(η, x) =
(η2 + 1)ωB(η, x) and we can also choose B(η, x) = 0. A
solution in the first neighbourhood should have A(η, x) �= 0.

To analyse the physical degrees of freedom we start with
the harmonic gauge choice


ψ0 + 2η · ∂xψ1 = 0. (45)

When used in (42) and (43) it implies that �xψ0 = �xψ1 =
0 and when we take an ε gauge transformation of (45) we get
�xε0 = 0. Considering now the residual � transformation
on (45) we find that �x� = 
� = 0.

We still have room for a further gauge choice since ε0

satisfies only �xε0 = 0 so that we choose 
ψ0=0. Using
(33) this means that there is a residual ε gauge symmetry with

ε0 = 0. Using now (45) we find that ψ1 = 0 and from (34)
we get � = 0 so that the � symmetry is completely fixed. In
summary we are left with ψ0 satisfying �xψ0 = 
ψ0 = 0
and a residual gauge transformation δψ0 = η · ∂xε0 with
�xε0 = 
ε0 = 0.

In components 
ψ0=0 can be written in momentum space
as

ik · ψ̃0μ1···μn (k) + ρψ̃0μ1···μn (k) = 0. (46)

In a Lorentz frame where the light-cone components of the
momentum satisfy k− = ki = 0, (i = 1, 2) and using the
notation ψ̃+ · · · +︸ ︷︷ ︸

p times

− · · · −︸ ︷︷ ︸
q times

i1···in (k) = ψ̃(+)p(−)q (i)n (k) for

the light-cone components of ψ̃μ1···μp+q+n (k), (46) can be
rewritten as

ik+ψ̃0(+)p(−)q+1(i)n + ρψ̃0(+)p(−)q (i)n = 0, p, q, n ≥ 0.

(47)

This equation can be solved for the − components as

ψ̃0(+)p(−)q (i)n =
(

− ρ

ik+

)q

ψ̃0(+)p(i)n , p, q, n ≥ 0, (48)

so that the independent components of ψ0 are ψ̃0(+)p(i)n .
Since ε0 satisfies the same equation 
ε0 = 0, we also find
that its independent components are ε̃0(+)p(i)n .

The residual ε gauge transformation for ψ0 can be written
for the Fourier components as

δψ̃0μ1···μn (k) = 1

(n − 1)! ik(μ1 ε̃μ2···μn)(k), (49)

which can then be cast into the form

δψ̃0(+)p(−)q (i)n = pik+ε̃(+)p−1(−)q (i)n , p, q, n ≥ 0. (50)

For p = 0 we find that ψ̃0(−)q (i)n , q, n ≥ 0, are gauge
invariant and because of (48) the independent components
ψ̃0(i)n are also gauge invariant. For p ≥ 1 it is possible to
gauge away all ψ̃0(+)p(−)q (i)n , p ≥ 1, q, n ≥ 0 so that all
components of ε̃ are used and the gauge is completely fixed.
Summarizing, all + components of ψ0 can be gauged away,
all − components can be expressed in terms of the i compo-
nents through (48) and all i components are gauge invariant.
We have then found that the physical degrees of freedom are
described by ψ̃0i1···in (k).

Up to now we have been handling the equations in the
cotangent bundle. We have found that the physical degrees
of freedom are carried by the components ψ̃0i1···in (k) of
ψ̃0(η, x) and they describe all integer helicities each one
appearing an infinite number of times since all traces of
ψ̃0i1···in (k) are present. Taking into account that (42) and (43)
hold on the η-hyperboloid we have now to restrict our solu-
tion to it. Since ψ1 = 0 then (32) reduces to

�(η, x) = ψ0(η, x) =
∞∑

n=0

1

n!η
μ
1 · · · ημ

n ψ0μ1...μn , (51)

on the η-hyperboloid with all + components vanishing and
the − components given by (48). Since (51) has the form (4) it
can be rewritten as (14) and since we are on the η-hyperboloid
all terms in the sum (14) vanish except for the first one so
that on the hyperboloid ψ0(η, x) = φT

0 (η, x). Since the com-
ponents of φT

0 (η, x) are traceless we are left with an infinite
set of traceless spacetime fields so that the physical degrees
of freedom on the hyperboloid have all integer helicities but
now each helicity appears just once, as expected for a single
CSP. The traceless components of φT

0 (η, x), on its turn, can
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be computed in terms of the components of ψ0(η, x) using
(15) and (16).

Let us now consider the limit ρ → 0. The field equations
(42) and (43) and the gauge condition (45) are regular in the
limit. The solution of the gauge condition is also regular and
(48) shows that all − components of ψ0 vanish as expected
for Fronsdal fields. The gauge transformation (49) does not
depend on ρ and we get same results as for ρ �= 0. The
physical degrees of freedom are still described by ψ̃0i1···in .
Going to the η-hyperboloid does not involve ρ and we get the
traceless condition in the same way as for ρ �= 0. Therefore,
when ρ → 0, we find an infinite tower of Fronsdal massless
fields for all integer spins living on the η-hyperboloid, as
expected.

7 W± and helicity mixing

In order to show (3) we must first find combinations of the
ψ̃0(η, x) components which have well defined helicity. To do
that we must introduce some helicity notation which, unfor-
tunately, makes use of same symbols used in the light-cone
notation and this may cause some confusion. We apologise
for that in advance.

Let us consider the vector component of ψ̃0(η, k), that is
ψ̃0μ(k). As we saw in the previous section, ψ̃0+(k) = 0 and
ψ̃0−(k) is to be expressed in terms of ψ̃0i (k) through (48) so
that the independent components are ψ̃0i (k), i = 1, 2. From
now on we will no longer use the light-cone components
ψ̃0±(k) and we will introduce the helicity notation for ψ̃0i (k)
as

ψ̃± = −ψ̃± ≡ 1√
2
(ψ̃01 ± iψ̃02). (52)

Recalling that ψ̃0μ(k) is the Fourier transformed of ψ0μ(x)

we also have ψ̃
†
±(k) = ψ̃∓(−k). We stress that ψ̃±(k) are

no longer the light-cone components of ψ̃0μ(k) but its ±
helicity components. We can do the same decomposition for
a completely symmetric tensor ψ̃0μ1···μs (k) which is denoted
ψ̃(s+,s−)(k), where s± is number of ± indices that it carries
and s+ + s− = s is the tensor order. If s+ = 0 or s− = 0 the
tensor is traceless.

For ημ, with light-cone components (η+, η−, ηi ), we
define

η± ≡ 1√
2
(η1 ± iη2), (53)

so thatη†
± = η∓ and we never use downstairs light-cone com-

ponents for ημ. Derivatives with respect to η± are denoted
by ∂/∂η±. With this notation we can write the gauge fixed
ψ̃0(η, k) as

ψ̃0(η, k) = e
iρ
k+ η− ∞∑

s±=0

1

s+! s−!η
s−+ η

s+− ψ̃(s+,s−)(k), (54)

where (48) was used to eliminate the − components of
ψ̃0(η, k). Notice that its ημ dependence is only through η−,
η+ and η− since all dependence on the light-cone component
η+ was gauged away.

The helicity operator is h = −W−/k+, where W− is a
light-cone component of Wμ, and it can be written as h =
h(η) + h(s), where h(η) acts on ημ as

h(η) = η+
∂

∂η+
− η−

∂

∂η−
, (55)

while the spin part h(s) acts on ψ̃(s+,s−)(k) as

h(s)ψ̃
(s+,s−)(k) = (s+ − s−)ψ̃(s+,s−)(k). (56)

Then the helicity of ψ̃(s+,s−)(k) is h = s+ − s− while from
(54) we find that hψ̃0(η, k) = 0 as expected. This happens
because ψ0(η, x) carries no overall spacetime index, since
all of them are contracted as can be seen in (51).

We can now write the components W 1 and W 2 of the
Pauli–Lubanski vector as W± = W 1 ± iW 2 and, as for the
helicity h, we split it as W± = W(η)± + W(s)± where W(η)±
acts on ημ as

W(η)± = ∓ k+√
2

(
η±

∂

∂η− − η+ ∂

∂η∓

)
, (57)

while the spin part W(s)± acts on ψ̃(s+,s−)(k) as

W(s)±ψ̃(s+,s−)(k) =
{− i√

2
ρs−ψ̃(s+,s−−1)(k)

i√
2
ρs+ψ̃(s+−1,s−)(k),

(58)

so that W(s)± lowers the ∓ helicity of ψ̃(s+,s−)(k) by one.
When computingW±ψ̃0(η, k), (57) will always contribute

with a η+ term which can be removed by an ε gauge trans-
formation, while (58) will lower the helicity s∓ by one unit
so that we get

W±ψ̃0(η, k) = ∓i
√

2ρη±ψ̃0(η, k)

+ ε gauge transformation. (59)

We then find

W+W−ψ̃0(η, k) = 2ρ2η+η−ψ̃0(η, k)

+ ε gauge transformation. (60)

Using the notation of this section the η-hyperboloid is written
as

2η+η− − 2η+η− + 1 = 0, (61)

so that we find on the η-hyperboloid that W+W−ψ̃0(η, k) =
ρ2ψ̃0(η, k) + ε gauge transformation, since the η+η− term
in (61) gives rise to a ε gauge transformation. This confirms
that the gauge fixed solution has the right eigenvalue for W 2
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on the η-hyperboloid. Notice that in Sect. 5 we showed the
same result but with no gauge fixing.

Finally, we will show that our gauge fixed solution satis-
fies (3). We could start with the solution for ψ0(η, x) on the
η-hyperboloid, where each helicity appears once, but calcu-
lations soon become extremely complicated. We then choose
to start in the cotangent bundle, where each helicity appears
an infinite number of times, and at the end go back to the
η-hyperboloid. In (3) the states have well defined helicity.
Since ψ̃0(η, k) has zero helicity we must multiply it by η± or
derive it with respect to η± to get non-vanishing helicity and
then we must show that when properly normalised they fulfill
(3). We find that only products of η± and ψ̃0(η, k) satisfy (3)
and are given by

χ(r,0)(η, k) = (
√

2η+)r ψ̃0(η, k), (62)

χ(0,r)(η, k) = (
√

2η−)r ψ̃0(η, k), (63)

where r is a non-negative integer. Notice that (62) and (63)
have positive and negative helicity ±r , respectively. If we
now use (59) we find that

W+χ(r,0)(η, k) = −iρχ(r+1,0)(η, k)

+ ε gauge transformation, (64)

W−χ(0,r)(η, k) = iρχ(0,r+1)(η, k)

+ ε gauge transformation, (65)

while

W+χ(0,r)(η, k) = −2iρη+η−χ(0,r−1)(η, x)

+ ε gauge transformation, (66)

W−χ(r,0)(η, k) = 2iρη+η−χ(r−1,0)(η, x)

+ ε gauge transformation. (67)

Then (64) and (65) satisfy (3) on the cotangent bundle while
(66) and (67) satisfy (3) only after the use of (61) and absorb-
ing the η+η− term in a gauge transformation, that is, on the
η-hyperboloid. Hence, χ(r,0) and χ(0,r) have well-defined
helicity and satisfy (3) so they describe a CSP with continu-
ous spin ρ on the η-hyperboloid.

8 Wigner conditions for a CSP

In [17] Wigner found a set of covariant equations for the wave
function of one-particle states describing a CSP. In momen-
tum space the wave function ϕ(η, x) depends on the momen-
tum kμ and on an internal variable ημ and must satisfy

ik · ∂η ϕ(η, k) + ρ ϕ(η, k) = 0, (68)

(η2 + 1) ϕ(η, k) = 0, (69)

ik · η ϕ(η, k) = 0, (70)

k2 ϕ(η, k) = 0, (71)

with the last two equations being a consequence of the first
two. Our results require that the wave function must be
entirely written in terms of ψ0(η, x) and ψ1(η, x) with the
ε gauge completely fixed. The gauge choice (45) leads to
ψ1 = 0 so that the wave function depends only on ψ0. The
gauge transformation (49) allowed us to gauge away all +
components of ψ̃0, while the − components are expressed
in (48) in terms of ψ̃0i1···in . We must now recast these condi-
tions on ψ̃0 in a covariant way in order to find the conditions
(68)–(71).

We must start with the full ψ̃0(η, k) where all components
of ημ are present. The condition that the + components of
ψ̃0 are absent can be implemented as δ(η+)ψ̃0, which can be
written in covariant form as δ(ik ·η)ψ̃0 since it reduces to the
former expression in the Lorentz frame where k− = ki = 0.
Equation (48), which eliminates the minus components of
ψ̃0, can be enforced as 
ψ̃0 = 0 in the gauge where the
+ components of ψ̃0 vanish. We must also recall that the
solution of the field equation (35) was extended to all of η

space and that we must go back to η-hyperboloid by means
of a δ(η2 + 1). Altogether this means that the wave function
must have the form

ϕ(η, k) = δ(η2 + 1)δ(ik · η)ψ̃0(η, k), (72)

with k2ψ̃0 = 
ψ̃0 = 0. It can easily be checked that (72)
satisfies all of the Wigner conditions. This provides an alter-
native way to show that (5) really describes a CSP.

9 Final remarks

As we have seen the gauge theory for a free CSP is highly
non trivial from a mathematical point of view. The use of a
cotangent bundle over flat spacetime seems to be the appro-
priate geometrical setting for its formulation leading to a
more complicated framework than that of conventional field
theories over Minkowski spacetime. It was shown that the
presence of a Dirac delta function and its derivative in the
field equation can be dealt with by solving the delta func-
tion constraint, which requires the dynamics to be confined
up to the first neighbourhood of the η-hyperboloid of the
cotangent bundle. This leads to a conventional field equa-
tion in the cotangent bundle which can be treated by the
usual field theory techniques. Then, at the end, we must
always return to the η-hyperboloid or its first neighbour-
hood as required initially by the delta function constraint.
This seems to be the starting point to explore CSPs in a sys-
tematic way. A proposal for a gauge theory for fermionic
CSPs has been presented [25] and all techniques developed
in this paper can be straightforwardly applied to the fermionic
case.

The next step is the introduction of interactions. It is easy
to minimally couple the CSP field to an abelian gauge field
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Aμ(x). The CSP field �(η, x) is now complex and the action
reads

S = 1

2

∫
d4x d4η

[
δ′(η2 + 1)Dx�

∗(η, x) · Dx�(η, x)

+ 1

2
δ(η2 + 1)
�∗(η, x)
�(η, x)

]
, (73)

where Dx� = (∂x − i A)�, Dx�
∗ = (∂x + i A)�∗, 
� =

(∂η · Dx + ρ)� and 
�∗ = (∂η · Dx + ρ)�∗. The action is
clearly invariant under the abelian gauge transformation

δλA(x) = ∂xλ(x), δλ�(η, x) = iλ(x)�(η, x), (74)

and it is also invariant under the χ(η, x) transformation of
(9)

δχ�(η, x) = 1

4
(η2 + 1)2χ(η, x), δχ A(x) = 0, (75)

since the Dirac delta function structure of the action is the
same. However, it is not invariant under the CSP ε gauge
transformation

δε�(η, x) = η · Dxε(η, x) − 1

2
(η2 + 1)
ε(η, x), (76)

even for a constant abelian gauge field background. This
result was expected since the action (73) is regular in the
limit ρ → 0 and it reduces to the action of an infinite num-
ber of HS spin fields minimally coupled to an abelian gauge
field which is known for not supporting such interaction.2 On
the other side we know that to have self-interacting HS par-
ticles with spin greater than two in flat spacetime an infinite
tower of particles with all spins is required inducing higher
derivative interactions which, of course, need dimensionful
coupling constants.3 Since we have an action for a CSP with
a dimensionful constant ρ it is not at all excluded the exis-
tence of self-interacting CSPs with vertices involving higher
derivatives.

As is well known it is possible to have a quadratic HS
theory in (A)dS spaces [27] and a formulation using a
field �(η, x) was developed in [21]. We then expect that
a quadratic CSP theory may also be formulated in (A)dS
spaces with the limits ρ → 0 and � → 0 being regular. We
can then wonder whether it would be possible to construct
a self-interacting CSP theory in (A)dS. Since we have now
two free parameters ρ and � we have much more freedom
than in Vasiliev’s HS case [28]. It would be very interesting
to find the relationship between CSPs and HS fields in (A)dS
if the interacting CSP theory do in fact exist.

Another quite important point is that our results with ρ =
0 are very interesting by themselves since they provide an
alternative formulation for an infinite tower of HS fields in flat

2 See [18] for a recent discussion and earlier references on interacting
HS theory in flat spacetime.
3 See for instance [26] for earlier work.

spacetime. They might shed some light on the old interaction
problem of HS fields [18].
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