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Abstract

The purpose of this note is to prove the following. Suppose R is a semiprime unity ring having an
idempotent element e (e # 0, e # 1) which satisfies mild conditions. It is shown that every additive
generalized Jordan derivation on R is a generalized derivation.

2010 Mathematics subject classification: primary 16W25; secondary 47B47.

Keywords and phrases: Jordan derivation, generalized Jordan derivation, rings.

1. Introduction

Let R be a ring. Recall that an additive (linear) map ¢ from R to itself is called
a derivation if 6(ab) = 6(a)b + ad(b) for all a,b € R; a Jordan derivation if 6(a?) =
d6(a)a + ad(a) for each a € R; and a Jordan triple derivation if 6(aba) = 6(a)ba +
ad(b)a + abd(a) for all a,b € R. More generally, if there is a derivation 7: R — R
such that 6(ab) = 6(a)b + at(b) for all a, b € R, then ¢ is called a generalized derivation
and 7 is the relating derivation; if there is a Jordan derivation 7 : R — R such that
8(a®) = 6(a)a + at(a) for all a € R, then § is called a generalized Jordan derivation and
7 is the relating Jordan derivation. The structures of derivations, Jordan derivations,
generalized derivations and generalized Jordan derivations have been systematically
studied. It is obvious that every generalized derivation is a generalized Jordan
derivation and every derivation is a Jordan derivation. But the converse is in general not
true. Herstein [3] showed that every Jordan derivation from a 2-torsion free prime ring
into itself is a derivation. Bresar [1] proved that Herstein’s result is true for 2-torsion
free semiprime rings. Jing and Lu, motivated by the concept of generalized derivation,
initiate the concept of generalized Jordan derivation in [5]. Moreover, in [5] the authors
conjecture that every generalized Jordan derivation on a 2-torsion free semiprime ring
is a generalized derivation.
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In the present paper we characterize generalized Jordan derivation on a semiprime
ring ‘R. We prove that if there is a nontrivial idempotent element in R which satisfies
mild conditions, then every generalized Jordan derivation is a generalized derivation.

In the ring ‘R, let e be an idempotent element so that e # 0, e # 1. As in [4], the two-
sided Peirce decomposition of R relative to the idempotent e takes the form R = eRe @
eR(1—e)d (1 —e)Red (1 —e)R(1 —e). We will formally sete; =eande; =1 —e. So
letting R,,,, = e,,Re,, myn = 1,2, we may write R = Ry & Rix & Ry @ Ryy. Moreover,
an element of the subring R, will be denoted by a,,,.

2. Results and proofs

In this section we discuss the generalized Jordan derivations on rings. The following
theorem is our main result.

THEOREM 2.1. Let R be a 2-torsion free semiprime unity ring containing a nontrivial
idempotent e;. Consider R = Ry; @ R, @ Ry & Ry the Peirce decomposition relative
to the idempotent ey satisfying the following conditions:

(») ifx11 -Rip =0then x1; =0;
ifX21 -Rip =0then xp; =0.

Then every generalized Jordan derivation from R into itself is a generalized derivation.

Henceforth, let R be a 2-torsion free semiprime unity ring containing a nontrivial
idempotent ¢;. Consider R = Ry; & Ry, ® Ry @ Ry, the Peirce decomposition relative
to the idempotent ¢; satisfying the following conditions:

(o) if xq;1 - Ry =0then x;; =0;
if x51 - Ry2 = 0 then xp; = 0.

Let 6 : R — R be a generalized Jordan derivation and 7 : R — R the relating Jordan
derivation such that §(a®) = 6(a)a + at(a) for all a € R. We shall complete the proof
of the above theorem by proving several lemmas.

Lemma 2.2. Forall a,b, c € R, the following statements hold:

(i)  S8(ab + ba) = 5(a)b + at(b) + 6(b)a + bt(a);
(i1) S8(aba) = 6(a)ba + at(b)a + abt(a),
(iii) S8(abc + cba) = 6(a)bc + at(b)c + abt(c) + §(c)ba + ct(b)a + cbt(a).

Proor. See [5, Lemma 2.1]. |
Lemma 2.3. 1(ey) = [eq, s] for some s € R, where [x,y] = xy — yx for x,y € R.

Proor. Write 7(ey) = s11 + S12 + S21 + §22. Since 7(eq) = 7(ey)e; + e7(e;), we have
S11 + S12 + S21 + S22 = 2811 + S12 + 8§21, Which implies that s1; = s;p =0 and 7(e;) =
S12 + $21. Let s = 512 — 571. It is obvious that 7(e;) = [ey, s]. |
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Observe that d; : R — R so that ds(a) = [a, s] is a derivation and thus a Jordan
derivation. Define A by A(a) = 8(a) — ds(a) for each a € R. Clearly, A is also a
generalized Jordan derivation from R into itself, and E : R — R, defined by E(a) =
7(a) — ds(a) for each a € R, is the relating Jordan derivation. Note that

E(e1) = E(e2) = 0. ()
Lemma 2.4, E(a;j) C Ryj for any a;j € R;; (i, j = 1,2).

Proor. Case I. Fori= j=1,a;; =eajie;, we have from Lemma 2.2(ii) that
E(an) = E(erarier) = E(erarier + e1E(arer +ejaiE(er) = e1Z(ae;.
By (1) we get Z(ap;) € Ri1.
Case 2. Fori= j=2 write E(ay) = b1y + b1a + by + by we have from Lemma 2.2
item (i)
0 =E(e1ax + axner) = E(er)ax + e1E(axn) + E(axn)e; + anZ(er)
= e1E(an) + E(ax)e; = 2byy + biy + by,
by (1) we have E(az) € Ras.

Case 3. For i=1 and j =2, write E(a) = b11 + b1p + by1 + by;. We have from
Lemma 2.2(i), (ii) and the fact that E is a derivation because = is defined on a 2-torsion
free semiprime ring [1] that

E(a2) = E(ejarn + aper) = e1E(arn)

and
0 =ZE(e1aize1) = e1E(ann)e;.

Hence, Z(a;p) € Ry by (7).

Case 4. Finally, for i =2 and j = 1, write ZE(az;) = b11 + b1z + by + by. We have
from Lemma 2.2(i), (ii) that

E(az1) = E(e1az + azier) = E(azi)e;

and

0=E(e1az1e1) = e1E(az))ey.
Thus, E(azl) [S ‘Rz] by (7) m}
Lemma 2.5. A(a,'j) C iR,‘j + iRjijF i+ ]

Proor. Firstly, we prove that A(e;) € Ry + Ry;. Let Aler) = arp + app + ap; + an.
Since, by (1), A(e1) = A(ey)e; + e1E(e1) = A(ey)ey, we see that ay; + app + axy +axn =
ajy + az, which 1mphes that a;, = ax = 0and A(ey) = ay; + ax; € Ry + Roy.
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Case 1. Fori=1and j=2,letay, € Ry and A(ayp) = by1 + bip + byy + byy. Then

bi1 + b12 + by + by = Alar)
= Aleranp + aney)
= Alepan + e1E(arn) + Alar)er + ainE(er)
= Alep)ain + E(arz) + biy + bay.

Hence, b1y + byy = A(ey)arr + E(arn) € Rz + Rop by (). On the other hand,

bi1 + b12 + bay + by = Alarz) = Alane; + exarn)
= Alan)ex + apE(ey) + Alez)arn + exE(arn)
= Alann)ez + Alez)arn
= b1y + by + Aler)arn.

Thus, by ({), we get bi1 + by + by + byy = A(el)alz + E(alz) + A(EZ)alz, which
implies that A(apz) € Riz + Ran.

Case 2. Fori=2and j=1,letay € Ry and A(ay) = by1 + bip + byy + byy. Then
bi1 +bia + by + by = Alay)
= Mazie; + ejaz)
= A(az1)er + ax1E(er) + Aler)az; + e1E(az;)
= b11 + b21.

Therefore, by (1), A(az;) € Ry + Ray. O

LeEmma 2.6. A(a;;)) C R + iRﬁ, with i # Jj-

Proor. Case 1. Fori=1, by Lemma 2.2(ii) we have

Alar1) = Alejayer)
= A(ey)aiier + e E(air)er + ejaiE(er)

= A(eparr + E(a).
Therefore, by (1), A(a;) € Ry + Ray.

Case 2. The proof is similar to Case 1. O

LeEmma 2.7. (1) A(anblz) = A(an)blg + anE(blg) /’lOldeOV all a;; € Ry and by €
Ris.

(2) A(alzbzz) = A(alz)bzz + ale(bzg) hOldeOV all a;p € Rz and byy € Ry

(3)  A(azib1n) = Alaz1)byn + axnE(byy) holds for all ap) € Ry and byp € Ryo.

4)  Alaxnbrn) = Aaxn)bry + anZ(by) holds for all ax;, by € Ray.
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Proor. For any a;; € Ry; and by, € Ry, it follows from Lemmas 2.2 and 2.5 that
Alay1brz) = Aaybia + biaary)
= Ala1)biz + anE(bi2) + Albio)an + bipE(an)
= Ala11)b12 + anE(bra).
Similarly, (2) is true for all aj, € Ry, and by, € Rys.
Now for any ay; € Ry and by, € Ry, it follows from Lemmas 2.2, 2.4, 2.5 and ()
that
Alaz1b12) = Alaz1biaer + e2bipaz))
= Alaz1)biaer + anE(ba)er + az1b12E(e2)
+A(e2)(D12az1) + e2E(b12)az + exb12E(az1)
= A(a21)b12 + ax E(by2).
Finally, for any a;; € Ry,, by Lemma 2.2(ii) and (), we have
Alan) = Alezaxer)
= A(ez)ane; + e2E(an)er + exanE(er)
= A(ex)ax + E(an),
and hence A(ax b)) = A(er)arabyy + E(arbyy) holds for all ayy, byy € Ryy. Since
Aan)brn + an&(by) = Alex)anbrn + E(axn)bxn + anZE(bx)
= A(e2)anbyx + E(axnbn),

we get that A(azzbzz) = A(azz)bzz + azga(bzg). O
Lemmva 2.8. A(ab) = A(a)b + aZ(b) for all a,b € R, that is, A is a generalized
derivation.

Proor. First, for any a,b € R and x|, € R|,, by Lemmas 2.2-2.7, we have

A(abxiy) = Alanbrixiz + anbaixi2 + anbaxi + axbiix12)
= Alai1br1)x12 + a11b11E(x12) + Alainbar)xin + ainb1 E(x12)
+ Alanbar)xia + anbr1E(x12) + Alaa1b11)x12 + axbi11E(x12)
= Alanbi + anbyy + anbyy + axibii)xin
+(anbi + anby + anby + axb11)E(x12)
= A(ab)xy + ab=E(x13).
Second, for any xj, € Ry, by Lemmas 2.2-2.7, we get
Alabxi2) = Alaybrixiz + anbaix12 + anba xi2 + abiix12)
= Alar)biixiz + anEbi1x12) + Ala)ba xi2 + anE(by x12)
+ A(a2)ba x12 + anE(by1 x12) + Alaz1)br1x12 + a2 E(b11x12)
= Ala)bxy + aZ(b)x12 + abE(x15).
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So (A(ab) — A(a)b — aZ(b))x;, = 0 for any xj, € Ry». Hence e;(A(ab) — A(a)b -
aZ(b))e; =0 = ey(A(ab) — A(a)b — aZ(b))e; by condition ().
Third, for any x;; € R,,, we compute
A(abxy) = Alai1biaxxn) + Alainbax) + Alaxibiaxan) + Alax b xar)
= A(a11b12)x22 + a1 b12E(x22) + Alaiaban)xzn + anbnE(x22)
+ Aa21b12)x20 + a21b12E(x22) + A(arbr)x2 + aznbinE(x)
= A(ab)xy; + ar1b12E(x22) + a12b2E(x22) + az1b12E(x22)
+ anbyE(x2;).

Fourth, on the other hand,

Alabxyy) = Alai1biaxn) + Alanbanxa) + Alaz biaxz) + Alaxnbrnxn)

= Aa1)b12x22 + anE(b12x22) + Aa12)banxzn + a1nE(bnx22)
+ A(aa1)biaxpn + a2 E(b12x22) + Alax)banxan + anZE(bnx2)

= A@bxy + a11E(b12x22) + anE(bnx2) + a21E(b12x22)
+anE(bynx)

= A@bxy + a11E(b12)x22 + a11b1pE(x22) + a12E(b2)x2
+anbnE(x) + a2 E(b12)x2 + a21b12E(x2) + anE(b)x2
+anbnE(x)

= A(@)bxy + aZ(b)xzn + aib12E(x22) + a12b22E(x22)
+a21b12E(x22) + a2bnE(x2).

Thus, comparing the above two equations, we obtain (A(ab) — A(a)b — aZ(b))xy =0

for any xy; € Ryy, and then e (A(ab) — Ala)b — aZ(b))e; = 0 = ex(A(ab) — Ala)b —
aZ(b))e,. Therefore A(ab) = Ala)b + aZ(b). O

Proor orF THEOREM 2.1. From the above lemmas, we have proved that A: R —
R is a generalized derivation. Since A(a) = 6(a) — ds(a) for each a € R, by a
simple calculation, we see that ¢ is also a generalized derivation. The proof is
complete. O

CoroLLARY 2.9. Let M,(C) denote the algebra of all 2 X 2 complex matrices. Suppose
that § : M»(C) — M>(C) is a linear mapping such that §(E*) = 6(E)E + E1(E) holds
for all idempotent E in M,(C), where 7 : My(C) > M,(C) is a linear mapping
satisfying T(E) = 1(E)E + ET(E) for any idempotent E in M(C). Then 6 is a
generalized derivation.

Proor. Let M»(C) = E\M>(C)E; & E;M>,(C)E, & E;M>(C)E| & E;M»>(C)E, be the
Peirce decomposition relative to the idempotent E; = [} J]. Clearly M»(C) is
semiprime and satisfies (#). By [5, Theorem 4.1] we have that 7 is a derivation
and 6(A?) = §(A)A + At(A) for any A € M>(C). Therefore, by Theorem 2.1, 6 is a

generalized derivation. O
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Derimnition 2.10. Let U(R) be the group of units of R. An ideal I of a ring R is unit-
prime if, for any a,b € R, aU(R)b C I implies a € I or b € I, and unit-semiprime if,
for any a € R, aU(R)a C I implies a € I. A ring R is unit-(semi)prime if (0) is a unit-
(semi)prime ideal of R.

TueOREM 2.11. Matrix rings over unit-semiprime rings are unit-semiprime.

Proor. See [2, Theorem 11]. m]

The purpose of the following example is to show the existence of a ring that satisfies
the hypotheses of the main theorem of this paper.

ExampLE 2.12. Let M; be a 2 X 2 matrix ring over a unit-semiprime ring. Suppose that
0 : My — M, is a generalized Jordan derivation and 7 : M, — M, is the related Jordan
derivation. Then ¢ is a generalized derivation.

Proor. First observe that M, is a unit-semiprime ring by Theorem 2.11. Consider
E = [} 3] nontrivial idempotent in M, and

M, = (M3)11 © (M3)12© (M2)21 © (M2)22

the Peirce decomposition relative to E. Suppose X1;(M3)12 = 0, where X = [’C(‘)l g] €
(My)11. As [ 4] € (Ma)12 it follows that X;; = 0. Similarly, we show that if
X51(M3)12 = 0 then X5, = 0. Therefore M, satisfies (). It is worth noting that with a
fixed non-trivial idempotent satisfying (#), we can demonstrate Theorem 2.1. Hence

0 : My — M, is a generalized derivation. O

In [5], the authors introduced the concept of generalized Jordan triple derivation.
Let R be aring and ¢ : R — R an additive map. If there is a Jordan triple derivation 7 :
R — N such that 6(aba) = 6(a)ba + at(b)a + abt(a) for every a, b € R, then ¢ is called
a generalized Jordan triple derivation, and 7 is the relating Jordan triple derivation.
Recall that 7 is a Jordan triple derivation if T(aba) = t(a)ba + at(b)a + abt(a) for any
a,beNR.

The authors conjecture that every generalized Jordan triple derivation on 2-torsion
free semiprime ring is a generalized derivation. In our case we have the following
corollary.

CorOLLARY 2.13. Let R be a 2-torsion free semiprime unity ring satisfying (#) and 6 be
a generalized Jordan triple derivation from R into itself. If there exist an idempotent e
sothate #0, e # 1 in R, then ¢ is a generalized derivation.

Proor. Let 6 : ® — R be a generalized Jordan triple derivation and 7: R — R the
relating Jordan triple derivation. Note that 7(e; + e;) = 0, so 7 is in fact a Jordan
derivation. Now it is easy to check that a generalized Jordan triple derivation on R
is a generalized Jordan derivation. Therefore, by Theorem 2.1, § is a generalized
derivation. O

The open question that remains is whether the Jing and Lu conjectures hold if R
does not contain a nontrivial idempotent.
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