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Abstract

The purpose of this note is to prove the following. Suppose R is a semiprime unity ring having an
idempotent element e (e , 0, e , 1) which satisfies mild conditions. It is shown that every additive
generalized Jordan derivation on R is a generalized derivation.
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1. Introduction

Let R be a ring. Recall that an additive (linear) map δ from R to itself is called
a derivation if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R; a Jordan derivation if δ(a2) =

δ(a)a + aδ(a) for each a ∈ R; and a Jordan triple derivation if δ(aba) = δ(a)ba +

aδ(b)a + abδ(a) for all a, b ∈ R. More generally, if there is a derivation τ : R→ R
such that δ(ab) = δ(a)b + aτ(b) for all a,b ∈ R, then δ is called a generalized derivation
and τ is the relating derivation; if there is a Jordan derivation τ : R→ R such that
δ(a2) = δ(a)a + aτ(a) for all a ∈ R, then δ is called a generalized Jordan derivation and
τ is the relating Jordan derivation. The structures of derivations, Jordan derivations,
generalized derivations and generalized Jordan derivations have been systematically
studied. It is obvious that every generalized derivation is a generalized Jordan
derivation and every derivation is a Jordan derivation. But the converse is in general not
true. Herstein [3] showed that every Jordan derivation from a 2-torsion free prime ring
into itself is a derivation. Brešar [1] proved that Herstein’s result is true for 2-torsion
free semiprime rings. Jing and Lu, motivated by the concept of generalized derivation,
initiate the concept of generalized Jordan derivation in [5]. Moreover, in [5] the authors
conjecture that every generalized Jordan derivation on a 2-torsion free semiprime ring
is a generalized derivation.
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In the present paper we characterize generalized Jordan derivation on a semiprime
ring R. We prove that if there is a nontrivial idempotent element in R which satisfies
mild conditions, then every generalized Jordan derivation is a generalized derivation.

In the ring R, let e be an idempotent element so that e , 0, e , 1. As in [4], the two-
sided Peirce decomposition of R relative to the idempotent e takes the form R = eRe ⊕
eR(1 − e) ⊕ (1 − e)Re ⊕ (1 − e)R(1 − e). We will formally set e1 = e and e2 = 1 − e. So
letting Rmn = emRen, m, n = 1, 2, we may write R = R11 ⊕R12 ⊕R21 ⊕R22. Moreover,
an element of the subring Rmn will be denoted by amn.

2. Results and proofs

In this section we discuss the generalized Jordan derivations on rings. The following
theorem is our main result.

Theorem 2.1. Let R be a 2-torsion free semiprime unity ring containing a nontrivial
idempotent e1. Consider R = R11 ⊕R12 ⊕R21 ⊕R22 the Peirce decomposition relative
to the idempotent e1 satisfying the following conditions:

(♠) if x11 · R12 = 0 then x11 = 0;
if x21 · R12 = 0 then x21 = 0.

Then every generalized Jordan derivation fromR into itself is a generalized derivation.

Henceforth, let R be a 2-torsion free semiprime unity ring containing a nontrivial
idempotent e1. Consider R = R11 ⊕R12 ⊕R21 ⊕R22 the Peirce decomposition relative
to the idempotent e1 satisfying the following conditions:

(♠) if x11 · R12 = 0 then x11 = 0;
if x21 · R12 = 0 then x21 = 0.

Let δ : R→ R be a generalized Jordan derivation and τ : R→ R the relating Jordan
derivation such that δ(a2) = δ(a)a + aτ(a) for all a ∈ R. We shall complete the proof
of the above theorem by proving several lemmas.

Lemma 2.2. For all a, b, c ∈ R, the following statements hold:

(i) δ(ab + ba) = δ(a)b + aτ(b) + δ(b)a + bτ(a);
(ii) δ(aba) = δ(a)ba + aτ(b)a + abτ(a);
(iii) δ(abc + cba) = δ(a)bc + aτ(b)c + abτ(c) + δ(c)ba + cτ(b)a + cbτ(a).

Proof. See [5, Lemma 2.1]. �

Lemma 2.3. τ(e1) = [e1, s] for some s ∈ R, where [x, y] = xy − yx for x, y ∈ R.

Proof. Write τ(e1) = s11 + s12 + s21 + s22. Since τ(e1) = τ(e1)e1 + e1τ(e1), we have
s11 + s12 + s21 + s22 = 2s11 + s12 + s21, which implies that s11 = s22 = 0 and τ(e1) =

s12 + s21. Let s = s12 − s21. It is obvious that τ(e1) = [e1, s]. �
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Observe that ds : R→ R so that ds(a) = [a, s] is a derivation and thus a Jordan
derivation. Define ∆ by ∆(a) = δ(a) − ds(a) for each a ∈ R. Clearly, ∆ is also a
generalized Jordan derivation from R into itself, and Ξ : R→ R, defined by Ξ(a) =

τ(a) − ds(a) for each a ∈ R, is the relating Jordan derivation. Note that

Ξ(e1) = Ξ(e2) = 0. (†)

Lemma 2.4. Ξ(ai j) ⊂ Ri j for any ai j ∈ Ri j (i, j = 1, 2).

Proof. Case 1. For i = j = 1, a11 = e1a11e1, we have from Lemma 2.2(ii) that

Ξ(a11) = Ξ(e1a11e1) = Ξ(e1)a11e1 + e1Ξ(a11)e1 + e1a11Ξ(e1) = e1Ξ(a11)e1.

By (†) we get Ξ(a11) ∈ R11.

Case 2. For i = j = 2 write Ξ(a22) = b11 + b12 + b21 + b22 we have from Lemma 2.2
item (i)

0 = Ξ(e1a22 + a22e1) = Ξ(e1)a22 + e1Ξ(a22) + Ξ(a22)e1 + a22Ξ(e1)
= e1Ξ(a22) + Ξ(a22)e1 = 2b11 + b12 + b21,

by (†) we have Ξ(a22) ∈ R22.

Case 3. For i = 1 and j = 2, write Ξ(a12) = b11 + b12 + b21 + b22. We have from
Lemma 2.2(i), (ii) and the fact that Ξ is a derivation because Ξ is defined on a 2-torsion
free semiprime ring [1] that

Ξ(a12) = Ξ(e1a12 + a12e1) = e1Ξ(a12)

and
0 = Ξ(e1a12e1) = e1Ξ(a12)e1.

Hence, Ξ(a12) ∈ R12 by (†).

Case 4. Finally, for i = 2 and j = 1, write Ξ(a21) = b11 + b12 + b21 + b22. We have
from Lemma 2.2(i), (ii) that

Ξ(a21) = Ξ(e1a21 + a21e1) = Ξ(a21)e1

and
0 = Ξ(e1a21e1) = e1Ξ(a21)e1.

Thus, Ξ(a21) ∈ R21 by (†). �

Lemma 2.5. ∆(ai j) ⊂ Ri j + R j j for i , j.

Proof. Firstly, we prove that ∆(e1) ∈ R11 + R21. Let ∆(e1) = a11 + a12 + a21 + a22.
Since, by (†), ∆(e1) = ∆(e1)e1 + e1Ξ(e1) = ∆(e1)e1, we see that a11 + a12 + a21 + a22 =

a11 + a21, which implies that a12 = a22 = 0 and ∆(e1) = a11 + a21 ∈ R11 + R21.
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Case 1. For i = 1 and j = 2, let a12 ∈ R12 and ∆(a12) = b11 + b12 + b21 + b22. Then

b11 + b12 + b21 + b22 = ∆(a12)
= ∆(e1a12 + a12e1)
= ∆(e1)a12 + e1Ξ(a12) + ∆(a12)e1 + a12Ξ(e1)
= ∆(e1)a12 + Ξ(a12) + b11 + b21.

Hence, b12 + b22 = ∆(e1)a12 + Ξ(a12) ∈ R12 + R22 by (†). On the other hand,

b11 + b12 + b21 + b22 = ∆(a12) = ∆(a12e2 + e2a12)
= ∆(a12)e2 + a12Ξ(e2) + ∆(e2)a12 + e2Ξ(a12)
= ∆(a12)e2 + ∆(e2)a12

= b12 + b22 + ∆(e2)a12.

Thus, by (†), we get b11 + b12 + b21 + b22 = ∆(e1)a12 + Ξ(a12) + ∆(e2)a12, which
implies that ∆(a12) ∈ R12 + R22.

Case 2. For i = 2 and j = 1, let a21 ∈ R21 and ∆(a21) = b11 + b12 + b21 + b22. Then

b11 + b12 + b21 + b22 = ∆(a21)
= ∆(a21e1 + e1a21)
= ∆(a21)e1 + a21Ξ(e1) + ∆(e1)a21 + e1Ξ(a21)
= b11 + b21.

Therefore, by (†), ∆(a21) ∈ R11 + R21. �

Lemma 2.6. ∆(aii) ⊂ Rii + R ji, with i , j.

Proof. Case 1. For i = 1, by Lemma 2.2(ii) we have

∆(a11) = ∆(e1a11e1)
= ∆(e1)a11e1 + e1Ξ(a11)e1 + e1a11Ξ(e1)
= ∆(e1)a11 + Ξ(a11).

Therefore, by (†), ∆(a11) ∈ R11 + R21.

Case 2. The proof is similar to Case 1. �

Lemma 2.7. (1) ∆(a11b12) = ∆(a11)b12 + a11Ξ(b12) holds for all a11 ∈ R11 and b12 ∈

R12.
(2) ∆(a12b22) = ∆(a12)b22 + a12Ξ(b22) holds for all a12 ∈ R12 and b22 ∈ R22.
(3) ∆(a21b12) = ∆(a21)b12 + a21Ξ(b12) holds for all a21 ∈ R21 and b12 ∈ R12.
(4) ∆(a22b22) = ∆(a22)b22 + a22Ξ(b22) holds for all a22, b22 ∈ R22.
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Proof. For any a11 ∈ R11 and b12 ∈ R12, it follows from Lemmas 2.2 and 2.5 that

∆(a11b12) = ∆(a11b12 + b12a11)
= ∆(a11)b12 + a11Ξ(b12) + ∆(b12)a11 + b12Ξ(a11)
= ∆(a11)b12 + a11Ξ(b12).

Similarly, (2) is true for all a12 ∈ R12 and b22 ∈ R22.
Now for any a21 ∈ R21 and b12 ∈ R12, it follows from Lemmas 2.2, 2.4, 2.5 and (†)

that

∆(a21b12) = ∆(a21b12e2 + e2b12a21)
= ∆(a21)b12e2 + a21Ξ(b12)e2 + a21b12Ξ(e2)

+ ∆(e2)(b12a21) + e2Ξ(b12)a21 + e2b12Ξ(a21)
= ∆(a21)b12 + a21Ξ(b12).

Finally, for any a22 ∈ R22, by Lemma 2.2(ii) and (†), we have

∆(a22) = ∆(e2a22e2)
= ∆(e2)a22e2 + e2Ξ(a22)e2 + e2a22Ξ(e2)
= ∆(e2)a22 + Ξ(a22),

and hence ∆(a22b22) = ∆(e2)a22b22 + Ξ(a22b22) holds for all a22, b22 ∈ R22. Since

∆(a22)b22 + a22Ξ(b22) = ∆(e2)a22b22 + Ξ(a22)b22 + a22Ξ(b22)
= ∆(e2)a22b22 + Ξ(a22b22),

we get that ∆(a22b22) = ∆(a22)b22 + a22Ξ(b22). �

Lemma 2.8. ∆(ab) = ∆(a)b + aΞ(b) for all a, b ∈ R, that is, ∆ is a generalized
derivation.

Proof. First, for any a, b ∈ R and x12 ∈ R12, by Lemmas 2.2–2.7, we have

∆(abx12) = ∆(a11b11x12 + a12b21x12 + a22b21x12 + a21b11x12)
= ∆(a11b11)x12 + a11b11Ξ(x12) + ∆(a12b21)x12 + a12b21Ξ(x12)

+ ∆(a22b21)x12 + a22b21Ξ(x12) + ∆(a21b11)x12 + a21b11Ξ(x12)
= ∆(a11b11 + a12b21 + a22b21 + a21b11)x12

+ (a11b11 + a12b21 + a22b21 + a21b11)Ξ(x12)
= ∆(ab)x12 + abΞ(x12).

Second, for any x12 ∈ R12, by Lemmas 2.2–2.7, we get

∆(abx12) = ∆(a11b11x12 + a12b21x12 + a22b21x12 + a21b11x12)
= ∆(a11)b11x12 + a11Ξ(b11x12) + ∆(a12)b21x12 + a12Ξ(b21x12)

+ ∆(a22)b21x12 + a22Ξ(b21x12) + ∆(a21)b11x12 + a21Ξ(b11x12)
= ∆(a)bx12 + aΞ(b)x12 + abΞ(x12).
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So (∆(ab) − ∆(a)b − aΞ(b))x12 = 0 for any x12 ∈ R12. Hence e1(∆(ab) − ∆(a)b −
aΞ(b))e1 = 0 = e2(∆(ab) − ∆(a)b − aΞ(b))e1 by condition (♠).

Third, for any x22 ∈ R22, we compute

∆(abx22) = ∆(a11b12x22) + ∆(a12b22x22) + ∆(a21b12x22) + ∆(a22b22x22)
= ∆(a11b12)x22 + a11b12Ξ(x22) + ∆(a12b22)x22 + a12b22Ξ(x22)

+ ∆(a21b12)x22 + a21b12Ξ(x22) + ∆(a22b22)x22 + a22b22Ξ(x22)
= ∆(ab)x22 + a11b12Ξ(x22) + a12b22Ξ(x22) + a21b12Ξ(x22)

+ a22b22Ξ(x22).

Fourth, on the other hand,

∆(abx22) = ∆(a11b12x22) + ∆(a12b22x22) + ∆(a21b12x22) + ∆(a22b22x22)
= ∆(a11)b12x22 + a11Ξ(b12x22) + ∆(a12)b22x22 + a12Ξ(b22x22)

+ ∆(a21)b12x22 + a21Ξ(b12x22) + ∆(a22)b22x22 + a22Ξ(b22x22)
= ∆(a)bx22 + a11Ξ(b12x22) + a12Ξ(b22x22) + a21Ξ(b12x22)

+ a22Ξ(b22x22)
= ∆(a)bx22 + a11Ξ(b12)x22 + a11b12Ξ(x22) + a12Ξ(b22)x22

+ a12b22Ξ(x22) + a21Ξ(b12)x22 + a21b12Ξ(x22) + a22Ξ(b22)x22

+ a22b22Ξ(x22)
= ∆(a)bx22 + aΞ(b)x22 + a11b12Ξ(x22) + a12b22Ξ(x22)

+ a21b12Ξ(x22) + a22b22Ξ(x22).

Thus, comparing the above two equations, we obtain (∆(ab) − ∆(a)b − aΞ(b))x22 = 0
for any x22 ∈ R22, and then e1(∆(ab) − ∆(a)b − aΞ(b))e2 = 0 = e2(∆(ab) − ∆(a)b −
aΞ(b))e2. Therefore ∆(ab) = ∆(a)b + aΞ(b). �

Proof of Theorem 2.1. From the above lemmas, we have proved that ∆ : R →
R is a generalized derivation. Since ∆(a) = δ(a) − ds(a) for each a ∈ R, by a
simple calculation, we see that δ is also a generalized derivation. The proof is
complete. �

Corollary 2.9. Let M2(C) denote the algebra of all 2 × 2 complex matrices. Suppose
that δ : M2(C)→ M2(C) is a linear mapping such that δ(E2) = δ(E)E + Eτ(E) holds
for all idempotent E in M2(C), where τ : M2(C) → M2(C) is a linear mapping
satisfying τ(E) = τ(E)E + Eτ(E) for any idempotent E in M2(C). Then δ is a
generalized derivation.

Proof. Let M2(C) = E1M2(C)E1 ⊕ E1M2(C)E2 ⊕ E2M2(C)E1 ⊕ E2M2(C)E2 be the
Peirce decomposition relative to the idempotent E1 =

[1 0
0 0
]
. Clearly M2(C) is

semiprime and satisfies (♠). By [5, Theorem 4.1] we have that τ is a derivation
and δ(A2) = δ(A)A + Aτ(A) for any A ∈ M2(C). Therefore, by Theorem 2.1, δ is a
generalized derivation. �
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Definition 2.10. Let U(R) be the group of units of R. An ideal I of a ring R is unit-
prime if, for any a, b ∈ R, aU(R)b ⊆ I implies a ∈ I or b ∈ I, and unit-semiprime if,
for any a ∈ R, aU(R)a ⊆ I implies a ∈ I. A ring R is unit-(semi)prime if (0) is a unit-
(semi)prime ideal of R.

Theorem 2.11. Matrix rings over unit-semiprime rings are unit-semiprime.

Proof. See [2, Theorem 11]. �

The purpose of the following example is to show the existence of a ring that satisfies
the hypotheses of the main theorem of this paper.

Example 2.12. Let M2 be a 2 × 2 matrix ring over a unit-semiprime ring. Suppose that
δ : M2 → M2 is a generalized Jordan derivation and τ : M2 → M2 is the related Jordan
derivation. Then δ is a generalized derivation.

Proof. First observe that M2 is a unit-semiprime ring by Theorem 2.11. Consider
E =
[1 0
0 0
]

nontrivial idempotent in M2 and

M2 = (M2)11 ⊕ (M2)12 ⊕ (M2)21 ⊕ (M2)22

the Peirce decomposition relative to E. Suppose X11(M2)12 = 0, where X11 =
[x11 0

0 0
]
∈

(M2)11. As
[0 1
0 0
]
∈ (M2)12 it follows that X11 = 0. Similarly, we show that if

X21(M2)12 = 0 then X21 = 0. Therefore M2 satisfies (♠). It is worth noting that with a
fixed non-trivial idempotent satisfying (♠), we can demonstrate Theorem 2.1. Hence
δ : M2 → M2 is a generalized derivation. �

In [5], the authors introduced the concept of generalized Jordan triple derivation.
Let R be a ring and δ : R→ R an additive map. If there is a Jordan triple derivation τ :
R→ R such that δ(aba) = δ(a)ba + aτ(b)a + abτ(a) for every a, b ∈ R, then δ is called
a generalized Jordan triple derivation, and τ is the relating Jordan triple derivation.
Recall that τ is a Jordan triple derivation if τ(aba) = τ(a)ba + aτ(b)a + abτ(a) for any
a, b ∈ R.

The authors conjecture that every generalized Jordan triple derivation on 2-torsion
free semiprime ring is a generalized derivation. In our case we have the following
corollary.

Corollary 2.13. Let R be a 2-torsion free semiprime unity ring satisfying (♠) and δ be
a generalized Jordan triple derivation from R into itself. If there exist an idempotent e
so that e , 0, e , 1 in R, then δ is a generalized derivation.

Proof. Let δ : R→ R be a generalized Jordan triple derivation and τ : R→ R the
relating Jordan triple derivation. Note that τ(e1 + e2) = 0, so τ is in fact a Jordan
derivation. Now it is easy to check that a generalized Jordan triple derivation on R
is a generalized Jordan derivation. Therefore, by Theorem 2.1, δ is a generalized
derivation. �

The open question that remains is whether the Jing and Lu conjectures hold if R
does not contain a nontrivial idempotent.
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