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1~ ~ Introduction. 

Suppose that (X(n), n+0,±1, ••• } is a strictly stationary 

sequence and {a(n), n+O,tl, ••• } is a sequen~e (deterministic or 

stochastic) independent of X(n). Then the observable process 

Y(n) • i(n)X(n), n=O,ti, ••• 

1a c~llea an amel.i!ude modul.ated ve~4Lon ot X(n) and a(n) is the 

am,":. 1 Ltudtt mo du-lated. (.unction. 

An important special case of (1.1) appears when we have 

missing observations. In this case (Parzen, 1962), 

a(n) a 
I 

j l, if X(n) is observed at time n 
< . 
LO, if X(n) is missing at time n. 

Another possibil~ty is that the O's and l's are indepen­

dent realizations of Bernoulli's trials, which would imply an 

ampl i \;ude modulated function that· is random and asymptotically 
, / 

stationary· (see section 2) and would result that missed values of 
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X(n) occur with a probability p, independently one of the others. 

This situation was considered by Scheinok (1965) and Hinich and 

Weber (1981). 

Bloomfield (1970) considered the case where the 

observations are missing according to certain covariance 

structure. A variation of the proposed scheme is the one in which 

the probability of a missing value varies periodically, with known 

period, as considered by Thrall (1980), 

,Another possibility is to have sistematically missing 

values, represented by a deterministic sequence a(n), formed of 

repetitions of the same sequence of O's and l's. This is known as 

the scheme of regular sampling, considered_by Jones (1962), Parzen 

', ( 1963) , Alekseev and Savi tski1 ( 1973) and others. 

details, see Dunsmuir (1981, 1983). 

For further 

But (1,1) can be used to represent more general versions 

of amplitude modulated time series, since a(n) can assume any· real 
I 

value or it can be random, Parzen (1962) considers the situation 

where (X(t), t~O} is a statio~ary time series, with a continuous 

covariance funct-ion and {a(n), n~ O} is bounded, deterministic, 

asymptotically stationary sequence, As an example, a(n) may be a 

finite sum of harmonics. 

Dunsmuir and Robinson (1981a) considered several sets of 

assumptions on the sequences {a(n)} and {X(n)} in such a way that 

{Y{n)} is asymptotically stationary. 

Further references on the analysis · of time series with 

unequally spaced observations are Dunsmuir and Rob1nson (1981b) 
I 

and Shapiro and Silverman (1960), 
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2. Estl-tion of' the Covariance Function. 

\ Given observations {Y(n), a(n), n=l, ••. ,NJ of the 
\ 

sequences {Y(n)J and {a(n)), Parzen (1962) defines an estimator for 

the autocovariance function Yx(i) of X(n), given by 

C 

where 

and 

• i 
ryC,. > 

C ( t.) 
a 

1 N-t. 
Yy(&) • 1i=r E Y(n)Y(n+&), 0 ~ & ~ N-1 

1•1 

C (t.) • a . lim 
N+• 

N-& 
~ E a(n)a(n+L), 

n•1 

·,:i 

(2,1) 

(2.2) 

assuming that E(X(n)) = O. In this same article, it is shown that 

yX(&) is a ~onsistent estimator of Yx(&) if X(n) is Gaussian and 

ergodic. 

In the case that {a(n)} is a stochastic sequence, an 
' ' alternative estimator is given by (Dunsmuir, 1983) 

(2.4) 

where v(&) • E{Ca(&)), jf v(t) is known. If v(&) is unknown, we 

can tit a model to it and estimate its parameters using la(n) }. 

Then / 
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where v(&) is the estimate of v(&), 

Dunsmuir and Robsinson (1981) show, under certain as­

sumptions, that the estimators (2,1), (2,4) and (2.5) are strongly 

consistent, An important assumption is that the sequence {a(n)) be 

a4~mptoticaii~ 4tationa~~ (Parzen, 1963), in the sense that 

N 
lim t a(n)/N • ll a.a., 
N+• n•1 

N-t. . 
11m h t a(n)a(n+t.) • va(i) a.a. 
N•• n•1 

3. Eattaatlon of' the Spectna. 

(2.7) 

Under the assumtpion that J: I Yx( t.) I < •, the spectral 

' "density function (simply, the spectrum) o~ fX(n)) is defined by 

-t Yx(&)e-iu '-D!A!D· 
I•-• 

(3.1) 

The question here is how to estimate fx(A), given 

observations of the modulated process (Y(n)J, Several authors dealt , 

with the problem, and most of them considered the case where the 

modulated sequence {a(n)) is formed by zeros and ones, indicating 

that there are missing values of IX(n) J, the missing scheme being 

deterministic or stochastic. 

From now on we sha\l assume that · {X(n)J ls strictly 
I 

stationary, with fx(l) given by (3.1) and. continuous. 

' . 
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Denoting by r;<,> any of the above considered estimators 

ot Yx(i), we can consider the usual estimators of fx(A). namely: 
\ 
' (1) smoothed covariance estimator (SCE). 

(3.1) 

'' 

(11) smoothed periodogram estimator (SPE). 

(3.2) 

~here wN( j) is a sequence of' weights with Fourier 

transf'orms WN(A) and I~N)(A) is the pe.11.i.odog.1tam. or 

the N observations of {X(n)}, given by 

( ) 
I 

N-1 

1

2 
IN (A)= 21nN t X(n)e-1An • 

X n•O 
(3.3) 

We shall give in the sequel a summary of the estimators 

of fx(A), ! considered in the literature, in different situations, 

and see that sometimes they are different from (3.1) or (3.2). We 

shall consider initially the case of series with missing values •. 
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3.1. llodulated aequence:,.,0-1 Deteralnlstlc. 

The situation ~here 

a(n) • 
11, n=. t1'''''tA,tl+k,.,.,tA+k, etc 

'<" 

Lo, otherwise 

6 

with tj, k integers, was considered by several . authors, including 

Jones (1962), Parzen (1963), Al~kseev and ~av1tsk1 (1973), .Neave 

(1970), and it ls called pe4iodic 4ampiing. The special case where 

t j+l ·• t j+l and k • A+B ls called 4eg.u,la4 4ampiing. 

In the case or regular sampling, Jones (1962)_ used the 

estimator (3.1) with ri(J) given by (2,1) and the Ca(&) . replaced 

by 

r ··· O!&!B A-i' I 

Ca(&) • lt: B!&!A 

A+B A~ I ~A+B ,-a 

The proposed estimator 1s asymptotically unbiased and 

consistent if llx., o. Assuming that the proce~s 1a Gaussian, the 

author derives an expression tor the asymptotic variance and an 

upper bound for it. 
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Alekseev and Savi tski ( 1973) consider regular sampling 

.of a zero mean Gaussian process, having spectral density 

satisfying certain regularity conditions. The estimator proposed. 

'for frequencies A~ ±kn/(A+B), ls given by (3.1), with 

, 4..1 • • 

wh!ch involves a set of contants these are 

dt:t'9rmined in such a 'way that the estimator be asymptotically 

unLiased, with a bias of given order. Moreover, an upper bound for 

the variance of the estimator is found, which vanishes as N- •• 

The results hold for A> B. 

This is the case where the sampling interval is 

shortened at some point t• during the period of observation. As-

sume that we have a sample where the m initial data ( first 

segment) are read
1

at intervals of r time_ units and ' the next pr 

data (second segment) · are read at the unit time interval (r and p 

are integers). Thus, N• (m+p)r. Assume also that A• lim p/m, N-•. 

. 
' it . " 

/ .. , 

a(n) • 
jl, if r divides n 

< Lo, otherwise. 

Neave (1970) proposes two estimators for this situation: 

(a) Estimator given by (3.1), with yi(&) replaced · by 

(2.1) and 
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r. 1+).r 
10+).)r' 

if ' r divides & 

< 
L)./(1+>.), otherwise, 

called simple estimator by the author and which pos­

sess some disadvantages: provides negative values in 

many cases, the estimate at frequency 2u/r is poorly 

correlated with values at neighbouring frequencies ,, 

and E{yX(1)} • MRX(1), where M•M(T) is not a steadly 

decreasing function. 

(b) An alias-improved· estimator, given by 

. \ 

(3.5) 

where f"().) is the classic'al , covariance estimator, 

using the second segment of the sample• ri r) (A) is• 

the covariance estimator formed by using a sub-sample 

o•f . the second segment. X(t"). X(t*+r), .... X(N), and 

rir]().) is the estimator formed using the sub-sample 

X(l) • X(l+r) • ••• ,X(N). 

Neave proves that r
8

().) is asymptotically unbiased, gives 

an asymptotic expression for both estimators and concludes that, 

asymptotically. there are not big differences between the 

estimators. But through simulations with moderate sample sizes it 
I 

is shown that the estimator (3.5) is superior to the simple 

estimator. 
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\ Jones (1971) studied the general case 
\ 

11, if X(n) is observed 
a(n) .. < 

)fl. Lo· otherwise 

I• 

wher~ X(n) is a zero mean, weakly stationary complex process. 

The proposed estimator is similar to that given by (3.1), 

(N-j) 
N 1 N-J 

N- E a(n)a(n+j) 
""'1 

is the t~uncatlon poi.rtt of the sequence of weights. 

m 

The estimator is asymptotically unbiase~ and its variance 
is computed under the assumption that X(n) is Gaussian. The expre!!_ 
sion for the variance of the estimator is the same as that given 

by Parzen (1963). The author also calculates the "white noise 

variance"; which is the variance for f'x(A) assumed constant. Also, 
a(n) is generalized to any known real function of n. 

3.2. llodulated Sequence ~1 Stochastic. 

Several types of modulated sequences 0-1 stochastic were 
considered in the literature. Sche1nok (1965), Bloomfield (1970) 

and Thrall (1980) are among those who proposed estimates for fx ·c A) 

1.n some situations. 

,, 



3.2.1. Random Sequence ot 1ndependent Be~noulli'~. 

Scheinok (1965) considered the case of 

a(n) = 
j1, if X(n) is observed 

< Lo, otherwise 

and P<a(n) = 1l • p, independent of n, 0 < p < 1. 

10 

The estimator of fx(A) ts of the form (3,2), with the 

periodogram replaced by 

~ ~ Y(j)Y(k) -1 ( j-k h. 
e • 

J~1 k=1 E{a(j)a(k)} 

called modified normalized periodogram. This estimator is as-

symptotically unbiased and has a bias bounded by KN" log N/N, where 

KN is a function of the true spectrum and of the spectral window. 

Moreover, under the hypothesis that X(n} ls Gaussian, the exact 
l 

and asymptotic variance of the estimator are found; the latter 

being of order (N.BN)-1 • 

3.2.2. Co~~elated Random Seguence. 

Bloomfield (1970} considered the same situation as in 

3.2.1. but with 

P{a(n) • 1} • p, for all n, 

E{a(n)a(n+r)}=p.u, ur>O, r . 

E{a(n)a(n+q)a(n+r).a(n+s)} • p 2 •"q,r,s' q,r,_s • O,:U, ••• 

The author ~akes other assumptions on a(n) and also on 
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X(n). The proposed estimator of fx(A) is of the form (3.1), with 

.y;(j) replaced by 

- \ 
(3.6) 

and Y y.( j) given by . ( 2. 2) • 

Under ·some additional conditions, the estimator has the 

r~:lowing properties: 

(a) It is asymptotically unbiased, 

(b) It is weakly consistent, 
N ca(I.) (or 

(c) If E{a(n)a(n+j)) in (3,6) is replaced by N-t 

pu/2, if this value is too small, u being the lower 

bound ror ur), then the new estimator will have the 

same asymptotic mean and variance as (3.6). 

3.2.3, ~e4lodlc Random Sequence. 

Thrall (1980) considered the case where {X(n)} is strictly 

stationary and mixing and a(n) as in 3.2.1,, independent with 

P{a{n) • ll • o(n mod S). In the example given in the paper, S .. 7, 

and o ( s), s • 0, ••• , S-1, correspond to the probab111 ties of 

observing the _proc~ss of interest in each day of the week, that 

is, the probability of the process being observed depends only on 

the day or .the week. 

To construct the estimator, the process 

T(t) - Y(t) - Y(t) 
i>(t) E{a{t)) 
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is considered and then an estimator or type (3,2) is used, bias­

corrected, given by 

with N•SR. 

.E W (A - 2nt )It (ill) 
ttO(mod R) N N N N 

S-1 
J: 

8•0 Cl (s) 

·Under certain mixing assumptions, the estimate is 
asymptotically unbiased, consistent and normal. 

3.3. General Kodulated Sequence. 

In what follows we shall consider three cases or the 
general sequence {a(n)J: Deterministic, random (indepe~dent and 
correlated) and the case which includes both of these. 

/ 
Parzen (1963) assumes that {X(n)lis· a. stationary normal 

process, with mean zero and covariance function lx(v) satisfying 

1 
lim N 
N+• 

{a(n)} a deterministic bounded sequence, such that c
8

(£) given by 
(2.3) exists. Then, it ts shown that Yx(L) is consistent in mean 
square for Tx(i), and from t~is consistent estimates .of rx(A) are 
derived, using Yx(L) in (3.1). A formula is obtained for the 
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asymptotic variance of the spectral estimator. r 

As we already mentioned in section 3.1.3., Jones (1971) 
\ 

used a 'deterministic sequence (a(n)}, not necessarily formed of 

O's and 1 1 s. The use of a general sequence does not change the fonn 

~f the estimator, but changea its variance. 
I 

Tolol (1988) assumes that (X(n)} is a strictly stationary 

prc,~t;SS, with E(IX(n)lk}<•, k>O, and {a(n)} 1s real sequence, 
' det~rministic, of bounded variation and asymptotically stationary. 

The proposed estimator is of the type of (3.2), with IN(A) replaced 

by 

N I N 12 IN(A) ,. [2n J: a2 (n)] -l J: Y(j)e-Hj , 
n•1 J•1 • 

(3.7) ~ 

which ls also a modified periodogram. 
N-1 2 If J: a (n) • O(N), 11x • O and (X(n)} satisfies 
n•O 

certain 

mixing regularity conditions, 1t is shown that the estimator is 

asymptotically unbiased, consistent and asymptotically normal. 

3.2.2. The Random Ca4e. 

The case of { a( n)) forming a seq:uence of independent, 

identicaliy di~trib.uted random variables, is considered by Tolo1 

(1988)". Here X(n) is assumed to be strictly stationary, with 

E(IX(n)lk> <•, k>O. The proposed estimator is given by (3.2} with 

I~(A) substituted by 
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(3.8) 

where , E{a(n l J = 11
8 
~ 0 and Var{a(n)} •a;> 0, The estimator (3,8) 

is a modified periodogram, corrected for bias, 

Under certain conditions on {X(n)J, ttie estimator fx(A) 

is shown to be asymptotically unbiased consistent and 

asymptotically _ normal. Moreover, if we replace the unknown 

parameters of (3.B) by consistent estimators, then the new spectral 

estimator will be asymptotically equivalent to· the former one ( in 

distribution sense). 

The situation where both {a(n)J and {X(n)} are strictly 

stationary processes, independent is also considered by Toloi 

(1988). The estimator of fx(A) is of type (3,1), with r;c,) given 

by 

___ r y.;;..* _( r._ ) __ l 

E{a(n)a(n+r.)J 
_I 

with r;(r.) a (~-~)/N Yy(r.). This is a gener~lization of the 

estimator proposed by Bloomfield ( 1970), for the case of correlated 

sequence (see section 3,2,2). To derive properties of the estimator, 

several additional assumptions on {a(n)l and {X(n)J are necessary, 

It is then shown that the estimator is consistent in mean square 

and if E{a(n)a(n+r.)} is replaced by NCa(r.)/(N-£), the modified 

estimator is asymptotically equivalent to the former. 

The case of a general modulated sequence (deterministic 

or stochastic) is considered by Dahlhaus (1980), The estimator 1s 

of the form (3,2), with the periodogram replaced by (3.7), To 
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prove consistency and asymptotic normality a large numQer of as-

_sumptions on {a(n)} has to be made. 

\ 
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