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Abstract The performance of fluid devices, such as
channels, valves, nozzles and pumps, may be improved
by designing them through the topology optimization
method. There are various fluid flow problems that can
be elaborated in order to design fluid devices and among
them there is a specific type which comprises axisym-
metric flow with a rotation (swirl flow) around an axis.
This specific type of problem allows the simplification
of the computationally more expensive 3D fluid flow
model to a computationally less expensive 2D swirl flow
model. The topology optimization method applied to
a Newtonian fluid in 2D swirl flow has already been
analyzed before, however not all fluids feature Newto-
nian (linear) properties, and can exhibit non-Newtonian
(nonlinear) effects, such as shear-thinning, which means
that the fluid should feature a higher viscosity when un-
der lower shear stresses. Some fluids that exhibit such
behavior are, for example, blood, activated sludge and
ketchup. In this work, the effect of a non-Newtonian
fluid flow is considered for the design of 2D swirl flow
devices by using the topology optimization method.
The non-Newtonian fluid is modeled by the Carreau-
Yasuda model, which is known to be able to accurately
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predict velocity distributions for blood flow. The de-
sign comprises the minimization of the relative energy
dissipation considering the viscous, porous and iner-
tial effects, and is solved by using the finite element
method. The traditional pseudo-density material model
for topology optimization is adopted with a nodal de-
sign variable. A penalization scheme is introduced for
2D swirl flow in order to enforce the low shear stress be-
havior of the non-Newtonian viscosity inside the mod-
eled solid material. The optimization is performed with
TPOPT (Interior Point Optimization algorithm). Nu-
merical examples are presented for some 2D swirl flow
problems, comparing the non-Newtonian with the New-
tonian fluid designs.

Keywords Topology optimization - Non-Newtonian
fluid - 2D swirl laminar flow - Carreau-Yasuda model -
Navier-Stokes equations - Finite elements

1 Introduction

In order to improve the performance of fluid devices,
such as channels, valves, nozzles and pumps, an
optimization method may be used. Particularly, the
topology optimization method can be used to obtain a
generic optimized shape from a given design domain.
The topology optimization method started with
structural optimization. It was adapted for fluid opti-
mization by Borrvall and Petersson (2003) for 2D flow
channel design. The adaptation that was performed is
that the solid material is modeled by means of a porous
medium (Darcy law) instead of varying the material
properties as it is done in structural optimization. A
high porosity would mean that it is modeling fluid, and
a low porosity would mean that it is modeling solid.
Intermediate porosity values are allowed in order to
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relax the optimization problem from binary to real val-
ues. This topology optimization approach can also be
called “pseudo-density approach”, since it is based on
the value of a design variable (called pseudo-density)
distributed throughout the entire design domain.
Other topology optimization approaches include the
“level-set method” (Duan et al., 2016; Zhou and Li,
2008), and topological derivatives (Sokolowski and
Zochowski, 1999; S4 et al., 2016). In this work, the
pseudo-density approach is used. Some advantages
of the pseudo-density approach are rapid and robust
convergence, weak dependence on the initial distribu-
tion of the design variable and dealing with multiple
constraints (Deng et al., 2013).

The topology optimization method has already
been applied to a wide variety of flow types, such as
Stokes flows (Borrvall and Petersson, 2003), Darcy-
Stokes flows (Guest and Prévost, 2006; Wiker et al.,
2007), Navier-Stokes flows (Evgrafov, 2004; Olesen
et al., 2006), slightly compressible flows (Evgrafov,
2006), non-Newtonian flows (Pingen and Maute, 2010),
turbulent flows (Yoon, 2016; Dilgen et al., 2018),
thermal-fluid flows (Sato et al., 2018; Ramalingom
et al., 2018), unsteady flows (Ngrgaard et al., 2016)
etc. Some fluid devices that have already been designed
through topology optimization are valves (Song et al.,
2009), mixers (Andreasen et al., 2009), rectifiers
(Jensen et al., 2012), and flow machine rotors (Romero
and Silva, 2014).

Among the existing fluid flow problems, there is a
specific type which comprises axisymmetric flow with a
rotation (swirl flow) around an axis, being able to model
hydrocyclones, some pumps and turbines, and fluid sep-
arators. This specific type of problem allows the simpli-
fication of the computationally more expensive 3D fluid
flow model to a computationally less expensive 2D swirl
flow model. This simplified model has already been ap-
plied in topology optimization for Newtonian fluid (wa-
ter) to design 2D swirl flow devices (Alonso et al., 2018),
and Tesla-type pump devices (Alonso et al., 2019).

Since not all fluids feature Newtonian (linear)
properties, and can exhibit non-Newtonian (nonlinear)
effects, the optimized topologies may vary. This is
shown in the topology optimization performed by
Pingen and Maute (2010) for 2D channel design con-
sidering blood flow according to the Carreau-Yasuda
model. Topology optimization has also been performed
for non-Newtonian fluid for bladed blood pump design
(modified Cross model) (Romero and Silva, 2017), arte-
rial by-pass grafts (modified Cross model) (Zhang and
Liu, 2015; Hyun et al., 2014; Kian, 2017), roller-type
blood viscous micropumps (power-law model) (Zhang
et al., 2016), aneurism implants (Jiang et al., 2017),

and viscoelastic rectifier design (viscoelastic Oldroyd-B
model) (Jensen, 2013). A generic non-Newtonian fluid
can feature three types of characteristics (illustrated
in Fig. 1):

— Stress-dependence: Change in viscosity when un-
der different stress levels, which can be given as
shear-thinning (“pseudoplastic” behavior, such as
in blood (Cho and Kenssey, 1991), activated sludge
(Garakani et al., 2011) and ketchup (Bayod et al.,
2008)), shear-thickening (“dilatant” behavior, such
as the mixture of corn starch and water) or Bing-
ham plastic/pseudoplastic (such as concrete (Fer-
raris and de Larrard, 1998));

— Viscoelasticity: Viscous and solid elastic behavior
when under deformation, in which the shear stress
can be expressed in a time-dependent form (differen-
tial, rate or integral) (Quarteroni et al., 2000) (such
as in a Bogers fluid (Jensen, 2013)). This way, vis-
coelasticity can model creep, stress relaxation and
hysteresis;

— Time-dependence: Change in viscosity with time
when under a given load, which can be given as
thixotropy (viscosity decreasing with time) or
rheopecty (viscosity increasing with time) (such
as in colloidal and particle suspensions) (McArdle
et al., 2012; Barnes, 1997).

Time-independent effect Time-dependent effects
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Fig. 1: Possible behaviors for non-Newtonian fluids.

Since blood is a non-Newtonian fluid whose rheol-
ogy has been extensively analyzed (Cho and Kenssey,
1991; Quarteroni et al., 2000), features applications
in the design of medical devices (Slaughter et al.,
2010; Zhang and Liu, 2015), and has even been used
in topology optimization by various authors (Pingen
and Maute, 2010; Romero and Silva, 2017; Zhang and
Liu, 2015; Hyun et al., 2014; Kian, 2017; Zhang et al.,
2016), it is the non-Newtonian fluid considered in this
work. It is observed that blood features: shear-thinning
(due to the formation of macroaggregates (called
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“roleaux”) at low strain rates (Quarteroni et al.,
2000)), viscoelasticity (since younger red blood cells
can deform and aggregate more than older red blood
cells (Vlachopoulos et al., 2011)), and thixotropy (due
to time changes in structural arrangements at the
microscopic level (Anand and Rajagopal, 2017)). Since
blood is not a homogenous fluid, being composed of
plasma, red blood cells (erythrocytes), white blood cells
(leukocytes), platelets (thrombocytes), lipoproteins,
ions etc. (Behbahani et al., 2009), there are limits to
which it can be considered a single continuous fluid.
Near walls, there is a thin layer composed of plasma,
without any red blood cells, which only features
significant effect on the blood viscosity when the fluid
flow path is comparable to the size of red blood cells
(Fahreeus-Lindqvist effect) (Quarteroni et al., 2000).

Since the Carreau-Yasuda model seems to represent
well the rheological properties of blood and also offers
high flexibility for adjusting experimental curves, it is
the shear-thinning model selected for this work.

Thus, the main objective of this work is to apply the
topology optimization formulation to design 2D swirl
flow devices considering a non-Newtonian fluid (blood).
The objective of the optimization is to minimize the rel-
ative energy dissipation considering the viscous, porous
and inertial effects (Alonso et al., 2019; Borrvall and
Petersson, 2003). The 2D swirl laminar fluid flow mod-
elling is solved by using the finite element method. The
traditional material model of fluid topology optimiza-
tion (Borrvall and Petersson, 2003) is adopted by con-
sidering nodal design variables. A penalization scheme
is introduced for 2D swirl flow in order to enforce the
low shear stress behavior of the non-Newtonian viscos-
ity inside the modeled solid material. The implemen-
tation is performed in the FEniCS platform, by using
the adjoint method for calculating sensitivities (Farrell
et al., 2013), IPOPT (Interior Point Optimization algo-
rithm) for solving the optimization problem (Wichter
and Biegler, 2006), and MUMPS for solving the equa-
tions of the weak form of the problem (Amestoy et al.,
2001).

This paper is organized as follows: in Section 2,
the flow model for the non-Newtonian 2D swirl flow
is briefly derived; in Section 3, the weak formulation of
the problem is presented together with the finite ele-
ment modeling; in Section 4, the topology optimization
problem is stated by considering the Brinkman model
and non-Newtonian penalization; in Section 5, the nu-
merical implementation is briefly described; in Section
6, numerical examples are presented; and in Section 7,
some conclusions are inferred.

2 Equilibrium equations

The fluid flow is modeled by the continuity and linear
momentum (Navier-Stokes) equations, considering lam-
inar flow, incompressible fluid and steady-state regime.

2.1 2D swirl flow model

By considering a rotating reference frame, the conti-
nuity and Navier-Stokes equations according to the
Brinkman model are (Munson et al., 2009; White,
2011; Romero and Silva, 2014)

Vev =0 (1)

pVvev = VeT +pf —2p(wAv) — pwA(wAS) — k() Umat
(2)

where v is the relative velocity of the fluid, p is the
density of the fluid, p is the pressure, p is the dynamic
viscosity, pf is the body force per unit volume acting
on the fluid, s is position, A is used to denote cross
product, —2p(wAw) is the Coriolis force, —pwA(wAS)
is the the centrifugal inertial force, and T is the stress
tensor given by

T =2ue—pl , e=%(Vv+ VoT) (3)

In eq. (2), a porous medium is considered for
modeling solid in topology optimization. Thus, a
resistance force (Darcy effect) is included (—&(@)vmat)
(Vafai, 2005), which is directly proportional to the
fluid velocity in relation to the solid material

Fr = —K(Q)Umat (4)

where k() is the inverse permeability (“absorption co-
efficient” ), vimat is the velocity in relation to the porous
material (Umat = (Ur, V9 —Wmat"s Uz) , Where wmas is the
rotation of the porous media in relation to the reference
frame), and « is the pseudo-density. The pseudo-density
can attain values ranging from 0 (solid) to 1 (fluid), and
is used as the design variable in topology optimization.

The 2D swirl flow model (“2D axisymmetric model
with swirl”) considers axisymmetry and cylindrical co-
ordinates (see Fig. 2). Thus, the position and velocity
become

s=(r, 0, 2) =re, + ze, (5)

v = (vp, Vg, V) = Vrer + vgeg + v, €, (6)
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Fig. 2: Representation of the 2D swirl flow model.

Also, from axisymmetry, the derivatives in the 6 di-
rection are zero (i.e., % = 0). The equations for the
2D swirl flow model are further developed in Alonso

et al. (2018).

2.2 Non-Newtonian fluid flow model

In this work, the non-Newtonian fluid being con-
sidered is blood. The study performed by Gijsen
et al. (1999) showed that the main contributor to the
blood behavior should be the shear-thinning effect,
which is time-independent. In order to model it, the
Carreau-Yasuda model is selected, which is capable
of adequately representing the blood behavior (Gijsen
et al., 1999; Pratumwal et al., 2017; Leondes, 2000).
The Carreau-Yasuda model is given by (Cho and
Kenssey, 1991; Bird et al., 1987)

1) = oo + (110 — proo) [T+ (Vm)] T (7)

where 4y, is the shear rate magnitude (also called
“scalar shear rate”) (Abraham et al., 2005), A is a time
constant (“characteristic time”), n is an exponential
factor, a is the Yasuda coefficient, pg is the maximum
dynamic viscosity and o is the minimum dynamic
viscosity.

The shear rate magnitude (“scalar shear rate”, y,)
and the shear stress magnitude (“scalar shear stress”,
Tm) are given by (Lai et al., 2009; Tesch, 2013; Arora
et al., 2004)

Tm = N(va)j/m

Ym = V2e€

where € = 1(Vv + VoT) is the viscous stress deforma-
tion tensor and “ e ” is the inner product as defined in
Gurtin (1981).

According to Cho and Kenssey (1991) and Pingen
and Maute (2010), for blood, the constants in the
Carreau-Yasuda model are A = 1.902s, n = 0.22,
a = 1.5, o = 0.056 Pa s and e = 0.00345 Pa s. The
variation of the dynamic viscosity (u) in function of
the shear rate (%) and the rheological diagram are
illustrated in Fig. 3. The corresponding Newtonian

(®)

fluid model is shown in dashed lines, with a constant
viscosity of u = s = 0.00345 Pa s.
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(b) Rheological diagram.

Fig. 3: Non-Newtonian fluid based on the Carreau-
Yasuda model for blood flow.

2.3 Boundary value problem

The boundaries for the computational domain when
considering a 2D swirl flow model may include the sym-
metry axis or not, which shown in Fig. 4. Then, the
boundary value problem for the 2D swirl flow model
can be stated as follows (Alonso et al., 2018, 2019).

pVvev = VT (1u(fm))+pf — 2p(wAv)—

PWA(WAS) — K(Q)Umat in Q
Vev =0 in Q
v = vy on I'y,
v=0 on I'y.
ov, Ov ov, O
v, = 0 and 87“:87::87“:672:0 on 'y
T((4m))sn =0 on gyt

(9)

where Q, I'in, I'wail, 'sym and oy are shown in Fig.
4. A fixed velocity is imposed on the inlet boundary
(Tin), and the no-slip condition is imposed on the walls
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(Pwan)- On the symmetry axis (I'sym ), the derivatives in
relation to the r coordinate are considered to be zero, as
well as the radial velocity. The outlet boundary (Tout)
is modeled by considering a stress free condition (i.e.,
open to the atmosphere). T(u(¥m)) is the stress ten-
sor (T') considering the non-Newtonian fluid model (eq.

(7))-

74 ? 1—'wall 4 t 1—‘in
= 1—‘in Q 1—‘out rsym% Q Fwall
> - —p>
Tout r

Domain bordered
by the symmetry axis

Domain not bordered
by the symmetry axis

Fig. 4: Boundaries for 2D swirl flow devices.

3 Finite element method
3.1 Weak formulation

The equilibrium equations of the 2D swirl flow model
are solved through the finite element method. By using
the weighted-residual and Galerkin methods for the
mixed (velocity-pressure) formulation, (Reddy and
Gartling, 2010; Alonso et al., 2018)

R = /Q (Vew)w,rd (10)

R, = /Q [pVvev — pf + 2p(wAv)
+ pwA(wASs)] -wvrdQ+/§1T(p(‘ym))-(va)'rdQ

— %(T(,u("ym))-wv)onrdF—i—/ K(Q)Umat W, mdQ
r Q
(11)

where ¢ refers to the “continuity equation”, m refers
to the “linear momentum equation” (i.e., the Navier-
Stokes equations) and the test functions are given by
Woyr
Wy.0
Wy, 2
ity v. As in Alonso et al. (2018, 2019), since the inte-
gration domain (27rdf2) features a constant multiplier
(27), which does not influence when solving the weak
form, egs. (10) and (11) are divided by 2.

Since the two test functions (w, and w,) are mutu-
ally independent, the two equations (egs. (10) and (11))
can be summed, leading to a single equation

F=R,+R,=0 (12)

wy, for the pressure p, and w, = for the veloc-

3.2 Finite element modeling

For fluid flow, the coupling between the discretizations
of the pressure and the velocity may result in insta-
bilities and non-physical oscillations in the pressure
(Langtangen and Logg, 2016). This can be avoided
by choosing a finite element which obeys the LBB
(Ladyzhenskaya-Babuska-Brezzi) condition (Girault
and Raviart, 2012; Guzman et al., 2013; Brezzi and
Fortin, 1991). A general proof for the validity of the
LBB condition for any constitutive equation and
formulation is still lacking (Reddy and Gartling,
2010). However, the work done by Galvin (2013)
verifies the convergence rates for a non-Newtonian
fluid modeled by the Cross model, which is similar
to the Carreau-Yasuda model used in this work.
A common choice for the finite element choice is
using Taylor-Hood elements (see Fig. 5), which are
considered very stable and provide 3'¢ order spatial
accuracy for velocities (Varchanis et al., 2019). The
lowest degree Taylor-Hood elements are given by using
a 15 degree interpolation for pressure (P element) and
a 2" degree interpolation for velocity (P, element).
For the pseudo-density (design variable), a 15 degree
interpolation (P; element) is chosen.

@ [ ] Q@
P, P,ee P
@ o0oe 00

Pressure D Velocity V. Pseudo-density (0

Fig. 5: Finite elements chosen for the state variables
(pressure and velocity) and the design variable (pseudo-
density).

4 Formulation of the Topology optimization
problem

4.1 Material model for the inverse permeability

In fluid topology optimization, the aim is to obtain a
sufficiently discrete distribution of the pseudo-density
in the design domain (0 for solid, and 1 for fluid). In
order to relax the subtle transition (binary values) be-
tween solid and fluid, it is necessary to allow an inter-
mediate porous medium (“gray”, with a pseudo-density
between 0 and 1) (real values). Borrvall and Petersson
(2003) suggests a convex interpolation function for the
inverse permeability:

1+q

13
ot (13)

KJ(CV) = Kmax T (’fmin - Hmax)



Diego Hayashi Alonso et al.

where the maximum and minimum values of the inverse
permeability (k(«)) are, respectively, Kmax and Kmin-
The penalization parameter (¢ > 0) controls the con-
vexity (relaxation) of the material model. Large values
of ¢ mean a less relaxed material model.

4.2 Material model for the non-Newtonian viscosity

When « = 0 (solid), the velocity of the fluid is expected
to be minimum, and, therefore, the shear rate magni-
tude (4m) is expected to be near zero. In such case,
eq. (7) gives u(Ym) = po (i-e., the viscosity assumes its
higher non-Newtonian value). Since even a small fluid
velocity value can cause the shear rate magnitude (9y,)
not to approach zero inside the solid material, a pe-
nalization scheme is proposed in order to improve the
behavior of p(¥m) & po inside the solid material for 2D
swirl flow. The penalization scheme consists of chang-
ing the non-Newtonian viscosity for 2D swirl flow to the
following equation

1+4+¢
a—+q

(e, ) = po + (1(Ym) — po)ex (14)
where the viscosity value in the solid is pg and the vis-
cosity value in the fluid is p(9m) (eq. (7)). The penal-
ization parameter (¢ > 0) is the same of eq. (13).

This approach is similar to the one proposed
by Pingen and Maute (2010). However, the “solid
material viscosity” being imposed here is the “highest”
viscosity (uo) and not the “lowest” viscosity (tioo),
which was used by Pingen and Maute (2010). Also,
Pingen and Maute (2010)’s penalization was used to
counter a coupling issue between the non-Newtonian
viscosity and the inverse permeability of the Lattice
Boltzmann Method, which is the kinetic approach for
modeling fluid flow, while this work uses the hydro-
dynamic approach for modeling fluid flow (continuity
and Navier-Stokes equations) and aims to improve
the consistency of the non-Newtonian viscosity with
the expected/desired values inside a modeled solid
material. A non-Newtonian penalization approach
proposed by Hyun et al. (2014) in the context of
2D flow topology optimization says that using the
non-Newtonian penalization would avoid numerical
instability due to the non-linearity of eq. (7).

Fig. 6 shows the material model presented in eq.
(14). The upper part of the figure shows a 3D plot
of the material model for the non-Newtonian viscos-
ity: when o = 0 (solid), the non-Newtonian viscosity is
(e, Ym) & po; when a = 1 (fluid), the non-Newtonian
viscosity is p(a, 4m) = p(ym) (i-e., eq. (7)). The mate-
rial model is then represented by the surface connecting
the curves of & = 0 (solid) and & = 1 (fluid). The upper

part of the figure shows an almost straight line for the
material model (high penalization parameter (g)), and
the “slice” shown in the lower part of the figure shows
some possible values for the penalization parameter (q).
As indicated in the lower part of the figure, the “lower
limit” of the viscosity (1(%m)) depends on the shear rate
magnitude (¥y,): a lower shear rate magnitude means
a higher “lower limit” for the viscosity, and a higher
shear rate magnitude means a lower “lower limit” for
the viscosity.

274

1 54 g

0 0.5
Solid “Gray” Fluid

Fig. 6: Material model for the non-Newtonian viscosity.

The main consequence of eq. (14) is that the non-
Newtonian viscosity becomes higher and uniform in-
side a modeled solid material (see Appendix B). From
performed tests, the pressure and velocity values are
mostly affected during the topology optimization itera-
tions, while there are still “gray” regions. The effect of
the non-Newtonian penalization in the pressure and ve-
locity values becomes small in the final optimized topol-
ogy (assuming that kmax from eq. (13) is high enough
so as to block fluid flow).

Throughout this work, the penalization shown in eq.
(14) is referred to as “non-Newtonian penalization”.
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4.3 Topology optimization problem

The topology optimization problem can be formulated
as follows.

min @, (p(a),v(a), a)
such that

a2mrdQy) < W
Qo

Fluid volume constraint:

Box constraint of a: 0 < a< 1

(15)

where f is a specified volume fraction, Vi = an 2mrdQ),
is the volume of the design domain (represented as ),
D01 (p(a), v(a), ) is the objective function, and p(«)
and v(«) are the pressure and velocity obtained from
the solution of the boundary value problem (eq. (9)),
which features an indirect dependency with respect to
the design variable . In this work, the design domain is
chosen as the entire computational domain (2, = ).

4.4 Objective function

The objective function is chosen as the relative en-
ergy dissipation considering inertial effects, as defined
in Alonso et al. (2019) for a rotating reference frame,
which is based on the energy dissipation defined in Bor-
rvall and Petersson (2003). By considering zero external
body forces,

1
Bror — / [2uwm)<w Vo )e(Vo + Vol 2mrd0
Q

—|—/ K(Q)Vmatsv27mrdS)
Q
+/(2p(w/\v) + pwA(wAS))ev2mrdS)
Q
(16)

where 14 ) is the non-Newtonian viscosity. Note that,
since w = wpe, and from eq. (5), the Coriolis term
(2p(wAwv)ev) is zero.
4.5 Sensitivity analysis

The sensitivity is given by the adjoint method as
a7\ [(oJ\ [OF\
(i) = () - (G) o

<8(‘fm>* Ay = <a (?;,]p)>* (adjoint equation) (18

where J = @, is the objective function (relative energy
dissipation), the weak form is given by F = 0, “*”
represents conjugate transpose, and Ay is the adjoint
variable (Lagrange multiplier of the weak form).

5 Numerical implementation of the
optimization problem

The finite element method is implemented in the
FEniCS platform (Logg et al., 2012), which uses
automatic differentiation and a high-level language
in order to represent the weak form and functionals
for later assembling of the finite element matrices. In
order to implement the topology optimization method,
the dolfin-adjoint library (Farrell et al., 2013) is used
in order to compute the adjoint model, and IPOPT
(Interior-Point Optimization algorithm) (Wéchter and
Biegler, 2006) is used as the optimization algorithm.
IPOPT uses a logarithmic barrier term for searching
only in the feasible space (i.e., not violating the
constraints), and augments it by using a line-search
filter method (which avoids having to determine the
exact value of the penalty parameter of the logarithmic
barrier), and the dolfin-adjoint library has an interface
for using it. Since eq. (12) is nonlinear, the finite ele-
ment method is solved through the Newton-Raphson
method, by solving the corresponding linearized prob-
lems with MUMPS (MUltifrontal Massively Parallel
sparse direct Solver) (Amestoy et al., 2001).

The topology optimization method is implemented
as shown in Fig. 7. From an initial guess for the pseudo-
density distribution in the design domain, a simulation
is performed with FEniCS. This initial simulation is
used by dolfin-adjoint in order to derive the adjoint
model, which is then used in the IPOPT optimization
loop. The optimization loop continues until the speci-
fied tolerance (convergence criterion) is reached.
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Fig. 7: Flowchart illustrating the numerical implemen-
tation of the topology optimization problem.

In the case the reader uses another software plat-
form in which the dolfin-adjoint library is not available,
the corresponding continuous adjoint model for the 2D
swirl flow problem is shown in Appendix A. Since it
may be difficult and laborious to derive the continu-
ous adjoint model for the non-Newtonian viscosity of
eq. (7), an alternative approach is shown, which uses
automatic differentiation only for the sensitivity of the
non-Newtonian viscosity.

6 Numerical results

In the numerical results, the fluid is considered as
blood, with the non-Newtonian dynamic viscosity
(11(Am)) given by eq. (7). Since the compressibility
of blood is small, according to Hinghofer-Szalkay
and Greenleaf (1987), blood may be assumed as
incompressible, with a density (p) of 1056 kg/m?3.

The finite element meshes are structured, composed
of rectangular partitions of 4 triangular elements each
(see Fig. 8).

« Rectangular
partition
.

4 triangular elements

Fig. 8: Distribution of triangular elements in a rectan-
gular partition.

In order to have a better numerical conditioning
for calculating the weak form, functionals and sensi-
tivities, and also improving the convergence rate, the
MMGS (Millimeters-Grams-Seconds) unit system is
used, which means that the length and mass units are
multiplied by a 103 factor.

The convergence criterion for the Newton-Raphson
method performed for the simulation with MUMPS is
based on residuals: absolute tolerance of 1071°, and rel-
ative tolerance of 107°. The convergence criterion for
the optimization is based on a desired tolerance of 10710
for the optimality error of the IPOPT barrier problem,
which essentially corresponds to the maximum norm of
each KKT condition (Wichter and Biegler, 2006).

External body forces are not considered for the
numerical examples (pf = (0, 0, 0)), and the specified
fluid volume fraction (f) is chosen as 30%. The
porous media is assumed with the same rotation
as the reference frame, therefore, vy, = wv. Also,
Kmin = 0 kg/(m? s). The initial guess for the pseudo-
density (design variable) is a uniform distribution of
a = f — 1%, where f is the specified volume fraction
and 1% is a margin for the initial guess not to violate
the volume constraint (because of the numerical accu-
racy of the calculations). The plots of the optimized
topologies consider the values of the design variable
« in the center of each finite element. The letter n is
used to denote rotation in rpm, and the greek letter w
is used to denote rotation in rad/s.

The pseudo-density (design variable) values of the
optimized topologies are post-processed by a threshold
function (i.e., a step function):

{ 1 (fluid), if « > 0.5
Qth =

1
0 (solid), if & < 0.5 (19)

After applying the threshold function, the mesh
is cut, removing the solid material (¢« = 0) from the
computational domain (see Fig. 9). This enables the
final simulation to be performed with the Navier-Stokes
equations without the inverse permeability term (i.e.,
not including the Brinkman model), thus enabling a
comparison of the optimized topologies achieved with
different optimization parameters. In all optimized
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topologies, the final values of the pseudo-density
(design variable) are close to the bounds (i.e., to a =0
and o = 1).

Post-processing

Optimized
topology

Post-processed
mesh

Fig. 9: Post-processing used for the optimized topolo-
gies.

For simplicity, the Reynolds number is calculated
as the maximum value of the local Reynolds number
based on the external diameter:

1(Y) [Vabs| (2Reat)
P

Reext, L= (20)
where p(4) is the non-Newtonian viscosity, which may
vary in each position of the computational domain, v,ps
is the absolute velocity, which varies in each position of
the computational domain, R..;; is the most external
radius of the computational domain (it is the “R,+” of
the two first examples, and the “R” of the third exam-
ple), and p is the deunsity.

In some of the numerical examples, a continuation
scheme in the optimization parameters is performed for
better conditioning the optimization, with a maximum
allowed number of optimization iterations defined for
each continuation step in the range of 10 to 800. In
the beginning of each continuation step, the IPOPT
algorithm is restarted.

6.1 Parallel channels

The first example is the design of the classical parallel
channels. However, in this case, 2D swirl flow is con-
sidered. This example has been extensively treated in
2D flow topology optimization (“double pipe”) since
the first fluid topology optimization article (Borrvall
and Petersson, 2003; Deng et al., 2018), and has even
been analyzed for non-Newtonian fluid in a 2D domain
(Pingen and Maute, 2010). In a 2D swirl flow model, it
resembles the horizontal inlet Tesla pump design pre-
sented by Alonso et al. (2019). However, it features two
inlets and a large axial distance between them. In the
present work, two non-rotating inlets are located at a

smaller radius, and two outlets are located at a larger
radius. The configuration is illustrated in Fig. 10. The
flow rate (@) is equally divided between the two inlets
(Q1=Q2 = %), and the solid material distribution is
optimized on the rotating walls.

Z V=(Vping, -l 0)

=0 (rotatin
H-f )v ( 9)
° h; Ten=0 hj
| n h;
h Ten=0 h3
: 3 \ n 3>

R N (R NY
hs Rint V=(Vying, -wqr, 0) Reoxt i r

Fig. 10: Design domain for parallel channels design.

The finite element mesh is chosen with 100 radial
and 80 axial rectangular partitions of crossed triangu-
lar elements, totaling 16,181 nodes and 32,000 elements
(see Fig. 11). The input parameters and dimensions of
the design domain that are used are shown in Table
1. It can be mentioned that, instead of using a uni-
formly high discretization in order to be able to sim-
ulate the fluid flow behavior, it is also possible to use
adaptively refined/coarsened meshes (Adaptive Topol-
ogy Optimization) (Evgrafov, 2015; Duan et al., 2015;
Gupta et al., 2018), which may be a better choice for
the discretization, but is out of the scope of this work.

~10
£ |
E£5) 2
N SR
0 5 10 15 20
I (mm)

Fig. 11: Mesh used in the parallel channels design.
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Table 1: Parameters used for the topology optimization
of the parallel channels.

Input parameters

Inlet flow rate (Q) 0.5 L/min
Wall rotation wo # 0 rad/s (rotating)
Inlet velocity profile Parabolic
Dimensions
H 10 mm
Rins 5 mm
Ry 20 mm
hy =R =hg =hj 2.5 mm
he = hf 2.5 mm
hy =R 1.25 mm

Fig. 12 shows a comparison of the non-Newtonian
viscosity for the optimized parallel channels designs at
100 rpm without post-processing (i.e., still including
the material model). As can be seen, without the
non-Newtonian penalization, the non-Newtonian vis-
cosity shows some variation inside the solid material,
which may possibly negatively influence the topology
optimization. In constrast, when adding the non-
Newtonian penalization, the non-Newtonian viscosity
inside the solid material is much more consistent with
its expected/desired value inside a solid material.
The same effect is also observed at other rotations
(including 0 rpm), showing that the non-Newtonian
penalization may be an interesting approach for
topology optimization for non-Newtonian fluid flow.

With
non-Newtonian
penalization

Without
non-Newtonian
penalization

]
0.00345 0.01 0.02

L (Pa s)

Fig. 12: Non-Newtonian viscosity in the optimized par-
allel channels designs for the non-Newtonian fluid flow
at 100 rpm before post-processing (i.e., still including
the material model) (in log scale). The contours of the
optimized topologies are delimited by thin dark lines.

.
0.056

A series of optimizations is performed for a se-
quence of wall rotations by considering non-Newtonian
fluid (with non-Newtonian penalization) and New-
tonian fluid. Fig. 13 shows the objective function
(relative energy dissipation) values with respect to
the wall rotation for each optimized topology. The
objective function values that are shown correspond
to the post-processed topology (equation (19)). The
maximum values for the maximum local Reynolds
number (max(Reext, ¢)) are given at 500 rpm, and are
evaluated as 1.21 x 10* (non-Newtonian fluid) and
1.28 x 10* (Newtonian fluid).

—
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Fig. 13: Effect of the wall rotation in the non-Newtonian
and Newtonian parallel channels designs.
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As can be seen in Fig. 13, the optimized channels
show a tendency to get closer and thinner near the
outlets, for both non-Newtonian and Newtonian fluid
flows. The differences between the optimized designs
are mainly slightly different curvatures of the parallel
channels. As opposed to Borrvall and Petersson (2003)
and some of the designs presented by Pingen and Maute
(2010), which perform this optimization for 2D flow, in
the present example of 2D swirl flow, the channels are
not merged together. This is probably mainly due to the
difference in volumes for lower and higher radial posi-
tions, which can make the merged channel solution not
be a minimum of the objective function. The merged
channels solution was not achieved for this example
even when reducing the flow rate or further relaxing
the penalization parameter (g, of eq. (13)) (i.e., using
an even smaller value of ¢ before increasing it, as in
Borrvall and Petersson (2003)).

In Fig. 13, it can be noticed that the channel width
is reduced at larger radii, which is probably due to the
volume increase at larger radii (with rate 27r, due to
the 2D swirl flow model), which increases the energy
dissipation and, therefore, should have the effect of re-
ducing the channel width. From the optimization iter-
ations and various optimization tests, the axial posi-
tion (z) of the outlet channels in relation to the outlet
heights in the design domain seems to be highly depen-
dent of how the optimization progresses, given that,
when the material model is more relaxed (such as with
lower values for ¢ or with a “gray” (intermediary) distri-
bution for «), there is an initial influence of the flow of
one channel in the other. This “influence” is one of the
reasons Borrvall and Petersson (2003) could achieve the
merged channels solution in 2D Stokes flow. Because of
the higher effect of the rotation in the energy dissipation
near the outlets (due to the larger radii in the rotational
tangential velocity wor), the effect of the position of the
outlet has a smaller sensitivity. Also, since the energy
dissipation is not significantly sensitive to small chan-
nel curvatures, the topology may possibly stagnate with
a non-optimal curvature before reaching a local mini-
mum. These facts together with the “influence of one
channel in relation to the other” in initially relaxed con-
figurations of the material model, mean that, depending
on the choice of the continuation parameters, different
local minima or stagnated topologies can be achieved,
such as channels slightly slanted towards or farther from
the middle of the design domain, or with curves near
the outlets. Even when using a second-order optimiza-
tion algorithm (IPOPT) (Wachter and Biegler, 2006),
this problem is still encountered, and different continu-
ations in the material model parameters had to be used
in order to achieve straighter channel solutions.

In this numerical example, the solutions with curves
near the outlets are worse local minima in relation to
straighter channel solutions (i.e., the curves dissipate
slightly more energy) and, therefore, are not shown in
this numerical example. However, for illustration, one
achievable optimized topology is shown in Fig. 14 con-
sidering Newtonian fluid flow at 100 rpm with Kmax =
8.0x10% oo (kg/(m3s)). It can be noticed that the chan-
nels are curved. The optimized topology in this figure
considers the continuation in the inverse permeability
term starting from ¢ = 0.1 before increasing ¢, while
the optimized topology in Fig. 13 considers the contin-
uation starting from ¢ = 0.05 before increasing q.

0 5 10 15 20
r(mm)

Fig. 14: A local minimum optimized topology achiev-
able for the Newtonian parallel channels design at 100
rpm.

In Fig. 13, the optimized topologies up to 100 rpm
are channels whose walls connect with almost straight
inclined lines to the outlets. At 200 rpm, the optimized
topologies seem to be local minima attained from the
“change” in the format of the optimized topologies that
happens between 100 rpm and 300 rpm. From 300 rpm
onwards, the optimized topologies start with a small
straighter radial distance (r), which may help reducing
the energy dissipation near the inlet for higher rota-
tions.

The optimization schemes are shown in Table 2. The
values of the optimization parameters are chosen in or-
der for the optimized topologies to be sufficiently dis-
crete and to block fluid flow inside the solid material
(as in Alonso et al. (2018)).
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Table 2: Reference parameters for the optimization
schemes (steps) for the non-Newtonian and Newtonian
parallel channels designs.

Rotation (ng) Fmax (X1081s0) g

(xpm) (kg/(m’s))
Non-Newtonian fluid
0 ~ 100 5.0 0.1 ~ 10°
200 8.0 0.1 ~10°
300 5.0 ~ 10.0 0.1 ~10°
400 10.0 ~ 25.0 0.05 ~ 10®
500 25.0 0.025 ~ 1
Newtonian fluid

0 5.0 0.1~1
100 ~ 200 8.0 0.05 ~ 103
300 9.0 0.05 ~ 103
400 10.0 0.05 ~ 1
500 25.0 0.025 ~ 10

The non-Newtonian viscosities in the optimized
parallel channels designs for non-Newtonian fluid flow
are plotted in Fig. 15. As can be seen, the increase in
the non-Newtonian viscosity is mostly noticeable near
the middle of each channel, where the shear stress is
smaller. Near the walls, the non-Newtonian viscosity
is decreased due to an increase in shear stress on the
walls. This behavior is consistent with Fig. 3a. Also,
it can be noticed that the non-Newtonian viscosity
decreases with higher rotations (i.e., higher Reynolds
numbers), which is due to the shear stress increasing
under this condition.

0 rpm : : 100 rpm
200 rpmmmmo rprm

400 rpmﬁ 500 rpm
-
0.00345 0.01 0.02 0.056

1 (Pa's)

Fig. 15: Non-Newtonian viscosities in the optimized
parallel channels designs for non-Newtonian fluid flow
(in log scale).

The convergence curves for the non-Newtonian and
Newtonian designs for 100 rpm are shown in Fig. 16.
The maximum Reynolds numbers (max(Reext, ¢)) for
this case are 2.21 x 103 (non-Newtonian fluid) and 2.56
x 103 (Newtonian fluid). The “peak” after 100 itera-
tions corresponds to a change in the penalization pa-
rameter (¢), as written in Table 2.

il |
/\S/r
$4
OS
- 2
X 1
T O
S -1 :

O 100 200 300 400 500 600
Number of the iteration

== Non-Newtonian fluid
= = Newtonian fluid

Fig. 16: Convergence curves for the non-Newtonian and
Newtonian parallel channels designs (100 rpm).

The simulations of the optimized topologies for the
non-Newtonian and Newtonian designs for 100 rpm are
shown in Fig. 17. As can be seen, the non-Newtonian
and Newtonian designs in this case are practically
the same. The relative tangential velocity (vg) is
zero on the rotating walls (no-slip condition), since,
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on the walls, the fluid is rotating, with an absolute
tangential velocity of vgans = wor. The simulation
of the non-Newtonian design shows that the velocity
changes slightly faster (along the channel) than the
Newtonian design. This can be noticed by the fact that
the relative tangential velocity (vg) is smaller and for
a larger distance, in the Newtonian design.

$ @
10 15 20

3D representatlon

r (mm)
ﬁLOWEF
— | - - | -
21-1012280 2 4 6 )
P (Vr' Vz) Vo
(Pa) (x102m/s) (x10-2m/s)

(a) Non-Newtonian parallel channels design.

~ 10,
E 1
E s :>
N |
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l—l “— Tower

1190 2 4 6 8-776-4 -2 0
(Vr' Vz) Vo
(x102m/s) (x10-2m/s)
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(b) Newtonian parallel channels design.

Fig. 17: Optimized topologies, 3D representations, pres-
sures and velocities for the non-Newtonian and Newto-
nian parallel channels designs (100 rpm).

6.2 Two-way channel

The two-way channel consists of the same design ap-
plied for parallel channels in the previous Section. How-
ever, it is applied to crossed inlets and outlets. This ex-
ample has already been treated for the 2D swirl flow
model in Alonso et al. (2018), considering Newtonian
fluid flow (water). The two-way channel is composed of
two non-rotating fluid inlets, located at an internal and

an external radius. The flow rate (Q) is equally divided
between the two inlets (Q1 = Q2 = %), meaning that,
since the circumferential area is larger for higher radius,
the internal radius inlet features a higher inlet velocity,
while the external radius inlet features a smaller inlet
velocity. The configuration is illustrated in Fig. 18. The
solid material distribution is optimized on the rotating
walls.

Z v_(vr,mlf ~Wor’, 0)
? \v=0 (rotating)

H= P
o hy T*n=0 hj
| n h
. h3§| T*n=0 A h3

] AR T
h4 Rll’ltv (VNHZ ~w,r, 0) Rext h4 r

Fig. 18: Design domain for two-way channel design.

The finite element mesh is the same used in the
parallel channels design. The input parameters and di-
mensions of the design domain that are used are shown
in Table 3.

Table 3: Parameters used for the topology optimization
of the two-way channel.

Input parameters

Inlet flow rate (Q) 0.5 L/min
Wall rotation wo # 0 rad/s (rotating)
Inlet velocity profile Parabolic
Dimensions
H 10 mm
Rint 5 mm
Reyt 20 mm
hy =hy =hs =hj 2.5 mm
he = R, 2.5 mm
hy = R 1.25 mm
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Fig. 19 shows a comparison of the non-Newtonian
viscosity for the optimized two-way channel designs at
20 rpm without post-processing (i.e., still including the
material model). The effect of the non-Newtonian pe-
nalization is not so apparent as in the case of the paral-
lel channels design (Fig. 12). The same effect is observed
at other rotations (including 0 rpm).

With
non-Newtonian
penalization

Without
non-Newtonian
penalization

iR e
0.00345 0.01 0.02

L (Pa s)

Fig. 19: Non-Newtonian viscosity in the optimized two-
way channel designs for the non-Newtonian fluid flow
at 20 rpm before post-processing (i.e., still including
the material model) (in log scale). The contours of the
optimized topologies are delimited by thin dark lines.

A series of optimizations is performed for a sequence
of wall rotations by considering non-Newtonian fluid
(with non-Newtonian penalization) and Newtonian
fluid. This is shown in Fig. 20, from the objective func-
tion (relative energy dissipation) values with respect
to the wall rotation for each optimized topology. As in
the parallel channels example, the objective function
values that are shown correspond to the post-processed
topology (equation (19)). The maximum values for
the maximum local Reynolds number (max(Reext, ¢))
are given at 50 rpm, and are evaluated as 1.24 x 103
(non-Newtonian fluid) and 1.28 x 103 (Newtonian
fluid).
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Fig. 20: Effect of the wall rotation in the non-Newtonian
and Newtonian two-way channel designs.

N

As can be seen in Fig. 20, the optimized topologies
are the topologies connecting the inlets to the nearest
outlets, in the form of 180° curved channels, because the
topology optimization identified that the curved path
would dissipate less energy than the longer straight
path. This is probably due to the radially varying vol-
ume (with rate 277, due to the 2D swirl flow model).
Some minor differences can be noticed in the curved
channels for non-Newtonian and Newtonian fluid flows,
in which the channel side closest to the wall is larger in
the Newtonian design in relation to the non-Newtonian
design. This is probably due to the size of the zone in
which the non-Newtonian effect is apparent. Due to the
swirl effect of the fluid near the walls, as the rotation
(and the Reynolds number) increases, the channel side
closest to the wall slightly decreases in size.

Table 4: Reference parameters for the optimization
schemes (steps) for the non-Newtonian and Newtonian
two-way channel designs.

Rotation (ng) Kmax (X10%1100) q

(xpm) (kg/(m’s))
Non-Newtonian fluid
0~ 50 2.5 0.1
Newtonian fluid
0 ~ 50 2.5 103

The non-Newtonian viscosities in the optimized
two-way channel designs for non-Newtonian fluid flow
are plotted in Fig. 21. As in the parallel channel
design, the increase in the non-Newtonian viscosity is
also mostly noticeable near the middle of the internal
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radius channel, where the shear stress is smaller. Since
the external radius channel portrays a lower fluid
velocity, it is under a more noticeable non-Newtonian
effect from the fluid inlet. The non-Newtonian effect
decreases very little for the internal radius channel with
increasing rotations. However, it has a more significant
decrease for the external radius channel. Overall, the
same effect that is observed for parallel channels design
can be seen here, with the non-Newtonian viscosity
decreasing under higher rotations (i.e., higher Reynolds
numbers).

) @
) @
) @ G

[ .
0.00345 0.01 0.02 0.056

1 (Pa s)

Fig. 21: Non-Newtonian viscosities in the optimized
two-way channel designs.

The convergence curves for the non-Newtonian and
Newtonian designs for 20 rpm are shown in Fig. 22.
The maximum Reynolds numbers (max(Reext, ¢)) for
this case are 6.57 x 10 (non-Newtonian fluid), and
9.74 x 10? (Newtonian fluid).

100 200 300 400 500 600
Number of the iteration

== N on-Newtonian fluid
= = Newtonian fluid

Fig. 22: Convergence curves for the non-Newtonian and
Newtonian two-way channel designs (20 rpm).

The simulations of the optimized topologies for the
non-Newtonian and Newtonian designs for 20 rpm are
shown in Fig. 23. As can be noticed, the simulation re-
sults for the internal radius channel look similar for the
non-Newtonian and Newtonian designs. As for the ex-
ternal radius channel, the pressure drops faster for the
Newtonian design, while the relative tangential veloc-
ity increases faster in the middle of the channel for the
non-Newtonian design.
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(a) Non-Newtonian two-way channel design.
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(b) Newtonian two-way channel design.

Fig. 23: Optimized topologies, 3D representations, pres-
sures and velocities for the non-Newtonian and Newto-
nian two-way channel designs (20 rpm).

6.3 Two-outlet channel

The two-outlet channel consists of a vertical inlet of
rotating fluid, in the condition that there are two pos-
sible horizontal outlets. This example has already been
treated for the 2D swirl flow model in Alonso et al.
(2018), considering Newtonian fluid flow (water). The
configuration is illustrated in Fig. 24. The solid material
distribution is optimized on the static walls.
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Fig. 24: Design domain for two-outlet channel design.

The finite element mesh is chosen with 40 radial
and 80 axial rectangular partitions of crossed triangular
elements, totaling 6,521 nodes and 12,800 elements (see
Fig. 25). The input parameters and dimensions of the
design domain that are used are shown in Table 5.

Fig. 25: Mesh used in the two-outlet channel design.



Non-newtonian laminar 2D swirl flow design by the topology optimization method 17

Table 5: Parameters used for the topology optimization
of the two-outlet channel.

Input parameters
wo = 0 rad/s (static)

Nin = 20 rpm

Wall rotation
Inlet rotation

Inlet velocity profile Parabolic
Dimensions

H 15 mm

R 10 mm

1 4 mm

hi=hy =hs=hy 3 mm

Fig. 26 shows a comparison of the non-Newtonian
viscosity for the optimized two-outlet channel designs at
0.05 L/min without post-processing (i.e., still including
the material model). The effect of the non-Newtonian
penalization is quite apparent and the non-Newtonian
viscosity, as in the other examples, is less dispersed and
more consistent with its expected/desired value inside
a solid material. The same effect is observed for other
flow rates.

Without With
non-Newtonian non-Newtonian
penalization penalization

|
] |-
0.00345 0.01 0.02 0.056
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Fig. 26: Non-Newtonian viscosity in the optimized two-
outlet channel designs for the non-Newtonian fluid flow
at 0.05 L/min (20 rpm) before post-processing (i.e., still
including the material model) (in log scale). The con-
tours of the optimized topologies are delimited by thin
dark lines.

A series of optimizations is performed for a sequence
of flow rates considering a fixed inlet rotation (n;, =
20 rpm) by considering non-Newtonian fluid (with non-
Newtonian penalization) and Newtonian fluid. This is
shown in Fig. 27, from the objective function (rela-
tive energy dissipation) values with respect to the flow
rates for each optimized topology. As in the other ex-

amples, the objective function values that are shown
corresponds to the post-processed topology (eq. (19)).
The maximum values for the maximum local Reynolds
number (max(Reext, ¢)) are given at 0.1 L/min, and are
evaluated as 1.77 x 10? (non-Newtonian fluid) and 4.06
x 102 (Newtonian fluid). This significant difference in
the Reynolds number is due to the predominance of
the non-Newtonian effect (i.e., higher viscosity) in the
optimized topologies for non-Newtonian fluid flow.
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Fig. 27: Effect of the flow rate in the non-Newtonian
and Newtonian two-outlet channel designs.

As can be seen in Fig. 27, the optimized designs
lead the fluid to exit the upper channel, which better
minimizes the objective function (relative energy
dissipation). By comparing the non-Newtonian with
the Newtonian topologies, the curvature of the channel
is smoother for the non-Newtonian designs: since the
Newtonian fluid has a smaller viscosity, the flow is
more guided by its inertia, which means that the first
part of the channel can extend longer than the last
part of the channel (near the outlet); in the case of
the non-Newtonian fluid, the viscosity is higher far
from walls, which means that the effect of the fluid
inertia is reduced in the middle of the channel, leading
the topology optimization to a straighter path to the
outlet.

The optimization schemes are shown in Table 6.
Lower flow rates may require higher values for Kmax,
since the flow may need more “strength” to form the op-
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timized topology. Higher flow rates may also require it,
in order to block the fluid flow inside the solid material.
However, if kyax is too high, it may not be possible to
achieve a discrete optimized topology, which may lead
to a high presence of “gray” (0 < a < 1). This means
that there is a compromise in obtaining a discrete opti-
mized topology and blocking fluid flow inside the solid
material. Also, the right choice for ¢ may also help stabi-
lizing a discrete optimized topology: Depending on the
case, it may be necessary to “relax” the material model
(smaller ¢), which may sometimes lead to a “better lo-
cal minimum” (as in Borrvall and Petersson (2003)’s
double pipe); however, in other cases, when there is no
local minimum that can be achieved in this way, this
can hinder the achievement of a discrete topology.

Table 6: Reference parameters for the optimization
schemes (steps) for the non-Newtonian and Newtonian
two-outlet channel designs.

Flow rate (Q) Kmax (X107 f1oo) q

(L/min) (ke/(m’s))
Non-Newtonian fluid
0.005 5 1
0.025 25 0.1
0.05 0.5 10
0.075 ~ 0.1 8 0.1
Newtonian fluid
0.005 ~ 0.05 0.5 1
0.075 2.5 0.1
0.1 50 0.1

The non-Newtonian viscosities in the optimized
two-outlet channel designs for non-Newtonian fluid
flow are plotted in Fig. 28. At 0.005 L/min, the
non-Newtonian effect is easily noticeable, with a higher
dynamic viscosity acting over most of the fluid domain.
This effect is reduced at higher flow rates, though still
keeping a considerable influence.

0.005 0.025 0.05
L/min L/min L/min

0.075 0.01
L/min L/min

N

e REEL e L
0.00345 0.01 0.02 0.056

L (Pa s)

Fig. 28: Non-Newtonian viscosities in the optimized
two-outlet channel designs (in log scale).

The convergence curves for the non-Newtonian
and Newtonian designs for 0.05 L/min and 20 rpm
are shown in Fig. 29. The maximum Reynolds num-
bers (max(Reext, ¢)) for this case are 5.98 x 10!
(non-Newtonian fluid) and 2.03 x 10*> (Newtonian
fluid).

.

0 50 100 150 200 250 300 350 400
Number of the iteration

=== Non-Newtonian fluid
= = Newtonian fluid

Fig. 29: Convergence curves for the non-Newtonian and
Newtonian two-outlet channel designs (0.05 L/min, 20

rpm).

The simulations of the optimized topologies for the
non-Newtonian and Newtonian designs for 0.05 L/min
and 20 rpm are shown in Fig. 30. As can be noticed
in the tangential velocity (vg) plot, the inlet rotation
is “dissipated” along the channel in a “faster” manner
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for the non-Newtonian design than in the Newtonian
design due to the increased viscosity (non-Newtonian
effect). Also, the decrease in pressure from the inlet
towards the outlet seems to be more uniform in the
non-Newtonian design.

E 10} ’a\
€
5 10 3D representation
T‘(mm)

R — | — — - | — p— = | —
06024 681 005152533 0 2 4 6 84
P (vr' vz) Vo
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(a) Non-Newtonian two-outlet channel design.

- @

3D representation

[—— - 7

130 2 4 675005152533 0 2 4 6 84
P ( ) Vg
(x10-Pa) (><10—2m/s) (Xx103m/s)

(b) Newtonian two-outlet channel design.

Fig. 30: Optimized topologies, 3D representations, pres-
sures and velocities for the non-Newtonian and Newto-
nian two-outlet channel designs (0.05 L/min, 20 rpm).

7 Conclusions

In this work, the topology optimization formulation is
applied to the 2D swirl flow model, which portrays a

smaller computational cost than a 3D model, by con-
sidering a non-Newtonian fluid under laminar flow.

The numerical examples illustrate the use of the
non-Newtonian formulation compared to the New-
tonian formulation. The non-Newtonian formulation
considers an additional penalization (non-Newtonian
penalization) for 2D swirl flow, which gives a non-
Newtonian viscosity distribuition in the solid material
that is constant and equal to the low-shear stress
non-Newtonian viscosity value. This behavior is shown
to be coherent with the expected/desired behavior of
the fluid inside a modeled solid material.

In topology optimization, from the numerical exam-
ples, the effect of using a non-Newtonian fluid model
seems to be more significant for designs including
“bends” and “axial-radial” flows.

As future work, it is suggested that the non-
Newtonian 2D swirl flow model is used for other
non-Newtonian fluids, and in specific applications such
as in pump/turbine/nozzle design.

8 Replication of results

The implementation in the FEniCS platform is direct
from the description provided of the equations and nu-
merical implementation in the article, because FEniCS
uses a high-level description for the variational formula-
tion (UFL), and automates the generation of the matrix
equations. In the case of 2D swirl flow, the coordinates
are cylindrical, which means that the differential oper-
ators (“grad”, “curl”, “div”) must be programmed
by hand by using the “Dx(var,component_num)” or
“var.dx(component _num)” functions, because the op-
erators provided by FEniCS assume Cartesian coordi-
nates. The pseudocode of the implementation is repre-
sented in Algorithm 1, where the main FEniCS/dolfin-
adjoint functions being used are given between paren-
theses. When using dolfin-adjoint, the dolfin-adjoint li-
brary provides an interface to IPOPT. In the case of
using a continuous adjoint model (such as the one pre-
sented in Appendix A), the interface to IPOPT needs
to be manually programmed.
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Algorithm 1 Pseudocode of the implementation

10:

15:

20:

Input parameters: Flow rate, rotation, dimensions, op-
timization parameters and constants

Result: Optimized topology (optimized distribution of
the design variable) and its post-processed simulation

1 Generate the finite element mesh (“RectangleMesh”)

2 Prepare the state variables (pressure and veloc-
ity) and design variable (pseudo-density) (see Sec-
tion 3.2) (CG2 “VectorElement” with “dim=3" (ve-
locity), CG1 “FiniteElement” (pressure and pseudo-
density), “MixedElement” (for pressure and velocity),
“FunctionSpace”)

: 8 Define the Dirichlet boundary conditions (see eq. (9))

(“DirichletBC”)

4 Define the bounds of the design variable ([0, 1]) (see eq.
(15))

5 Define the initial guess of the topology (i.e., the initial
values of the design variable) (“interpolate”)

6 For each desired optimization scheme (i.e., step):

6.1 Clean up dolfin-adjoint annotations, in or-
der to start a new automatic derivation of the ad-
joint model (i.e., define a new “tape” for dolfin-adjoint)
(“set_working tape(Tape())”)

6.2 Prepare the finite element method

6.2.1 Define the material model for the inverse
permeability (eq. (13))

6.2.2 Define the non-Newtonian viscosity (eq.
(7) or eq. (14))

6.2.3 Define the
weak form of the non-Newtonian 2D swirl flow problem
(ea- (12))

6.2.4 Define the non-linear solver (Newton-
Raphson  method) (“NonlinearVariationalProblem”,
“NonlinearVariationalSolver”, set parameter
'linear_solver' to 'mumps')

6.3 Finish preparing the topology optimization prob-

lem

6.3.1 Set the design variable (“Control”)

6.3.2 Define the objective function (eq. (16))
(“assemble”)

6.3.3 Define the volume constraint (see eq. (15))
(“UFLInequalityConstraint”)

6.3.4 Prepare the IPOPT solver for
topology optimization (“ReducedFunctional”,
“MinimizationProblem”, “IPOPTSolver”)

6.4 Solve the finite element method, in order for
dolfin-adjoint to automatically derive the adjoint model
(“[NonlinearVariationalSolver] .solve”)

6.5 Run the IPOPT solver (see Fig. 7)
(“[IPOPTSolver] .solve”)

7 Post-process the optimized topology (see eq. (19) and
Fig. 9) (“SubDomain”, “SubMesh”)

8 Set up and solve the finite element method for the post-
processed mesh
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Appendix A Continuous adjoint model for
the non-Newtonian 2D swirl flow

The continuous adjoint model for the 2D swirl flow
problem is derived as follows. The adjoint (dual)
equations for Navier-Stokes flow have already been
deduced in Brandenburg et al. (2009). However, in this
Appendix they are particularized for the 2D swirl flow
model in a rotating reference frame, and an approach
for dealing with the non-Newtonian viscosity is sug-
gested. In the following development, 2D coordinates
are considered in the equations, the domain is given
in cylindrical coordinates (in which the differential
volume and area are given by, respectively, 27rdS) and
27rdl), axisymmetry is considered (% = 0), and the
differential operators correspond to their cylindrical
coordinate system versions (Lai et al., 2009).

The adjoint equation is first presented in Section
4.5 and is based on the Lagrangian function of the op-
timization problem, which is given by

L((U,p)7 «, ()‘vv )‘P)) = J((’U,p), Oé)—F((’l)7p), «, (AW >‘:D))
(21)

where (v,p) are the state (primal) variables (velocity
and pressure), « is the design variable, (A,, A,) are the
adjoint (dual) variables (adjoint velocity and adjoint
pressure) (that is, the adjoint variable presented in Sec-
tion 4.5 separated in its components: Ay = (Ay, Ap)),
J((v,p),a) = Prq1((v,p), ) is the objective function
(relative energy dissipation), and F((v,p),a, (Ay, Ap))
is given in eq. (12) (i.e., egs. (10) and (11) without the
division by 2w, and with the test functions w, and w,,
replaced by the adjoint variables A, and A, respec-
tively).

Then, in order to obtain the weak form of the ad-
joint equation (F) = 0), the equations that compose
eq. (21) need to be derived in function of the state vari-
ables (v,p), as shown in Section 4.5. This is given by
the directional derivative of the Lagrangian function
(eq. (21)), with respect to the state variables (v and p)
WX v,r
Wi v,0
Wi v,z
(test functions for the adjoint equations), respectively
for each state variable:

and in the directions given by w) , = and wy

Fyx = L((v,p); Waw: Wap)) = L(v;wio) + L(p;wap)
(22)

where L(v;w, ) is the directional derivative of L with
respect to v in the direction of w) ,, and L(p;wy ;) is
the directional derivative of L with respect to p in the
direction of wy p,.
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The dependency of the non-Newtonian viscosity ()
with respect to the state variables (v,p) can be sepa-
rated by applying the chain rule. In this case,

Fy = L((v,p), (v, p); Wx 0, W p)) =
L((v,p); Wx0, Wap)) (23)

+ agif)u((vvp);(wmw)

where u((v,p); (Wx»,Warp)) is the directional deriva-
tive of p with respect to (v,p) in the direction
of (Wxu,Wap). In the case of the non-Newtonian
viscosity given by eq. (7), which does not de-
pend on p, p((v,p);(Wre,Wrp)) = pv;wy,).
Note that, if g = s (Newtonian viscosity),
1((v,p); Wa 0 Wap)) = 0.

The first term of the weak form of the adjoint equa-
tion (eq. (23)) (L((v,p); (Wxw,Wx,p))) becomes, after
dividing the forward equations by 2m:

L((v,p); Wx,0:Wap)) =

{ / [2uVW o (Vo + Vo©)] rdQ
Q
—|—/ 2k(c)wy ,ovrdQ

Q

+/Q[2p(w/\v)-W>\,U + Zp(w/\wkyv)-v]rdfl]

(4) Adjoint form of the objective function

— [/Q[V-w,\,v])\prdQ}

(-) Adjoint form of the continuity equation (24)

- [ /Q p[Voswy , + Vwy ,ov] oA, rdS2
JF/QDP(W/\WA,U)] X, 7dS
Jr/QT(W)\,mWA,p)'(VAU)TdQ

- %(T(WA,U,W,\,p)-Av)-nrdF

T

+ / K(a)Wy oA, mdQ
Q

(-) Adjoint form of the Navier-Stokes equations

where T'(W) ., W) p) is the stress tensor (eq. (3)) cal-
culated by substituting v and p by wy, and w) ,, re-
spectively; and the symbols “(4)” and “(-)” serve to
indicate the signal that is already considered in the
equation and that is multiplying each adjoint form.
The second term of the weak form of the adjoint
equation (eq. (23)) (%L”)u(v;w)\,v)) can be calculated

from eq. (11) as, after dividing the forward equations
by 27:

where %Z’p) = Vo + Vo?. Since it may be difficult
and laborious to calculate pu(v;wy ) (sensitivity of the
non-Newtonian viscosity) from eq. (7) or eq. (14)(or
any other non-Newtonian fluid with a more complex
constitutive equation), this term may be calculated by
automatic differentiation, such as the algorithm used in
the FEniCS platform.

From eq. (23), it would be possible to derive the
strong form of the adjoint equation (by applying
Gauss’s Theorem of Divergence). However, it would
require the sensitivity of the non-Newtonian viscosity
to be analytically evaluated. Since the finite element
method only requires the weak form of the adjoint
equation, this step does not need to be performed.

The Dirichlet boundary conditions from eq. (9) as-
sume constant velocity values, which means that their
corresponding adjoint boundary conditions are homo-
geneous (i.e., equal to zero). By also including the Neu-
mann boundary condition, the adjoint boundary condi-
tions become, from eq. (9):

AU =0 on Fin
AU =0 on Fwall
a() (26)
)\v,r =0 and W =0 on Fsym
T(Wy ., ,Wrp)m=0 on oyt

where A, , is the radial component of the adjoint
velocity (Ay = (Aury Avgs Auz)). It can also be
mentioned that, in eq. (25), the term which re-

lies on (%Z’p)-)\v) nn is zero on I'oy, because

T(v.p)m = 0 on Lo (eq. (9) (22207, ) em =

(M-n) A, = (M) A, = 0, since T is
M v 0 v 3

m
symmetric and n does not depend on ).

Appendix B Simulation of the effect of the
non-Newtonian penalization

In order to check the effect of the non-Newtonian pe-
nalization, a test example of a channel with an obsta-
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cle in the middle is simulated (see Fig. 31). The ob-
stacle is modeled by using a rotating material model
(Wmat = wo) located in the middle of the channel, the
flow rate is 0.5 L/min, the rotation is 20 rpm, and the
dimensions are given by: H = 15.0 mm, R = 10.0 mm,
ro = 2.5 mm, and h, = 2.5 mm. The mesh is the same
as the one shown in Fig. 25. The outlet boundary condi-
tion is a weak imposition of zero pressure on the outlet,
imposing the radial and axial components of the ve-
locity (v, v,) to be perpendicular to the outlet section
(i.e., with zero tangential component) (Dirichlet bound-
ary condition), and imposing zero normal stress on the
interface (neT'n = 0) (Neumann boundary condition).
The demonstration of this boundary condition is shown
in Alonso et al. (2018) for 2D swirl flow, and in Barth
and Carey (2007) for 2D flow.
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Fig. 31: Computational domain for the obstacle simu-
lation.

When the material model is blocking the fluid flow
(i.e., with a sufficiently high value in Kpyax, chosen
in this case as Kmax = 2.5 X 108,u00)7 there is little
difference between using only the inverse permeability
(“6(a)”), or using both inverse permeability and
non-Newtonian penalization (“k(«), p(«)”). This
is shown in Fig. 32a. Fig. 32b shows the difference
fractions for the modeled obstacles, which correspond
to the absolute difference of the variable in the cut
and modeled obstacles divided by the range of the
variable: f, ma‘;(r;t:)jl;lif(‘;lt), where z is the
variable being considered: relative tangential veloc-
ity (vg), pressure (p) or non-Newtonian viscosity

(1). For the magnitude of the radial-axial velocity

(Urz;mag = [[vrzl] = [[(vr, v2)l] = /07 +02), the defini-
tion is changed to fy, ., = s el s,
From Fig. 32b: f,, , ... is mostly small, but features
a 0.33 peak near the edge for “k(a), u(a)”’; fu, is
even smaller, with a maximum value of 0.091; f,
is higher near the edge of the obstacle, reaching a
relatively high peak of 0.5 in “k(a), p(a)”; and f,
is higher around the obstacle for “x(a), p(a)”. As
can be noticed, the highest values of the difference
fractions are concentrated near the obstacle / edge of
the obstacle. These differences, and, more specifically,
the higher values of f, on the obstacle, are mainly
due to the nodal interpolation used for the design
variable («), which does not exactly match the effect of
the “cut obstacle”, such that it “slightly softens” the
effect of the edge because of the linear interpolation,
and “forces”, when considering the non-Newtonian
penalization (“k(«), p(a)”), the nodal values of the
non-Newtonian viscosity (u) to the maximum dynamic
viscosity value (pg).

The difference between simulation results is more
apparent for lower values of kpyax, which may occur
during topology optimization due to the interpolation
of the material model (“gray values”). Therefore, Kmax
is reduced to Kmax = 2.5 X 106,uoo in Fig. 33. From
Fig. 33, when including the non-Newtonian penaliza-
tion (“k(«), p(@)”), the radial-axial velocity ((v,,v.))
is more reduced inside the modeled obstacle than in the
case without the non-Newtonian penalization (“x(a)”).
This is due to the higher and uniform non-Newtonian
viscosity inside the modeled obstacle. The relative tan-
gential velocity (vg) does not show significant differ-
ences between both modeled obstacles.

Therefore, by imposing a uniform non-Newtonian
viscosity inside the solid material of the obstacle, the
non-Newtonian penalization seems to show a more no-
ticeable effect in the radial-axial velocity ((v,,v,)) dur-
ing topology optimization rather than in its end.




Non-newtonian laminar 2D swirl flow design by the topology optimization method

Cut obstacle K(a) K(a), p(a) Cut obstacle k(a) K(a), p(a)

—21 —15 —1 05 0
Vg (x1072m/s)

Cut obstacle x(a) k(a), u(a) Cut obstacle x(a) k(a), p(a)

S— F—————
-2 -1 0 1 22 0.003450.020.030.04 0.056
(

p (Pa) [t (Pa s)

(a) Velocities, pressure and non-Newtonian viscosity for the cut and modeled obstacles.
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(b) Difference fractions for the modeled obstacles.

Fig. 32: Plots of cut and modeled obstacles (Kmax = 2.5 X 108400, ¢ = 1000, Kpmin = 0).
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Fig. 33: Plots of cut and modeled obstacles (Kmax = 2.5 X 10% o0, ¢ = 1000, Kpin = 0)



