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Abstract The performance of fluid devices, such as

channels, valves, nozzles and pumps, may be improved

by designing them through the topology optimization

method. There are various fluid flow problems that can

be elaborated in order to design fluid devices and among

them there is a specific type which comprises axisym-

metric flow with a rotation (swirl flow) around an axis.

This specific type of problem allows the simplification

of the computationally more expensive 3D fluid flow

model to a computationally less expensive 2D swirl flow

model. The topology optimization method applied to

a Newtonian fluid in 2D swirl flow has already been

analyzed before, however not all fluids feature Newto-

nian (linear) properties, and can exhibit non-Newtonian

(nonlinear) effects, such as shear-thinning, which means

that the fluid should feature a higher viscosity when un-

der lower shear stresses. Some fluids that exhibit such

behavior are, for example, blood, activated sludge and

ketchup. In this work, the effect of a non-Newtonian

fluid flow is considered for the design of 2D swirl flow

devices by using the topology optimization method.

The non-Newtonian fluid is modeled by the Carreau-

Yasuda model, which is known to be able to accurately
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predict velocity distributions for blood flow. The de-

sign comprises the minimization of the relative energy

dissipation considering the viscous, porous and iner-

tial effects, and is solved by using the finite element

method. The traditional pseudo-density material model

for topology optimization is adopted with a nodal de-

sign variable. A penalization scheme is introduced for

2D swirl flow in order to enforce the low shear stress be-

havior of the non-Newtonian viscosity inside the mod-

eled solid material. The optimization is performed with

IPOPT (Interior Point Optimization algorithm). Nu-

merical examples are presented for some 2D swirl flow

problems, comparing the non-Newtonian with the New-

tonian fluid designs.

Keywords Topology optimization · Non-Newtonian

fluid · 2D swirl laminar flow · Carreau-Yasuda model ·
Navier-Stokes equations · Finite elements

1 Introduction

In order to improve the performance of fluid devices,

such as channels, valves, nozzles and pumps, an

optimization method may be used. Particularly, the

topology optimization method can be used to obtain a

generic optimized shape from a given design domain.

The topology optimization method started with

structural optimization. It was adapted for fluid opti-

mization by Borrvall and Petersson (2003) for 2D flow

channel design. The adaptation that was performed is

that the solid material is modeled by means of a porous

medium (Darcy law) instead of varying the material

properties as it is done in structural optimization. A

high porosity would mean that it is modeling fluid, and

a low porosity would mean that it is modeling solid.

Intermediate porosity values are allowed in order to
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relax the optimization problem from binary to real val-

ues. This topology optimization approach can also be

called “pseudo-density approach”, since it is based on

the value of a design variable (called pseudo-density)

distributed throughout the entire design domain.

Other topology optimization approaches include the

“level-set method” (Duan et al., 2016; Zhou and Li,

2008), and topological derivatives (Sokolowski and

Zochowski, 1999; Sá et al., 2016). In this work, the

pseudo-density approach is used. Some advantages

of the pseudo-density approach are rapid and robust

convergence, weak dependence on the initial distribu-

tion of the design variable and dealing with multiple

constraints (Deng et al., 2013).

The topology optimization method has already

been applied to a wide variety of flow types, such as

Stokes flows (Borrvall and Petersson, 2003), Darcy-

Stokes flows (Guest and Prévost, 2006; Wiker et al.,

2007), Navier-Stokes flows (Evgrafov, 2004; Olesen

et al., 2006), slightly compressible flows (Evgrafov,

2006), non-Newtonian flows (Pingen and Maute, 2010),

turbulent flows (Yoon, 2016; Dilgen et al., 2018),

thermal-fluid flows (Sato et al., 2018; Ramalingom

et al., 2018), unsteady flows (Nørgaard et al., 2016)

etc. Some fluid devices that have already been designed

through topology optimization are valves (Song et al.,

2009), mixers (Andreasen et al., 2009), rectifiers

(Jensen et al., 2012), and flow machine rotors (Romero

and Silva, 2014).

Among the existing fluid flow problems, there is a

specific type which comprises axisymmetric flow with a

rotation (swirl flow) around an axis, being able to model

hydrocyclones, some pumps and turbines, and fluid sep-

arators. This specific type of problem allows the simpli-

fication of the computationally more expensive 3D fluid

flow model to a computationally less expensive 2D swirl

flow model. This simplified model has already been ap-

plied in topology optimization for Newtonian fluid (wa-

ter) to design 2D swirl flow devices (Alonso et al., 2018),

and Tesla-type pump devices (Alonso et al., 2019).

Since not all fluids feature Newtonian (linear)

properties, and can exhibit non-Newtonian (nonlinear)

effects, the optimized topologies may vary. This is

shown in the topology optimization performed by

Pingen and Maute (2010) for 2D channel design con-

sidering blood flow according to the Carreau-Yasuda

model. Topology optimization has also been performed

for non-Newtonian fluid for bladed blood pump design

(modified Cross model) (Romero and Silva, 2017), arte-

rial by-pass grafts (modified Cross model) (Zhang and

Liu, 2015; Hyun et al., 2014; Kian, 2017), roller-type

blood viscous micropumps (power-law model) (Zhang

et al., 2016), aneurism implants (Jiang et al., 2017),

and viscoelastic rectifier design (viscoelastic Oldroyd-B

model) (Jensen, 2013). A generic non-Newtonian fluid

can feature three types of characteristics (illustrated

in Fig. 1):

– Stress-dependence: Change in viscosity when un-

der different stress levels, which can be given as

shear-thinning (“pseudoplastic” behavior, such as

in blood (Cho and Kenssey, 1991), activated sludge

(Garakani et al., 2011) and ketchup (Bayod et al.,

2008)), shear-thickening (“dilatant” behavior, such

as the mixture of corn starch and water) or Bing-

ham plastic/pseudoplastic (such as concrete (Fer-

raris and de Larrard, 1998));

– Viscoelasticity: Viscous and solid elastic behavior

when under deformation, in which the shear stress

can be expressed in a time-dependent form (differen-

tial, rate or integral) (Quarteroni et al., 2000) (such

as in a Bogers fluid (Jensen, 2013)). This way, vis-

coelasticity can model creep, stress relaxation and

hysteresis;

– Time-dependence: Change in viscosity with time

when under a given load, which can be given as

thixotropy (viscosity decreasing with time) or

rheopecty (viscosity increasing with time) (such

as in colloidal and particle suspensions) (McArdle

et al., 2012; Barnes, 1997).

Fig. 1: Possible behaviors for non-Newtonian fluids.

Since blood is a non-Newtonian fluid whose rheol-

ogy has been extensively analyzed (Cho and Kenssey,

1991; Quarteroni et al., 2000), features applications

in the design of medical devices (Slaughter et al.,

2010; Zhang and Liu, 2015), and has even been used

in topology optimization by various authors (Pingen

and Maute, 2010; Romero and Silva, 2017; Zhang and

Liu, 2015; Hyun et al., 2014; Kian, 2017; Zhang et al.,

2016), it is the non-Newtonian fluid considered in this

work. It is observed that blood features: shear-thinning

(due to the formation of macroaggregates (called
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“roleaux”) at low strain rates (Quarteroni et al.,

2000)), viscoelasticity (since younger red blood cells

can deform and aggregate more than older red blood

cells (Vlachopoulos et al., 2011)), and thixotropy (due

to time changes in structural arrangements at the

microscopic level (Anand and Rajagopal, 2017)). Since

blood is not a homogenous fluid, being composed of

plasma, red blood cells (erythrocytes), white blood cells

(leukocytes), platelets (thrombocytes), lipoproteins,

ions etc. (Behbahani et al., 2009), there are limits to

which it can be considered a single continuous fluid.

Near walls, there is a thin layer composed of plasma,

without any red blood cells, which only features

significant effect on the blood viscosity when the fluid

flow path is comparable to the size of red blood cells

(F̊ahræus-Lindqvist effect) (Quarteroni et al., 2000).

Since the Carreau-Yasuda model seems to represent

well the rheological properties of blood and also offers

high flexibility for adjusting experimental curves, it is

the shear-thinning model selected for this work.

Thus, the main objective of this work is to apply the

topology optimization formulation to design 2D swirl

flow devices considering a non-Newtonian fluid (blood).

The objective of the optimization is to minimize the rel-

ative energy dissipation considering the viscous, porous

and inertial effects (Alonso et al., 2019; Borrvall and

Petersson, 2003). The 2D swirl laminar fluid flow mod-

elling is solved by using the finite element method. The

traditional material model of fluid topology optimiza-

tion (Borrvall and Petersson, 2003) is adopted by con-

sidering nodal design variables. A penalization scheme

is introduced for 2D swirl flow in order to enforce the

low shear stress behavior of the non-Newtonian viscos-

ity inside the modeled solid material. The implemen-

tation is performed in the FEniCS platform, by using

the adjoint method for calculating sensitivities (Farrell

et al., 2013), IPOPT (Interior Point Optimization algo-

rithm) for solving the optimization problem (Wächter

and Biegler, 2006), and MUMPS for solving the equa-

tions of the weak form of the problem (Amestoy et al.,

2001).

This paper is organized as follows: in Section 2,

the flow model for the non-Newtonian 2D swirl flow

is briefly derived; in Section 3, the weak formulation of

the problem is presented together with the finite ele-

ment modeling; in Section 4, the topology optimization

problem is stated by considering the Brinkman model

and non-Newtonian penalization; in Section 5, the nu-

merical implementation is briefly described; in Section

6, numerical examples are presented; and in Section 7,

some conclusions are inferred.

2 Equilibrium equations

The fluid flow is modeled by the continuity and linear

momentum (Navier-Stokes) equations, considering lam-

inar flow, incompressible fluid and steady-state regime.

2.1 2D swirl flow model

By considering a rotating reference frame, the conti-

nuity and Navier-Stokes equations according to the

Brinkman model are (Munson et al., 2009; White,

2011; Romero and Silva, 2014)

∇•v = 0 (1)

ρ∇v•v = ∇•T +ρf−2ρ(ω∧v)−ρω∧(ω∧s)−κ(α)vmat

(2)

where v is the relative velocity of the fluid, ρ is the

density of the fluid, p is the pressure, µ is the dynamic

viscosity, ρf is the body force per unit volume acting

on the fluid, s is position, ∧ is used to denote cross

product, −2ρ(ω∧v) is the Coriolis force, −ρω∧(ω∧s)
is the the centrifugal inertial force, and T is the stress

tensor given by

T = 2µε− pI , ε = 1
2 (∇v +∇vT ) (3)

In eq. (2), a porous medium is considered for

modeling solid in topology optimization. Thus, a

resistance force (Darcy effect) is included (−κ(α)vmat)

(Vafai, 2005), which is directly proportional to the

fluid velocity in relation to the solid material

fr = −κ(α)vmat (4)

where κ(α) is the inverse permeability (“absorption co-

efficient”), vmat is the velocity in relation to the porous

material (vmat = (vr, vθ−ωmatr, vz) , where ωmat is the

rotation of the porous media in relation to the reference

frame), and α is the pseudo-density. The pseudo-density

can attain values ranging from 0 (solid) to 1 (fluid), and

is used as the design variable in topology optimization.

The 2D swirl flow model (“2D axisymmetric model

with swirl”) considers axisymmetry and cylindrical co-

ordinates (see Fig. 2). Thus, the position and velocity

become

s = (r, 0, z) = rer + zez (5)

v = (vr, vθ, vz) = vrer + vθeθ + vzez (6)
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Fig. 2: Representation of the 2D swirl flow model.

Also, from axisymmetry, the derivatives in the θ di-

rection are zero (i.e., ∂( )
∂θ = 0). The equations for the

2D swirl flow model are further developed in Alonso

et al. (2018).

2.2 Non-Newtonian fluid flow model

In this work, the non-Newtonian fluid being con-

sidered is blood. The study performed by Gijsen

et al. (1999) showed that the main contributor to the

blood behavior should be the shear-thinning effect,

which is time-independent. In order to model it, the

Carreau-Yasuda model is selected, which is capable

of adequately representing the blood behavior (Gijsen

et al., 1999; Pratumwal et al., 2017; Leondes, 2000).

The Carreau-Yasuda model is given by (Cho and

Kenssey, 1991; Bird et al., 1987)

µ(γ̇m) = µ∞ + (µ0 − µ∞)[1 + (λγ̇m)a]
n−1
a (7)

where γ̇m is the shear rate magnitude (also called

“scalar shear rate”) (Abraham et al., 2005), λ is a time

constant (“characteristic time”), n is an exponential

factor, a is the Yasuda coefficient, µ0 is the maximum

dynamic viscosity and µ∞ is the minimum dynamic

viscosity.

The shear rate magnitude (“scalar shear rate”, γ̇m)

and the shear stress magnitude (“scalar shear stress”,

τm) are given by (Lai et al., 2009; Tesch, 2013; Arora

et al., 2004)

τm = µ(γ̇m)γ̇m

γ̇m =
√

2ε•ε
(8)

where ε = 1
2 (∇v +∇vT ) is the viscous stress deforma-

tion tensor and “ • ” is the inner product as defined in

Gurtin (1981).

According to Cho and Kenssey (1991) and Pingen

and Maute (2010), for blood, the constants in the

Carreau-Yasuda model are λ = 1.902 s, n = 0.22,

a = 1.5, µ0 = 0.056 Pa s and µ∞ = 0.00345 Pa s. The

variation of the dynamic viscosity (µ) in function of

the shear rate (γ̇m) and the rheological diagram are

illustrated in Fig. 3. The corresponding Newtonian

fluid model is shown in dashed lines, with a constant

viscosity of µ = µ∞ = 0.00345 Pa s.

(a) Variation of the non-Newtonian
viscosity (µ) with the shear rate
(γ̇m).

(b) Rheological diagram.

Fig. 3: Non-Newtonian fluid based on the Carreau-

Yasuda model for blood flow.

2.3 Boundary value problem

The boundaries for the computational domain when

considering a 2D swirl flow model may include the sym-

metry axis or not, which shown in Fig. 4. Then, the

boundary value problem for the 2D swirl flow model

can be stated as follows (Alonso et al., 2018, 2019).

ρ∇v•v = ∇•T (µ(γ̇m))+ρf − 2ρ(ω∧v)−
ρω∧(ω∧s)− κ(α)vmat in Ω

∇•v = 0 in Ω

v = vin on Γin

v = 0 on Γwall

vr = 0 and
∂vr
∂r

=
∂vθ
∂r

=
∂vz
∂r

=
∂p

∂r
= 0 on Γsym

T (µ(γ̇m))•n = 0 on Γout

(9)

where Ω, Γin, Γwall, Γsym and Γout are shown in Fig.

4. A fixed velocity is imposed on the inlet boundary

(Γin), and the no-slip condition is imposed on the walls
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(Γwall). On the symmetry axis (Γsym), the derivatives in

relation to the r coordinate are considered to be zero, as

well as the radial velocity. The outlet boundary (Γout)

is modeled by considering a stress free condition (i.e.,

open to the atmosphere). T (µ(γ̇m)) is the stress ten-

sor (T ) considering the non-Newtonian fluid model (eq.

(7)).

Fig. 4: Boundaries for 2D swirl flow devices.

3 Finite element method

3.1 Weak formulation

The equilibrium equations of the 2D swirl flow model

are solved through the finite element method. By using

the weighted-residual and Galerkin methods for the

mixed (velocity-pressure) formulation, (Reddy and

Gartling, 2010; Alonso et al., 2018)

Rc =

ˆ
Ω

[∇•v]wprdΩ (10)

Rm =

ˆ
Ω

[ρ∇v•v − ρf + 2ρ(ω∧v)

+ ρω∧(ω∧s)] •wvrdΩ +

ˆ
Ω

T (µ(γ̇m))•(∇wv)rdΩ

−
‰

Γ

(T (µ(γ̇m))•wv)•nrdΓ +

ˆ
Ω

κ(α)vmat•wvrdΩ

(11)

where c refers to the “continuity equation”, m refers

to the “linear momentum equation” (i.e., the Navier-

Stokes equations) and the test functions are given by

wp for the pressure p, and wv =

wv,r
wv,θ
wv,z

 for the veloc-

ity v. As in Alonso et al. (2018, 2019), since the inte-

gration domain (2πrdΩ) features a constant multiplier

(2π), which does not influence when solving the weak

form, eqs. (10) and (11) are divided by 2π.

Since the two test functions (wp and wv) are mutu-

ally independent, the two equations (eqs. (10) and (11))

can be summed, leading to a single equation

F = Rc +Rm = 0 (12)

3.2 Finite element modeling

For fluid flow, the coupling between the discretizations

of the pressure and the velocity may result in insta-

bilities and non-physical oscillations in the pressure

(Langtangen and Logg, 2016). This can be avoided

by choosing a finite element which obeys the LBB

(Ladyžhenskaya-Babuška-Brezzi) condition (Girault

and Raviart, 2012; Guzmán et al., 2013; Brezzi and

Fortin, 1991). A general proof for the validity of the

LBB condition for any constitutive equation and

formulation is still lacking (Reddy and Gartling,

2010). However, the work done by Galvin (2013)

verifies the convergence rates for a non-Newtonian

fluid modeled by the Cross model, which is similar

to the Carreau-Yasuda model used in this work.

A common choice for the finite element choice is

using Taylor-Hood elements (see Fig. 5), which are

considered very stable and provide 3rd order spatial

accuracy for velocities (Varchanis et al., 2019). The

lowest degree Taylor-Hood elements are given by using

a 1st degree interpolation for pressure (P1 element) and

a 2nd degree interpolation for velocity (P2 element).

For the pseudo-density (design variable), a 1st degree

interpolation (P1 element) is chosen.

Fig. 5: Finite elements chosen for the state variables

(pressure and velocity) and the design variable (pseudo-

density).

4 Formulation of the Topology optimization

problem

4.1 Material model for the inverse permeability

In fluid topology optimization, the aim is to obtain a

sufficiently discrete distribution of the pseudo-density

in the design domain (0 for solid, and 1 for fluid). In

order to relax the subtle transition (binary values) be-

tween solid and fluid, it is necessary to allow an inter-

mediate porous medium (“gray”, with a pseudo-density

between 0 and 1) (real values). Borrvall and Petersson

(2003) suggests a convex interpolation function for the

inverse permeability:

κ(α) = κmax + (κmin − κmax)α
1 + q

α+ q
(13)



6 Diego Hayashi Alonso et al.

where the maximum and minimum values of the inverse

permeability (κ(α)) are, respectively, κmax and κmin.

The penalization parameter (q > 0) controls the con-

vexity (relaxation) of the material model. Large values

of q mean a less relaxed material model.

4.2 Material model for the non-Newtonian viscosity

When α = 0 (solid), the velocity of the fluid is expected

to be minimum, and, therefore, the shear rate magni-

tude (γ̇m) is expected to be near zero. In such case,

eq. (7) gives µ(γ̇m) ≈ µ0 (i.e., the viscosity assumes its

higher non-Newtonian value). Since even a small fluid

velocity value can cause the shear rate magnitude (γ̇m)

not to approach zero inside the solid material, a pe-

nalization scheme is proposed in order to improve the

behavior of µ(γ̇m) ≈ µ0 inside the solid material for 2D

swirl flow. The penalization scheme consists of chang-

ing the non-Newtonian viscosity for 2D swirl flow to the

following equation

µ(α, γ̇m) = µ0 + (µ(γ̇m)− µ0)α
1 + q

α+ q
(14)

where the viscosity value in the solid is µ0 and the vis-

cosity value in the fluid is µ(γ̇m) (eq. (7)). The penal-

ization parameter (q > 0) is the same of eq. (13).

This approach is similar to the one proposed

by Pingen and Maute (2010). However, the “solid

material viscosity” being imposed here is the “highest”

viscosity (µ0) and not the “lowest” viscosity (µ∞),

which was used by Pingen and Maute (2010). Also,

Pingen and Maute (2010)’s penalization was used to

counter a coupling issue between the non-Newtonian

viscosity and the inverse permeability of the Lattice

Boltzmann Method, which is the kinetic approach for

modeling fluid flow, while this work uses the hydro-

dynamic approach for modeling fluid flow (continuity

and Navier-Stokes equations) and aims to improve

the consistency of the non-Newtonian viscosity with

the expected/desired values inside a modeled solid

material. A non-Newtonian penalization approach

proposed by Hyun et al. (2014) in the context of

2D flow topology optimization says that using the

non-Newtonian penalization would avoid numerical

instability due to the non-linearity of eq. (7).

Fig. 6 shows the material model presented in eq.

(14). The upper part of the figure shows a 3D plot

of the material model for the non-Newtonian viscos-

ity: when α = 0 (solid), the non-Newtonian viscosity is

µ(α, γ̇m) ≈ µ0; when α = 1 (fluid), the non-Newtonian

viscosity is µ(α, γ̇m) = µ(γ̇m) (i.e., eq. (7)). The mate-

rial model is then represented by the surface connecting

the curves of α = 0 (solid) and α = 1 (fluid). The upper

part of the figure shows an almost straight line for the

material model (high penalization parameter (q)), and

the “slice” shown in the lower part of the figure shows

some possible values for the penalization parameter (q).

As indicated in the lower part of the figure, the “lower

limit” of the viscosity (µ(γ̇m)) depends on the shear rate

magnitude (γ̇m): a lower shear rate magnitude means

a higher “lower limit” for the viscosity, and a higher

shear rate magnitude means a lower “lower limit” for

the viscosity.

Fig. 6: Material model for the non-Newtonian viscosity.

The main consequence of eq. (14) is that the non-

Newtonian viscosity becomes higher and uniform in-

side a modeled solid material (see Appendix B). From

performed tests, the pressure and velocity values are

mostly affected during the topology optimization itera-

tions, while there are still “gray” regions. The effect of

the non-Newtonian penalization in the pressure and ve-

locity values becomes small in the final optimized topol-

ogy (assuming that κmax from eq. (13) is high enough

so as to block fluid flow).

Throughout this work, the penalization shown in eq.

(14) is referred to as “non-Newtonian penalization”.
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4.3 Topology optimization problem

The topology optimization problem can be formulated

as follows.

min
α

Φrel(p(α),v(α), α)

such that

Fluid volume constraint:

ˆ
Ωα

α(2πrdΩα) 6 fV0

Box constraint of α: 0 6 α 6 1

(15)

where f is a specified volume fraction, V0 =
´

Ωα
2πrdΩα

is the volume of the design domain (represented as Ωα),

Φrel(p(α),v(α), α) is the objective function, and p(α)

and v(α) are the pressure and velocity obtained from

the solution of the boundary value problem (eq. (9)),

which features an indirect dependency with respect to

the design variable α. In this work, the design domain is

chosen as the entire computational domain (Ωα = Ω).

4.4 Objective function

The objective function is chosen as the relative en-

ergy dissipation considering inertial effects, as defined

in Alonso et al. (2019) for a rotating reference frame,

which is based on the energy dissipation defined in Bor-

rvall and Petersson (2003). By considering zero external

body forces,

Φrel =

ˆ
Ω

[
1

2
µ(γ̇m)(∇v +∇vT )•(∇v +∇vT )

]
2πrdΩ

+

ˆ
Ω

κ(α)vmat•v2πrdΩ

+

ˆ
Ω

(2ρ(ω∧v) + ρω∧(ω∧s))•v2πrdΩ

(16)

where µ(γ̇m) is the non-Newtonian viscosity. Note that,

since ω = ω0ez and from eq. (5), the Coriolis term

(2ρ(ω∧v)•v) is zero.

4.5 Sensitivity analysis

The sensitivity is given by the adjoint method as(
dJ

dα

)*

=

(
∂J

∂α

)*

−
(
∂F

∂α

)*

λJ (17)

(
∂F

∂(v, p)

)*

λJ =

(
∂J

∂(v, p)

)*

(adjoint equation) (18)

where J = Φrel is the objective function (relative energy

dissipation), the weak form is given by F = 0, “ * ”

represents conjugate transpose, and λJ is the adjoint

variable (Lagrange multiplier of the weak form).

5 Numerical implementation of the

optimization problem

The finite element method is implemented in the

FEniCS platform (Logg et al., 2012), which uses

automatic differentiation and a high-level language

in order to represent the weak form and functionals

for later assembling of the finite element matrices. In

order to implement the topology optimization method,

the dolfin-adjoint library (Farrell et al., 2013) is used

in order to compute the adjoint model, and IPOPT

(Interior-Point Optimization algorithm) (Wächter and

Biegler, 2006) is used as the optimization algorithm.

IPOPT uses a logarithmic barrier term for searching

only in the feasible space (i.e., not violating the

constraints), and augments it by using a line-search

filter method (which avoids having to determine the

exact value of the penalty parameter of the logarithmic

barrier), and the dolfin-adjoint library has an interface

for using it. Since eq. (12) is nonlinear, the finite ele-

ment method is solved through the Newton-Raphson

method, by solving the corresponding linearized prob-

lems with MUMPS (MUltifrontal Massively Parallel

sparse direct Solver) (Amestoy et al., 2001).

The topology optimization method is implemented

as shown in Fig. 7. From an initial guess for the pseudo-

density distribution in the design domain, a simulation

is performed with FEniCS. This initial simulation is

used by dolfin-adjoint in order to derive the adjoint

model, which is then used in the IPOPT optimization

loop. The optimization loop continues until the speci-

fied tolerance (convergence criterion) is reached.
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dolfin-adjoint

FEniCS

IPOPT

No

Yes

Converged?

Interior-point
optimization

algorithm

Update of the
topology

Adjoint model

Finite Element Method

Simulation

Objective function,
constraints, sensitivities

Optimized topology

Initial guess of the topology

Topology
optimization

Specified
tolerance

Fig. 7: Flowchart illustrating the numerical implemen-

tation of the topology optimization problem.

In the case the reader uses another software plat-

form in which the dolfin-adjoint library is not available,

the corresponding continuous adjoint model for the 2D

swirl flow problem is shown in Appendix A. Since it

may be difficult and laborious to derive the continu-

ous adjoint model for the non-Newtonian viscosity of

eq. (7), an alternative approach is shown, which uses

automatic differentiation only for the sensitivity of the

non-Newtonian viscosity.

6 Numerical results

In the numerical results, the fluid is considered as

blood, with the non-Newtonian dynamic viscosity

(µ(γ̇m)) given by eq. (7). Since the compressibility

of blood is small, according to Hinghofer-Szalkay

and Greenleaf (1987), blood may be assumed as

incompressible, with a density (ρ) of 1056 kg/m3.

The finite element meshes are structured, composed

of rectangular partitions of 4 triangular elements each

(see Fig. 8).

Fig. 8: Distribution of triangular elements in a rectan-

gular partition.

In order to have a better numerical conditioning

for calculating the weak form, functionals and sensi-

tivities, and also improving the convergence rate, the

MMGS (Millimeters-Grams-Seconds) unit system is

used, which means that the length and mass units are

multiplied by a 103 factor.

The convergence criterion for the Newton-Raphson

method performed for the simulation with MUMPS is

based on residuals: absolute tolerance of 10−10, and rel-

ative tolerance of 10−9. The convergence criterion for

the optimization is based on a desired tolerance of 10−10

for the optimality error of the IPOPT barrier problem,

which essentially corresponds to the maximum norm of

each KKT condition (Wächter and Biegler, 2006).

External body forces are not considered for the

numerical examples (ρf = (0, 0, 0)), and the specified

fluid volume fraction (f) is chosen as 30%. The

porous media is assumed with the same rotation

as the reference frame, therefore, vmat = v. Also,

κmin = 0 kg/(m3 s). The initial guess for the pseudo-

density (design variable) is a uniform distribution of

α = f − 1%, where f is the specified volume fraction

and 1% is a margin for the initial guess not to violate

the volume constraint (because of the numerical accu-

racy of the calculations). The plots of the optimized

topologies consider the values of the design variable

α in the center of each finite element. The letter n is

used to denote rotation in rpm, and the greek letter ω

is used to denote rotation in rad/s.

The pseudo-density (design variable) values of the

optimized topologies are post-processed by a threshold

function (i.e., a step function):

αth =

{
1 (fluid), if α > 0.5

0 (solid), if α < 0.5
(19)

After applying the threshold function, the mesh

is cut, removing the solid material (α = 0) from the

computational domain (see Fig. 9). This enables the

final simulation to be performed with the Navier-Stokes

equations without the inverse permeability term (i.e.,

not including the Brinkman model), thus enabling a

comparison of the optimized topologies achieved with

different optimization parameters. In all optimized
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topologies, the final values of the pseudo-density

(design variable) are close to the bounds (i.e., to α = 0

and α = 1).

Fig. 9: Post-processing used for the optimized topolo-

gies.

For simplicity, the Reynolds number is calculated

as the maximum value of the local Reynolds number

based on the external diameter:

Reext, ` =
µ(γ̇) |vabs| (2Rext)

ρ
(20)

where µ(γ̇) is the non-Newtonian viscosity, which may

vary in each position of the computational domain, vabs

is the absolute velocity, which varies in each position of

the computational domain, Rext is the most external

radius of the computational domain (it is the “Rext” of

the two first examples, and the “R” of the third exam-

ple), and ρ is the density.

In some of the numerical examples, a continuation

scheme in the optimization parameters is performed for

better conditioning the optimization, with a maximum

allowed number of optimization iterations defined for

each continuation step in the range of 10 to 800. In

the beginning of each continuation step, the IPOPT

algorithm is restarted.

6.1 Parallel channels

The first example is the design of the classical parallel

channels. However, in this case, 2D swirl flow is con-

sidered. This example has been extensively treated in

2D flow topology optimization (“double pipe”) since

the first fluid topology optimization article (Borrvall

and Petersson, 2003; Deng et al., 2018), and has even

been analyzed for non-Newtonian fluid in a 2D domain

(Pingen and Maute, 2010). In a 2D swirl flow model, it

resembles the horizontal inlet Tesla pump design pre-

sented by Alonso et al. (2019). However, it features two

inlets and a large axial distance between them. In the

present work, two non-rotating inlets are located at a

smaller radius, and two outlets are located at a larger

radius. The configuration is illustrated in Fig. 10. The

flow rate (Q) is equally divided between the two inlets

(Q1 = Q2 = Q
2 ), and the solid material distribution is

optimized on the rotating walls.

Fig. 10: Design domain for parallel channels design.

The finite element mesh is chosen with 100 radial

and 80 axial rectangular partitions of crossed triangu-

lar elements, totaling 16,181 nodes and 32,000 elements

(see Fig. 11). The input parameters and dimensions of

the design domain that are used are shown in Table

1. It can be mentioned that, instead of using a uni-

formly high discretization in order to be able to sim-

ulate the fluid flow behavior, it is also possible to use

adaptively refined/coarsened meshes (Adaptive Topol-

ogy Optimization) (Evgrafov, 2015; Duan et al., 2015;

Gupta et al., 2018), which may be a better choice for

the discretization, but is out of the scope of this work.

Fig. 11: Mesh used in the parallel channels design.
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Table 1: Parameters used for the topology optimization

of the parallel channels.

Input parameters
Inlet flow rate (Q) 0.5 L/min

Wall rotation ω0 6= 0 rad/s (rotating)

Inlet velocity profile Parabolic

Dimensions

H 10 mm

Rint 5 mm

Rext 20 mm

h1 = h′1 = h3 = h′3 2.5 mm

h2 = h′2 2.5 mm

h4 = h′4 1.25 mm

Fig. 12 shows a comparison of the non-Newtonian

viscosity for the optimized parallel channels designs at

100 rpm without post-processing (i.e., still including

the material model). As can be seen, without the

non-Newtonian penalization, the non-Newtonian vis-

cosity shows some variation inside the solid material,

which may possibly negatively influence the topology

optimization. In constrast, when adding the non-

Newtonian penalization, the non-Newtonian viscosity

inside the solid material is much more consistent with

its expected/desired value inside a solid material.

The same effect is also observed at other rotations

(including 0 rpm), showing that the non-Newtonian

penalization may be an interesting approach for

topology optimization for non-Newtonian fluid flow.

Fig. 12: Non-Newtonian viscosity in the optimized par-

allel channels designs for the non-Newtonian fluid flow

at 100 rpm before post-processing (i.e., still including

the material model) (in log scale). The contours of the

optimized topologies are delimited by thin dark lines.

A series of optimizations is performed for a se-

quence of wall rotations by considering non-Newtonian

fluid (with non-Newtonian penalization) and New-

tonian fluid. Fig. 13 shows the objective function

(relative energy dissipation) values with respect to

the wall rotation for each optimized topology. The

objective function values that are shown correspond

to the post-processed topology (equation (19)). The

maximum values for the maximum local Reynolds

number (max(Reext, `)) are given at 500 rpm, and are

evaluated as 1.21 × 104 (non-Newtonian fluid) and

1.28 × 104 (Newtonian fluid).

Fig. 13: Effect of the wall rotation in the non-Newtonian

and Newtonian parallel channels designs.
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As can be seen in Fig. 13, the optimized channels

show a tendency to get closer and thinner near the

outlets, for both non-Newtonian and Newtonian fluid

flows. The differences between the optimized designs

are mainly slightly different curvatures of the parallel

channels. As opposed to Borrvall and Petersson (2003)

and some of the designs presented by Pingen and Maute

(2010), which perform this optimization for 2D flow, in

the present example of 2D swirl flow, the channels are

not merged together. This is probably mainly due to the

difference in volumes for lower and higher radial posi-

tions, which can make the merged channel solution not

be a minimum of the objective function. The merged

channels solution was not achieved for this example

even when reducing the flow rate or further relaxing

the penalization parameter (q, of eq. (13)) (i.e., using

an even smaller value of q before increasing it, as in

Borrvall and Petersson (2003)).

In Fig. 13, it can be noticed that the channel width

is reduced at larger radii, which is probably due to the

volume increase at larger radii (with rate 2πr, due to

the 2D swirl flow model), which increases the energy

dissipation and, therefore, should have the effect of re-

ducing the channel width. From the optimization iter-

ations and various optimization tests, the axial posi-

tion (z) of the outlet channels in relation to the outlet

heights in the design domain seems to be highly depen-

dent of how the optimization progresses, given that,

when the material model is more relaxed (such as with

lower values for q or with a “gray” (intermediary) distri-

bution for α), there is an initial influence of the flow of

one channel in the other. This “influence” is one of the

reasons Borrvall and Petersson (2003) could achieve the

merged channels solution in 2D Stokes flow. Because of

the higher effect of the rotation in the energy dissipation

near the outlets (due to the larger radii in the rotational

tangential velocity ω0r), the effect of the position of the

outlet has a smaller sensitivity. Also, since the energy

dissipation is not significantly sensitive to small chan-

nel curvatures, the topology may possibly stagnate with

a non-optimal curvature before reaching a local mini-

mum. These facts together with the “influence of one

channel in relation to the other” in initially relaxed con-

figurations of the material model, mean that, depending

on the choice of the continuation parameters, different

local minima or stagnated topologies can be achieved,

such as channels slightly slanted towards or farther from

the middle of the design domain, or with curves near

the outlets. Even when using a second-order optimiza-

tion algorithm (IPOPT) (Wächter and Biegler, 2006),

this problem is still encountered, and different continu-

ations in the material model parameters had to be used

in order to achieve straighter channel solutions.

In this numerical example, the solutions with curves

near the outlets are worse local minima in relation to

straighter channel solutions (i.e., the curves dissipate

slightly more energy) and, therefore, are not shown in

this numerical example. However, for illustration, one

achievable optimized topology is shown in Fig. 14 con-

sidering Newtonian fluid flow at 100 rpm with κmax =

8.0×108µ∞ (kg/(m3s)). It can be noticed that the chan-

nels are curved. The optimized topology in this figure

considers the continuation in the inverse permeability

term starting from q = 0.1 before increasing q, while

the optimized topology in Fig. 13 considers the contin-

uation starting from q = 0.05 before increasing q.

Fig. 14: A local minimum optimized topology achiev-

able for the Newtonian parallel channels design at 100

rpm.

In Fig. 13, the optimized topologies up to 100 rpm

are channels whose walls connect with almost straight

inclined lines to the outlets. At 200 rpm, the optimized

topologies seem to be local minima attained from the

“change” in the format of the optimized topologies that

happens between 100 rpm and 300 rpm. From 300 rpm

onwards, the optimized topologies start with a small

straighter radial distance (r), which may help reducing

the energy dissipation near the inlet for higher rota-

tions.

The optimization schemes are shown in Table 2. The

values of the optimization parameters are chosen in or-

der for the optimized topologies to be sufficiently dis-

crete and to block fluid flow inside the solid material

(as in Alonso et al. (2018)).
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Table 2: Reference parameters for the optimization

schemes (steps) for the non-Newtonian and Newtonian

parallel channels designs.

Rotation (n0)

(rpm)

κmax (×108µ∞)

(kg/(m3s))

q

Non-Newtonian fluid

0 ∼ 100 5.0 0.1 ∼ 103

200 8.0 0.1 ∼ 103

300 5.0 ∼ 10.0 0.1 ∼ 103

400 10.0 ∼ 25.0 0.05 ∼ 103

500 25.0 0.025 ∼ 1

Newtonian fluid

0 5.0 0.1 ∼ 1

100 ∼ 200 8.0 0.05 ∼ 103

300 9.0 0.05 ∼ 103

400 10.0 0.05 ∼ 1

500 25.0 0.025 ∼ 10

The non-Newtonian viscosities in the optimized

parallel channels designs for non-Newtonian fluid flow

are plotted in Fig. 15. As can be seen, the increase in

the non-Newtonian viscosity is mostly noticeable near

the middle of each channel, where the shear stress is

smaller. Near the walls, the non-Newtonian viscosity

is decreased due to an increase in shear stress on the

walls. This behavior is consistent with Fig. 3a. Also,

it can be noticed that the non-Newtonian viscosity

decreases with higher rotations (i.e., higher Reynolds

numbers), which is due to the shear stress increasing

under this condition.

Fig. 15: Non-Newtonian viscosities in the optimized

parallel channels designs for non-Newtonian fluid flow

(in log scale).

The convergence curves for the non-Newtonian and

Newtonian designs for 100 rpm are shown in Fig. 16.

The maximum Reynolds numbers (max(Reext, `)) for

this case are 2.21 × 103 (non-Newtonian fluid) and 2.56

× 103 (Newtonian fluid). The “peak” after 100 itera-

tions corresponds to a change in the penalization pa-

rameter (q), as written in Table 2.

Fig. 16: Convergence curves for the non-Newtonian and

Newtonian parallel channels designs (100 rpm).

The simulations of the optimized topologies for the

non-Newtonian and Newtonian designs for 100 rpm are

shown in Fig. 17. As can be seen, the non-Newtonian

and Newtonian designs in this case are practically

the same. The relative tangential velocity (vθ) is

zero on the rotating walls (no-slip condition), since,
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on the walls, the fluid is rotating, with an absolute

tangential velocity of vθ,abs = ω0r. The simulation

of the non-Newtonian design shows that the velocity

changes slightly faster (along the channel) than the

Newtonian design. This can be noticed by the fact that

the relative tangential velocity (vθ) is smaller and for

a larger distance, in the Newtonian design.

(a) Non-Newtonian parallel channels design.

(b) Newtonian parallel channels design.

Fig. 17: Optimized topologies, 3D representations, pres-

sures and velocities for the non-Newtonian and Newto-

nian parallel channels designs (100 rpm).

6.2 Two-way channel

The two-way channel consists of the same design ap-

plied for parallel channels in the previous Section. How-

ever, it is applied to crossed inlets and outlets. This ex-

ample has already been treated for the 2D swirl flow

model in Alonso et al. (2018), considering Newtonian

fluid flow (water). The two-way channel is composed of

two non-rotating fluid inlets, located at an internal and

an external radius. The flow rate (Q) is equally divided

between the two inlets (Q1 = Q2 = Q
2 ), meaning that,

since the circumferential area is larger for higher radius,

the internal radius inlet features a higher inlet velocity,

while the external radius inlet features a smaller inlet

velocity. The configuration is illustrated in Fig. 18. The

solid material distribution is optimized on the rotating

walls.

Fig. 18: Design domain for two-way channel design.

The finite element mesh is the same used in the

parallel channels design. The input parameters and di-

mensions of the design domain that are used are shown

in Table 3.

Table 3: Parameters used for the topology optimization

of the two-way channel.

Input parameters

Inlet flow rate (Q) 0.5 L/min

Wall rotation ω0 6= 0 rad/s (rotating)

Inlet velocity profile Parabolic

Dimensions

H 10 mm

Rint 5 mm

Rext 20 mm

h1 = h′1 = h3 = h′3 2.5 mm

h2 = h′2 2.5 mm

h4 = h′4 1.25 mm
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Fig. 19 shows a comparison of the non-Newtonian

viscosity for the optimized two-way channel designs at

20 rpm without post-processing (i.e., still including the

material model). The effect of the non-Newtonian pe-

nalization is not so apparent as in the case of the paral-

lel channels design (Fig. 12). The same effect is observed

at other rotations (including 0 rpm).

Fig. 19: Non-Newtonian viscosity in the optimized two-

way channel designs for the non-Newtonian fluid flow

at 20 rpm before post-processing (i.e., still including

the material model) (in log scale). The contours of the

optimized topologies are delimited by thin dark lines.

A series of optimizations is performed for a sequence

of wall rotations by considering non-Newtonian fluid

(with non-Newtonian penalization) and Newtonian

fluid. This is shown in Fig. 20, from the objective func-

tion (relative energy dissipation) values with respect

to the wall rotation for each optimized topology. As in

the parallel channels example, the objective function

values that are shown correspond to the post-processed

topology (equation (19)). The maximum values for

the maximum local Reynolds number (max(Reext, `))

are given at 50 rpm, and are evaluated as 1.24 × 103

(non-Newtonian fluid) and 1.28 × 103 (Newtonian

fluid).

Fig. 20: Effect of the wall rotation in the non-Newtonian

and Newtonian two-way channel designs.

As can be seen in Fig. 20, the optimized topologies

are the topologies connecting the inlets to the nearest

outlets, in the form of 180◦ curved channels, because the

topology optimization identified that the curved path

would dissipate less energy than the longer straight

path. This is probably due to the radially varying vol-

ume (with rate 2πr, due to the 2D swirl flow model).

Some minor differences can be noticed in the curved

channels for non-Newtonian and Newtonian fluid flows,

in which the channel side closest to the wall is larger in

the Newtonian design in relation to the non-Newtonian

design. This is probably due to the size of the zone in

which the non-Newtonian effect is apparent. Due to the

swirl effect of the fluid near the walls, as the rotation

(and the Reynolds number) increases, the channel side

closest to the wall slightly decreases in size.

Table 4: Reference parameters for the optimization

schemes (steps) for the non-Newtonian and Newtonian

two-way channel designs.

Rotation (n0)

(rpm)

κmax (×108µ∞)

(kg/(m3s))

q

Non-Newtonian fluid

0 ∼ 50 2.5 0.1

Newtonian fluid

0 ∼ 50 2.5 103

The non-Newtonian viscosities in the optimized

two-way channel designs for non-Newtonian fluid flow

are plotted in Fig. 21. As in the parallel channel

design, the increase in the non-Newtonian viscosity is

also mostly noticeable near the middle of the internal
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radius channel, where the shear stress is smaller. Since

the external radius channel portrays a lower fluid

velocity, it is under a more noticeable non-Newtonian

effect from the fluid inlet. The non-Newtonian effect

decreases very little for the internal radius channel with

increasing rotations. However, it has a more significant

decrease for the external radius channel. Overall, the

same effect that is observed for parallel channels design

can be seen here, with the non-Newtonian viscosity

decreasing under higher rotations (i.e., higher Reynolds

numbers).

Fig. 21: Non-Newtonian viscosities in the optimized

two-way channel designs.

The convergence curves for the non-Newtonian and

Newtonian designs for 20 rpm are shown in Fig. 22.

The maximum Reynolds numbers (max(Reext, `)) for

this case are 6.57 × 102 (non-Newtonian fluid), and

9.74 × 102 (Newtonian fluid).

Fig. 22: Convergence curves for the non-Newtonian and

Newtonian two-way channel designs (20 rpm).

The simulations of the optimized topologies for the

non-Newtonian and Newtonian designs for 20 rpm are

shown in Fig. 23. As can be noticed, the simulation re-

sults for the internal radius channel look similar for the

non-Newtonian and Newtonian designs. As for the ex-

ternal radius channel, the pressure drops faster for the

Newtonian design, while the relative tangential veloc-

ity increases faster in the middle of the channel for the

non-Newtonian design.
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(a) Non-Newtonian two-way channel design.

(b) Newtonian two-way channel design.

Fig. 23: Optimized topologies, 3D representations, pres-

sures and velocities for the non-Newtonian and Newto-

nian two-way channel designs (20 rpm).

6.3 Two-outlet channel

The two-outlet channel consists of a vertical inlet of

rotating fluid, in the condition that there are two pos-

sible horizontal outlets. This example has already been

treated for the 2D swirl flow model in Alonso et al.

(2018), considering Newtonian fluid flow (water). The

configuration is illustrated in Fig. 24. The solid material

distribution is optimized on the static walls.

Fig. 24: Design domain for two-outlet channel design.

The finite element mesh is chosen with 40 radial

and 80 axial rectangular partitions of crossed triangular

elements, totaling 6,521 nodes and 12,800 elements (see

Fig. 25). The input parameters and dimensions of the

design domain that are used are shown in Table 5.

Fig. 25: Mesh used in the two-outlet channel design.
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Table 5: Parameters used for the topology optimization

of the two-outlet channel.

Input parameters

Wall rotation ω0 = 0 rad/s (static)

Inlet rotation nin = 20 rpm

Inlet velocity profile Parabolic

Dimensions

H 15 mm
R 10 mm

r1 4 mm

h1 = h2 = h3 = h4 3 mm

Fig. 26 shows a comparison of the non-Newtonian

viscosity for the optimized two-outlet channel designs at

0.05 L/min without post-processing (i.e., still including

the material model). The effect of the non-Newtonian

penalization is quite apparent and the non-Newtonian

viscosity, as in the other examples, is less dispersed and

more consistent with its expected/desired value inside

a solid material. The same effect is observed for other

flow rates.

Fig. 26: Non-Newtonian viscosity in the optimized two-

outlet channel designs for the non-Newtonian fluid flow

at 0.05 L/min (20 rpm) before post-processing (i.e., still

including the material model) (in log scale). The con-

tours of the optimized topologies are delimited by thin

dark lines.

A series of optimizations is performed for a sequence

of flow rates considering a fixed inlet rotation (nin =

20 rpm) by considering non-Newtonian fluid (with non-

Newtonian penalization) and Newtonian fluid. This is

shown in Fig. 27, from the objective function (rela-

tive energy dissipation) values with respect to the flow

rates for each optimized topology. As in the other ex-

amples, the objective function values that are shown

corresponds to the post-processed topology (eq. (19)).

The maximum values for the maximum local Reynolds

number (max(Reext, `)) are given at 0.1 L/min, and are

evaluated as 1.77 × 102 (non-Newtonian fluid) and 4.06

× 102 (Newtonian fluid). This significant difference in

the Reynolds number is due to the predominance of

the non-Newtonian effect (i.e., higher viscosity) in the

optimized topologies for non-Newtonian fluid flow.

Fig. 27: Effect of the flow rate in the non-Newtonian

and Newtonian two-outlet channel designs.

As can be seen in Fig. 27, the optimized designs

lead the fluid to exit the upper channel, which better

minimizes the objective function (relative energy

dissipation). By comparing the non-Newtonian with

the Newtonian topologies, the curvature of the channel

is smoother for the non-Newtonian designs: since the

Newtonian fluid has a smaller viscosity, the flow is

more guided by its inertia, which means that the first

part of the channel can extend longer than the last

part of the channel (near the outlet); in the case of

the non-Newtonian fluid, the viscosity is higher far

from walls, which means that the effect of the fluid

inertia is reduced in the middle of the channel, leading

the topology optimization to a straighter path to the

outlet.

The optimization schemes are shown in Table 6.

Lower flow rates may require higher values for κmax,

since the flow may need more “strength” to form the op-
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timized topology. Higher flow rates may also require it,

in order to block the fluid flow inside the solid material.

However, if κmax is too high, it may not be possible to

achieve a discrete optimized topology, which may lead

to a high presence of “gray” (0 < α < 1). This means

that there is a compromise in obtaining a discrete opti-

mized topology and blocking fluid flow inside the solid

material. Also, the right choice for q may also help stabi-

lizing a discrete optimized topology: Depending on the

case, it may be necessary to “relax” the material model

(smaller q), which may sometimes lead to a “better lo-

cal minimum” (as in Borrvall and Petersson (2003)’s

double pipe); however, in other cases, when there is no

local minimum that can be achieved in this way, this

can hinder the achievement of a discrete topology.

Table 6: Reference parameters for the optimization

schemes (steps) for the non-Newtonian and Newtonian

two-outlet channel designs.

Flow rate (Q)

(L/min)

κmax (×107µ∞)

(kg/(m3s))

q

Non-Newtonian fluid

0.005 5 1

0.025 25 0.1

0.05 0.5 10

0.075 ∼ 0.1 8 0.1

Newtonian fluid

0.005 ∼ 0.05 0.5 1

0.075 2.5 0.1

0.1 50 0.1

The non-Newtonian viscosities in the optimized

two-outlet channel designs for non-Newtonian fluid

flow are plotted in Fig. 28. At 0.005 L/min, the

non-Newtonian effect is easily noticeable, with a higher

dynamic viscosity acting over most of the fluid domain.

This effect is reduced at higher flow rates, though still

keeping a considerable influence.

Fig. 28: Non-Newtonian viscosities in the optimized

two-outlet channel designs (in log scale).

The convergence curves for the non-Newtonian

and Newtonian designs for 0.05 L/min and 20 rpm

are shown in Fig. 29. The maximum Reynolds num-

bers (max(Reext, `)) for this case are 5.98 × 101

(non-Newtonian fluid) and 2.03 × 102 (Newtonian

fluid).

Fig. 29: Convergence curves for the non-Newtonian and

Newtonian two-outlet channel designs (0.05 L/min, 20

rpm).

The simulations of the optimized topologies for the

non-Newtonian and Newtonian designs for 0.05 L/min

and 20 rpm are shown in Fig. 30. As can be noticed

in the tangential velocity (vθ) plot, the inlet rotation

is “dissipated” along the channel in a “faster” manner
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for the non-Newtonian design than in the Newtonian

design due to the increased viscosity (non-Newtonian

effect). Also, the decrease in pressure from the inlet

towards the outlet seems to be more uniform in the

non-Newtonian design.

(a) Non-Newtonian two-outlet channel design.

(b) Newtonian two-outlet channel design.

Fig. 30: Optimized topologies, 3D representations, pres-

sures and velocities for the non-Newtonian and Newto-

nian two-outlet channel designs (0.05 L/min, 20 rpm).

7 Conclusions

In this work, the topology optimization formulation is

applied to the 2D swirl flow model, which portrays a

smaller computational cost than a 3D model, by con-

sidering a non-Newtonian fluid under laminar flow.

The numerical examples illustrate the use of the

non-Newtonian formulation compared to the New-

tonian formulation. The non-Newtonian formulation

considers an additional penalization (non-Newtonian

penalization) for 2D swirl flow, which gives a non-

Newtonian viscosity distribuition in the solid material

that is constant and equal to the low-shear stress

non-Newtonian viscosity value. This behavior is shown

to be coherent with the expected/desired behavior of

the fluid inside a modeled solid material.

In topology optimization, from the numerical exam-

ples, the effect of using a non-Newtonian fluid model

seems to be more significant for designs including

“bends” and “axial-radial” flows.

As future work, it is suggested that the non-

Newtonian 2D swirl flow model is used for other

non-Newtonian fluids, and in specific applications such

as in pump/turbine/nozzle design.

8 Replication of results

The implementation in the FEniCS platform is direct

from the description provided of the equations and nu-

merical implementation in the article, because FEniCS

uses a high-level description for the variational formula-

tion (UFL), and automates the generation of the matrix

equations. In the case of 2D swirl flow, the coordinates

are cylindrical, which means that the differential oper-

ators (“grad”, “curl”, “div”) must be programmed

by hand by using the “Dx(var,component num)” or

“var.dx(component num)” functions, because the op-

erators provided by FEniCS assume Cartesian coordi-

nates. The pseudocode of the implementation is repre-

sented in Algorithm 1, where the main FEniCS/dolfin-

adjoint functions being used are given between paren-

theses. When using dolfin-adjoint, the dolfin-adjoint li-

brary provides an interface to IPOPT. In the case of

using a continuous adjoint model (such as the one pre-

sented in Appendix A), the interface to IPOPT needs

to be manually programmed.
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Algorithm 1 Pseudocode of the implementation

Input parameters: Flow rate, rotation, dimensions, op-
timization parameters and constants
Result: Optimized topology (optimized distribution of
the design variable) and its post-processed simulation
1 Generate the finite element mesh (“RectangleMesh”)
2 Prepare the state variables (pressure and veloc-
ity) and design variable (pseudo-density) (see Sec-
tion 3.2) (CG2 “VectorElement” with “dim=3” (ve-
locity), CG1 “FiniteElement” (pressure and pseudo-
density), “MixedElement” (for pressure and velocity),
“FunctionSpace”)

5: 3 Define the Dirichlet boundary conditions (see eq. (9))
(“DirichletBC”)
4 Define the bounds of the design variable ([0, 1]) (see eq.
(15))
5 Define the initial guess of the topology (i.e., the initial
values of the design variable) (“interpolate”)
6 For each desired optimization scheme (i.e., step):

6.1 Clean up dolfin-adjoint annotations, in or-
der to start a new automatic derivation of the ad-
joint model (i.e., define a new “tape” for dolfin-adjoint)
(“set working tape(Tape())”)

10: 6.2 Prepare the finite element method
6.2.1 Define the material model for the inverse

permeability (eq. (13))
6.2.2 Define the non-Newtonian viscosity (eq.

(7) or eq. (14))
6.2.3 Define the

weak form of the non-Newtonian 2D swirl flow problem
(eq. (12))

6.2.4 Define the non-linear solver (Newton-
Raphson method) (“NonlinearVariationalProblem”,
“NonlinearVariationalSolver”, set parameter
'linear solver' to 'mumps')

15: 6.3 Finish preparing the topology optimization prob-
lem

6.3.1 Set the design variable (“Control”)
6.3.2 Define the objective function (eq. (16))

(“assemble”)
6.3.3 Define the volume constraint (see eq. (15))

(“UFLInequalityConstraint”)
6.3.4 Prepare the IPOPT solver for

topology optimization (“ReducedFunctional”,
“MinimizationProblem”, “IPOPTSolver”)

20: 6.4 Solve the finite element method, in order for
dolfin-adjoint to automatically derive the adjoint model
(“[NonlinearVariationalSolver].solve”)

6.5 Run the IPOPT solver (see Fig. 7)
(“[IPOPTSolver].solve”)
7 Post-process the optimized topology (see eq. (19) and
Fig. 9) (“SubDomain”, “SubMesh”)
8 Set up and solve the finite element method for the post-
processed mesh
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Appendix A Continuous adjoint model for

the non-Newtonian 2D swirl flow

The continuous adjoint model for the 2D swirl flow

problem is derived as follows. The adjoint (dual)

equations for Navier-Stokes flow have already been

deduced in Brandenburg et al. (2009). However, in this

Appendix they are particularized for the 2D swirl flow

model in a rotating reference frame, and an approach

for dealing with the non-Newtonian viscosity is sug-

gested. In the following development, 2D coordinates

are considered in the equations, the domain is given

in cylindrical coordinates (in which the differential

volume and area are given by, respectively, 2πrdΩ and

2πrdΓ), axisymmetry is considered (∂( )
∂θ = 0), and the

differential operators correspond to their cylindrical

coordinate system versions (Lai et al., 2009).

The adjoint equation is first presented in Section

4.5 and is based on the Lagrangian function of the op-

timization problem, which is given by

L((v, p), α, (λv, λp)) = J((v, p), α)−F ((v, p), α, (λv, λp))

(21)

where (v, p) are the state (primal) variables (velocity

and pressure), α is the design variable, (λv, λp) are the

adjoint (dual) variables (adjoint velocity and adjoint

pressure) (that is, the adjoint variable presented in Sec-

tion 4.5 separated in its components: λJ = (λv, λp)),

J((v, p), α) = Φrel((v, p), α) is the objective function

(relative energy dissipation), and F ((v, p), α, (λv, λp))

is given in eq. (12) (i.e., eqs. (10) and (11) without the

division by 2π, and with the test functions wv and wp
replaced by the adjoint variables λv and λp, respec-

tively).

Then, in order to obtain the weak form of the ad-

joint equation (Fλ = 0), the equations that compose

eq. (21) need to be derived in function of the state vari-

ables (v, p), as shown in Section 4.5. This is given by

the directional derivative of the Lagrangian function

(eq. (21)), with respect to the state variables (v and p)

and in the directions given by wλ,v =

wλ,v,r
wλ,v,θ
wλ,v,z

 and wλ,p

(test functions for the adjoint equations), respectively

for each state variable:

Fλ = L((v, p); (wλ,v,wλ,p)) = L(v; wλ,v) + L(p; wλ,p)

(22)

where L(v; wλ,v) is the directional derivative of L with

respect to v in the direction of wλ,v, and L(p; wλ,p) is

the directional derivative of L with respect to p in the

direction of wλ,p.
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The dependency of the non-Newtonian viscosity (µ)

with respect to the state variables (v, p) can be sepa-

rated by applying the chain rule. In this case,

Fλ = L((v, p), µ(v, p); (wλ,v,wλ,p)) =

L((v, p); (wλ,v,wλ,p))

+
∂L(µ)

∂µ
µ((v, p); (wλ,v,wλ,p))

(23)

where µ((v, p); (wλ,v,wλ,p)) is the directional deriva-

tive of µ with respect to (v, p) in the direction

of (wλ,v,wλ,p). In the case of the non-Newtonian

viscosity given by eq. (7), which does not de-

pend on p, µ((v, p); (wλ,v,wλ,p)) = µ(v; wλ,v).

Note that, if µ = µ∞ (Newtonian viscosity),

µ((v, p); (wλ,v,wλ,p)) = 0.

The first term of the weak form of the adjoint equa-

tion (eq. (23)) (L((v, p); (wλ,v,wλ,p))) becomes, after

dividing the forward equations by 2π:

L((v, p); (wλ,v,wλ,p)) =[ˆ
Ω

[
2µ∇wλ,v•(∇v +∇vT )

]
rdΩ

+

ˆ
Ω

2κ(α)wλ,v•vrdΩ

+

ˆ
Ω

[2ρ(ω∧v)•wλ,v + 2ρ(ω∧wλ,v)•v]rdΩ

]
︸ ︷︷ ︸

(+) Adjoint form of the objective function

−
[ˆ

Ω

[∇•wλ,v]λprdΩ

]
︸ ︷︷ ︸

(-) Adjoint form of the continuity equation

−
[ˆ

Ω

ρ [∇v•wλ,v +∇wλ,v•v] •λvrdΩ

+

ˆ
Ω

[2ρ(ω∧wλ,v)] •λvrdΩ

+

ˆ
Ω

T (wλ,v,wλ,p)•(∇λv)rdΩ

−
‰

Γ

(T (wλ,v,wλ,p)•λv)•nrdΓ

+

ˆ
Ω

κ(α)wλ,v•λvrdΩ

]
︸ ︷︷ ︸
(-) Adjoint form of the Navier-Stokes equations

(24)

where T (wλ,v,wλ,p) is the stress tensor (eq. (3)) cal-

culated by substituting v and p by wλ,v and wλ,p, re-

spectively; and the symbols “(+)” and “(-)” serve to

indicate the signal that is already considered in the

equation and that is multiplying each adjoint form.

The second term of the weak form of the adjoint

equation (eq. (23)) (∂L(µ)
∂µ µ(v; wλ,v)) can be calculated

from eq. (11) as, after dividing the forward equations

by 2π:

∂L(µ)

∂µ
µ(v; wλ,v) =[ˆ

Ω

∂T (v, p)

∂µ
•(∇λv)rdΩ

−
‰

Γ

(
∂T (v, p)

∂µ
•λv

)
•nrdΓ

]
︸ ︷︷ ︸

∂L(µ)
∂µ

µ(v; wλ,v)

(25)

where ∂T (v,p)
∂µ = ∇v + ∇vT . Since it may be difficult

and laborious to calculate µ(v; wλ,v) (sensitivity of the

non-Newtonian viscosity) from eq. (7) or eq. (14)(or

any other non-Newtonian fluid with a more complex

constitutive equation), this term may be calculated by

automatic differentiation, such as the algorithm used in

the FEniCS platform.

From eq. (23), it would be possible to derive the

strong form of the adjoint equation (by applying

Gauss’s Theorem of Divergence). However, it would

require the sensitivity of the non-Newtonian viscosity

to be analytically evaluated. Since the finite element

method only requires the weak form of the adjoint

equation, this step does not need to be performed.

The Dirichlet boundary conditions from eq. (9) as-

sume constant velocity values, which means that their

corresponding adjoint boundary conditions are homo-

geneous (i.e., equal to zero). By also including the Neu-

mann boundary condition, the adjoint boundary condi-

tions become, from eq. (9):

λv = 0 on Γin

λv = 0 on Γwall

λv,r = 0 and
∂( )

∂r
= 0 on Γsym

T (wλ,v,wλ,p)•n = 0 on Γout

(26)

where λv,r is the radial component of the adjoint

velocity (λv = (λv,r, λv,θ, λv,z)). It can also be

mentioned that, in eq. (25), the term which re-

lies on
(
∂T (v,p)
∂µ

•λv

)
•n is zero on Γout, because

T (v, p)•n = 0 on Γout (eq. (9)) (
(
∂T (v,p)
∂µ

•λv

)
•n =(

∂T (v,p)
∂µ

•n
)
•λv =

(
∂[T (v,p)•n]

∂µ

)
•λv = 0, since T is

symmetric and n does not depend on µ).

Appendix B Simulation of the effect of the

non-Newtonian penalization

In order to check the effect of the non-Newtonian pe-

nalization, a test example of a channel with an obsta-
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cle in the middle is simulated (see Fig. 31). The ob-

stacle is modeled by using a rotating material model

(ωmat = ω0) located in the middle of the channel, the

flow rate is 0.5 L/min, the rotation is 20 rpm, and the

dimensions are given by: H = 15.0 mm, R = 10.0 mm,

ro = 2.5 mm, and ho = 2.5 mm. The mesh is the same

as the one shown in Fig. 25. The outlet boundary condi-

tion is a weak imposition of zero pressure on the outlet,

imposing the radial and axial components of the ve-

locity (vr, vz) to be perpendicular to the outlet section

(i.e., with zero tangential component) (Dirichlet bound-

ary condition), and imposing zero normal stress on the

interface (n•Tn = 0) (Neumann boundary condition).

The demonstration of this boundary condition is shown

in Alonso et al. (2018) for 2D swirl flow, and in Barth

and Carey (2007) for 2D flow.

Fig. 31: Computational domain for the obstacle simu-

lation.

When the material model is blocking the fluid flow

(i.e., with a sufficiently high value in κmax, chosen

in this case as κmax = 2.5 × 108µ∞), there is little

difference between using only the inverse permeability

(“κ(α)”), or using both inverse permeability and

non-Newtonian penalization (“κ(α), µ(α)”). This

is shown in Fig. 32a. Fig. 32b shows the difference

fractions for the modeled obstacles, which correspond

to the absolute difference of the variable in the cut

and modeled obstacles divided by the range of the

variable: fx = |xmaterial−xcut|
max(xcut)−min(xcut)

, where x is the

variable being considered: relative tangential veloc-

ity (vθ), pressure (p) or non-Newtonian viscosity

(µ). For the magnitude of the radial-axial velocity

(vrz,mag = ‖vrz‖ = ‖(vr, vz)‖ =
√
v2
r + v2

z), the defini-

tion is changed to fvrz,mag
=

‖vrz,material−vrz,cut‖
max(‖vrz,cut‖)−min(‖vrz,cut‖) .

From Fig. 32b: fvrz,mag is mostly small, but features

a 0.33 peak near the edge for “κ(α), µ(α)”; fvθ is

even smaller, with a maximum value of 0.091; fp
is higher near the edge of the obstacle, reaching a

relatively high peak of 0.5 in “κ(α), µ(α)”; and fµ
is higher around the obstacle for “κ(α), µ(α)”. As

can be noticed, the highest values of the difference

fractions are concentrated near the obstacle / edge of

the obstacle. These differences, and, more specifically,

the higher values of fµ on the obstacle, are mainly

due to the nodal interpolation used for the design

variable (α), which does not exactly match the effect of

the “cut obstacle”, such that it “slightly softens” the

effect of the edge because of the linear interpolation,

and “forces”, when considering the non-Newtonian

penalization (“κ(α), µ(α)”), the nodal values of the

non-Newtonian viscosity (µ) to the maximum dynamic

viscosity value (µ0).

The difference between simulation results is more

apparent for lower values of κmax, which may occur

during topology optimization due to the interpolation

of the material model (“gray values”). Therefore, κmax

is reduced to κmax = 2.5 × 106µ∞ in Fig. 33. From

Fig. 33, when including the non-Newtonian penaliza-

tion (“κ(α), µ(α)”), the radial-axial velocity ((vr, vz))

is more reduced inside the modeled obstacle than in the

case without the non-Newtonian penalization (“κ(α)”).

This is due to the higher and uniform non-Newtonian

viscosity inside the modeled obstacle. The relative tan-

gential velocity (vθ) does not show significant differ-

ences between both modeled obstacles.

Therefore, by imposing a uniform non-Newtonian

viscosity inside the solid material of the obstacle, the

non-Newtonian penalization seems to show a more no-

ticeable effect in the radial-axial velocity ((vr, vz)) dur-

ing topology optimization rather than in its end.
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(a) Velocities, pressure and non-Newtonian viscosity for the cut and modeled obstacles.

(b) Difference fractions for the modeled obstacles.

Fig. 32: Plots of cut and modeled obstacles (κmax = 2.5× 108µ∞, q = 1000, κmin = 0).
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Fig. 33: Plots of cut and modeled obstacles (κmax = 2.5× 106µ∞, q = 1000, κmin = 0)


