








the two estimates are quite differeant. Therefore, it is desirable to develop
slternative estismation procedures that 1re more registant to outliers.

During the last two decades it hae been recognized that the minimum sum
of asbsolute errors, MSAE estimates of the parameters in the multiple linear
regression model are not unduly affected by the presence of outliers, Huber
(1974) and Narula and Wellington (1985). The MSAE estimates of the parameter
for the origihal and the altered data are given i{n Table l. The values of the
‘two estimates are practically the same.

The model in (1) is intrinsically oonlinear. It is not possible to find
the closed form MSAE estimators of the parameters. A number of algorithms
have been proposed to compute the MSAE estimates of the parameters for the
general nonlinear regression model, Gonin and Money (1987). The available
algorithms are {terative and converge to the MSAE estimates. For example.'
Osborne and Watson (1971) reduce the original nonlinear problem to a s;quence
of llnear.HSAE p{oble-s and then solve each problem as a linear programming
problem. Tishler and Zang (1982) overcome the nondifferentiability of the
original objective function by transforming the problem into a sequence of
unconstrained nonlinear minimization problems. That is, the available
algorithms consist of two nested iterative procedures and require intensive
computations. These clgorithﬁs may also result in round-off and truncatiou
errors. Furthermore, ior bootstrap, jackknifing or simulation studies, it is
useful, 1f not imperative, to have some computationally less intensive method
to solve the problem. The solution from such a method may also be used as a
starting solution of one of the available algorithms. Since the model in (1)
has a specisl form, we can spproximate it by a linear model which can be
solved by a simpler and computationally less intensive algorithm tﬁan the

available algorithms.



1. INTRODUCTION
Consider the multistage dose-response model
g =1 -exp (-g; a) + € 1=1, cecy n 1)
where y; denotes the value of the respouse variable corresponding to dose
gi =- (1, di' di, vosy d:), a = (uo. By moey uk) is a k + 1| v!ctér of
unknown parameters, k { n, and € denotes the unobservable random ecrror.
Armitage and Doll (1954) developed the wodel to assess the risk to the
population of exposure to toxic chemicals and|pollution agents. The wodel is
based on the assumption that the mechanism of|carcinogenesis can be expressed
as a serles of k mutations ae the cellular level. The model has often been
used to compute virtually safe dose VSD by extrgpolating the curve to dose
levels below the experimental doses, Portier and Hoel (1983). However, they
pointed out that the variability due to binomial sampling or the improper
assumptions concerning the functional form of the dose-response model can
result in errors in the estimation of VSD for small bio'ssays.
The maximum likelihood and the least squares methods are often used to
estimate the paraneter; of the model in (1). These estimates may be unduly
affected by outliers. As an illustration, consider the data in the First

three columns of Table 1. These date are taken from Table IT of

Insert Table | about here

Sankaranarayanan (1969b) and represent the effect of nitrogen post-treatment
on mortality of Dr;sophilia eggs lrradiaged as stage-7 oocytes. 1In Column &,
we have replaced the value of Y, by Y i{.e., changed b 23 from 0.479 to

0.714. The least squares, LS estimates of the parsmeter of the model for the

original and the altered data are given in Table 1. Clearly, the values of



" The rest of the paper is organized as follows: 1In Section 2, we briefly
describe the Tishler and Zang (1982) algorithm to estimate the MSAE estimates
of parameters of model (1). 1In Sectlon 3, we give a linear approximation for
the dose-response model and 'wodify the Tishler and Zang (1982) algoritha to
estimate its parameters. In Section 4, we give some results comparing the
estimates obtained from the exact model and the linear approximation of the

model. We conclude the paper with s few remarks in Section S.



2. TISHLER AND ZAKG ALGORITHM FOR THE EXACT MODEL

It i{s possible to compute the MSAE estimates of the parameter in (1) by
- using the algorithm proposed by Tishler and Zang (1982) feor the general
nonlinear -oda{. ‘To compute the MSAE estimste a of ain (1), we observe that

leg| = 124 - gld )|, 1= 1, ceoy m, (2)
vhere 2, =1 - y1>nnd g(di, a) = exp (-dja). Thus, our objective is to
minisize

G(a) = T |e1| 5 (3)
i=] 3

The function G(a) does not have continuous first derivative. They noted that

the absolute functional can be written as

Jr| = max (0, r) + max (0, ~ 1) , ¥r €ER €4)

.

and can be approximated by

=T 1€ r € - B.
rz + 82

el B (Bs B) = | =57 » 1f -B<r < B, (5)
[ S if r > B.

Clearly, |r| is approximated by H(8, r) only in the interval -8 r {8, and
this interval can be made arbitrarily small by reducing B(> 0)s In fact,

1im H(B, 1) = |r|.
8->0

Applying approximation (5) to leil'. { =1, sesy n, in the expression G(a), we
obtain
n
G(B,0) = I H(B, e) (6)
i=)
as an approximation to G(a). It is easy to see thgt

(1) G(B, a) has continuous first derivatives;



(11) G(B, a) can be made arbitrarily close to G(a) by reducing B. 1In fact

1im G(B, a) = G(a) , and
g->0

(111) 6(B, a) differs from C(a) only in a small neighborhood of the points
where G(a) is not differentiable. The approximation applies only to

- observations for which the residuals .are smaller than .B. The observations
vith large residuals (> B) affect the minimization of .G(u) and G(B, a) in
the same way.

Furthermore, it is clear that if B is very small, the function G(8,a) is
very close to G(a) that is non~differentiable; and, if 8 is tc;o large, the
computed estimate v.ill be the same as the least squares estimate.

Let B“) and af1) pe the inttial values of B and o, respectively. Set
] - l. Then the algorithm can be stated as:

Step 1: Solve
sintaize G(8(™), q),

— Letos(' i 1),,.: the solution to this problem. Allo compute
_— n+l) (M - (o) |
i ¢ z WP( d; 0( ) égc
Step 2: If

Iei(' D ef') |20, 1=1, «.; n.

and
lu(l +1) _ o™ | < s,

where § > 0 1s s small pre-specified tolerance, stop, and let

o= olm+ 1) 4, the optimal solution; {f not, choose
p(m + 1) ¢ g(m) » 8¢t m = m + 1 'and go to Step 1.
It may be observed that the algoritha is an iteut:lve procedure.
Furthemore, within each fteration, the algorithm has to solve a nonlinear

model which involves an iterative process. Tishler and Zang (1982) prove the



convergance of the algorithm, They suggest an initial choice of B8 = 0.1 but
do not give any guidelines to decrease 8.
3. AR ALGORITIM FOR LINEAR APPROXIMATION
Clearly, if the model cau be linearized, it will be possible to use 2
computationally less intensive alior?thn to compute the MSAE estimates of the
parameters. Peres and Narula (1989) have shown that it is possible to
approximate the dose-response model (1) by a linear models To do so, we
revrite (2) as }
T=1| -z, {l - g (d, a)/zlll ’

Iz1 (1 - exp(=(1n zy - lég(di.a INH-

When model (1) is the correct model, then [In z; — 1ln g(d , @) ¢1 , and, in
N i i

fact, it i{s close to zero. Therefore, if we expand
{1 = exp (-(1n gy ~ In g(di, a)))} by the Taylor series expansion around
1n z; - In g(d4,, @) = 0 , and retain only the first term, Peres and Narula
(1989) have shown that
|e1| - |zi(In z, + d;u)l. 1= 1, eeey N o

However, to obtain even better-approximation, we may include thg second term
in the approximation which gives us

legl 2w, (ln gy +df @), 1=1, ceeyn (¢))]
vhere w, = z, (1 - (In 3, + d{a)/2), 1 = 1,s00, no Using the approximation

(5) to the ahsolute value functional in (7), we minimize

n
G*B.) = I B(B, &) , ®)
1=1
vhere
-, (In 2, + dja) , 1f &5 ¢ - B,
) 2 2
v, (In s, + d70)
s, e =] 2 Lt +5, 16 -BLei L B,
vy (In 2, + D0 1f e > 8.

-



To solve (8), the Tishler and Zang algorithm can be modified as
follows: Let 8(1) and afl) be the initial values of 8 and a, respectively.
Set m = 1.

Step 1: Solve
minimize G* (8(® s 3)

Let ofm + 1) be the solution to this problem. Also compute
v® D e (- a2y 4 a5y,

e;(- + l) - '{‘ + 1) (1n zi + dio a(-))

ei'*l) = exp (-d;u(‘)) -z , and

n
z lei(lﬂ'l)l N
i=1

Step 2: 1If
e+ 1) ™) -5 41, iy n
and
lu(n+ 1) _ 4(m) | <6
where §> 0 18 a gmall pre-specified tolerance, stop, and let
a=a®* 1) e the optimal solution; if not, choose
B(' ) < B(") » set m = m + 1 and go to Step 1.

Based on our limited computational experience, we suggest the following
guidelines to choose 8. 1In the first step, select B(l) such that the interval
[-B(l), B(l)] contains between k + | (the number of parameters of the model)
and n reesiduals. In the subsequent iterations, choose B(") suth that the
k + 1 smallest residuals (in terms of the absolute value) lie within the

interval [-8('), 8(-)]. However, if at some iteration, the sum of absolute



errors increases, repeat the iteration with a larger value of B and continue

the process.

4. COMPUTATIONAL EXPERIENCE

It is possible to compute the MSAE estimates of Lhe parameters of a
multistage dose-response model from using (6) or from the linearized model
using (8). In an effort to compare these estimates, the Tishler ;nd 2ang
algorithm ( Section 2) was implemented on the Burrough B{E?OO compdter at the

" Centro de Computacdio Electronica da USP and the algorithm for the linearized
model (Section 3) was implemented in Turbo Pascal on an IBM compatible micro-
computer. We computed the MSAE estiwates for a few data sets taken from
Saukaranarayanan (1969a, 1969b). The results for the wodel
¥y = exp (- udi) + €4 sre summarized iﬂ Table 2, and for the model

yy = exp (-a; d; - oy a2) + ¢, in Table 3.

Insert Tables 2 and 3 about here

From Tables 2 and 3 we observe that the MSAE estimates obtained using the

exact model and the linear approximation are compatible.
4. CONCLUDING iEHARKS

The MSAE estimates of the parameters in a multistage dose-response model
are more resistant to outliers than the least squares estimates. We have
shown how we can obtain these estinat;s by a simple and computationally less
intensive algorithm using a linear approximation for the model. If désired,
the estimates from the linear approximation of the model can be uséd as a
starting solution in an algorithm for the exact model. The proposed
spproximation and the algoritham can also be uQed in bootstrap, jackknifing or

simulstion studies.
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Original Altered
; dy 7y Yy
1 0.15 0.714 0.714
2 0.30 0.479 0.714
3 - 0.45 0.321 0.321
& 0.60 0.215 0.215
5. 0.75 0.150 0.150
LS Estimate 2.4930 2.1567
MSAE Estimate 2.5299 2.5299

TABLE 1
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a MSAE Sum of
Data Set Model Used Estimate Absolute Error
. of a
Nitrogen Post- Exact Model 3.0871 0.00418
treatment
Table II Linear Approx. 3.0859 0.00416
Oxygen Post- " Exact Model 2.5292 - 0.00943
treatment
Table 11 Linear Approx. 2.5299 0.00943

*Table number refers to Table in Sankarsnarayanan (1969b).

TABLE 2
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MSAE Estimate of
o a

Sum of
Absolute Errors

Model Used 1 2
Exact Model 0.21332 0.07558 0.00813
Linear Approx. 0.21503 0.07480 0.00809

TABLE 3
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