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ABSTRACT

We have investigated the origins of photoluminescence from quantum dot (QD) layers prepared by alternating depositions of
sub-monolayers and a few monolayers of size-mismatched species, termed as sub-monolayer (SML) epitaxy, in comparison with their
Stranski–Krastanov (SK) QD counterparts. Using measured nanostructure sizes and local In-compositions from local-electrode atom probe
tomography as input into self-consistent Schr€odinger–Poisson simulations, we compute the 3D confinement energies, probability densities,
and photoluminescence (PL) spectra for both InAs/GaAs SML- and SK-QD layers. A comparison of the computed and measured PL spectra
suggests one-dimensional electron confinement, with significant 3D hole localization in the SML-QD layers that contribute to their enhanced
PL efficiency in comparison to their SK-QD counterparts.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0219815

Self-assembled Stranski–Krastanov quantum dots (SK-QDs)1,2

are often proposed for novel optoelectronic devices due to their ability
to confine carriers in three dimensions (3D), in contrast to the one-
dimensional (1D) confinement of quantum wells (QWs). Due to their
absorption of normal-incidence radiation, as well as their reduced dark
currents and higher detectivities, SK-QDs are often used in place of
QWs in infrared photodetectors.3–7 Furthermore, in principle, the 3D
confinement in SK-QDs enables the splitting of quasi-Fermi levels,8,9

as needed for intermediate band solar cells (IBSCs). However, the
observed lower open-circuit voltage and efficiencies for SK-QD IBSCs,
in comparison to their QW counterparts,10,11 have limited their use in
solar cells.

It has been suggested that InAs/GaAs sub-monolayer quantum
dots (SML-QDs), consisting of alternating depositions of sub-
monolayers and a few monolayers of size-mismatched species, result
in stacks of vertically aligned 1-ML-height islands with 3D carrier con-
finement. Remarkably, InAs/GaAs SML-QDs have led to a higher
open-circuit voltage and higher efficiency in solar cells,10–15 higher
detectivity in infrared photodetectors,6,7,16,17 and lower threshold

current and higher output power in lasers compared to SK-QDs and
QWs.18–21 It is often suggested that the enhanced performance of
SML-QD devices is due to 3D confinement of both electrons and holes
in columnar nanostructures.6,7,15 Meanwhile, two-dimensional (2D)
cross-sectional scanning tunneling microscopy (XSTM) suggests that
SML-QDs consist of InxGa1�xAs clusters embedded in an
InyGa1�yAs/GaAs QW with lower In composition (x> y),22,23

although the precise x and y values remain unknown. Using 2D pro-
jections of nanostructure sizes and local indium compositions from
XSTM as input into Schr€odinger–Poisson simulations, it has been
instead suggested that electrons are confined in 1D, with holes con-
fined in 3D.13,23 Since realistic calculations involving the 3D topology
and In compositions have yet to be performed, the influence of the 3D
nanostructure of InAs/GaAs SML-QDs on their electronic states and
optical properties remain unknown.

Here, we report on the origins of PL from InAs/GaAs SML-QD
layers. We use the 3D topology and local In compositions, xIn, from
local electrode atom probe tomography (LEAP) as input into self-
consistent Schr€odinger–Poisson simulations of 3D confinement
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energies, probability densities, and photoluminescence (PL) spectra for
both SML-QDs and SK-QDs. This work provides important insight
into the origins of the enhanced PL efficiency for SML-QDs in com-
parison to their SK-QDs counterparts, providing a pathway for high
efficiency optoelectronics and photovoltaics.

For these studies, SML-QDs and “reference” SK-QDs were pre-
pared using molecular-beam epitaxy using the substrate temperatures
and growth rates described in the supplementary material. For LEAP
studies, heterostructures consisting of multiple sets of QD layers, each
separated by �40 nm thick GaAs spacer layers, intended to prevent
coupling between QD layers, were prepared by molecular-beam epi-
taxy (MBE). Multiple conical-shaped LEAP specimens (“tips”) were
prepared from three different epitaxial samples that contained a total
of 22 distinct QD layers, a subset of which are discussed in this paper.
These QD layers are buried at least 500nm from the top surface of
each epitaxial heterostructure. Since the thickness of the QD capping
layers influences the emission intensities, separate PL samples, each
containing SK or SML-QDs, with otherwise identical layer structures,
including 50nm capping layers, were prepared. Here, we discuss three
types of QD layers: InAs/GaAs SML-QD layers consisting of six
repeats of 0.5ML InAs followed by 2.5 MLs GaAs formed on either c
(4� 4) or (2� 4) GaAs(001) surfaces, as well as InAs/GaAs SK-QD
layers obtained from deposition of 2.2 MLs of InAs on a c(4� 4) GaAs
(001) surface. For simplicity, we refer to these nanostructures as c
(4� 4) SML-QD, (2� 4) SML-QD, and SK-QD layers, respectively.
For the SML-QD layers, we consider both (2� 4) and c(4� 4) surface

FIG. 1. LEAP data for (2 � 4) SML-QD layers: (a) x–z view of LEAP reconstruction,
with corresponding spatially averaged 1D profiles of xIn, (b) 2D contour plots, and
x–y isosurfaces for (c) xIn > 0.09 and (d) xIn > 0.14. The horizontal black dashed
line in the top of (d) indicates the position of the x–z isosurface shown in the bottom
of (d). The region outlined by the black square in (d) was used for the nextnano
simulations.

FIG. 2. LEAP data for the c(4 � 4) SML-QD layers: (a) x–z view of LEAP recon-
struction, with corresponding spatially averaged 1D profiles of xIn, (b) 2D contour
plots, and x–y isosurfaces for (c) xIn > 0.14 and (d) xIn > 0.28. The horizontal black
dashed line in the top of (d) indicates the position of the x–z isosurface shown in
the bottom of (d). The region outlined by the black square in (d) was used for the
nextnano simulations.

FIG. 3. LEAP data for the SK-QD layer: (a) x–z view of LEAP reconstruction, with
corresponding spatially averaged 1D profiles of xIn, (b) 2D contour plots, and x–y
isosurfaces for (c) xIn > 0.18 and (d) xIn > 0.42. The horizontal black dashed line
in the top of (c) and (d) indicates the position of the x–z isosurface shown in the bot-
tom of (c) and (d). The region outlined by the black square in (c) was used for the
nextnano simulations.
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reconstructions, allowing comparison with both our SK-QD and those
SML-QD layers from earlier reports, suggesting that 2D island forma-
tion occurs with the (2� 4) reconstruction.24,25

For LEAP studies, samples were coated with a 500-nm thick Pt
layer, welded onto a silicon post, milled into conical shapes (tips) using
a focused-ion beam,26 and loaded into the Cameca LEAP 5000XR,
which is maintained at cryogenic temperatures (<25K) under ultra-
high vacuum conditions (3.0� 10�11Torr). LEAP experiments were
performed in laser mode with a wavelength of 355nm, pulse energy of
1 pJ, pulse frequency of 100 kHz, and detection rate of 0.005 atom/
pulse. For the three types of QDs, the total region-of-interest (ROI)
volumes exceeded 80 000nm3. 3D reconstructions of LEAP datasets
were produced using Cameca’s Integrated Visualization and Analysis
software (IVAS) in AP Suite 6.3. The PL spectra were acquired at 50K
using a 19.2lW solid-state laser emitting at 730 nm and a Si CCD
(InGaAs diode-array detector) for SML-QDs (SK-QDs). Finally, using
the nanostructure volumes and local xIn values from LEAP, probability
densities, confined state energies, and photoluminescence spectra were
computed using 3D Schr€odinger–Poisson simulations in the effective
mass approximation at 50K using nextnano.

To examine In incorporation and visualize InGaAs clusters and
QDs within the QD layers, we present x–z views of LEAP reconstruc-
tions containing the (2� 4) SML-QD layers [Fig. 1(a)], the c(4� 4)
SML-QD layer [Fig. 2(a)], and the SK-QD layers [Fig. 3(a)]. The corre-
sponding spatially averaged 1D profiles of xIn reveal maximum xIn val-
ues of 0.12, 0.19, and 0.18 for (2� 4) SML-QD, c(4� 4) SML-QD, and

SK-QD layers, with xIn < 0.0005 within the GaAs spacer regions.
Meanwhile, 2D contour plots, with local xIn values averaged over 2-nm
regions of interest (ROI) vertically centered about each QD layer,
reveal �5 nm-sized InxGa1�xAs clusters embedded in InyGa1�yAs
QWs (y< x), for the SML-QD layers [Figs. 1(b) and 2(b)] and
�20nm-sized InxGa1�xAs QDs atop wetting layers (WL) for the
SK-QD layers [Fig. 3(b)], consistent with earlier XSTM reports.22,23,27

The apparent drop in xIn at the edges in (b) is due to a LEAP analysis
artifact related to the limited counts available for the 2D contour plots.

The process for developing nanostructural models for input into
the Schr€odinger–Poisson-continuity simulations is illustrated by x–y
isosurfaces for each type of QD layer in Figs. 1–3. For the (2� 4)
SML-QDs, x–y isosurfaces with xIn > 0.09 [Fig. 1(c)] and xIn > 0.14
[Fig. 1(d)] reveal the presence of 4–5 nm InxGa1�xAs (x> 0.14) clus-
ters embedded in an InyGa1�yAs quantum well (y� 0.09). For the c
(4� 4) SML-QD layers, x–y isosurfaces with xIn > 0.14 [Fig. 2(c)] and
xIn > 0.21 [Fig. 2(d)] reveal 5–6nm InxGa1�xAs (x> 0.21) clusters
embedded in an InyGa1�yAs quantum well (y� 0.14). For the SK-QD
layers, x–y isosurfaces with xIn > 0.18 [Fig. 3(c)] and xIn > 0.42
[Fig. 3(d)] reveal �20 nm InxGa1�xAs QDs (x> 0.18) with higher
composition (up to x� 0.6) “cores.” For each isosurface, all clusters
with sizes� 4.2nm3 and their local xIn(x, y, z) were identified. To
quantify local xIn values within In-rich clusters (or QDs) and the sur-
rounding QWs (or WLs), we analyzed 2D contour plots from seven
1-nm thick ROI spanning each type of QD layer. For the 2D regions
(QWs or WLs), the clusters were excluded from the analysis; a series

FIG. 4. The x- and z-dependence of the conduction-band edge (CBE) (black), valence-band edge (VBE) (black), and confined states (colorful) for the (a) (2� 4) SML-QD, (b)
c(4� 4) SML-QD, and (c) SK-QD layers, computed along the black dotted lines intersecting clusters in Figs. 1(d), 2(d), and 3(c). The z-dependence of the CBE and VBE of
the clusters/QDs are marked in orange.
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of 2D contour plots shifted in the z-direction were used to obtain
hxIn(z)ixy. For each cluster, we use xIn(x, y, z) to model a series of ellip-
soids as described in the supplementary material.

For each type of QD layer, the conduction-band edge (CBE),
valence-band edge (VBE), and confined states computed along the
black dotted lines intersecting clusters in Figs. 1(d)–3(d) are shown in
Figs. 4(a)–4(c), with the main findings summarized in Table S4. For
each of the x, y, and z directions, if the electron (hole) level is below
(above) the edge of the QW conduction (valence) band, the carrier is
considered to be confined. For the SK-QD layers, the computed CBE
and VBE band diagrams along the x-direction reveal that Ee1 (Ehh1)
lies 100 (115) meV below (above) the CBE (VBE) of the surrounding
WL with xIn¼ 0.05, and 35 (65) meV below (above) the CBE (VBE) of
theWL with xIn¼ 0.14. Along the z-direction, Ee1 (Ehh1) lies 30 (70) meV
below (above) the CBE (VBE) of the surrounding WL. Thus, 3D con-
finement of both electrons and holes in SK-QD is confirmed. On the
other hand, for the (2� 4) SML-QD layers, Ee1 (Ehh1) is 28 (21) meV
above (below) the CBE (VBE) of the surrounding QW along the
x-direction, with Ee1 (Ehh1) being 20 (41) meV above (below) the CBE
(VBE) of the surrounding QW along the z-direction. Similarly, for the
c(4� 4) SML-QD layers, Ee1 (Ehh1) is 42 (27) meV above (below) the
CBE (VBE) along the x-direction, with Ee1 (Ehh1) being 28 (35) meV
above (below) the CBE (VBE) along the z-direction. Therefore, for the

FIG. 5. Computed probability densities of the ground state electrons (e1) and heavy-holes (hh1) for (a) (2� 4) SML-QDs, (b) c(4� 4) SML-QDs, and (c) SK-QDs. The white
dotted circles/ovals indicate the positions of clusters/dots, and the maximum value of the color scale is shown in the upper right corner. The arrows indicate the In-rich clusters
used to quantify the localization of heavy-hole probability densities of the SML-QDs. The insets to the ground state electrons (e1) illustrate the 1D probability densities along the
black dotted lines in (a), (b), and (c).

FIG. 6. Measured (solid lines) and computed (dashed lines) PL emission vs energy
for the SK-QDs (green), c(4� 4) SML-QDs (blue), and (2� 4) SML-QDs (red). The
energy of the maximum of each spectrum is indicated. For the SK-QDs, the line-
width of the simulated PL is narrow due to the inclusion of only one QD in the
simulation.
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SML-QD layers, 1D carrier confinement is apparent, similar to the
QW case, in contrast to assumptions of 3D confinement inferred from
XSTM and PL data.15,23,28

To confirm the hypothesis of 1D carrier confinement in SML-
QD layers, we computed electron and heavy-hole probability densities
for each type of QD layer (Fig. 5), quantifying carrier “localization” as
the fraction of probability density that is inside the clusters or QDs. A
padding of 15nm is added to all sides of simulation area (full
size¼ 55� 55 nm2) to minimize the truncation of probability densities
induced by the Dirichlet boundary condition. For the SK-QD layers in
Fig. 5(c), both electrons and heavy-holes are localized to the In-rich
clusters, consistent with earlier reports.29,30 On the other hand, for
both types of SML-QD layers, the electron probability densities are dis-
tributed across and modulated by several In-rich clusters (see 1D prob-
ability density profile insets), while the heavy-hole probability densities
are localized to certain In-rich clusters, suggesting a “quasi-1D” carrier
confinement. The localization of heavy-holes is more significant than
that of electrons, presumably due to their substantially higher effective
masses. For the In-rich clusters indicated by arrows in Fig. 5, the frac-
tions of heavy-hole probability density within 10 nm3 are 0.20 and 0.38
for the (2� 4) and c(4� 4) SML-QD layers. The increase in heavy-
hole localization for the c(4� 4) SML-QD layers is likely due to the
larger cluster sizes and higher xIn values.

We next compute the spontaneous emission vs energy for com-
parison with the measured values of PL intensity vs energy for the
QD layers. For these calculations, both the ground states, shown in
Figs. 5(a)–5(c), plus the excited states, shown in the supplementary
material, were included. Figure 6 presents the measured (solid) and
computed (dashed) PL data for the SK-QD layers (green), c(4� 4)
SML-QD layers (blue), and the (2� 4) SML-QD layers (red). Similar
trends in the relative PL emission energies and emission intensities are
observed for the measured and computed PL data, with emission
intensities increasing from c(4� 4) SML-QD layers (blue) to SK-QD
layers (green) to (2� 4) SML-QD layers (red). For each type of QD
layer, the systematic blue-shift (to higher energy) of the computed PL
emission energies with respect to the measured values may be due to
the higher thickness of the overgrown layers (�500nm for LEAP
structures vs 50 nm for PL structures) grown at temperatures suffi-
ciently high to generate In out-diffusion.31–33 Thus, for the QD layers
within the LEAP structures, the lower In concentrations would lead to
higher computed PL emission energies. Furthermore, although both
SML-QD and SK-QD layers exhibit compositional inhomogeneities,
the quasi-1D confinement in the SML-QD layers leads to narrower
emission linewidths typical of QWs.34 To understand the trends in PL
emission intensities, we consider both the real-space overlap of the
electron-heavy-hole probability densities35–37 (i.e., the transition inten-
sity) and the total number of states contributing to the emission.

For the SK-QD layers, the probability densities are confined
inside the QDs, resulting in significant real-space overlap of the elec-
tron-heavy-hole probability densities, but only ground state electrons
and heavy-holes contribute to the emission. On the other hand, for
both types of SML-QD layers, the electron probability densities are dis-
tributed across several In-rich clusters, while the heavy-hole probabil-
ity densities are localized in the vicinity of certain In-rich clusters.
However, as mentioned earlier, for the (2� 4) SML-QD layers, there
are three electron and seven heavy-hole states contributing to the emis-
sion (see Table S5 of the supplementary material), which ultimately

leads to the high PL emission intensity of the (2� 4) SML-QD layers.
The emission intensity of the c(4� 4) SML-QD layers is predomi-
nantly determined by their improved heavy-hole localization that
decreases the real-space overlap of the electron–hole probability densi-
ties, causing the emission of c(4� 4) SML-QD layers to be less intense
than that of the SK-QD layers despite the number of states contribut-
ing to total emission.

In summary, we examined the origins of the narrow and intense
PL emission from InAs/GaAs SML-QD layers—similar to that of a
QW—in contrast to the broader and weaker PL emission typical of
SK-QD layers. Using realistic 3D nanostructure sizes and local InGaAs
composition profiles from LEAP as input into self-consistent
Schr€odinger–Poisson simulations of SML-QD and SK-QD layers, we
demonstrated 1D electron confinement with significant 3D hole locali-
zation in the SML-QD layers, in contrast to 3D confinement of elec-
trons and holes in SK-QD layers. In other words, SML-QD layers are
not strictly three-dimensionally confining “quantum dots.”38 Despite
the significant real-space overlap of the electron-heavy-hole probability
densities in SK-QD layers, SML-QD layers have a larger number of
states contributing to their emission, resulting in higher PL intensities.
Furthermore, the real-space overlap of the electron-heavy-hole proba-
bility densities and the total number of states is greatest for the (2� 4)
SML-QD layers, leading to their higher PL emission intensity. This
work provides important insight into the origins of the enhanced PL
efficiency for SML-QD layers in comparison to their SK-QD
counterparts.

See the supplementary material for the parameters used for
molecular-beam epitaxy of InAs/GaAs SML-QD and SK-QD layers,
including the shutter sequences, the elemental incorporation rates
(IR), and the substrate temperatures for all layers. In addition, the iso-
surface threshold selection criteria and nextnano model development
are described. Next, we present LEAP data, as well as the computed
probability density and energy band diagram for the reference QW.
Finally, the computed excited-state probability densities for the SML-
QD and SK-QD layers, and a comparison of the real-space overlap of
the electron-heavy-hole probability densities (i.e., the transition inten-
sities) for all combinations of confined and excited states are
presented.
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